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Preface

Special Issue:
The second international workshop on unstructured mesh
numerical modelling of coastal, shelf and ocean flows

Delft, The Netherlands, September 23–September 25, 2003
While traditional structured mesh ocean models are now well established they are restricted in
their ability to fit domains with arbitrary geometries and there has been no fundamental change to
the techniques employed since their development in the sixties. In the meantime numerical tech-
niques have evolved, as have computer resources. The potential advantages of unstructured grid
methods are significant, islands and complex bathymetry can easily be handled, resolution can be
placed in boundary layers in an optimal manner, the problem of stair casing near land boundaries
can be avoided by having a mesh aligned with the boundary and adaptive grids with dynamically
changing resolution are possible. The time is right for a change of direction and introduction of
new methods into both oceanography and coastal engineering.

A series of now annual workshops on unstructured mesh numerical modelling of coastal, shelf
and ocean flows was initiated by Jens Schröter, Eric Deleersnijder and Florent Lyard in Septem-
ber 2002. The first workshop took place in Louvain-la-Neuve, the second in Delft and the third in
Toulouse. The workshops were initiated due to the growing interest in unstructured mesh meth-
ods in oceanography and coastal engineering. The idea behind the workshops is to promote open
discussion, focussing on numerical issues as well as applications. The interest in this area of flow
modelling attests to the importance of this emerging field for both oceanographers and engineers.

This volume publishes 14 papers presented at the Delft workshop. The diversity of approaches
and the enthusiasm of the groups made for a successful meeting. At the meeting 33 talks and 7
posters were presented, with substantial time set aside for general discussions on finite element
and finite volume techniques as well as the physical processes that need to be resolved in the future
generation of coastal and ocean models. In addition more specialised discussions took place on
topics such as basis functions, stabilisation, advection schemes, solvers and grid generators.

The collection of papers presented here represents only some of the topics covered by the work-
shop, see http://fluidmechanics.tudelft.nl/unstructured/workshop/ for further details. The first
1463-5003/$ - see front matter � 2004 Published by Elsevier Ltd.
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paper in the special issue by Pain et al. is an excellent introduction to the subject and also reflects the
research being undertaken by the Imperial College group; see also work by Piggott et al. which is
one of the first applications of adaptive finite elements in oceanography. The papers by Danilov
et al. and Labeur and Pietrzak present two models using a fully unstructured grid approach with
tetrahedral elements. The former model has been developed with large scale ocean applications
in mind, the latter for coastal ocean applications in which non-hydrostatic effects are important.
Myers et al. use a finite element model to investigate the interpentadal variability in the North
Atlantic Ocean. LeRoux et al. present a linear algebra approach for the investigation of spurious
modes in shallow water models. Hanert et al. presented work carried out on Eulerian and semi-
Lagrangian methods. Casulli and Zanolli presented further developments to the UnTrim model
which is widely used in the coastal ocean and engineering communities. Ham et al. presented a
new finite volume shallow water model, that builds upon the UnTrim approach. Behrens et al.
and Frickenhaus et al. cover some important technical issues dealing with adaptive mesh generators
and interfaces to parallel sparse solvers respectively. Hall and Davies presentation addresses the ef-
fects of irregular grids on the quality of internal wave simulations. Greenberg et al. present an appli-
cation of Quoddy to the Bay of Fundy, addressing the important coastal ocean modelling issue of
flooding and drying. The issue concludes with a paper by Iskandarani et al. on high order advection
schemes to improve the family of spectral element ocean models originally developed at Rutgers.

It is clear that there is much activity in this area of research which is likely to lead to accurate
and well tested unstructured mesh models available to the ocean and coastal modelling commu-
nities. For further information on our activities please see http://wessex.eas.ualberta.ca/~myers/
FE/fe-page.html.

We would like to thank Ocean Modelling for the opportunity to publish a set of related papers
in a special issue. Also we wish to thank the authors and the many referees for their excellent and
time consuming work. We hope that this special issue will stimulate further progress in this excit-
ing area of ocean modelling.
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Abstract

In this article the advantages and current status of unstructured mesh ocean modelling are reviewed.

Future challenges are discussed along with the potential of resulting methods to make a significant impact

on ocean modelling over the next decade. These methods are important because they are the only tech-

niques that can simultaneously resolve both small and large scale ocean flows while smoothly varying res-

olution and conforming to complex coastlines and bathymetry. Realising the full potential of such methods
will necessitate the use of dynamic mesh adaptivity. A number of techniques need to be combined and

developed from different numerical modelling and geophysical fluid dynamics disciplines in order to create

a powerful unstructured mesh ocean model. These are: accurate and robust methods for the discretisation

and advection of tracers, density and momentum; the choice of element/cell and satisfaction of the LBB

stability condition; representation of hydrostatic and geostrophic balance; the ability to deal with sigma

coordinate-like errors associated with the use of unstructured meshes; initial mesh generation to follow

complex bathymetry and coastlines; sub-grid scale modelling on unstructured and possibly solution adap-

tive meshes; scalable solvers and parallel computing. A good solution to each problem is required, and thus
1463-5003/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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the resulting model may be argued to be considerably more complex than traditionally used structured

mesh models. It is these topics that are addressed here.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Traditional ocean models (for background material, see Haidvogel and Beckmann, 1999; Grif-
fies et al., 2000) are extremely sophisticated with hundreds of person-years invested in all aspects
of their development. However, the fundamental techniques used to solve the momentum and
continuity equations have remained largely unchanged since their original development (Bryan,
1969; Bryan and Cox, 1967). They have typically evolved to a high degree of sophistication
(e.g. the MIT model; Marshall et al., 1997), with a range of methods for parameterising the var-
ious unresolved physical processes, as well as the use of hybrid meshes (although still structured)
for example. However, evolution does not always result in optimality since current models only
reflect the methods and computing resources that used to be available. Thus it seems timely to
investigate the possibility of changing some of the fundamental aspects of these models; the use
of an unstructured mesh with the option for dynamically changing resolution seems a natural next
step.

The first work on the use of finite elements and unstructured meshes in the field of ocean mod-
elling was probably by Fix (1975). Examples of other important early work may be found in
Lynch and Gray (1979), Haidvogel et al. (1980), Platzman (1981), Dumas et al. (1982) and Le Pro-
vost and Vincent (1986). Subsequent work concentrated mainly on diagnostic models (e.g. Myers
and Weaver, 1995; Greenberg et al., 1998; Nechaev et al., 2003), and models based upon shallow
water systems (e.g. Lynch and Werner, 1987; Ma, 1993; Iskandarani et al., 1995). More recently
models which compute solutions with three-dimensional (3-D) hydrostatic (Lynch et al., 1996;
Iskandarani et al., 2003; Danilov et al., 2004) and non-hydrostatic (Ford et al., in press-a; Labeur
and Pietrzak, 2004), dynamics have been developed.

There is currently a fairly wide range of approaches and techniques employed by the �unstruc-
tured-mesh� community. For example, the Spectral Element Ocean Model (SEOM) of Iskanda-
rani et al. (1995) uses an unstructured mesh of rectangles in the horizontal, sigma coordinates
in the vertical, and is very accurate with the typical use of sixth degree or higher Legendre poly-
nomials. The model of Lynch et al. (1996) uses an unstructured mesh of triangles in the horizon-
tal, with sigma coordinates in the vertical. Buoyancy forces are evaluated by interpolating density
onto a structured background mesh. The FEOM model (Danilov et al., 2004) uses a Galerkin
least squares approach to stabilise and remove spurious modes, as well as a finite difference treat-
ment of buoyancy forces on nodes stacked one on top of another in the vertical. The MIT model,
although using a structured mesh, can use shaved cells (Adcroft et al., 1997) to conform to
bathymetry, and can use modified z coordinates to adjust the coordinate system to follow a free
surface (Adcroft and Campin, 2004).

New to unstructured mesh models is the need to obtain a suitable coastline and bathymetry
conforming mesh (Legrand et al., 2000; Gorman et al., submitted for publication). Another
important aspect of an unstructured mesh ocean model is the choice of element, i.e. how the
various solution variables are represented on the mesh. This can be viewed as the analogue of
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Arakawa grid staggering in structured mesh models. Work on analysing these choices with re-
gards their impact on spurious computational modes and the representation of states close to geo-
strophic balance in shallow water models may be found in Le Roux et al. (1998), Hanert et al.
(2002) and Le Roux et al. (2004).

The potential advantages of an unstructured mesh ocean model are significant. For example,
there are issues relating to boundary conditions when bathymetry and coastlines are represented
by a �staircase� regular structured mesh. The result can be an inadvertent application of no-slip
boundary conditions, and consequent problems with the transport of dense fluids along slopes.
This process must be parameterised for staircase topography, for example using enhanced diffu-
sion in the cells adjacent to the ocean floor. Having the mesh aligned with the bathymetry avoids
many of these problems (Adcroft and Marshall, 1998) and allows the fluid to slide over bathym-
etry, as described by a frictional model for example. Unstructured meshes also enable the use of
greater mesh resolution in the direction normal to the coastline than tangential to it where typi-
cally boundary layers develop (e.g. western and frictional). Resolving developing flow features
(e.g. fronts, eddies, overflows) whose positions are not necessarily known a priori requires the
use of adaptive mesh resolution. Thus ideally mesh adaptivity techniques would be employed
which can dynamically change model resolution to optimally resolve such flows.

The aims of future unstructured mesh ocean models are to:

• be accurate and robust in ocean flow conditions (e.g. accurate noise-free representation of
hydrostatic and geostrophic balance);

• be non-hydrostatic but without the additional computational overhead when the flow is close to
hydrostatic;

• exploit nonlinear advection methods on unstructured meshes so that both accuracy and robust-
ness may be combined;

• use sub-grid scale modelling designed for unstructured (inhomogeneous and anisotropic
meshes) and possibly dynamically changing meshes;

• be conservative;
• possess a free surface and accurately resolve barotropic and baroclinic modes;
• be implicit, or semi-implicit, so that time-step sizes are not necessarily restricted by grid size (i.e.

allow large Courant numbers associated with the various physical processes present);
• have an unstructured mesh in the vertical as well as the horizontal to optimise efficiency gains;
• use anisotropic mesh adaptivity with resolution controlled through error measures, or to better

resolve areas of socio-economic importance, and also to include mesh movement to allow the
model to follow isopycnal layers or coherent structures;

• make use of parallel computing with load-balanced domain decompositions methods;
• be able to assimilate data into a predictive model and exploit natural grid hierarchies to accel-

erate inversion and obtain sensitivity information.

The remainder of this article addresses these issues with a number of modelling demonstrations
using the model under development as part of this work (Ford et al., in press-a). The next section
describes numerical advection methods, and highlights the relative merits of a wide range of ap-
proaches. In Section 3 the closely related topic of sub-grid scale modelling on unstructured evolv-
ing meshes is discussed. In Section 4 the important issue of element choice and its links with
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Arakwawa grid staggering is reviewed. Section 5 covers the topics of mesh adaptivity, mesh move-
ment and error measures, which are crucial in many ways for reaping the full benefits of unstruc-
tured mesh modelling. This is followed in Section 6 by a discussion on the links between adaptivity
and the choice of vertical coordinate which has proved to be so important for traditional ocean
models. Section 7 covers initial mesh generation and draws heavily on the previous two sections.
Finally, in Section 8 the importance of the accurate representation of balance, solvers and scien-
tific computing issues are discussed.
2. Advection

This section presents numerical methods for resolving on unstructured meshes the transport of
density, tracers, momentum, free surface height, and sets of coupled advection equations.

The accurate numerical modelling of advection (or transport) remains a central problem in
many areas of fluid dynamics such as oceanography (Pietrzak, 1998; Smolarkiewicz and Margo-
lin, 1998; Hanert et al., 2004; Iskandarani et al., 2004). This is mainly due to the conflicting de-
mands of accuracy and the requirement for stability and boundedness of the numerical
discretisation scheme (Darwish, 1993). First-order discretisation schemes, although stable, are
highly numerically diffusive. Conversely high-order schemes, although accurate, tend to give rise
to numerical oscillations in regions where there are large solution gradients. In the field of fluid
dynamics it was realised quite early on (for background see Hirsch, 1990), that the only way to
achieve a high-order bounded scheme free from numerical oscillations was to introduce nonlinear-
ity into the discretised equations, even if the original differential equations are linear. This is a
consequence of Gudonov�s theorem (Toro, 1997) which states that there are no linear monotone
high-order schemes for hyperbolic systems of equations.

2.1. Petrov–Galerkin methods

While Bubnov–Galerkin (using the same weighting/test functions as expansion functions) dis-
cretisations of transport equations are dispersive, generalised least squares discretisations (Ack-
royd, 1997) represent an alternative approach which tend in general to be quite dissipative. If
the least squares error is minimised using finite elements as basis functions, a discrete system with
a symmetric-positive-definite matrix results. To overcome the problems related to each approach
for advection processes, it is popular to combine the dissipative least squares methods with non-
dissipative Galerkin methods to produce an attractive compromise in the Galerkin-least-squares
(GLS) method (Hughes et al., 1989). These methods are all Petrov–Galerkin in nature (a weighted
residual method) and typically applied using finite elements. They have the advantage that they
attempt to reduce explicitly the residuals of the governing equations. The consistency of the ap-
proach (being a residual based formulation) leads to robustness and accuracy advantages. For
example, usually (depending on the element choice) all mass matrices have the property that they
are distributed (i.e. non-diagonal).

Similar to GLS is the typical Petrov–Galerkin (PG) weighting; that is, using a weighting func-
tion which puts more emphasis on what is happening in the upstream direction. It is a popular
choice and the weighting is almost universally chosen for scalar equations as Ni þ 1

2
h
juj u � rN i,
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in which Ni is the finite element basis function associated with node i and u is the transport veloc-
ity for the scalar being solved for. The element width h depends on the element choice, e.g. h is the
width of an element for linear interpolants and half that width for quadratic interpolants. How-
ever, these methods are still prone to oscillate in the direction normal to the flow as their dissipa-
tion is streamline based. The common cure is to introduce additional nonlinearity (Hughes et al.,
1986; Oñate et al., 1997; Almeida and Silva, 1997). This usually takes the form of diffusing away
large equation residuals, often in the direction of largest spatial gradients (Masud and Hughes,
1997; Hughes and Mallet, 1986b; Codina, 1993). Although these methods can be shown to be
non-oscillatory and satisfy a maximum principle (the maximum and minimum values of the solu-
tion variable are on the boundaries of the space–time domain for a scalar advection/diffusion
equation with a divergence free advecting velocity field), they tend to be more dissipative than
nonlinear finite volume (FV) or control volume (CV) methods. Nonlinear CV methods are well
developed and certainly the most widely used transport methods and thus this advantage does
not seem surprising.

More recently, discontinuous finite element methods (DFEM) in both the space and time do-
mains have been applied to the time-dependent transport equation (Wareing et al., 1999).
Although linear discontinuous representations are more robust than other time-stepping schemes
such as Crank-Nicolson, they still lack sufficient numerical stability. Also, variational principles
for the time-dependent form of the transport equation have been derived (Donea and Huerta,
2003; Ackroyd, 1997). These variational finite element schemes use continuous finite elements
for both the space and time domains. The variational principle can also be recast as a weighted
residual formulation with an appropriate spacetime PG weighting. The advantages of these
schemes are that their stability properties are potentially better than the linear discontinuous for-
mulations employing Bubnov–Galerkin weightings due to the dissipation introduced from the PG
weighting. However, due to the linearity of the scheme it does not preclude the possibility that
oscillations may occur in the space–time solution (since this can only be achieved using methods
which introduce nonlinearity).

Space–time Petrov–Galerkin methods have found widespread application for solving advec-
tion–diffusion-type problems. Space–time finite element methods use either continuous or discon-
tinuous finite elements for both the space and time domains; the time domain is simply treated as
another dimension over which transport takes place. The most crucial issue in most space–time
formulations is the distance over which numerical dissipation is applied. For linear space–time
formulations, typically this has meant a choice between using either the spatial or temporal
meshes to determine these distances, or alternatively, using the distance across the space–time ele-
ments. If the spatial mesh is used to determine the element length scales, this introduces the cor-
rect amount of numerical dissipation for steady-state cases (Eriksson et al., 1996). If the temporal
mesh is used to determine the element length scales, this assumes that the spatial dimension is lar-
gely invariant. Examples of this approach include the Lax–Wendroff (Lax and Wendroff, 1960)
and Taylor–Galerkin (Donea, 1984) methods. A disadvantage of this approach is that the
time-step size needs to be tuned in order to represent a typical element length scale associated with
a spatial mesh. Thus this approach can become computationally inefficient as steady-state is
approached.

None of these methods used to calculate representative distances are entirely satisfactory. A
more appropriate way of calculating the distance is to use the variation of the solution in
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space–time. Therefore the space–time methods must in general introduce nonlinearity and use the
local solution gradients in order to calculate representative distances. For instance, if the steepest
gradients in the solution are in the time dimension then the time-step size (or a multiple of it)
should act as the representative distance over which numerical dissipation is introduced, see Pain
et al. (in press-a).

In addition to the calculation of the representative distance over which numerical dissipation is
introduced, the angle between the gradient of the solution and the streamline direction is impor-
tant and is used in most nonlinear Petrov–Galerkin methods.

2.2. Control volume methods

Control volume (CV) methods involve integrating the transport terms over surfaces of CVs in
order to gauge the quantity of incoming and outgoing information. Thus the accuracy of this ap-
proach is limited by the accuracy of the information evaluated at the CV boundaries. High-order
schemes are typically realised by placing polynomials through local CV values in order that accu-
rate values on the CV boundaries can be established. These high-order polynomials can put more
emphasis on interpolating upstream CV cell values such as in the QUICK (Leonard, 1979, 1991)
scheme for example. Other possible methods involve constructing a local Taylor series expansion
through nearby CV values (Ackroyd, 1997), fitting a plane (which defines a gradient) through
nearby CV values in a least squares fashion, or using finite element/spectral element interpolation
(Karniadakis and Sherwin, 1999).

These CV methods can easily switch to a non-oscillatory method when a solution extrema is
detected, and thus preserve the non-oscillatory (in N-dimensions), and even the Total Variation
Diminishing (TVD) property in 1-D. The Sweby diagram approach (Sweby, 1984), is particularly
successful at this and typically switches between a number of schemes such as QUICK and a cen-
tral method as defined by a curve on the Sweby diagram. This curve can be changed to optimise
the compressive properties of the scheme (e.g. sharp interface preserving properties) as in the
superbee approach (Roe, 1985), or a compromise which does not act to make sine waves square
such as in the van Leer approach (van Leer, 1974, 1977).

The Normalised Variable Diagram (NVD) (Leonard, 1988) approach to flux limiting produces
equivalent schemes to the Sweby diagram approach, at least in 1-D. However, it acts on more fun-
damental extrema detecting variables and as such is the approach adopted in the multi-dimen-
sional unstructured mesh formulations employed here. It is the method used to obtain the high
fidelity density solutions in the gravity current simulation presented in Fig. 1. The domain here
is 20 km long and 5 km wide, with a linearly varying bathymetry of maximum depth 1 km and
minimum depth 0.2 km. A column of dense water 5 �C cooler than the surrounding water is re-
leased in the shallower part of the domain (cf. Özgökmen and Chassignet, 2002). The Kelvin–
Helmholtz instability resulting in vertical mixing and entrainment, and the lobe and cleft structure
of the gravity current head can clearly be seen. See Pain et al. (in press) for a full description of the
advection method that uses an implicit approach with temporal limiting as well as spatial limiting
to avoid oscillations introduced by high-order interpolants used in the time domain, especially
when large time-steps are used (the maximum local Courant number for this simulation
was 15). The Barton scheme (Centrella and Wilson, 1984) is an effective alternative to other



Fig. 1. Density field in a gravity current simulation as described in Section 2.2. Left: an isosurface of density obtained

on a fixed hexahedral mesh of approximately 1.5 M nodes, and utilising control volume based high-resolution advection

of density. Right: result obtained with standard discontinuity capturing SUPG for the advection of density (an

isosurface of which is shown) on an adaptive unstructured mesh of approximately 80000 nodes and 200000 elements.
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approaches for unstructured meshes and uses a combination of a number of schemes to evaluate
fluxes on CV boundaries.

The DFEM is a combination of CV and FEM methods and typically (as in the Discontinuous
Galerkin (DG) method) uses a Galerkin discretisation within each element and CV-like fluxes for
incoming/outgoing element information. Attempts have been made to suppress oscillations occur-
ring in DFEM solutions. For example in Kershaw et al. (1998) linear and quadratic elements were
used, as well as a nonlinear programming approach, to suppress the oscillations and alter the solu-
tion in a minimal way. Since it is a hybrid approach it is especially complex to design a DFEM
scheme that satisfies the maximum principle.

2.3. Coupled systems of equations

For coupled systems of hyperbolic equations, such as the shallow water equations, it is possible
to determine the incoming/outgoing information to each control volume by looking at eigenstruc-
ture of the resulting equations (Brunner and Holloway, 2001a,b). The eigenstructure is spatially
variant in many fluid flow problems (e.g. in the compressible inviscid and shallow water systems),
but fortunately analytical expressions for the eigenvalues and eigenvectors exist (Toro, 1997, 2001).
Multi-dimensional Riemann methods typically form a 1-D Riemann decomposition normal to each
face of a control volume. The most accurate approach (also used to form the basis of a residual for-
mulation) is to use the same upwind bias used to discretise the fluxes to discretise the sources in the
equations normal to a face. In addition, since this approach allows one to determine the quantity of
incoming and outgoing information for coupled systems of hyperbolic equations, it allows the easy
application of limiting methods (limiting the fluxes on the control volume boundaries to avoid oscil-
lations). The limiting functions should ideally take into account sources in the differential equations
when calculating extrema detecting functions (Hubbard and Garcia-Navarro, 2000).

Least squares methods are also an effective means of dealing with coupled systems of equations.
When dealing with equation sets with different dimensions (e.g. momentum and continuity equa-
tions) it can be advisable to multiply one of these equation sets by a certain dimensional number,



12 C.C. Pain et al. / Ocean Modelling 10 (2005) 5–33
or equivalently solve the equations in non-dimensional form. However, one of the main problems
with this approach is that it is not always clear what number to multiply one or more of the equa-
tion sets by, and this can vastly affect the performance of the least squares discretisation. In addi-
tion, practitioners are often disturbed to find the discretised momentum equation within the
discretised continuity equation and vice-versa. On the positive side this approach can eliminate
spurious modes (e.g. pressure modes), making it possible to use shared pressure–velocity-free sur-
face meshes. It will also suppress spurious numerical oscillations near sharp gradients. However,
as with other dissipative discretisation schemes, care must be taken when combining it with sub-
grid scale models such as Large Eddy Simulation (LES) methods, since the dissipative discretisa-
tion method is in effect providing much of the sub-grid scale modelling (Hughes et al., 2000).
Similarly, least squares methods and coupled equation PG methods share all the above attributes
with GLS methods.

A diffusion based approach of introducing nonlinearity into PG methods for solving strongly
coupled systems of equations is reported by Shakib et al. (1991), the magnitude of the diffusion is
proportional to the magnitude of the equation residuals. Thus the method acts to diffuse out equa-
tion residuals. Nonlinear discontinuity capturing PG schemes applied to coupled systems use a
rank-one weighting matrix for the application of isotropic diffusion (Hughes and Mallet,
1986a,b; Shakib et al., 1991). The streamline up-wind Petrov–Galerkin (SUPG) method of Pain
et al. (in press-b) uses a nonlinear PG formulation with diffusion introduced only in the streamline
direction, and for time-dependent problems this diffusion acts in space–time using DFEM in time,
see Pain et al. (in press-a).

To avoid equation coupling issues the momentum and continuity equations are most often trea-
ted separately. Moreover, this approach can guarantee to result in bounded densities and tracers
when solving the coupled momentum and incompressible continuity equations using a piecewise
constant basis function for the density, and the same basis functions for pressure and for the
weighting of the continuity equations. For a bounded scheme the fact that the discretised conti-
nuity equation is embedded in the discretised advection equation presents additional issues that
can be addressed with CV methods. Unless the discretised continuity equation is actually the dis-
cretised continuity equation satisfied by the solution to the momentum/continuity equations, then
sources/sinks of the advected quantity will result affecting the boundedness and accuracy of the
solution. This consistency was achieved in the high-resolution method results shown in Fig. 1,
and is the main reason why control volume methods are applied in situations where the solution
must be bounded.
3. Sub-grid scale modelling on unstructured meshes

Sub-grid scale (SGS) modelling has many links with, and is strongly related to, the topic of
accurate and robust advection methods. This is because much of the sub-grid scale processes
requiring modelling (e.g. various turbulent effects) are processes described by transport, but usu-
ally on a scale much smaller than the mesh size (Sagaut, 1998). Thus it is not surprising that trans-
port methods themselves have often been used as turbulence models (e.g. Denbo and Skyllingstad,
1996; Hoffman and Johnson, 2004). See also Hughes et al. (2000) for a discussion of the links be-
tween the Smagorinsky LES and the variational multiscale approach to numerical stabilisation
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when modelling turbulent flows. In fact sub-grid scale modelling techniques have been shown in
many ways to be equivalent to some of the stabilisation techniques discussed in the previous sec-
tion (Hughes, 1995; Brezzi et al., 1997).

Since the error (deviation of the numerical solution from the exact solution) satisfies a transport
equation set similar to the original (Donea and Huerta, 2003), it is not surprising that sub-grid
scale processes often involve the use of transported variables e.g. turbulent kinetic energies in dy-
namic Large Eddy Simulation (LES) models. As far as this work is concerned the main issues are
the design of sub-grid scale models on variable resolution unstructured meshes, and how they
interact with dynamically changing anisotropic resolution (Figs. 1 and 2), right up to the point
where the processes become explicitly resolved by the mesh. Bearing in mind that the sub-grid
scale model typically depends strongly on resolution, the interaction of sub-grid scale modelling
with dynamically changing meshes provides additional nonlinearities that need to be understood.
In fact this may provide an entirely new field of endeavour. For example, there is a requirement to
include both the discretisation and the modelling errors, e.g. model errors from LES (Hoffman
and Johnson, 2004). Goal based mesh optimisation methods, in which the mesh is adapted to
optimally represent the goal, e.g. the drag past an obstruction or a measure of the dynamics of
the flow, may be constructed to take into account the additional nonlinearities associated with
these SGS models, see Hoffman and Johnson (2004) for further discussion on goal based mesh
adaptivity. See Bentham et al. (in press) for a discussion on how anisotropic and inhomogenous
mesh resolution may be reflected in the sub-grid scale model.

An alternative modelling approach can be derived by averaging the fluid quantities along fluid
particle trajectories, i.e. Lagrangian averaging. The advantage is that fluid structures, such as
Fig. 2. Adapted unstructured mesh for a barotropic wind driven gyre circulation on a beta-plane. Anisotropic

resolution has automatically been focused in the western boundary current region and subsequent nonlinear eddies, and

changes in response to the evolving flow fields.
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overturning billows and vortices, remain more coherent and are not smoothed to such an extent.
One such model, the LANS-alpha model (Foias et al., 2001), changes the momentum equations so
that the fluid is advected by a smoothed velocity field (the smoothing may be designed to match
the variable numerical resolution). This filtering has been demonstrated to yield very attractive
results including, for isotropic turbulence, an improved adherance to Kolmogorov�s �5/3 en-
ergy-wavenumber scaling-law, up to the length scale set by the filter. For an oceanographic appli-
cation see (Holm and Nadiga, 2003).

Another example of sub-grid scale modelling is that given by the wind forcing which generates
waves and imparts momentum into the ocean depending on the wave amplitude and whether
they break (Cavaleri and Bertotti, 2003). This type of sub-grid scale model typically discretises
the probability density function of the waves into their frequency (wavelength) and direction,
resulting in a large set of coupled differential equations—the coupling is via nonlinear wave
interactions. The discretisation of wave direction (as well as frequency) is strongly related to
mesh resolution. Not taking into account the spatial resolution can lead to ray effects (spurious
numerical rays due to the truncation of direction discretisation). Similar models must also be
developed for the interaction with the atmosphere through heat fluxes, and in an analogous
way internal waves and diapycnal mixing. Ice modelling also provides additional sub-grid scale
challenges.

Various further phenomena, such as overturning and mixing, need parameterisation. They typ-
ically range from the use of infinite diffusion in the vertical when an inversion of the stratification
occurs, to 2.5 equation approaches to vertical mixing (Mellor and Yamada, 1982). Whereas with
attempts at resolving the turbulent 2-D (horizontal) structures via simple eddy parameterisation,
e.g. bi-harmonic dissipation (which is difficult to treat implicitly because of large stencils) and LES
methods, often no attempt is made at modelling the turbulent fluctuations in the vertical and sec-
ond moment closure methods are thus frequently used (Mellor and Yamada, 1982). See also Gent
and McWilliams (1990) for a popular and successful approach to parameterising isopycnic mixing
by geostrophic eddies. Additional parameterisations are required for vertical mixing and entrain-
ment due to fluid moving over inclined bathymetry; effects due to the roughness of the bathymetry
and coastlines are typically modelled in the form of Rayleigh friction or viscosity models. For
example the friction required in coastal shallow water models is typically a vertical average of
the bottom Rayleigh friction.

Numerous other sub-grid scale processes need parameterising, and the models employed need
amendment to work on unstructured meshes with potentially fine mesh resolution, right up to the
point where the processes become explicitly resolved by the mesh.
4. Mixed finite elements

In an analogous manner to structured A, B, C, D, and E grids (Arakawa and Lamb, 1977)
(which respectively consist of a shared velocity/pressure mesh; velocity nodes at the corners
and pressure nodes at the centre of elements; velocity normal to a face at the element faces and
pressure at the element centre; velocity tangential to a face at the element faces and pressure at
the element centre; and the velocity at the faces and pressures at the element centre), there exist
many possible finite element pairs which have varying capabilities in resolving inertia-gravity
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and Rossby waves for example. For background related to standard structured mesh methods see
Haidvogel and Beckmann (1999) and Griffies et al. (2000) and the references therein, and for
unstructured meshes see Le Roux et al. (1998), Hanert et al. (2002) and Le Roux et al. (2004),
and see also Section 8.4. Some of the simplest and most popular choices are now briefly discussed.

Using the notation of Gresho and Sani (1998), the hexahedral (Q1P0) element with tri-linear
velocity and piecewise-constant pressure is equivalent to the B-grid and thus has the property
of representing well internal waves when the Rossby deformation radius is large in comparison
to the local mesh resolution. It is however plagued by singular pressure modes which seem largely
not to affect the accuracy of velocity, especially with the limited use of Dirichlet velocity boundary
conditions. It is stabilised typically with piecewise-constant shock functions (Gresho and Sani,
1998; Norburn and Silvester, 1998).

The hexahedral (Q1Q1) and tetrahedral (P1P1) elements employ a shared mesh and have simi-
larities with the A-grid. Again this choice needs stabilising which typically takes the form of a sec-
ond or fourth-order dissipation term introduced into the right-hand side of the continuity
equation. When a pressure equation is formed in its continuous representation a fourth-order sta-
bilisation term is effectively introduced into the continuity equation (Sotiropoulos and Abdallah,
1991) which explains in part its success. However, this approach is plagued by difficulties in
achieving continuity satisfaction locally or globally. Introducing bubble functions to the approx-
imation of velocity (the result is often termed the MINI element) can also cure the stability issues
(e.g. Fortin and Fortin, 1985) and has been shown to produce identical discretisations to certain
Petrov–Galerkin weightings—yet another form of stabilisation (Hughes, 1995). Recently there has
been the realisation that subtracting a more accurate first-order operator from a less accurate rep-
resentation of the first-order operator has very nice dissipative properties that can eliminate spu-
rious pressure or free surface modes (Codina and Blasco, 2000). This is also true of second-order
operators and has been used in ocean modelling for many years by subtracting out one rotated
(less accurate) discretisation using a five point stencil from a second five point stencil discretisation
of diffusion to eliminate spurious free surface height modes.

The hexahedral (Q2Q1) Taylor–Hood element with a linear variation in pressure, a quadratic
variation in velocity, and simple continuity between elements is LBB (Ladyzhenskaya, 1969; Ba-
buška, 1971; Brezzi, 1974) stable but has many more velocity nodes than continuity equations.
The result can be surprisingly poor accuracy with forcing of the momentum equations, as in,
for example, buoyancy-driven flows. The cure seems to be to project the forcing onto the pressure
basis functions. The introduction of an additional piecewise-constant pressure component can
also be an effective cure. The closely related 20 node serendipity element does not have such prob-
lems, but it is considerably less accurate and the resulting mass matrices are not easily lumped
(which can be important for solvers). The tetrahedral (P2P1) Taylor–Hood element has similar
properties to the corresponding hexahedral element.

The lowest-order Raviart–Thomas element ðP?1 Q0Þ consists of a piecewise-linear basis function
centred on element edges and used to represent the normal component of velocity, along with a
piecewise-constant pressure. It is the analogue of the C-grid and seems particularly useful, for
example in Legrand et al. (2000) it was shown not to exhibit spurious free surface pressure modes.

The lowest order Crouzeix–Raviart element (P NC
1 Q0Þ consists of a piecewise-linear basis func-

tion centred on element edges and used to represent velocity components, and a piecewise-con-
stant pressure. It may be considered to be the analogue of the E-grid. It was shown by Le
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Roux et al. (1998), along with many other low-order pairs, to have problems representing geo-
strophic balance accurately.

Other possibilities include using a piecewise-linear discontinuous velocity within each element
and a continuous piecewise-quadratic pressure. This has the advantage that the mass matrices
are block diagonal (each block being associated with an individual element) and is LBB stable,
but its lack of inter-element continuity requires careful treatment of second-order terms generally
resulting in large stencils. The choice of quadratic velocity and quadratic pressure can be stabilised
with a pressure dissipation term in the continuity equation. Often this term is matched by a cor-
responding alteration to the discretisation of the pressure in the momentum equations. An alter-
native form of dissipation is to add a term which penalises the deviation of the pressure from a
linear variation. This will manifest itself as supplementary edge equations in quadratic elements;
when the value of dissipation is large the result is a linear variation of pressure through each ele-
ment. Again, introducing a cubic bubble function for velocity can make quadratic elements LBB
stable. To allow for the use of equal order interpolants for the representation of velocity and pres-
sure in incompressible Navier–Stokes solvers the constraint may be modified through the inclu-
sion of a �filter term�. The pressure gradient projection technique constructs this term by
introducing a new unknown — the projection of the pressure gradient onto the velocity space,
the term added to incompressibility is then the divergence of the difference between the pressure
gradient and its projection, multiplied by a suitable parameter ideally defined element-wise (Co-
dina and Blasco, 2000).

For further discussions on the crucial matter of element choice, see Fortin and Fortin (1985),
Gunzburger (1989), Brezzi and Fortin (1991), Girault and Raviart (1986), Gresho and Sani
(1998), Le Roux et al. (1998) and the references therein.
5. Mesh adaptivity/node movement

A common problem encountered by model users is that the computational grid or mesh used
in a numerical simulation has to be generated a priori to the solution procedure. It is therefore
difficult to resolve adequately the local physical features at a first attempt, and the mesh often
needs to be adapted to enable the solution procedure to satisfy resolution requirements. Impor-
tantly, this also allows for a reduction in computational effort which is crucial for complex appli-
cations. As an example see Fig. 2 where an adapted mesh from a simulation of wind driven
barotropic circulation in a box is presented. Further discussions on the application of adaptive
methods in ocean modelling, including mesh movement techniques, is given in (Piggott et al.,
2004).

Many adaptivity techniques make use of a hierarchy of meshes where de-refinement involves
rolling back a hierarchy of elements in the mesh (e.g. Jimack, 1998; Oliker et al., 2000). While hier-
archical adaptive methods are anisotropic to a degree, it is not possible to form long thin elements
aligned with the solution as elements are restricted by their ancestors in the hierarchy. An alter-
native anisotropic mesh optimisation technique is used in the authors� ocean model and was devel-
oped by Pain et al. (2001). A tetrahedral mesh is improved through edge collapsing and splitting,
edge swapping, face to edge swapping, and smoothing in a fashion similar to Freitag and Ollivier-
Gooch (1997) and Buscaglia and Dari (1997).
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5.1. Error measures for mesh adaptivity

Mesh adaptivity or optimisation relies on the derivation of appropriate error measures which
dictate how the mesh is to be modified. Several error measures which serve as a criterion for
mesh modification have been proposed. These range from interpolation-based a priori error
measures (Löhner et al., 1985; Peraire et al., 1987; Wu et al., 1990), to a posteriori error mea-
sures (Strouboulis and Oden, 1990; Ainsworth and Oden, 1997) which can take into account
the physics of the problem by, for example, applying an implicit equation residual technique
and often involve the solution of an associated dual problem. A priori error measures tend
only to give an indication of the solution complexity at the current time. Conversely, since they
take more account of the underlying problem being solved, a posteriori error measures are able
to quantify the accumulation and propagation of the error through the mesh. Another ap-
proach is to optimise the mesh so as to optimally resolve a quantity or goal of interest. This
goal could be configured to be an oceanographically relevant quantity, see Power et al. (2004)
and the references therein. An additional consideration when adapting the mesh is that not
only node density, but also the alignment of the mesh relative to the solution is important.
For example, in boundary layers or fronts the mesh may need to be refined in one direction
only e.g. normal to a western boundary current. Hessian-based error measures (derived from
interpolation theory) are capable of fulfilling this requirement (Piggott et al., 2004). They have
additional attractive features, such as simplicity and ease of evaluation, they also enable the
use of a non-Euclidean metric allowing the meshes to be anisotropically adapted truly
automatically.

5.2. Methods of adapting a mesh

Once an error measure has been derived the nodes may be re-distributed according to this mea-
sure. This step in an adaptive procedure is quite complex algorithmically, and is intrinsically
dependent on the initial mesh generation method and geometrical and material boundary con-
forming requirements (e.g. kinetic energy absorbing sponge layers near domain boundaries).
Unstructured tessellation methods can deal with geometries of arbitrary complexity and they lend
themselves naturally to adaptivity. There are three main approaches to the generation of unstruc-
tured tetrahedral meshes: the Delaunay triangulation scheme (George, 1998); the Advancing
Front technique (Löhner and Parikh, 1988; Moller and Hansbo, 1995); and the Quadtree/Octree
approach (Kallinderis and Vijaya, 1993). Delaunay tessellation is a procedure for forming optimal
tessellations using an appropriate metric for measuring distances. It leads to robust algorithms
which can easily incorporate adaptivity. Region-wise coarsening/refinement can be achieved with
the Advancing Front technique in which both new nodes and triangles are regenerated in the re-
gion (Kallinderis and Vijaya, 1993). The main drawback of this technique is the fact that the mesh
has to be regenerated at every mesh adaptation, which can be computationally expensive for large
problems. Octree methods by nature do not offer scope for aligning the mesh anisotropically with
the solution.

In general 2-D Delaunay meshes are of good quality and can lead to useful mesh adapting
schemes for triangular (Xu et al., 1998) and quadrilateral (Borouchaki and Frey, 1998) ele-
ments. However, in 3-D when nodes are evenly distributed, the element aspect ratio can
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become very large (George, 1998), despite all the edge lengths of an element being approxi-
mately equal with respect to the desired metric. Local mesh connectivity transformations have
been used by Joe (1989) to obtain a mesh that satisfies the Delaunay property, along with a
modification to optimise the interior dihedral angle of the resulting tetrahedral elements and
discourage thin �slivers�. Further work on 3-D Delaunay meshing can be found in Borouchaki
and Lo (1995), Borouchaki and George (1996), Castro-Diaz et al. (1997) and Weatherill
(1994).

The fact that the Delaunay kernel permits element �slivers� has provided the motivation to dis-
card it in favour of mesh optimisation methods here. Such optimisation methods are guaranteed
to converge and have proved relatively insensitive to computational roundoff error which can be
an issue with Delaunay methods (Xu et al., 1998). For example, Freitag and Ollivier-Gooch
(1997) demonstrated successful mesh optimisation involving swapping (mesh connectivity adjust-
ments) and smoothing (node position adjustments) of a mesh, and also showed that using either of
these independently leads to severely reduced mesh quality. In particular, interior element angles
are highly sub-optimal with node movement alone. Also, it was demonstrated that purely optimi-
sation-based node movement is CPU-expensive when compared with simpler methods such as
Laplacian-based smoothing, and with little gain in mesh quality over the latter. This has moti-
vated the use of approximate optimisation techniques for mesh smoothing (node movement)
based on minimising an energy norm. The quality of the poorest element (as defined by some
objective functional) is used as a measure of the overall mesh quality. This quantity is calculated
via a Riemannian metric based here on the combination of solution field Hessian matrices.
Appropriate scaling of the metric (Castro-Diaz et al., 1997) enables the resolution of multi-scale
phenomena as encountered in oceanic flows.

5.3. Mesh movement

Whilst the methods described above represents a major increase in power for numerical mod-
els, further important developments are possible. In fluids applications the ability of the mesh to
move in a quasi-Lagrangian manner is a considerable benefit. For example, if mesh points were
moving approximately with the flow velocity this would effectively result in a much reduced
transport velocity (relative to the moving mesh), and hence the possibility of accurately using
larger time-steps, cf. the properties of semi-Lagrangian methods (Staniforth and Côté, 1991).
A major disadvantage of Lagrangian-like schemes is that mesh tangling may occur. This may
be mitigated, and robustness restored, through the combined use of mesh movement and mesh
adaptivity or optimisation as introduced in previous sections. This combined approach offers the
advantages of each method, without many of the drawbacks, it may be viewed as a generaliza-
tion of the popular arbitrary Lagrangian–Eulerian (ALE) methods (Donea and Huerta, 2003).
Additional advantages of using a moving mesh to account for a large proportion of the mesh
resolution change is that the use of mesh-to-mesh interpolation may be minimized (indeed this
requirement could be included in the definition of a controlling error measure), and load-imbal-
ances (see Section 8.6) in parallel computations will occur at a reduced rate. Current research is
revolving around the issue of using moving variable resolution in the vertical to mimic the prop-
erties of isopycnal models in the ocean interior. See Piggott et al. (2004) for further details and
discussions.
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5.4. Wetting and drying

The 3-D modelling of flood propagation in river and floodplain systems can use existing numer-
ical formulations, but significant developments are needed to include wetting and drying processes
and appropriate mesh adaptivity criteria for a moving waterline. An irregular waterline and land
geometry, and the appearance and disappearance of isolated dry areas, makes the modelling of
wetting and drying a significant challenge. There exists no purely Lagrangian method that can
deal with this situation. However the volume of fluid (VOF) approach (as is often used in highly
convoluted free surface problems), in which a volume fraction function is used to represent the
fraction of each mixed cell occupied by fluid, can represent arbitrarily complex wetting and drying
geometries. The wetting/drying interface can be tracked with a volume tracking method with a
geometric evaluation of the volume fluxes across the interface. For example, in the new mixed
marker and VOF method (Aulisa et al., 2003) the reconstruction and advection of the waterline
during wetting and drying processes is modelled. Among numerous algorithms, Aulisa�s method
combines mass conservation and an accurate representation of the coastline curvature. In order to
best represent the movement in the wetting and drying process, meshes near the waterline can be
refined and/or mesh adaptivity used as suggested by Tchamen and Kawahita (1998), Horritt
(2002) and Bates (2000). Some of the accuracy of Lagrangian wetting and drying methods can
be regained with the VOF approach when it is combined with mesh adaptivity and node
movement.
6. Coordinate systems and comparison with unstructured mesh methods

In many respects the coordinate system is the most fundamental choice for any ocean model
(Haidvogel and Beckmann, 1999; Griffies et al., 2000). It defines the way that the discretisation
is performed in the vertical. The three most commonly used choices are: z coordinates (regularly
spaced cells/elements in the vertical with cells on the same horizontal level); sigma coordinates
which follow the bathymetry and stretch the mesh in the vertical linearly up to the free surface;
and isopycnal coordinates which follow surfaces of constant density. Each has its own advantages
and disadvantages, the only current certainty being that no single approach is ideal for general
wide-ranging oceanic application. z coordinates have the advantages of simplicity and the ability
to resolve pressure gradients accurately, however they are poor at representing bathymetry in a
smooth and accurate manner (Adcroft et al., 1997). Isopycnal methods, which in effect align
the mesh in the vertical with isopycnals and move with them in a Lagrangian manner (see previous
section), may result in improved levels of diapycnal mixing which can be very poorly resolved with
other methods, although problems may arise when layer thickness vanishes (Bleck, 1998). Sigma
coordinates are well suited to accurately follow bathymetry and allow the application of appro-
priate boundary conditions on the sea floor, but they are prone to large pressure gradients errors
in the presence of steep bathymetry (Haney, 1991).

Hybrid methods are used to combine the advantages of more than one approach. For example,
isopycnal coordinates may be used in the interior of stratified ocean basins, with z coordinates in
the surface mixed layer and on the shelf, and sigma coordinates near the ocean floor (Griffies
et al., 2000). There are obviously interfacing issues where the coordinate systems or mesh changes.
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In Bleck (2002), isopycnal coordinates are used which relax to Cartesian coordinates as the thick-
ness of cells in the vertical vanishes—one of the major disadvantages of purely isopycnal methods.

However, there is a growing realisation that a 3-D unstructured mesh method can provide an
alternative hybrid approach, with a combination of mesh optimisation and node movement in the
vertical in a Lagrangian-like manner to follow the free surface and isopycnals, and to improve
levels of diapycnal mixing, for example. Mesh adaptive techniques may also be used to re-distrib-
ute the mesh resolution locally or more globally, for example in response to the convergence of
isopycnal layers, or to optimally represent sections of the bathymetry of most importance to
the resulting solution dynamics. The use of an unstructured mesh in the vertical can yield prob-
lems analogous to the pressure gradient errors encountered with the use of sigma coordinates. A
possible solution to this is described in Ford et al. (in press-a, in press-b).

As previously discussed, an unstructured mesh in the horizontal has the advantage of being able to
focus resolution in order to resolve what is of interest, and not be restricted to the resolution dictated
by any singular points (e.g. spherical poles) present in the coordinate system used in the horizontal.
Although it may seem that finite elements have no problems with singularities (perhaps with the
underlying coordinate being arbitrarily chosen as Cartesian coordinates), there may be issues when
there is a need to resolve turbulent mixing with anisotropic diffusion/viscosity tensors (e.g. small dif-
fusion in the vertical whilst relatively large in the horizontal). There is still a need to define this and
singularities seem unavoidable in its definition (although they are perhaps easier to deal with).
7. Bathymetry and coastline conforming mesh generation

The accurate simulation of various oceanic processes requires not only an appropriate model of
the physical forces that drive the system, but also a sufficiently accurate representation of the do-
main of interest, i.e. here a domain defined by the bathymetry and coastline. Inadequate represen-
tation of the coastline may lead to problems such as spurious stresses (e.g. Adcroft and Marshall,
1998), while poor representation of bathymetry can lead to problems modelling internal waves or
separation of boundary currents (e.g. Özgökmen et al., 1997; Stern, 1998; Tansley and Marshall,
2000; Munday and Marshall, submitted for publication). In practice there is a trade off between
how close the discretised domain is to reality and how appropriate it is for numerical modelling
with finite computational resources. Therefore, a computational mesh representing the geometry
should be optimised everywhere with respect to this trade off by representing the geometry to a
specified error, with a minimum number of mesh elements or nodes.

The majority of ocean models, whether they use regular cell spacing or curvilinear grids, rep-
resent the domain with a structured mesh. The curvilinear grid lines yield a mesh of quadrilateral
computational cells in the horizontal which may be fitted to the coastal geometry. Typically, this
horizontal structure is then maintained throughout the vertical levels. Unstructured mesh models
offer an alternative approach. Their flexibility means that a far more accurate and efficient repre-
sentation of domain geometries is possible. The number of nodes/elements used to represent the
boundary will limit the minimum cost of the entire simulation. It is suggested that this represen-
tation should not be altered during the course of a simulation; that is, the original surface should
not be coarsened during a mesh adaptive simulation to avoid changing the integrity of the domain
and associated conservation issues. In an adaptive simulation the mesh may of course be refined



Fig. 3. Section of a mesh constructed for the North Atlantic. The panel on the right is a blow-up of a region of the

Celtic Shelf break given by the white box in the left panel.
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without changing the bathymetry representation where/when necessary to follow the flow. Thus it
is desirable to represent a given geometry to a prescribed accuracy with the minimal number of
nodes/elements to avoid excessive resolution in the eventual simulations.

Unstructured grid generators are typically based upon a Delaunay algorithm, for example as
used by codes such as TriGrid (Henry and Walters, 1993) and Triangle (Shewchuk, 2003). This
approach has been used in oceanographic applications on the sphere by Legrand et al. (2000).
Many of these methods provide techniques for inserting extra nodes in regions where there is a
steep gradient or curvature. In addition to this, since a Delaunay mesh is the aim, the quality
of an element in the mesh is judged more on its geometrical quality in the Euclidean sense, rather
than on its accuracy at representing bathymetry.

A typical bathymetry conforming unstructured mesh is presented in Fig. 3. This (sea floor) sur-
face is a section of a mesh constructed for the North Atlantic, and a blow-up is shown to dem-
onstrate the ability to construct a mesh which aligns itself, for efficiency, with bathymetry
variations. The mesh generation approach taken here for robustness employs similar anisotropic
mesh adaptivity methods as described in Section 5. To conform to the bathymetry the field whose
accuracy is being optimised is the depth of the ocean. Thus the quality of elements is measured
with respect to a metric constructed from the curvature of the bathymetry. This, combined with
appropriate coastline recovery, results in a 3-D anisotropic mesh which focuses resolution where it
is required to optimally represent the bathymetry of the domain. For further details and examples,
see Gorman et al. (submitted for publication).
8. Solving the linear equations

The main issue in this section is the solution of the coupled momentum and continuity equa-
tions, with the incompressibility constraint being enforced through pressure in a similar manner



22 C.C. Pain et al. / Ocean Modelling 10 (2005) 5–33
to a Lagrange multiplier. Due to problems with scalability, direct solvers are not generally used
for large scale ocean modelling and so only iterative solution methods are considered in this sec-
tion. Other important issues include coupling with the free surface through perhaps a supplemen-
tary free surface equation, and internal waves through the evolution of the density field.
Ultimately, this requires the solution of a large matrix equation which couples velocity, pressure
and density, and is formed after linearisation of the equations. Usually Picard iteration is used to
linearise the system of equations; Quasi-Newton-type methods are generally not used as their ra-
dius of convergence is smaller, resulting in less stable schemes. Most often the coupled pressure/
velocity equations are solved together implicitly or semi-implicitly; this allows for the use of larger
time-steps than those permitted with explicit methods. Using large time steps (as measured by the
local Courant number) may be especially important when an adaptive algorithm provides a wide
variation in element sizes.

8.1. Coupled solvers

Standard techniques for solving the coupled systems either solve the equations as they are (Bre-
zzi and Fortin, 1991; Girault and Raviart, 1986; Gresho and Sani, 1998), typically with GMRES
(Saad and Schultz, 1986) and a suitable preconditioner (these preconditioners often mimic the ac-
tions of projection based methods, see below), or they eliminate velocity and solve for pressure
separately. This requires matrix inner and outer iterations. The outer iteration may be of gradient
type e.g. FGMRES (Frayssé et al., 1998) and solves the system for pressure. For Stokes flow the
result is a symmetric positive definite matrix for pressure, and the method is referred to as the
Uzawa method. The inner iteration is required to perform a matrix vector multiplication, as this
requires the solution of the discretised momentum matrix. When Coriolis forcing is dominant
this provides a good representation of balance not polluted by time truncation operator splitting
errors associated with segregated velocity-pressure solution methods.

8.2. Projection methods

Many current ocean models opt for a semi-implicit approach which involves the segregated
solution for velocity and pressure, but is still implicit in each individually. These are derived from
the SIMPLE family of methods (Patanaker and Spalding, 1970) for obtaining pressure, in which
one typically solves the momentum equations with a best guess for pressure, and then projects the
resulting velocity field into a continuity satisfying space such that the vorticity remains invariant,
see also Gresho (1990) and Ford et al. (in press-a). These systems of equations are repeatedly
solved until convergence. Often in time-stepping methods one or two steps of this procedure
are used. This approach can also be used with an inconsistent method of solving for pressure,
for example solving a second-order equation for pressure. Care must be taken when using mass
lumping inconsistently for the scheme to remain stable. This results in a mixed mass method
(i.e. lumped mass for pressure and consistent mass for momentum), see Gresho and Sani (1998).

Typically the CFL condition is not violated by orders of magnitude (fluid particles do not travel
right across the domain) and thus the resulting matrices that are solved for momentum and tracers
are well-conditioned (although mesh quality can play an important role here, see Piggott et al.
(2004)) and can easily be solved. However, the elliptic �pressure� equation that is solved in incom-
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pressible flows is not as well-conditioned, since this reflects the global spread of information right
across the domain to ensure continuity satisfaction. This is the most difficult case, whereas for
compressible flows the matrices become better conditioned. With free surface flows much of
the pressure changes can be absorbed by the free surface and so the information is not spread
so far in a single time-step.

8.3. Operator splitting to resolve waves

The momentum equation can be depth averaged, either algebraically or by integration, and the
result combined with the kinematic free surface equation to obtain a wave equation for the free
surface height. Care must be taken to achieve a level of consistency between this approach and the
full 3-D equations, particularly when the barotropic and baroclinic modes are solved for sepa-
rately. For example, the barotropic mode with a free surface may have a much smaller time-step
(to resolve the fast surface gravity waves) than the 3-D baroclinic mode which is far more expen-
sive. Uncoupling these can vastly improve computational efficiency, but presents issues when
bringing these modes back together, see for example Killworth et al. (1991). How to effectively
do this remains an unsolved problem with an unstructured mesh model; for some work towards
this goal in a restricted case, see Danilov et al. (2004).

8.4. Balance

As well as relying on the element type to allow the accurate representation of states close to
hydrostatic and geostrophic balance (cf. Section 4), there are methods of subtracting out these ef-
fects from the governing equations. Released from the constraints of representing balance well, far
greater flexibility in the choice of element results. For example, the choice may be made on the
grounds of efficiency and accuracy, or in the elements ability to represent other solution
characteristics.

LBB stable element choices generally have problems accurately approximating hydrostatic bal-
ance op/oz = �qg on unstructured meshes. Thus it is convenient to split the pressure p into hydro-
static ph and non-hydrostatic parts pnh and solve for these separately. In Lynch et al. (1996) q is
interpolated onto a regular background mesh and from this ph is calculated by integration. In the
finite element model FEOM (Danilov et al., 2004) the mesh is constructed such that nodes are
aligned one on top of the other in the vertical, and ph is solved for using a 1-D finite difference
method. Alternatively, in the non-hydrostatic code of Ford et al. (in press-a) pnh is dealt with
in the same manner as the pressure is in standard Navier–Stokes solvers (cf. Sections 8.1 and
8.2), whilst the effects of the hydrostatic pressure gradient are calculated by differentiating the
expression oph/oz = �qg in the horizontal, and then integrating down from the free surface to ob-
tain oph/ox and oph/oy. These are then placed directly into the horizontal momentum equations as
additional source terms. This is one of the most accurate ways of dealing with hydrostatic balance
for a given polynomial expansion. On a non-uniform unstructured mesh this procedure is not
straightforward and discontinuous linear elements are used to represent these derivatives in Ford
et al. (in press-a) which allows for an arbitrary mesh structure in the vertical, see Fig. 4 (centre) for
the resulting pressure field following the special treatment of buoyancy. In addition, the gravity
currents in Fig. 1 were modelled using this approach.



Fig. 4. Pressure field in simulation of stratified flow past a Gaussian seamount on an f-plane. Left: the computed �full�
pressure without any special treatment of the �hydrostatic� and �geostrophic� terms. Centre: remaining pressure

following the subtraction of the �hydrostatic� term, as explained in Section 8.4. Right: remaining pressure following the

subtraction of both the �hydrostatic� and �geostrophic� terms, as explained in Section 8.4.
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In an analogous manner, states close to geostrophic balance cause problems for finite element
discretisations on unstructured meshes. Again, the appropriate choice of element pair can reduce
this issue (Le Roux et al., 1998). See also Adcroft et al. (1999) where a combination of Arakawa
staggered grids is suggested for use in grid point schemes. Alternatively, geostrophic balance may
be dealt with by forming an elliptic equation for the effect of Coriolis acceleration by first forming
a Helmholtz decomposition of the Coriolis term into divergence-free and curl-free components. It
is worth mentioning that this can also be done for hydrostatic balance. Since there are no restric-
tions in the choice of elements used to resolve this expression, for example linear elements can be
used with a Q1 (or P1) representation of velocity, it may be solved to a high accuracy to minimise
spurious noise effects. Also, since the resulting discretisation matrix is formed in the continuum,
the stencil for a given order of pressure approximation is reduced. This makes it cheaper to solve,
and since it removes the largest parts of pressure from the governing equations the non-geo-
strophic/non-hydrostatic parts of pressure can be quickly solved for, using an elliptic equation sol-
ver. This combination also enables local continuity satisfaction and in principle, a higher-order
polynomial expansion can be used to achieve balance far more accurately. See Fig. 4 (right) for
the resulting pressure field following the special treatment of the Coriolis (or �geostrophic�) term.

8.5. Elliptic equation solvers

Solving for pressure or free surface height can often be done by solving a symmetric-positive
definite system of equations. The most natural solver is Preconditioned Conjugate Gradients
(PCG) and thus the choice of preconditioner is critical (Golub and van Loan, 1989). Incomplete
Cholesky factorisation, Symmetric Successive Over Relaxation (SSOR) or Parameterised For-
ward Backward Gauss-Siedel (FBGS) (Adams, 1983) have often been used, but as the system
of equations becomes large, multi-grid type methods or hierarchical preconditioners can become
more effective (Stüben, 2000). These have optimal convergence properties but require a series of
increasingly finer meshes or solutions. For an unstructured mesh often the only practical choice is
an algebraically formed series of coarser problems. These are typically realised by a suitable map-
ping from a nodal to hierarchical basis, and a corresponding mapping of the matrix to form a
coarser representation of it. In practice a series of increasingly coarse matrices are used; this rap-
idly spreads solution information across the domain and is particularly important for large prob-
lems with great horizontal resolution, although perhaps not such a large number of cells/elements
in the vertical. When the flow is nearly hydrostatic this method can be encouraged to rapidly coar-
sen the mesh in the vertical, and then move on to perform coarsening in the horizontal where most
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of the work needs to be done. See Stüben (2000) where preferential coarsening in different direc-
tions is used based upon graph colouring techniques. Parallel implementations of these methods
in an oceanographic context are currently under investigation.

8.6. Parallel computing

Regardless of gains in computational efficiency from advanced numerical methods, there is al-
ways going to be a need for parallel computing when a solution cannot be obtained within a rea-
sonable timescale on a serial computer, and/or where there is a limit on local resources such as
memory. This is certainly true of ocean modelling, where the desired level of detail and sophisti-
cation in the model required for realism will generally far exceed the computational resources
available, even when parallelism has been achieved. Because of this, efficient parallel algorithms
for ocean modelling are of the utmost importance to reduce the serial bottle-neck. In the case
of computational grids, whether they be structured or unstructured, parallelism is achieved
through domain decomposition methods (DDM). Fundamental to DDM is the requirement to
solve a graph-partitioning problem, the graph being derived from the computational mesh. The
graph partitioning problem involves an equal partitioning of the graph nodes into sub-domains
which are distributed among processors, thus balancing the computational load across the
processors.

The graph partitioning solution is constrained by the need to minimise the number of graph
edges dividing the partitions (sub-domains) because the cost of interprocessor communication
in a parallel simulation increases with the edge-cut. The most successful methods developed for
obtaining good quality graph partitions are k-way multi-level techniques. These techniques typi-
cally generate a hierarchy of coarsened graphs where the coarsest level is readily partitioned into k
subdomains. This partitioning is then projected up through the hierarchy of meshes where a
refinement step is carried out at each step. Partition refinement can be done using neutral network
optimisation methods (Pain et al., 1999a) or Fiduccia–Mattheyses type heuristics (Fiduccia and
Mattheyses, 1982), as implemented in codes such as Metis (Karypis, 2003) and Jostle (Walshaw,
2003). These methods are themselves parallelised so graph re-partitioning can be calculated in par-
allel, which is necessary for improving existing graph partitions or addressing the computational
load-imbalances which may occur. For parallel machines with heterogeneous communication be-
tween processors, the cost of interprocess communication arising from the domain decomposition
may be further minimised by mapping domains to processors in some optimal way (Pain et al.,
1999b). In the case of a Beowulf cluster using dual processor nodes for example, this would seek
to maximise the amount of interprocess communication within the dual node while minimising
that over the network.

For solving a set of equations in parallel on a partitioned mesh, a multi-block explicit procedure
is commonly used as a preconditioner combined with a gradient based method e.g. PCG or FGM-
RES. Relaxation methods such as SSOR within each subdo-main may form the basis of the pre-
conditioner. So-called chaotic preconditioners (see Dertsekas and Tsitsiklis, 1991; Tai and Tseng,
2002) use these same methods but have no-synchronisation step and collect information from
neighbouring subdomains when and where they are available to speed up the parallel solution.
Again parallel hierarchical preconditioners (Stüben, 2000) provide a way of rapidly spreading sol-
ver information across the domain. However, typical multi-grid or hierarchical solvers can be
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communication intensive and consequently may be less attractive on slow communicating parallel
machines.

The application of mesh adaptivity or optimisation to partitioned meshes (for parallel solutions
using DDM) presents a new set of challenges. The central issues with parallel mesh adaptivity are
mesh conformity across subdomain boundaries and the treatment of load-imbalances. There are
important differences between the mesh adaptivity method applied in this work (cf. Fig. 2) and
hierarchical mesh adaptivity methods (e.g. Jimack, 1998) when it comes to parallelisation. Per-
haps the most important of these differences is how the elements are adapted to a given error
norm. Hierarchical based adaptivity methods use a two-stage process where first elements are
coarsened or refined within a single ancestral tree, in effective isolation from neighbouring ele-
ments, followed by a sweep over all elements to identify element edges which must be split to ob-
tain a conformal mesh. This allows the mesh adaption process to be carried out in parallel with
little communication. Load-balancing is addressed by partitioning the mesh at the coarsest level
(Jimack, 1998; Touheed et al., 1998).

In contrast to this, the anisotropic mesh optimisation technique employed here is iterative in
nature. This requires each element to change its size and shape in response to local changes in
the mesh and solution as the procedure progresses, which could lead to a high number of short
communications between domains when adapting elements on or near domain boundaries. To
overcome this problem, elements on boundaries between sub-domains are first locked in place.
The serial mesh optimisation method is then applied to each domain, disallowing any change
to these locked elements. Mesh conformity is maintained because the elements shared between do-
mains are not allowed to change. When the serial optimisation method is finished there may be
elements on or near the domain boundary which are still suboptimal. In addition to this a
load-imbalance will have invariably occurred due to coarsening and refinement of the mesh in dif-
ferent domains. Both of these issues are addressed simultaneously by re-partitioning the mesh,
constraining the graph-partition using edge-weights inversely proportional to the quality of ele-
ments connected to the edge. This application of edge-weights discourages the graph partition
from cutting across poor quality elements. Once the mesh has been re-distributed to processors
according to the new partitioning, the mesh optimisation method can be reapplied to finish adapt-
ing the mesh.

Special consideration must be given to mixed element formulations (cf. Section 4) with typically
a different polynomial expansion for different variables. The method used here for solving incom-
pressible fluid flow requires a larger stencil size for pressure than for velocity. Thus a second layer
of halo (or ghost) nodes is required for the pressure solution; essentially this is an extended halo
which includes all elements that share a node with any element cut by the graph partition. Fig. 5
shows how the subdomains dynamically adjust to balance the load in a simulation of incompress-
ible flow past a cylinder at a moderate Reynolds number using the ocean model. In this simulation
a diffusive re-partitioning method was predominantly used to reduce the amount of information
migrating between processors (Schloegel et al., 1997), however it was found that a re-partition–
re-map operation (Karypis et al., 2002) was required periodically to counter degradation in the
edge-cut. In this simulation the subdomains may actually be seen to move downstream with
the produced von Karman vortex street.

The success of parallel computation in ocean modelling brings its own challenges. Once a large
simulation has been performed it then becomes a non-trivial problem to visualise and analyse the



Fig. 5. A demonstration of parallel mesh adaptivity—32 subdomains shown which dynamically adjust to balance the

load in the adapting mesh. The mesh here is resolving the von Karman vortex street in a simulation of flow past a

cylinder.

C.C. Pain et al. / Ocean Modelling 10 (2005) 5–33 27
results. This in itself requires distributed computing resources for both parallel visualisation and
the application of diagnostic tools, for example see GODIVA (2003).
9. Concluding remarks

In this paper the advantages of unstructured mesh ocean models have been discussed. These
include the ability to accurately represent coastlines and bathymetry, and the application of
appropriate boundary conditions; the ability to choose arbitrarily the mesh resolution (not
depending on the coordinate system used), and make this highly non-uniform to match modelling
requirements. Also, the use of meshes which dynamically adapt to the solution fields has been dis-
cussed. There however remain a number of issues to be addressed in this relatively new field. For
example the conservation of key variables; sub-grid scale modelling on changing anisotropic
meshes; the optimal representation of balance; and optimal exploitation of node movement
and mesh adaptivity. However, the benefits over traditionally used ocean models are immense
and justify the substantial amount of work necessary to construct such a model over and above
that necessary to produce a traditional model. With more appropriately focused numerical reso-
lution ocean dynamics may be better predicted, as can be events such as climate change. The result
would be a single model that can be used efficiently for both coastal and global ocean modelling.
It remains to be seen the extent to which such a model will supersede traditional models, but
clearly this approach will play an important role in the future of ocean modelling.
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Özgökmen, T.M., Chassignet, E.P., 2002. Dynamics of two-dimensional turbulent bottom gravity currents. J. Phys.

Oceanogr. 32, 1460–1478.
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Abstract

A new version of the 3D finite-element primitive-equation ocean model (FEOM) based on tetrahedron

partitioning of the computational domain is applied to simulate the North Atlantic circulation at eddy-per-

mitting resolution (1/15�–2�). It relies on a horizontally refined mesh in regions of steep topography and
allows the sloping bottom to be represented within the z-coordinate vertical discretization, similar to the

so-called shaved-cell approach. It is the first time this approach is used to model large-scale ocean circula-

tion. The FEOM performance in the North Atlantic is compared with that of the finite-difference models of

similar resolution of the DYNAMO project. The meridional overturning circulation and heat transport of

FEOM agree well with those of the DYNAMO project models, while the mean sea surface height demon-

strates the presence of the Gulf Stream recirculation reproduced only by the ISOPYCNIC model of

DYNAMO. The annual mean transports of the Gulf Stream and Deep Western Boundary Current at

27�N are of 37Sv and 17 Sv with core velocities of about 1m/s and 12 cm/s respectively. Due to flexibility
in mesh refinement the FEOM provides a tool for modelling the influence of small-scale phenomena unre-

solved by current climate models on large-scale ocean circulation.
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1. Introduction

There is a widespread perception in the ocean modelling community that finite-element meth-
ods (FEM) are unfit for the modelling of the general circulation of the ocean. The obvious success
of FEM is regarded to be limited to tidal modelling and regional/coastal or engineering applica-
tions. It is the purpose of this article to demonstrate new developments for the modelling of basin-
scale circulation with finite elements.

Ocean circulation models are distinguished by the processes they include, e.g., eddy dynamics.
A further classification is the treatment of the vertical coordinate (Griffies et al., 2000). Although
the latter seems to be a minor numerical detail it has a major impact on the solution. This impact
was studied rigorously for z, r and isopycnic models in the DYNAMO project (Willebrand et al.,
2001) in the context of eddy-permitting models of the North Atlantic. There is ongoing effort in
designing models which overcome some of the deficiencies of the traditional approaches (such as
HYCOM which uses a hybrid coordinate, or extensions of POM that use a generalized coordi-
nate). Here we add another alternative and show how finite elements can be used to combine
the advantages of different techniques. To point out the advantages and weaknesses of our ap-
proach we compare our results mainly with those presented in detail in the DYNAMO project.

One of the main conclusion of the DYNAMO intercomparison project of eddy-permitting
ocean circulation models was that many features of ocean circulation are controlled by localized
processes (such as overflows) and details of the bathymetry in key regions (e.g., around Flemish
Cap) (Willebrand et al., 2001). They can be adequately described at the eddy-resolving grids which
is too costly to be used in climate studies. An alternative could be employing a model based on an
unstructured grid and providing flexibility in local mesh refinement.

In a previous paper (Danilov et al., 2004; hereafter referred to as DKS04) we have presented a
three-dimensional finite-element ocean model (FEOM) based on the primitive equations and de-
signed for climatic studies. The model used a 3D tetrahedral mesh based on a 2D unstructured
surface triangular mesh, and stratified in the vertical direction. It combined terrain-following
coordinate in deep regions with z-levels in upper 200m. We tested the model performance on
the North Atlantic mesh covering the basin from 7�N to 80�N with mean resolution of 0.8�,
and showed the model to be capable of reproducing the mean heat transport and meridional over-
turning with realism typical of coarse-resolution models.

This paper continues DKS04 and presents an eddy-permitting version of the FEOM, which dif-
fers from the coarse-resolution version of DKS04 in two important aspects. First, the new version
solves the equations for barotropic mode separately and uses the sea surface height to calculate
the three-dimensional flow field. This provides a considerable gain in performance. Second, it uses
the z-coordinate framework (which avoids pressure gradient errors), and resolves the sloping bot-
tom by refining the horizontal resolution locally in regions of steep bathymetry. Our approach is
similar to the shaved cells (Adcroft et al., 1997) used with finite volume discretization and is a nat-
ural feature of FEOM due to its tetrahedral mesh.

The sensitivity of ocean general circulation models (OGCMs) to the vertical discretization be-
came a central issue in the late 1990s and was studied thoroughly in several intercomparison pro-
jects such as DYNAMO (Willebrand et al., 2001) and DAMÉE-NAB (Chassignet et al., 2000).
Despite numerous efforts, accurate representation of the bottom topography still presents a chal-
lenge for most OGCMs. Difficulties of z- and r-coordinate models are well known and thoroughly
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discussed in the literature. The partial cell approach is an improvement over the standard stepwise
bathymetry of z-coordinate (Maier-Reimer et al., 1993; Adcroft et al., 1997; Pacanowski and
Gnanadesikan, 1998). Yet the most general way of accounting for sloping bathymetry in z-coor-
dinate models is the concept of shaved cells (Adcroft et al., 1997) that has been applied for years in
engineering. Though partial and shaved cells seem to be quite promising, there is only limited
experience of using partial cells (see, i.e., Myers and Deacu, 2004) while no results of using shaved
cells in real ocean simulation exist to our knowledge.

The goal of this paper is twofold. First, it briefly describes further steps in the FEOM develop-
ment compared to the initial setup of DKS04. Second, it presents results of testing the FEOM in
the eddy-permitting regime on the North Atlantic mesh against other North Atlantic models. Our
main focus is on the DYNAMO models (see Willebrand et al., 2001). On the one hand, these
models have finer resolution than the mean resolution of FEOM, yet still are in the eddy-permit-
ting regime. On the other hand, the main goal of the DYNAMO project was systematic intercom-
parison of models belonging to three main classes (based on z, r, and isopycnic vertical
coordinate) to get ‘‘an improved understanding of dependence of the simulated North Atlantic
circulation . . . on various aspects of the model formulation’’ (Willebrand et al., 2001). Comparing
FEOM and DYNAMO project results is then natural as FEOM�s vertical discretization combines
advantages of z- and r-coordinates.

The paper is organised as follows. We begin with describing the model configuration and high-
lighting new features in Section 2. Section 3 contains analysis of a 10-year simulation and com-
parison with a set of other North Atlantic models. Summary and conclusions are presented in
Section 4.
2. Model design

The numerics of the model used in this study were mostly described in DKS04 and are not re-
peated here. The model solves the 3D primitive equations together with advection–diffusion equa-
tions for potential temperature and salinity discretized by finite elements. For the prognostic
fields, we use piecewise linear representation with basis functions defined on a tetrahedral parti-
tioning of the computational domain. As in DKS04, the mesh is structured vertically and unstruc-
tured horizontally. Each surface triangle defines a 3D column that is then cut into prisms with
prescribed levels. At the second step of mesh generation, each prism is divided into tetrahedra.
The time stepping is backward Euler as in DKS04 but done with a different solver (see below).

2.1. New features of the FEOM

The main new feature adopted in the current version is splitting the dynamic equations into
barotropic/baroclinic subproblems. On coarse grids (<105 3D nodes), the computational cost
of solving 3D unsplit equations is affordable and solver convergence is easy to achieve with rea-
sonably large time steps (in excess of several hours). On the eddy-permitting mesh of the North
Atlantic employed here, the solver convergence becomes broken at time steps around 1h due
to non-banded part of the problem�s stiffness matrix (see DKS04), and the numerical cost becomes
prohibitive.
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The version described in DKS04 solved unsplit set of the 3D primitive equations for 3D velocity
v and sea surface height (SSH) f. Although it was costly in terms of CPU time it involved less
approximations. The problem with splitting lies in the implicit treatment of the horizontal viscos-
ity operator in the FEOM. It cannot be written in terms of the barotropic velocity or transport in
barotropic (depth integrated) equations (see DKS04 for details).

To separate the barotropic subproblem out of the full problem we admit small inconsistency
and write the horizontal viscosity operator in the barotropic subproblem as acting on the baro-
tropic velocity. As long as the viscosity is small the inconsistency between the barotropic and full
problems introduced by this approximation is only minor. The SSH obtained by solving the baro-
tropic subproblem is used in the 3D equations which are then solved for the full horizontal veloc-
ity. Velocity correction procedure is applied to the horizontal velocity at every time step to
eliminate spurious divergence introduced by using stabilization and the approximation of hori-
zontal viscosity.

Another new feature of the model is a mixing parameterization that was absent in the previous
version. We utilize a scheme by Gent (1991) that computes the vertical mixing coefficients (for
tracers and momentum) as a function of the local Richardson number. The horizontal viscosity
uses the Smagorinsky formula as in DKS04, but with smaller lower and upper threshold values
of 25m2/s and 103 m2/s respectively. Our experience is that the Smagorinsky viscosity is at its lower
limit for almost entire ocean.

2.2. Mesh

A novel strategy of surface mesh generation is now employed. Given the set of geopotential (z)
layers and topography one first computes the number of layers as a function of horizontal coor-
dinates. Next, one tries to arrange the nodes in accordance with the gradient of that function such
that the difference in the number of layers between two neighbouring nodes does not exceed one.
The depth of the bottom nodes is allowed to deviate from the level positions so that bottom tet-
rahedra could have nodes on three different depths. The approach ensures that the bottom is rep-
resented as a continuous piecewise linear surface without vertical segments after partitioning into
tetrahedra is made. It is analogous to the shaved-cell approach known for z-coordinate finite vol-
ume models. This flexibility is the main advantage of using tetrahedral FE discretization. The bot-
tom tetrahedra with nodes on three levels introduce some pressure gradient errors however they
are localized to the bottom-most layer. Since the affordable number of 2D nodes is always limited,
the procedure also imposes limitation on the steepness of the bathymetry that could be resolved.
We used the ETOPO5 bathymetry averaged over 0.25� cells as an initial approximation and fur-
ther smoothed it in a procedure that penalizes both the deviation from the data and the slope of
the bottom.

In addition to sloping bottom regions, the nodal density is also increased in coastal and dynam-
ically important areas. Fig. 1 depicts the spatially varying horizontal resolution of the model de-
fined as a mean over neighbouring triangles. It is much finer along the continental slope (there are
triangles measuring 1/15�) than in the interior. The mesh covers an area from 7�N to 80�N as in
DKS04 and consist of approximately 16000 surface nodes and 220000 3D nodes arranged on 23
vertical levels. The layer thicknesses are 10, 20(2), 25(6), 50(2), 125, 175, 400, 500(5), 750(3)m,
with the number of layers given in brackets.



Fig. 1. Resolution in degrees of the North Atlantic mesh averaged over triangles with a common node. The contour

interval is 0.3�, and the boundaries of shaded zones correspond to 0.6�, 1.2� and 1.8� (from light to dark).
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2.3. Boundary conditions and forcing

Artificial boundaries at 7�N and 80�N were considered as closed for the velocities. For the tem-
perature and salinity, sponge zones were introduced with relaxation to seasonal Levitus climatol-
ogy (Levitus et al., 1994; Levitus and Boyer, 1994). The relaxation coefficient is 1/(5days) at the
boundary and decreases with the distance from it. The southern buffer zone occupies a 5� belt
while the north-eastern one extends to 60�N. This was done to �parameterize� overflow processes
in the Denmark Strait still unresolved at the present mesh and compensate for deficiency in sur-
face forcing in this area. Otherwise too warm and salty water brought northward by the North
Atlantic Current penetrates into the Labrador Sea and makes it too warm and salty after about
1year of simulation. Temperature and salinity were also relaxed to climatology in a 3� belt in the
Bay of Cadiz.

At the surface, the model was forced by the monthly NCEP wind stress for 1990–1999. The sur-
face temperature and salinity were relaxed to the seasonal Levitus climatology with the relaxation
time of 30days.

2.4. Computational cost

An important characteristic of any ocean model is its computational efficiency. The total CPU
cost of FEOM in the current setup is about 4h on 32 processors per one model year on IBM pSer-
ies 690 with the speedup of about 15. This cost is affordable for studies of processes on the decadal
scale.

The cost is higher than that of finite-difference models of the FEOM mean resolution (about
0.5�). This is essentially linked to the use of unstructured grids, which makes computing right
hand sides (RHSs) more expensive. Indeed, to compute a derivative at a node all neighbouring
nodes are used on unstructured grids. Since their typical number is 20 in the FEOM, computing
RHSs could be a factor of 10 slower than on structured grids. Using implicit time stepping and
thus solvers (see below) also influences the CPU cost directly by time spent in the solution phase,
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and indirectly through the need to assemble the stiffness matrices. However, the solution phase
takes less than half of the total time in the current setup, and expensive computations are partly
compensated by employing large time steps. The current version runs with 2h time step for
dynamics and 1h for tracers.

In total, the computational expense of the model presented here is comparable with that of the
DYNAMO models. While on structured grids only a fraction of nodes is in the dynamically
important areas (such as the continental slope), almost half of FEOM nodes have mean resolution
better than 1/3� and are located where this resolution is needed. Thus despite its higher CPU cost
per node the FEOM could produce finer effective resolution in dynamically important areas with
much smaller total number of nodes.

2.5. Solvers

Using solvers for time stepping is very uncommon for the OGCMs which are almost exclusively
based on explicit time stepping (except for the implicit free surface used with some models) and
avoid using solvers whenever possible.

Here we would like to reiterate (cf. DKS04) that there are reasons in favour of solvers. First,
discretizing time derivative with finite elements produces the so-called mass matrix. It is composed
of L2 scalar products of basis functions and links time derivatives over neighbouring nodes. As
such, any scheme of time stepping needs a solver to invert the mass matrix every time step unless
it is lumped (replaced by its diagonal approximation). Although computationally much cheaper,
lumping reduces accuracy and increases dispersion, as we have shown in DKS04 on the example
of the advection scheme. FEOM uses consistent mass matrices.

Second, computing derivatives of the solution could lead to a noise, especially on unstructured
grids, if there is no control over their norm. This control is guaranteed by including viscosity or
diffusivity terms into the operator part if the variational formulation is used. Then, to enhance the
stability of the scheme (and make larger time steps possible), the Coriolis term in the momentum
equation and advection term in the tracer equation are also included into the operator part. This
last step makes the stiffness matrices of the dynamic and tracer problem non-symmetric and in this
way renders the choice of the solver much more critical (yet tractable).

Griffies et al. (2000) express some concern about solver performance. The basic points stressed
by them are: (i) difficulties in finding a good first guess, (ii) poor convergence, and (iii) bad sca-
lability on parallel computers. The first two points actually depend on the quality of the precon-
ditioner and are never a problem with iterative solvers used in the FEOM (Frickenhaus, 2003).
The third point is indeed of concern and requires careful design of the storage and communication
structure (efficient node numbering, node partition between the processors and distribution of
stiffness matrices are among the important factors), and experimenting with solvers.

We investigated the performance of different solvers when increasing the model size from the
coarse to current resolution. PILUT, PETSC and HYPRE solvers used here (see Frickenhaus,
2003) scale linearly with the size of the tracer and full velocity problems (which implies that the
number of iterations remains the same). The number of iterations increases with size for the baro-
tropic subproblem, yet this would be the case with finite-difference models too. Of the three solvers
tested, PETSC scales best on parallel computers. We hope that optimizing preconditioners to par-
ticular problems solved in the FEOM would help to reduce the cost of the solution phase.
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3. Results

The results presented below were obtained in a 10-year run initialized with the Levitus clima-
tology (Levitus et al., 1994; Levitus and Boyer, 1994). This time span is still insufficient for the
initial conditions to lose influence, yet no significant trends in SSH are seen at the final stage
of integration. The last three years were used for the analysis.
3.1. Mean sea surface height and variability

Fig. 2 depicts the mean sea surface height computed over the last three years of the run. The
Gulf Stream separates somewhat north of Cape Hatteras at about 38�. The model resolution in
this region is only about 0.3� (see Fig. 1) which is typically considered insufficient according to
the experience gained with other eddy-permitting models of comparable 1/3� resolution (see for
example, summary of the DYNAMO Group results in Willebrand et al., 2001; we will refer to
the models described there as LEVEL, SIGMA and ISOPYCNIC thereafter). Even models of
finer resolutions such as 1/4� POP (Maltrud et al., 1998), 15–20km POM (Ezer and Mellor,
2000), 1/6� POP (Chao et al., 1996) still locate the separation point further to the north. Only very
fine resolution models (1/10� POP of Smith et al., 2000, and 1/12� MICOM of Paiva et al., 1999)
perform better. The exception to this rule is a 3/4� version of ROMS (Haidvogel et al., 2000)
which even locates the separation point slightly to the south of Cape Hatteras.

Surprisingly the overall structure of the SSH produced by FEOM is very similar to that of ISO-
PYCNIC, see Fig. 2. Both show Gulf Stream recirculation. Similar to ISOPYCNIC, one branch
of the recirculation turns to the east and in spite of the coarse resolution used in the central North
Atlantic forms a front at about 35�N which is related to the Azores Current. Two other DYNA-
MO models failed in reproducing this current. It is interesting to note that even a gyre near the
Portugal coast is present in both FEOM and ISOPYCNIC.
Fig. 2. Three-year mean SSH. Contour intervals are 0.1m except for two intervals on both sides of the zero line (thick

contour) which are 0.05m.
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Similarly, the shapes of the subpolar gyre in the FEOM and ISOPYCNIC are close to each
other and follow the same pattern as in eddy-resolving simulations of Smith et al. (2000). That
is because the North Atlantic Current (NAC) in these models separates from the Grand Banks
at about 50�N and a branch of the NAC turns to the northwest and penetrates deep into the Lab-
rador Sea. SIGMA shows the NAC going further to the northwest while LEVEL separates it from
the Grand Banks far to the south.

Reproducing the correct pathway of the NAC in this area is a common problem for z-coordi-
nate models at eddy-permitting resolution noted in Böning et al. (1996) and Willebrand et al.
(2001) (see also Treguier et al., 2001). Even a 1/12� version of FLAME is imperfect in simulating
the penetration of warm subtropical water into the Labrador Sea along the Grand Banks (see Fig.
4d of Eden et al., 2004), although it is significantly better than the 1/3� version. In contrast, the
pattern of mean temperature in FEOM at 50m depth (see Fig. 3) is in good agreement with ob-
served temperature in this area except for warming close to the coast and 15�C isotherm going too
far north.

Seemingly, the path of the NAC along the Grand Banks is strongly affected by topographic ef-
fects as it is relatively well reproduced by models dealing with smooth topography. Some support
to this conclusion could be found in results of Myers and Deacu (2004) who show that approx-
imating the bottom with partial cells makes this feature closer to observations.

The FEOM SSH variability is presented in Fig. 4. In the Gulf Stream region it is mainly con-
centrated around the separation point where its standard deviation exceeds 20cm. In the remain-
ing part of the Gulf Stream it is of the order of 3cm which is lower than the lowest variability in
DYNAMO shown by ISOPYCNIC. However, it is worth to remember that the horizontal reso-
Fig. 3. Three-year mean temperature at 50m depth east of Newfoundland. The contour interval is 1 �C, and the

boundaries between the shaded zones are at 5, 10 and 15 �C beginning from the darkest one.



Fig. 4. Standard deviation of SSH in the Western North Atlantic over the last three years of integration (cm).
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lution of FEOM in this area is only about 0.5�, and that it uses large implicit time steps both
resulting in weaker variability. Yet it is generally comparable with typical values obtained in
the DAMÉE-NAB intercomparison project (Chassignet et al., 2000).

The model exhibits strong SSH variability in the Caribbean and Gulf of Mexico which could be
attributed to finer spatial resolution there. The standard deviation reaches 12cm in the Caribbean
Sea and 20cm in the Gulf of Mexico which is notably higher than in a 1/3� MOM and comparable
to a 1/9� version (Oschlies, 2002). However the subtle features of circulation are not reproduced
properly as they may be sensitive to the detail of spatial resolution (still rather coarse at about 0.6�
in the Central part of the Gulf of Mexico) and local bathymetry (Chassignet, personal communi-
cation, 2003). Problems include the direction of eddy propagation in the Gulf of Mexico. Once
eddies enter the Yucatan Channel they turn to the west in FEOM instead of moving in the north-
west direction as regional simulations reveal (Morey et al., 2003).

3.2. Meridional overturning and heat transport

The mean meridional overturning stream function of FEOM is presented in Fig. 5. The max-
imum transport value is 14.5Sv which agrees well with LEVEL but is slightly lower than in ISO-
PYCNIC and SIGMA. The position of the maximum is located at 35�N and 1200m depth.
Compared to the DYNAMO models, this is in better agreement with the position of the maxi-
mum obtained in Smith et al. (2000). The FEOM also exhibits the spurious upwelling around
35�N which is associated with the Gulf Stream separation and is traditional to level coordinate
models if the Gent and McWilliams (1990) parameterization of mixing is not used (Böning
et al., 1995).



Fig. 5. Meridional overturning stream function (Sv) averaged over the last three years of integration. The maximum

value is 14 Sv and is located at 35 �N and 1200m depth. Spurious circulation cells at the south are due to treating the

open boundary as closed. Contours are drawn through 1 Sv, and the thick contour corresponds to zero transport.

Notice the gradual deepening towards the equator between 60�N and 35�N.
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The Denmark Strait overflow of the North Atlantic Deep Water (NADW) is relatively weak
compared to all three DYNAMO models. This can be explained by relaxation to Levitus clima-
tology considered too poor to represent the East Greenland Current (Willebrand et al., 2001). For
this reason, the DYNAMO project used another data set in the northern buffer zone. However,
contrary to ISOPYCNIC and SIGMA, FEOM is able to produce strong sinking in the subpolar
gyre of 7Sv at about 60�N which is in agreement with LEVEL and is also supported by Smith
et al. (2000).

Another feature of the overturning circulation present in FEOM is sinking of the NADW from
60�N to about 42�N. This sinking is clearly seen in Smith et al. (2000) and ISOPYCNIC, less vis-
ible but still present in SIGMA and is absent in LEVEL. FEOM also exhibits deep reverse cells
which are also present in LEVEL, SIGMA and Smith et al. (2000).

The mean meridional heat transport at 24�N equals 0.95 PW which is slightly lower than in
SIGMA and ISOPYCNIC and the estimate of Macdonald (1998) but higher than in LEVEL.
At 36�N and 48�N the heat transport is notably underestimated compared to SIGMA and ISO-
PYCNIC but is almost identical with that of LEVEL and stays within error bars of Macdonald
(1998).

Note once again that we relaxed model surface temperature and salinity to the Levitus seasonal
climatology, while all DYNAMO models were forced by a surface heat flux computed according
to Barnier et al. (1995). The latter is shown (Maltrud et al., 1998) to produce notably higher values
of the meridional heat flux and overturning.

3.3. Deep Western Boundary Current

A distinct feature of the North Atlantic circulation is a narrow Deep Western Boundary Cur-
rent associated with the major part of the thermohaline circulation. Its realistic representation is a
crucial test for the model performance. Fig. 6 shows that the Deep Western Boundary Current



Fig. 6. Three-year mean horizontal velocity at 1625m.
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(DWBC) remains attached to the shelf break in the FEOM similar to ISOPYCNIC and SIGMA
while in LEVEL it extends far into the open ocean.

Fig. 7 depicts a section of the meridional velocity in the vicinity of the western boundary at
27�N. Due to still insufficient horizontal resolution at the continental shelfbreak which results
in oversmoothed bathymery the FEOM, similar to SIGMA, joins the Florida and Antilles Cur-
rents. However, the northward transport appears to be narrower and stronger. Maximum north-
ward velocities are about 1m/s which is twice as high as in SIGMA and corresponds well to
LEVEL which produced the strongest Florida Current among the DYNAMO models. The vol-
ume northward transport between the coast and 78�W is 37Sv in the FEOM which agrees well
with all DYNAMO models.

The structure of the DWBC is largely similar to that produced by SIGMA. As in this model,
the core located at the 2000m depth is well attached to the continental slope and the deep south-
ward transport has some signature at the surface. Though FEOM has a coarser local resolution in
this area than the DYNAMO models, the DWBC has the same horizontal extension of 1� though
still being too wide compared to observations (Lee et al., 1996). The maximum southward velocity
at the core of DWBC is 12cm/s which coincides with LEVEL but is slightly lower than 15cm/s
observed (Lee et al., 1996) and obtained in SIGMA. The southward volume transport is 17Sv
which is also in agreement with the DYNAMO models.

3.4. Azores Current

The DYNAMO models are of different skills in reproducing the Azores Current which crosses
the North Atlantic in the eastward direction at about 35�N and possibly plays an important role
in the ventilation of the North Atlantic subtropical gyre (New et al., 2001). It was very well



Fig. 7. Meridional velocity cross-section (cm/s) along 27�N averaged over the last three years of integration. The

maximum northward and southward velocities are about 1m/s and 12cm/s respectively. The core of the Deep Western

Boundary Current is located at the depth of 2000m. Contour intervals are 0.2m/s for northward velocities and 2cm/s

for southward ones. The area of southward transport is shaded.

Fig. 8. Three-year mean zonal velocity at 30�W. The contour interval is 1cm/s, the thick gray line corresponds to zero

velocity, and black contours correspond to eastward velocities.

46 S. Danilov et al. / Ocean Modelling 10 (2005) 35–49
pronounced in ISOPYCNIC, less visible in SIGMA and absent in LEVEL. It is worth mentioning
that this problem is also persistent in other z-coordinate models like POP (Smith et al., 2000) and



Fig. 9. Salinity at the zonal cross-section at 35�N averaged over the last three years of integration. The boundaries

between the shaded zones correspond to 35.1, 35.7 and 36psu. Contours are drawn through 0.05psu in the white zone

and 0.1psu above.
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OPA (Treguier et al., 2001) on non-eddy-resolving grids, and is improved only at the eddy-resolv-
ing grids (Smith et al., 2000).

As it is seen from Fig. 8 that presents a zonal velocity cross-section, FEOM is able to reproduce
the Azores Current. Its strength of 8cm/s and structure is quite similar to that of ISOPYCNIC
(compare to Fig. 2 of New et al., 2001). This model capability could be related to the fact that
FEOM maintains the Mediterranean salinity tongue (see Fig. 9) which is clearly seen in the Lev-
itus climatology and the WOCE hydrographic section A03. It is also worth mentioning that
finite-difference models of the DAMÉE-NAB intercomparison project (Chassignet et al., 2000)
were unable to reproduce this observed feature although their resolution and the mean resolution
of FEOM are similar.
4. Summary and conclusions

The results of a 10-year simulation of the North Atlantic circulation with FEOM show that the
model is capable of reproducing the main features of the circulation with a skill comparable to
that of regular-grid models of finer resolution. We have shown that its mean SSH, meridional
overturning and heat flux agree reasonably well with those of 1/3� resolution models. Some details
of the North Atlantic circulation such as, for example the pathways of the NAC and DWBC are
reproduced by FEOM with more realism than by LEVEL. The sloping topography of the FEOM
could be partly responsible for this improvement yet this question requires further investigation.
Of course, the skill of z-coordinate models at finer resolution (Smith et al., 2000) becomes superior
to both LEVEL and the current version of FEOM but at the expense of much higher CPU cost.

Given that the FEOM mesh combines z-levels with sloping bottom one would have guessed
that the solution produced by FEOM shares the features of LEVEL and SIGMA. Surprisingly,
in many respects (such as the SSH structure, the SSH variability, the Azores Current etc.)
FEOM�s circulation appears to be similar to that of ISOPYCNIC. The reason for this similarity
is unclear to us.
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The CPU cost of the model divided per node number is significantly higher than that of the
structured-grid finite-difference models, which comes more from the unstructured character of
the FEOM grid than from using solvers. Yet the efficiency of the model should be estimated
by its ability to reproduce the ocean circulation in dynamically important areas and in most cases
depends on local resolution and topography representation. In terms of efficient resolution,
FEOM has an affordable CPU cost.

The main conclusion drawn from the DYNAMO intercomparison project is that the large-scale
ocean thermohaline circulation in the North Atlantic is strongly influenced by processes occurring
on a local scale and is rather sensitive to small-scale details of the bathymetry the role of which is
not fully understood (Willebrand et al., 2001). Due to the freedom in representing bathymetry and
the possibility of mesh refinement in areas of interest (which was not fully explored in the current
version), FEOM could serve as a tool for investigating this issue. Our future work will go along
this line. Another promising direction of applying the FEOM is modelling regional circulations by
a global model with local mesh refinement. It would eliminate both open boundary and nesting
problems.
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Böning, C.W., Bryan, F.O., Holland, W.R., Döscher, R., 1996. Deep-water formation and meridional overturning in a

high-resolution model of the North Atlantic. J. Phys. Oceanogr. 26, 1142–1164.

Chao, Y., Gangopadhyay, A., Bryan, F.O., Holland, W.R., 1996. Modeling the Gulf Stream system: How far from

reality? Geophys. Res. Lett. 23, 3155–3158.

Chassignet, E.P., Arango, H., Dietrich, D., Ezer, T., Ghil, M., Haidvogel, D.B., Ma, C.-C., Mehra, A., Paiva, A.,
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Eden, C., Greatbatch, R.J., Böning, C.W., 2004. Adiabatically correcting an eddy-permitting model using large-scale

hydrographic data: application to the Gulf Stream and the North Atlantic Current. J. Phys. Oceanogr. 34, 701–719.

Ezer, T., Mellor, G.L., 2000. Sensitivity studies with the North Atlantic sigma coordinate Princeton Model. Dyn.

Atmos. Oceans 32, 185–208.

Frickenhaus, S., 2003. Parallel Solvers for Irregular Sparse Linear Systems. Available from <http://www.awi-

potsdam.de/InfoCenter/IT/WorkingGroups/SciComp/SSolversUG.html>.

Gent, P.G., McWilliams, J.C., 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155.

http://www.awi-potsdam.de/InfoCenter/IT/WorkingGroups/SciComp/SSolversUG.html
http://www.awi-potsdam.de/InfoCenter/IT/WorkingGroups/SciComp/SSolversUG.html


S. Danilov et al. / Ocean Modelling 10 (2005) 35–49 49
Gent, P.R., 1991. The heat budget of the TOGA-COARE domain in an ocean model. J. Geophys. Res. 96, 3323–3330.
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Abstract

The non-hydrostatic model FINEL3D is based on the finite element method. In the model no approx-

imations to the non-hydrostatic equations have been made. The model uses a 3-D fully unstructured grid

and tetrahedral elements. The calculations presented here use the so called mini-element. In this paper the

models capability to simulate internal flow and internal wave formation over small scale topography are

considered. The flow of a stratified fluid over small scale topographic features in an estuary may generate
considerable non-hydrostatic internal wave activity. The model is shown to accurately simulate internal

trapped waves and internal lee waves. Differences between the analytical solutions and the model results

are shown to be due to numerical diffusion.
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1. Introduction

A new three-dimensional non-hydrostatic finite element numerical model, FINEL3D is pre-
sented. FINEL3D was developed for simulating non-hydrostatic flows in estuarine and coastal
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locations. In particular much attention has been paid recently to accurately resolving internal
waves. Internal waves are a widespread feature of coastal seas and oceans. They are known to
play an important role in the transfer of mass and momentum. Consequently they may exert a
strong influence on the vertical structure of a stratified flow (Pietrzak et al., 1991). Kranenburg
and Pietrzak (1989) in a series of laboratory experiments demonstrated that internal waves could
significantly increase the local production of turbulence.

In recent years a number of numerical models have been developed to simulate non-hydrostatic
coastal and ocean flows. Many of these models have made some sort of approximation to the non-
hydrostatic equations, see for example, Marshall et al. (1997), Casulli and Stelling (1998), Stansby
and Zhou (1998), Casulli (1999), Hodges and Street (1999), Stelling and Busnelli (2001), Kanarska
and Maderich (2002), Casulli and Zanolli (2002). Typically the approximations involve separating
the solution into hydrostatic and non-hydrostatic components and sequentially solving for them.
In the first step one neglects contributions from the non-hydrostatic pressure and velocity. While
at the second step the velocities are corrected by including non-hydrostatic pressure terms. Since
these approaches split the solution they can introduce splitting errors. Stelling and Zijlema (2003)
recently introduced a new method based on a pressure correction method which does not intro-
duce a splitting error. However, in contrast to the above the approach adopted here is to solve the
complete non-hydrostatic equations. This approach was adopted because it was considered
important to resolve small scale non-hydrostatic coastal flows.

The model, FINEL3D, is also different to many others in the literature in that it is a fully
unstructured grid three dimensional model. Many of the newer hydrostatic unstructured grid flow
models follow the philosophy of being unstructured (either finite element or finite volume) in the
horizontal but structured in the vertical. For example, a geopotential, z-level coordinate is
adopted in the UnTrim model (Casulli and Walters, 2000) and the ELCIRC model (Zhang and
Baptista, in press), which uses a similar formulation to the UnTrim approach. While a sigma (ter-
rain following) co-ordinate system was adopted in the finite element models Quoddy (Lynch et al.,
1996) and a generalised terrain following mapping was adopted by Iskandarani et al. (2003). Re-
cently a non-hydrostatic version of the UnTrim model has been developed by Casulli and Zanolli
(2002). They demonstrated that splitting the solution procedure into a hydrostatic and non-hydro-
static part, in combination with a z-level co-ordinate in the vertical gave efficient results in the case
of quasi-hydrostatic flows. However, in the case where the flow is non-hydrostatic and one is deal-
ing with complex geometries it can be advantageous to use a fully three dimensional approach.

Using tetrahedral elements the vertical alignment of the grid can be chosen arbitrarily. To our
knowledge the only other ocean model to adopt this philosophy is the model of Danilov et al.
(2004). The main reason for adopting this approach is that it allows topographic features to be
accurately resolved. It allows a lot of flexibility in the specification of the vertical grid location,
i.e. clustering near features of interest without having to resort to hybrid coordinates, see for
example, Pietrzak et al. (2001). To our knowledge FINEL3D is one of the few fully three dimen-
sional, finite element, non-hydrostatic flow models. The model has been tested and validated in a
number of studies concerned with flow in complex coastal engineering works, see Svašek (2001)
for a study of current induced forces on ships in stratified flow conditions, where the clear advan-
tages of the finite element approach are demonstrated. Recently the model has been used to sim-
ulate internal waves in the Rotterdam Waterway (Pietrzak and Labeur, 2004). Here we present the
model formulation and provide a number of linear internal wave test cases and laboratory data
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against which to validate the model. The final objective is a coastal flow model capable of accu-
rately simulating a range of complex stratified flow problems.

Internal waves may be generated by various mechanisms, but most notably by stratified tidal
flow over topography. Starting with the pioneering work of Long (1953) numerous studies have
been carried out of topographically generated internal waves. Many studies have focused on inter-
nal wave generation by isolated large amplitude topographic features and the associated upstream
propagation of solitons, see the review by Baines (1995). Internal solitons can be described with
hydrostatic theory and Boussinesq approximations. However, this approach lacks generality.
Observations in the Rotterdam Waterway showed large amplitude trapped internal waves and
lee waves, Pietrzak et al. (1990) and Kranenburg et al. (1991). The non-hydrostatic waves were
generated by the tidal flow of stratified fluid over small scale bed features with amplitudes of
the order 0.1–1m in a typical water depth of 16m and wavelengths of the order 30–80m. Shallow
seas, such as the North Sea are often covered in such bed features, sand waves with wavelengths of
a few hundred metres and heights about 10% of the depth are observed. Mega ripples with heights
up to a meter and wavelengths of the order tens of meters are typically superposed on such sand
waves. What is of particular interest is that internal waves are generated by typical tidal flow con-
ditions over low amplitude bed topography such as sand waves and mega ripples. Since small
scale topographic features are present in most estuaries and coastal seas, internal waves are ex-
pected to occur in many situations. Consequently, the need for accurate non-hydrostatic models
that can simulate stratified flows has gained importance in recent years. Hence we consider the
accurate modelling of such types of non-hydrostatic flow.

First, the numerical model, FINEL3D, is described in detail in Section 2. Then a summary of
linear internal trapped wave theory and internal lee wave theory is provided in Section 3. The re-
sults of some test computations are described in Section 4. Finally conclusions are presented in
Section 5.
2. Numerical model

2.1. Equations

In this section, the numerical flow model is described. The model employed here is FINEL3D
which is based on the Navier–Stokes equations (2.1) and (2.2), with transport equation (2.4) for
the relative density. In vector form the incompressible Navier–Stokes equations read:
o�u
ot
þ �u � r�u� mr2�u ¼ 1

q
ðF res �rpÞ ð2:1Þ

r � �u ¼ 0 ð2:2Þ

The momentum equation (2.1) expresses that water particles are accelerated due to a pressure gra-
dient and external forces, while momentum may also be dissipated by internal friction. The left-
hand side of (2.1) is the advection–diffusion part of the momentum equation, with velocity vector
�u [m/s] and (turbulent) kinematic viscosity m [m2/s]. The right-hand side of (2.1) contains the gra-
dient of the pressure p [N/m2] and the sum of the external forces per unit volume F res [N/m3], both
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divided by the density q [kg/m3]. Eq. (2.2) is the incompressibility constraint. Incompressibility of
the fluid is maintained by the pressure gradient through the momentum equation. In this way the
incompressibility of the fluid implicitly determines the pressure distribution. Density differences in
the fluid contribute to the resulting force F res. A constant temperature and small changes of pres-
sure and salinity are assumed so that a linearised equation of state may be used to calculate the
density from the salinity distribution. Invoking the Boussinesq approximation, which states that
density differences Dq = q � q0 are also small with respect to the average density q0, the right-
hand side of (2.1) may be approximated as:
1

q
ðF res �rpÞ � 1

q0

ð�qg�ez � q0grðh� zÞÞ ¼ �gð~q�ez þrhÞ ð2:3Þ
Here, g [m/s2] is the gravitational acceleration and h [m] is the piezometric level with respect to the
average density, implicitly defined by the relation p = q0g(h � z). For the relative density differ-
ence ~q ¼ ðq� q0Þ=q0 [–] a transport equation holds:
o~q
ot
þ �u � r~q� jr2~q ¼ 0 ð2:4Þ
where j [m2/s] is the (turbulent) diffusivity. Eqs. (2.3) and (2.4) result in a coupling of the flow and
the advected density field.
2.2. Discretisation

The model is based on the finite element method. In the finite element approach the continuous
fields of �u and h are approximated in a computational domain X with boundary C by finite dimen-
sional function spaces Vh and Qh respectively. These function spaces are spanned by Nu basis func-
tions vh and Nq basis functions qh thus forming a subspace of the respective continuous fields. In
this way the continuous fields �u and h are approximated by
�u � �uh ¼
XNu

i¼1

�uivh;i and h � hh ¼
XNq

i¼1

hiqh;i ð2:5Þ
The function spaces Vh and Qh have to satisfy certain integrability conditions, e.g. some norms
should be well defined. Next, the discrete form of the equations is found by considering the weak
form of the discrete solution in the discrete function spaces Vh and Qh (Galerkin method). The
discrete form of the momentum equation becomes:
8�vh2V h

Z
X

o�uh

ot
þ �ah � r�uh þ grhh þ g~qh�ez

� �
�vh þ mr�uh � r�vh

� �
dX

þ
I

C�u

ð�ah � �nÞ�½�u0 � �uh� � m
o�u
on

����
0

� �
�vh dC

þ
I

Ch

g½h0 � hh��nþ ð�ah � �nÞ�½�us;0 � �us;h� � m
o�us

on

����
0

� �
vh dC ¼ 0 ð2:6Þ
which implies projection of the momentum equation on each of the basis functions �vh belonging to
Vh. The vector �ah appearing in Eq. (2.6) is the advective velocity relative to the grid movement (see



R.J. Labeur, J.D. Pietrzak / Ocean Modelling 10 (2005) 51–67 55
comments below). The viscous term is integrated by parts giving rise to a boundary integral on C�u

specifying the viscous shear stresses. This integral also has a contribution from the inward advec-
tive transport of momentum by the inward advective velocity component ð�ah � �nÞ�, with �n being
the outward pointing unit normal vector along the boundary. In both the advective and viscous
parts subscript zero indicates quantities to be specified along the boundary. Alternatively, the
velocity components themselves may be specified along C�u thus restricting the space Vh. Along
Ch the external piezometric level h0 has to be specified, resulting in a normal stress. In addition
the tangential velocity �us;0 or tangential stresses have to be specified along Ch. Omitting the advec-
tive and diffusive momentum transfer terms from these boundary integrals simply implies that the
associated stresses are zero (free slip boundary).

The weak form of the discrete continuity equation follows from a projection of the incompress-
ibility constraint on all functions belonging to Qh yielding:
8qh2Qh

Z
X

�uh � rqh dX�
I
Ch

�uh � �nqh dC�
I
C�u

�u0 � �nqh dC�
I

Cfree surface

oh
ot

nzqh dC ¼ 0 ð2:7Þ
Integration by parts in this case leads to a boundary integral containing the normal velocity.
Along C�u the normal velocity must be prescribed while along Ch the discrete (interior) normal
velocity should be substituted instead. Omitting this boundary condition simply implies a closed
wall (normal velocity equal to zero). At the free surface the integrated normal velocity is related to
the movement of the piezometric level h, as expressed by the third boundary integral in which nz is
the vertical component of the unit normal vector to the free surface. The piezometric level h in the
entire fluid is implicitly defined through coupling of the momentum equation and the continuity
equation. Therefore h may also be regarded as a Lagrange multiplier for the incompressibility
constraint.

The function spaces Vh and Qh follow from the spatial discretisation of the computational
domain X. Typically, a 2-dimensional spatial discretisation will consist of triangles or quadri-
laterals (tetrahedrons or hexahedrons in 3 dimensions). The discrete function spaces Vh and Qh

may not be chosen independently but have to obey certain compatibility requirements in order
to guarantee stability of the discrete solution. A number of allowable combinations are
known, see for instance Gunzburger (1989). The model uses the so-called MINI-element illus-
trated in Fig. 1. The qh are piecewise linear on triangles (or tetrahedrons in 3D). In addition
the �vh space is enriched by piecewise linear functions that have value one in the element centre
and vanish on the element boundaries, also referred to as �bubble-functions�. The velocities
associated with these bubble functions can be eliminated from the discrete system of equations
reducing it to a coupled system in the nodal degrees of freedom only. This �static condensa-
tion� in effect leads to a pressure-Poisson equation being added to the continuity equation
which stabilizes the pressure-velocity coupling. After solving for the nodal velocities, the
bubble-velocities are found by back substitution. The resulting computational grid is
unstructured.

The discrete relative density difference ~qh is approximated in the same space Vh as are the
velocities. This is a prerequisite for stability of the density–velocity coupling (Gunzburger,
1989). The discrete transport equation therefore has a form similar to the discrete momentum
equation (2.6):



Fig. 1. Distribution of pressure nodes (�) and velocity nodes (�) in the 2- and 3-dimensional MINI-element.
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8vh2V h

Z
X

o~qh

ot
þ �ah � r~qh

� �
vh þ jr~qh � rvh

� �
dX

þ
I

C~q

ð�ah � �nÞ�½~q0 � ~qh��j
o~q
on

����
0

� �
vh dC ¼ 0 ð2:8Þ
In domains with a free surface the computational grid is continuously adapted to the position
of the free surface. The resulting motion of the grid points is incorporated in the advective speed
�ah which is the flow velocity relative to the grid movement. It is well known that for relatively high
velocities (large element Péclet-numbers) numerical treatment of the advection term as in Eqs.
(2.6) and (2.8) may give rise to instabilities. These instabilities are already suppressed by the
use of the bubble-functions, but the resulting stabilization is not always optimal in advection
dominated cases (Simo et al., 1995). Some additional stabilization by upstream differencing
may therefore be necessary. In this model the Streamline Upwind Petrov Galerkin (SUPG) meth-
od is used for this purpose where in each element e the associated weighting functions vh,e are lo-
cally replaced by modified functions v�h;e according to:
v�h;e ¼ vh;e þ se�ah;e � rvh;e ð2:9Þ
where se is an elementwise parameter with the dimension of time (Hughes, 1987). The se can be
computed in several ways, giving the modeller some freedom. Here se is related to the mean res-
idence time of fluid particles in each element:
se ¼
R

dXeH
j�a � �njdCe

nðPeÞ ð2:10Þ
where n(Pe) is a Péclet-number dependent function which tends to one for pure advection (m = 0)
and tends to zero in case of diffusion dominated problems (Pe = 0). For stationary 1-dimensional
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problems an optimal expression for n(Pe) is known giving nodally exact solutions. For general
cases a number of alternative expressions are proposed in the literature (see for instance Heinrich
and Pepper, 1999). In the inviscid simulations presented here n(Pe) is equal to one. The resulting
formulation effectively controls spurious oscillations near sharp gradients such as jump disconti-
nuities and (outflow) boundary layers (Johnson, 1990). It is important to note that the modified
test functions should be used in all terms of the discrete equations, in order to maintain consis-
tency of weak form, yielding an accuracy of order 1 1

2
in advection-dominated cases (Hughes,

1987). In the computations reported here however, the consistent approach did not result in stable
stationary solutions and the stabilization had to be applied on the advection terms only. This adds
some artificial diffusion to the equations (along streamlines only, with diffusion tensor ~ma ¼ se�ah�aT

h )
reducing the accuracy of the advection terms to first order. Finally, the equations are discretised in
time using the implicit h-method, in which the discrete equations for the velocity and piezometric
level remain coupled.
2.3. Solution algorithm

The resulting system of equations for the increments D�uh and Dhh of the discrete solution has
the following block matrix structure:
A D

E B

� �
D�uh

Dhh

� �
¼

r�u

rh

� �
ð2:11Þ
where A, D and E are sparse matrix blocks for the advection–diffusion, gradient and divergence
operators respectively, while B includes the free surface condition and the pressure-Poisson terms
for the piezometric level hh. The right-hand side vector contains the explicit parts r�u and rh. The
coupled system is solved as a whole using the BiCGSTAB algorithm as an iterative solver (van der
Vorst, 1992). The performance of the BiCGSTAB algorithm heavily relies on the quality of the
preconditioner that is used. Here the approach of van der Ploeg (1994) is followed where an
approximate lower-upper (LU) block decomposition is constructed after pre-multiplying the last
row of system (2.11) by the advection–diffusion operator A, in order to improve the condition
number. Therefore, instead of (2.11) the following system is solved:
I 0

0 A

� �
A D

E B

� �
D�uh

Dhh

� �
¼

I 0

0 A

� �
r�u

rh

� �
ð2:12Þ
As preconditioner an approximate inverse of this block system is constructed by means of an
approximate LU block-decomposition as follows:
A D

AE AB

� ��1

�
A D

0 AB� ED

� ��1 I 0

E I

� ��1

�
L1U 1 D

0 L2U 2

� ��1 I 0

E I

� ��1

ð2:13Þ
in which L1U1 and L2U2 are incomplete decompositions of the convection–diffusion matrix A and
the Schur-complement AB � ED respectively. Before its decomposition the Schur-complement is
constructed in an approximate way by multiplication of A with B and E with D at the element
level. In our applications the resulting iterative method is stable and robust. Due to non-linearity
of the system the system matrix has to be assembled at every time step.
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The transport equation for the relative density difference (2.8) is also solved iteratively, using
BiCGSTAB with the inverse of the incomplete decomposition L1U1 as a preconditioner. Leap-
frog time stepping of the coupled flow and density transport equations is necessary because of
the presence of the following subsystem in the velocity–density coupling:
o

ot

eq
w

� �
þ 0 o~q

oz

g 0

" # eq
w

� �
¼ 0 ð2:14Þ
where w [m/s] is the vertical velocity component. In a stable stratification system (2.14) has imag-
inary eigenvalues leading to vertical oscillations by the relative buoyancy (with Nyquist-fre-
quency). Leap-frog treatment of the coupled flow-density equations makes time integration of
system (2.14) conditionally stable. As the classical leap-frog scheme has no damping a slightly
modified scheme is used where in the vertical momentum equation instead of the relative density
at the present time level eqn

an extrapolated value eqnþc
is used:
eqnþc ¼ eqn þ cðeqn � eqn�1Þ ð2:15Þ
The damping parameter c 2 [0;1] can be adjusted in order to avoid unphysical transients, while
steady solutions remain unchanged. Still, in flows with dominant buoyant forcing, vertical spuri-
ous modes of velocities and density may appear as, in general, the discrete buoyant forcing termeqhg�ez in the momentum equation for the vertical velocity is not entirely within the space of gra-
dients of the discrete piezometric level $hh (Pelletier et al., 1989). These spurious modes can be
avoided by projecting the buoyancy term on the vertical gradient of a discrete buoyant potential
uh 2 qh as follows:
8uh2qh

Z
X

ounþc
h

oz
oqh

oz
dX ¼

Z
X

eqnþc
h

oqh

oz
dX ð2:16Þ
The vertical gradient of the buoyant potential unþc
h is then used in the vertical momentum equa-

tion instead of the relative density eqnþc
h itself. This projection removes the incompatible modes

from the buoyant forcing term, and is used in all computations described in this paper.
The resulting model is second order accurate except for the advective terms, which are of first

order accurate only when using the upstream option. A simple turbulence model, based on mixing
length theory and Richardson number dependent damping functions, can be employed to include
the effects of turbulence. The wall shear stress is in that case computed by a conventional wall
function with a prescribed value of the Nikuradse roughness height. See for example, Rodi
(1984). In this paper however, only inviscid simulations are presented.
3. Internal waves

In this section we present a number of applications, paying particular attention to the models
ability to resolve non-hydrostatic flows of particular relevance to coastal flows. Therefore, we con-
sider the generation and propagation of internal waves by small scale bottom topography. Many
previous studies of internal waves have tended to deal with (long) internal solitary waves which
are generated by stratified tidal flow interaction with large scale topography. Whereas internal
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solitary waves can be described with hydrostatic theory and Boussinesq approximations we are
interested in short internal waves that in general need to be described with the full 3D equations.
Of particular interest to us are the studies by Pietrzak et al. (1990) and Kranenburg et al. (1991).
They focused on the generation of internal waves by small scale bed features as observed in the
Rotterdam Waterway, a partially mixed estuary. Both trapped internal waves as well as internal
lee waves were observed. These non-hydrostatic internal waves were generated by the tidal flow of
stratified fluid over small scale rhythmic bed features with amplitudes of the order 0.1–1m in a
typical water depth of 16m and topographic wavelengths of the order 30–80m. A series of 11
bed waves were observed over an approximately 1km section of the bed.

Two types of response were observed to dominate the echo-soundings. The first consisted of
large amplitude waves located over the rhythmic bed features. These were interpreted as resonant
trapped internal waves. The internal wave wavelengths were of the same order as the topographic
wavelengths. Additionally they had amplitudes that were three to four times larger than the
topography generating them. The wave height of the largest internal wave was approximately
equal to half the water depth. The waves were recorded on the ebbing tide. Initially longer wave-
length trapped internal waves were excited with shorter wavelength components being excited as
the background tidal flow decelerated. In this case a resonant forcing occurred when the current
speed was coincident with the phase speed of a free (short) internal wave mode. The second type
of response consisted of internal lee waves downstream of a topographic bed feature. Kranenburg
and Pietrzak (1989) further explored the lee wave response through laboratory and analytical
studies. The laboratory experiments consisted of two layer flow of stratified fluid over an isolated
topographic feature. The latter data set includes measurements of wave amplitude and turbulent
intensity at a number of positions downstream in a steady lee wave train as a function of internal
Froude number.

In the following section we describe elements of trapped internal wave theory and internal lee
wave theory. We then present results showing that FINEL3D can simulate both trapped internal
waves and lee waves. In addition, the laboratory data set allow us to further validate the fully non-
hydrostatic three-dimensional model.

3.1. Summary of trapped internal wave and internal lee wave theory

Here we summarise relevant elements of internal wave theory. Fig. 2 shows a stably stratified
fluid flowing over a series of bed features. Fluid particles are displaced vertically as they flow over
the topography and due to buoyant restoring forces internal waves are generated.
density 

profile 

Fig. 2. Sketch of stratified flow over topography.
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Pietrzak and Labeur (2004) include a derivation of the trapped internal wave solutions. Here
some analytical solutions are briefly discussed. Assuming linear theory and under the Boussinesq
approximation, the vertical velocity w satisfies the Taylor–Goldstein equation, see for example
Baines (1995). Assuming a rigid lid at the surface and the bottom boundary condition to be given
by w_ ¼ U 0

dh
dx ¼ kT U 0h0 cosðkTxÞ where U0 is the horizontal velocity at the bed, h0 is the amplitude

of the topography, x is the horizontal co-ordinate and kT is the topographic wavenumber, the ver-
tical velocity is assumed to have the form wðx; z; tÞ ¼ ŵðzÞeikðx�ctÞ with z the vertical co-ordinate
assumed positive in a direction away from the bed and t is time. In the case of stationary internal
waves trapped to the topography the phase speed c of the internal waves with respect to the topog-
raphy is zero. Assuming the undisturbed horizontal mean shear flow U(z) and the buoyancy fre-
quency N(z) are independent of depth, the solution to the Taylor–Goldstein equation is given by
wðx; zÞ ¼ U 0kTh0 sin½ðl2 � k2Þ1=2ðH � zÞ� cosðkTxÞ
sin½ðl2 � k2Þ1=2H �

ð3:1Þ
with l2ðzÞ ¼ N2

U2 � 1
U

d2U
dz2 and k is the wavenumber of the trapped internal wave. Here we consider

solutions of the above equation which have the same wavelength as the bottom topography. It is

worth noting that the solution is singular for values of the wavenumber of k = [l2 � n2p2/H2]1/2.

The conditions for resonance are therefore satisfied whenever jcrjk¼kT
¼ jU j, where cr is the relative

phase speed with respect to the fluid.

In contrast a train of internal lee waves is formed on the downstream side of the topography
generating them. Lee waves are also stationary with respect to the topography generating them,
c = 0. The waves propagate against the flow so that the relative phase speed matches the mean
velocity of the flowing water, jcrj = jUj. Lee waves can form in subcritical flow, but not in super-
critical flow. Increasing the water velocity the relative phase speed must also increase, which is
associated with a corresponding increase in the wavelength. In general, the group velocity de-
creases as the phase speed and the wavelength increase.

Kranenburg and Pietrzak (1989) developed a Boussinesq type theory of internal lee waves in a
two-layer flow. To obtain different group and phase velocities Boussinesq equations were adopted.
This is still an approximate way to account for non-hydrostatic effects. A requirement is that the
horizontal length scale is large with respect to the total depth. Kranenburg and Pietrzak (1989)
also carried out two-layer internal lee wave experiments. The laboratory results compared favor-
ably with their theoretical solutions provided an effective length of the topography including the
separation zone was included in the theoretical calculations. Their equations are suited to model
near critical flow over topography, which have relatively long lee waves. It was found that above
an internal Froude number of 0.9 large amplitude and unsteady behaviour resulted which is not
accounted for by their steady, linear Boussinesq theory.
4. Results

Here we consider stationary inviscid flow over small amplitude bed topography in order to
compare the model results with linear internal trapped wave and internal lee wave theory. In addi-
tion a comparison is made against laboratory data. A more detailed study of trapped internal
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wave generation can be found in Pietrzak and Labeur (2004). Here we further investigate certain
aspects of the model verification, paying particular attention to the laboratory data described in
Kranenburg and Pietrzak (1989).

4.1. Trapped internal waves

Two trapped internal wave runs are described here. In Run A the focus is on the models ability
to reproduce the linear internal wave modes and the influence of numerical viscosity on the result-
ing solutions. In Run B the models ability to reproduce the same response but this time with a
distorted mesh is explored. In both examples, the model domain is 740m in length, extending from
�187.5 6 x 6 187.5m with a depth of 15m. In the centre of the domain a series of six bed waves
with a wavelength of 50m and an amplitude of 0.15m are present and to either side a flat bed
region of 35m exists. The horizontal grid spacing was 2.5m, which is 20 nodes per wavelength,
and the vertical grid spacing was 0.5m, which amounts to 31 nodes in each vertical. A time step
of 2s was used. The initial conditions are of a linear density profile throughout the domain with a
density difference over the vertical of 10kgm�3. The same linear density profile was also specified
at the open boundaries during the simulation. A constant vertically uniform velocity was specified
on either side of the flow domain. The kinematic viscosity m and diffusivity j are both set to zero.
In order to minimise boundary reflections, a flow relaxation scheme was used at the open bound-
aries. In these runs the flow relaxation zone was 12.5m wide. Run B was identical to Run A except
that a distorted finite element mesh was used, Fig. 3. It is clear that many of the triangles are far
from equilateral in this case.

Fig. 4 shows the theoretical and computed vertical velocity for a range of successive stationary
wave modes. Shown is a 100m section in the middle of the domain. While the model results are in
good agreement with the theoretical solutions of the Taylor–Goldstein equation, the model re-
sponse shows a somewhat smaller horizontal phase shift and slightly larger amplitudes that is
worse for higher wave modes. The same figure shows the effect of a highly distorted mesh. The
higher modes are poorly resolved but the mode 1 response is still reasonable.

In order to investigate the skewness in the phase shift of the computed solutions, the theoretical
solutions with an amount of upwind diffusion equivalent to that in the SUPG scheme using Eqs.
(2.9) and (2.10), which for background velocities of 0.40m/s, 0.15m/s and 0.085m/s amounts to
about 0.16m2/s, 0.062m2/s and 0.035m2/s respectively, are also included in Fig. 4. The numerical
diffusion associated with the upwind scheme appears to be the cause of the differences at higher
mode numbers. However, we are primarily interested in resolving low mode internal waves and
the model gives good agreement in this case.

4.2. Internal lee waves

Fig. 5 shows the results from the internal lee wave simulation. This test case is compared
against linear wave theory as well as against laboratory data. The laboratory data and the theory
are described in Kranenburg and Pietrzak (1989). The experiments were designed to study near
critical internal lee waves generated by the flow of a turbulent two layer fluid over a topographic
feature. A two layer stationary flow was set up in the 130m long Delft Hydraulics tidal flume. The
working section of the flume used in these experiments was 64m long and 1m wide and 0.4m



Fig. 3. The finite element meshes used in Run A (above) and Run B (below). Note the distorted mesh used in Run B.
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deep. Layer Reynolds numbers of 20,000 were used. The fixed obstacle had a height of 4cm or 1/
10 the total water depth. Small amplitude topography was selected so that internal lee waves could
be studied. Large scale topography typically leads to the formation of internal hydraulic jumps
and generally leads to significant upstream influence, see Baines (1995) and references therein.
A density difference of 25kgm�3 was used. Density profiles were recorded 1m upstream of the
topography.

Here we focus on the numerical simulations along the axis of the tidal flume. The numerical
model domain was 6m long, the topography had a half sinusoidal shape of length 20cm and
height 4cm. The topography was located 1.0m downstream of the inflow boundary. A two layer
flow was specified with layer depths of 16cm in the upper layer and 24cm in the lower layer, a
constant discharge in each layer of 0.0245m3 s�1, as in agreement with Test 1 of the laboratory
experiments, see Kranenburg and Pietrzak (1989) for details. The kinematic viscosity and diffusiv-
ity in the (inviscid) simulations were both zero. Three hundred grid cells (triangles) were used in
the horizontal direction and 30 grid cells in the vertical. A time step of 0.05s was used. In order to
make the comparison with the two layer theory the velocity and density were uniform within each
layer. The model was initialised with a two-layer system as described and constant discharges were
specified at the upstream boundary. The flow relaxation zones were not necessary in these lee
wave simulations.

The internal Froude number (F) for this test case was 0.9. In the laboratory test cases it was
found that the flow was steady for a Froude number of 0.9. However for higher Froude numbers
the flow became more unsteady and eventually formed a hydraulic jump as critical conditions
were approached. The theory only applied to steady flow, so we take F = 0.9. In order to have



Fig. 4. From top to bottom trapped internal wave modes 1, 3 and 5. Shown are vertical velocities calculated from the

analytical solution (left), the analytical solution including an equivalent amount of horizontal diffusion due to

upwinding (middle left), and from the numerical solutions Run A (middle right) and Run B (right); and background

velocities of u0 = 0.40, 0.15 and 0.085ms�1. The scale of the vertical velocities is given in mms�1.
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a similar model configuration the domain was setup as described above. The simulations were car-
ried out for 5min, at which time the flow was stationary. Transients from the start up of the sim-
ulation had died out.

Fig. 5 shows the mode 1 internal lee wave response. The internal Froude number in this test
case is 0.9. A lee wave train is seen downstream from the topography with a wavelength of
1.25m. The lee wave has an amplitude of 2cm which is half the amplitude of the bed topography.
Downstream the lee wave is seen to decay. Fig. 6 shows the results from the model simulation, as
well as from inviscid Boussinesq theory. For this test case, referred to as Test 1 in Kranenburg and
Pietrzak (1989), the amplitude of the internal lee wave was 0.2cm and the wavelength was about
1.25m. It is seen that the amplitude just downstream of the topography is about 0.2cm and the
wavelength is of the order 1.25m. The model appears to reproduce the main features of the inter-
nal lee wave response. Fig. 6 shows analytical two layer internal wave solutions and FINEL3D
model results. Shown is a comparison of the model results against Boussinesq theory, using an
effective obstacle length of L = 34cm. This calculation uses the flow separation length as observed
in the laboratory data. If instead we compare the model results to the Boussinesq theory and use
the actual obstacle length of L = 20cm the analytical theory under predicts the amplitude of the
internal lee wave. This result was also found in the laboratory data, where it was found that the



Fig. 5. Simulated internal lee wave train downstream of small amplitude half sinusoidal topography. The axes are

relative density (above) and horizontal velocity (below) in units of ms�1.

Fig. 6. Analytical two layer internal wave solutions and FINEL3D model results. Shown is a comparison of the model

results against Boussinesq theory, using an effective obstacle length of L = 34cm. This calculation uses the flow

separation length as observed in the laboratory data. In addition a theoretical curve is included which also accounts for

the numerical diffusion.
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flow separation region needed to be accounted for to get good agreement with theory. In addition
a theoretical curve is included which also accounts for the numerical diffusion, which in this sim-
ulation had a magnitude of 8 · 10�4 m2/s. Good agreement is found between the model and theory
if the numerical diffusion is accounted for.
5. Conclusions

In this paper the new model FINEL3D has been presented. The model is a non-hydrostatic,
finite element, fully 3D unstructured flow model. In recent years a number of numerical models
have been developed to simulate non-hydrostatic coastal and ocean flows. The model presented
here is to our knowledge unique in that it is a non-hydrostatic fully three dimensional finite ele-
ment model in which no approximations were made to the non-hydrostatic equations. One of the
main reasons for adopting this solution strategy was that the model was originally developed for
complex stratified flows both through and around small scale engineering structures. Here grid
flexibility and the ability of the grid to adapt to complex boundaries is extremely important. How-
ever, this is also true for many estuarine and coastal flow fields. Therefore the model is currently
being developed and tested to ensure that it can accurately simulate stratified flows in estuaries
and coastal seas. Because the model employs a fully 3D unstructured grid, the model employs lin-
ear finite elements. This simplifies the solution procedure and helps to reduce the computational
cost.

The model has been shown to simulate internal waves. A number of numerical tests were per-
formed for which the theoretical solutions are known from either the Taylor–Goldstein equation
or from two layer Boussinesq theory. The model was shown to reproduce the Mode 1–3 trapped
internal waves with a high level of accuracy. Phase errors became apparent at higher wave modes.
These were shown to be due to numerical diffusion associated with the use of the SUPG scheme.
The model was also found to reproduce the two layer internal lee wave response. Accurate results
were obtained if the flow separation distance was included in the analytical solution. The original
comparison between the laboratory data and the Boussinesq theory also concluded that an effec-
tive obstacle length accounting for the flow separation region, had to be used in order to get good
agreement between the laboratory solution and the theoretical solution. It is encouraging that the
FINEL3D simulation also demonstrated the same behaviour.

However, it was also shown that the SUPG scheme introduces numerical diffusion into the
numerical simulations. If diffusion equal in magnitude to that of the numerical scheme is added
to the theoretical linear trapped wave solutions and the lee wave solutions, then the internal wave
response is shown to agree well with theory. Consistent use of the SUPG scheme would not nec-
essarily introduce these errors as the stabilization is then applied to all terms of the momentum
equation. In this case however only the advection terms were stabilized as the consistent ap-
proach did not result in a stationary internal wave response. This is the subject of future inves-
tigations. Current research also addresses the use of alternative linear elements with lower
diffusion. Nevertheless, discrepancies resulting from the first order discretisation of the advective
terms are considered small. FINEL3D has been shown to be suitable for modelling non-hydro-
static stratified flows as typically occur in estuaries and coastal seas. In particular the flow of a
stratified fluid over small scale topographic features in an estuary may generate trapped internal
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waves and internal lee waves. FINEL3D was found to accurately reproduce these types of inter-
nal waves.
Acknowledgments

FINEL3D was developed by the first author while at Svašek Hydraulics and has been further
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Abstract

Previous work has shown that major changes to the thermohaline structure of the North Atlantic

occurred between the pentads 1955–1959 and 1970–1974 and that these changes led to significant changes

in the transport of the Gulf Stream system. Here we expand on these results by examining the changes in

North Atlantic transports for the entire period 1950–1994. Based on temperature and salinity data from the

Lozier climatology, and the deviations from this during different periods since 1950, the thermohaline den-
sities are reconstructed. The circulations associated with these different periods are then derived using a

diagnostic finite element model. The results show significant decadal variability in transports in both the

sub-tropical and sub-polar gyres.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Modelling of the ocean and the climate system has now been going on for a number of decades.
The ocean models that are presently used in most modeling studies are largely based on tradi-
tional finite-difference (FD) techniques. Although possessing advantages in terms of simplicity
and ease of use, these techniques often have difficulty in resolving land boundaries, straits and
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narrow active regions such as boundary currents. The nature of the differencing can also lead to
difficulties near the poles.

An alternative numerical technique is the finite element (FE) method, which has recently at-
tracted increasing interest from the oceanographic community (e.g. Le Provost, 1986; Myers
and Weaver, 1995). The piecewise nature of the FE approach means that it can provide much
more flexible representations of irregular real world coastlines than traditional FD grids. This
piecewise formulation also means that grid refinement in regions of interest can be simply done
without loss of accuracy. This allows for western boundary currents, the shelf break, narrow
straits, etc. to be properly resolved with the necessary resolution, without requiring unnecessarily
high resolution everywhere in the domain. Other advantages include a natural treatment of
boundary conditions and avoidance of some high latitude/pole problems.

The FE method has been widely used in tidal and coastal modelling applications. Coastal uses
range from barotropic studies of tidal residual currents (e.g. Foreman et al., 1993) to the 3-dimen-
sional prognostic advanced-turbulence model QUODDY (Lynch et al., 1992; Lynch et al., 1996)
used, for example, to study the Gulf of Maine and the Scotian Shelf (e.g. Hannah et al., 2001).
Regional or global scale applications have been less common, ranging from the global tidal model
of Le Provost et al. (1995) to basin scale diagnostic calculations (Iskandarani et al., 1993; Myers
et al., 1996; Myers and Weaver, 1997; Greenberg et al., 1998).

The interest in this method has picked up significantly over the last few years, as can be seen
with the successes of a number of new models in this field (SEOM-Iskandarani et al., 2003;
FEOM-Danilov et al., in press), and as highlighted in this special issue. One promising area for
applications of this method is the Canadian Arctic archipelago, where the unstructured nature
of finite element meshes is potentially ideal for the narrow and complex geometries of that region.
Kliem and Greenberg (2003) used a diagnostic finite element model to examine the circulation in
the Arctic archipelago.

One of the main aims of the World Ocean Circulation Experiment (WOCE) was to collect a
global data set. Although the number of direct current measurements is still limited, a large num-
ber of measurements exist for temperature and salinity and hence density. From the density field
and its gradients, a number of techniques exist to determine the velocity, or volume transport
fields.

Simple diagnostic models have been used for a number of years to help us understand the
ocean�s circulation. Estimates of wind-driven transport by integrating characteristics (along lines
of constant f/H) have been performed using observed wind fields (e.g. Welander, 1959; Godfrey,
1989). Including the effects of stratification through the Joint Effect of Baroclinicity and Relief
(JEBAR), Mellor et al. (1982) and Greatbatch et al. (1991) examined the mean climatological
state of the circulation in the Atlantic Ocean. Using a more refined finite element model, Myers
et al. (1996) found very good correspondence between model diagnosed and observed transports
in the North Atlantic, and in the North Pacific (Myers and Weaver, 1997). They (Myers et al.,
1996) also found that the presence of the JEBAR term was crucial in developing realistic circula-
tions in diagnostic models.

Levitus (1989a,b,c, 1990) showed that the thermohaline structure of the North Atlantic under-
went significant changes between 1955–1959 and 1970–1974. Using the density fields from these
pentads, Greatbatch et al. (1991) showed that these changes were associated with large scale
changes in the transport of the Gulf Stream, with much larger transports in 1955–1959 than
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1970–1974. Grey et al. (2000) used XBT data to study the thermocline structure in all pentads
from 1950 and inferred that circulation changes in the sub-tropical gyre played a major role in
the variability. Curry and McCartney (2001) derived a transport index for the North Atlantic, rep-
resenting the upper 2000-db eastward baroclinic mass transport between the sub-polar and sub-
tropical gyres and noted a gradual weakening during the low NAO period of the 1960s and then
an intensification over the next 25 years of a persistently high NAO. Here we first use the data of
Grey et al. (1999) to investigate the circulation changes that have occurred since 1950 and show
that changes in the diagnosed volume transport for the sub-tropical and sub-polar gyres show
similar variability to the thermohaline structure. We then extend the study to consider all 5 year
running pentads between 1945 and 1996, based upon temperature anomaly data contained in the
World Ocean Atlas 1998 (WOA98), finding similar thermohaline variability.
2. Finite element model

The diagnostic model used in this paper is based upon the work of Myers and Weaver (1995).
Although simple compared to the many newly developed state-of-the-art finite element models (as
described in this volume), and using basic numerical techniques, the model is still a very good tool
for diagnostic studies of ocean transport. The diagnostic model solves the vertically integrated,
steady-state, linearized barotropic vorticity equation in spherical co-ordinates, with the higher or-
der metric terms dropped. Note that although the model equation is linear, non-linear effects will
be implicitly included through the observed density fields.

These density effects are brought in through the JEBAR term. The importance of this term was
shown in the pioneering studies of Sarkisyan and Ivanov (1971) and Holland and Hirschman
(1972). This terms represents a correction to the topographic steering term in the vorticity equa-
tion. Through pressure gradients (set up by the density field), it provides a significant term in the
calculation of oceanic transports in diagnostic models (Mertz and Wright, 1992).

A more detailed description of the model, including the complete form of the barotropic vor-
ticity equation used in given in Myers and Weaver (1995). The same FE grid as from that previous
study is also used. Although that grid contains excess resolution in areas were it is not needed, a
decision was made to use the same grid as in Myers et al. (1996) to facilitate comparisons with that
earlier work.
3. Climatological data

Lozier et al. (1995) is an annual mean climatology of the North Atlantic, based on 143,879
hydro-graphic stations. Temperature and salinity are recorded on a 1� · 1� resolution grid, and
depth levels with maximum thickness of 100m. The original data set had large gaps where station
data were sparse and the averaging was not sufficient to overcome natural variability, giving the
data set a noise-like appearance as it attempts to resolve the mesoscale signal.

These difficulties of missing data and noise had to be resolved before the hydrography could be
used. Each missing point is given the mean value of temperature and salinity of the immediate
surrounding points on an isopycnal plane (following Lozier et al., 1995) if there are five or more
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good data points. If there are less than five valid surrounding points then the missing point is left
blank. This procedure is repeated several times until no more can be filled. When this happens and
there are still some obviously missing grid-points, the interpolation method is passed over once
with a limit of four surrounding points contributing to filling in a point. Further five point average
passes are then performed.

The TS properties and the depth of each isopycnal were smoothed on isopycnal surfaces using
a small scale, 3� · 3�, boxcar filter. The depth filtering helps to produce smoother fields and can be
done independently of TS filtering without distorting those properties. A second pass only filters
the depth of the isopycnal surfaces without further smoothing of the TS properties. The resulting
fields are then converted back to depth surfaces. The end product is smooth in appearance but
because the smoothing is much smaller scale than that used by Levitus, the large gradients are
preserved better and small features are not lost. Henceforth we will refer to this climatology as
the Gridded Lozier Climatology, which is complete and regularly gridded. Figures comparing
temperature and salinity fields between the Gridded Lozier climatology, the original Lozier
et al. (1995) and the Levitus climatology (1982) can be found in Grey et al. (1999).

One of the main differences between this climatology and that of Levitus (1982) is the scale that
they have been smoothed over. Levitus (1982) chose an influence radius based on the amount of
smoothing required for remote, poorly observed regions, such as the southern ocean. The result-
ing smallest influence radius of 771km therefore produces significant smoothing in regions with
abundant observations and large property gradients. Lozier et al. (1995) examined the North
Atlantic with its higher density of observations and thus were able to smooth on much smaller
scales, only averaging data within a one-degree square around a grid-point. The gridded data were
then smoothed but nowhere on a scale greater than 3 degrees. Furthermore, all processing was
performed on potential density surfaces. The resultant climatology thus has improved resolution
of small scale features and preserves steep gradients.

These differences in the density field will lead to different calculated transports based on the JE-
BAR relation. The calculation of the Levitus (1982) climatology has been performed previously
and was described by Myers et al. (1996). The transports based on the isopycnal data are given
in Fig. 1. Both climatologies reproduce the observed overall structure of the North Atlantic cir-
culation but some interesting differences exist.

The Gulf Stream and Gulf Stream Extension are tighter in the Gridded Lozier experiments,
with the maximum transport spread out over a band of only 2–3�. This is a direct consequence
of the smaller smoothing scales used in the Gridded Lozier climatology. Larger transports are
found in the cyclonic recirculation gyres in the mid-Atlantic Bight, similar to the �40Sv in the
western gyre suggested by Johns et al. (1995). There is a stronger and more distinct jet penetrating
well into the Atlantic, until 45�W, with transports of between 80 and 100Sv (compared with Levi-
tus 60–70Sv) at 55�W. At this longitude, Richardson (1985) suggests 93Sv, while Hogg (1992)
gives a maximum total of 147Sv, although suggesting the possibility of lower results. This is con-
sistent with the findings of Lozier et al. (1995) and Grey et al., 1999 who describe a better repre-
sentation of the Gulf Stream front and other such features in the isopycnal climatology.

In the Lozier based transport figure, there is a low in the southern Labrador Sea, near 52 �N
and 45�W. Associated with this is an anticyclonic countercurrent flowing north into the Labrador
Sea. This low and the countercurrent have been seen in both the recent observational float studies
of Lavender et al. (2000) and the modelling studies of Kase et al. (2001) and Myers (2002).



Fig. 1. Diagnosed transports calculated using the FE model, with the JEBAR term calculated using the density data

from the: (a) the Gridded Lozier climatology; (b) the Levitus 1994 Atlas. Values are given in Sv and the difference in

magnitude between any two locations indicates the transport between those points.
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The same calculation was also ran using the data from the Levitus 94 Atlas (Fig. 2b). The trans-
ports in the sub-polar gyre are very similar to that from the older Levitus (1982) data, but the dif-
ferences are surprisingly large in the sub-tropical gyre. The Gulf Stream transport is significantly
weaker (60Sv), with the jet being significantly broader. The separation is also poorly represented
here, with the cyclonic recirculation in the mid-Atlantic Bight nearly non-existent, consistent with
previous work implying the importance of these gyres for Gulf Stream separation at Cape Hatt-
eras. Chang and Chao (2000) compared the 1� World Ocean Atlas (WOA) with the Lozier et al.
(1995) and noted artifacts in the WOA data, as well as serious weakening of fronts from the large
smoothing scale used.
4.1. Constructing the pentadal hydrography

The climatological hydrography, with information on temperature and salinity can be used to
produce ocean currents and transports. However, the climatology represents a mean state of the
ocean based on irregular and non-uniform measurements taken throughout the century. Sub-sur-
face observations of temperature and salinity, both of which are needed to calculate density fields
and hence transports, such as CTD casts and Nansen bottles are sparse so compilation of hydro-
graphies to represent shorter time periods is more difficult.

Expendable bathythermograph observations, particularly in the North Atlantic, are much more
widespread but only give information on subsurface temperatures and only in the upper water col-
umn. The method used here combines the comprehensive data of the climatological hydrography
with pentads of XBTs to produce complete pentadal hydrographies based on thermocline and
halocline displacements. Climatological temperature-salinity relationships are retained, consistent
with previous research on interdecadal variability (Levitus, 1989a; Reverdin et al., 1997).



Fig. 2. Transport Streamfunctions (in Sv) for the pentad: (a) 1960–1964; (b) 1970–1974; (c) 1980–1984 and (d) 1990–

1994. Calculations performed using the diagnostic finite element model, with climatological winds and the density fields

associated with each pentad.
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The Gridded Lozier climatology for the pentads is based on vertical displacement to fit with
XBT profiles. For each XBT, the nearest temperature profile from the climatology is vertically
displaced until the sum mean-square temperature anomalies at all depths are minimized. The dis-
placements required to match all XBTs in the pentad are recorded and then mapped to produce a
field of mean displacements. The temperature and salinity profiles of the Gridded Lozier climatol-
ogy are then displaced according to this field to produce the new hydrographic estimate of the
North Atlantic for the pentadal period. The thermocline displacements are consistent with the
thermal anomalies at �400m (Grey et al., 2000). Assimilation studies (Troccoli and Haines,
1999; Troccoli et al., 2002) suggest that a vertical displacement to match the XBT profiles is a bet-
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ter solution than grafting on a shallow hydro-graphic observation onto a deep climatology.
Numerical models have been shown to respond better to this approach (Troccoli et al., 2002).

4.2. Pentadal circulation and transports

Here we extend the transport analysis of Greatbatch et al. (1991) to each pentad from 1950–
1954 to 1990–1994. We use the vertically displaced fields to provide pentadal density data. We
use the same climatological winds (Hellerman and Rosenstein, 1983) for all pentads, as Myers
et al. (1996) showed that the main transports in the diagnostic model are predominantly produced
through the JEBAR term (the effect of the winds show up implicitly in the density data used).

The diagnosed barotropic transports for selected pentads are shown in Fig. 2. The transports in
all periods, but especially the early ones (e.g. 1950s), are very noisy, with some potentially unre-
alistically large transports associated with eddy like features. In the later periods, with more data
available, the structures become smoother. However, in all cases, there are still a number of
�eddies� and bullseye type features, probably associated with the lifting or lowering of the density
fields in localized regions, which are probably not realistic. However, there are also large scale fea-
tures which are consistent in appearance and whose changes can be realistically examined.

In both the sub-tropical and sub-polar gyres, there are significant changes in the transports over
time. For the Gulf Stream near Gape Hatteras, high transports are to be found in 1950–1954 and
1960–1964 while below average transports are seen in 1955–1959 and 1965–1969. The transports
are close to the climatological average (Fig. 1a) for 1970–1984, while higher transports are again
seen in 1985–1989 and 1990–1994. Changes to the shape of the sub-tropical gyre and the tightness
of the recirculations are also present. Strong variability is seen in the eddy train downstream from
the Gulf Stream separation, including the Mann Eddy off Flemish Cap. In some pentads (1955–
1959 and 1990–1994), the eddy has almost disappeared.

Greater sensitivity to temporal change than for the actual Gulf Stream can be seen in the cy-
clonic recirculation gyres in the mid-Atlantic Bight. From the late 1960s through to the late
1970s (and potentially the early 1980s), transports are low (20Sv maximum) and the gyres are very
constrained spatially, for the most part isolated from the main cyclonic sub-polar gyre. At other
times, the transport increases and the gyres are directly connected with a down-shelf branch of the
Labrador Current.

In general, this connection between the slope water gyres and the Labrador Current occurs in
pentads with strong Labrador Current transport (early 1950s, and the 1980s and 1990s). The Lab-
rador Current is also strong in the mid-1970s, a time when the slope water gyre is weaker. There is
an out of phase relationship between the eastern parts of the sub-tropical and sub-polar gyres,
with the edge of the sub-polar gyre reaching farther east and south when the sub-tropical gyre�s
eastern penetration is curtailed.

The results are suggestive of the commonly held hypothesis that North Atlantic transports vary
with the NAO. Largest sub-tropical gyre transports are found during and after the warm phases
of the NAO, while low transports are associated with persistent cold phases. Table 1 shows the net
transport from the core of the Labrador Sea to the central Sargasso Sea, for each pentad (similar
to the Curry and McCartney, 2001, diagnostic), showing this variability.

The total transports from Table 1 for the 1990–1994 period were the largest of any we calcu-
lated, although large transports are also indicated from 1980 onwards. The very strong transports,



Table 1

Transport for each pentad (and the climatologies) across the North Atlantic Stream, in Sv, from the core of the

Labrador Sea, to the central Sargasso Sea

Pentad Transport (Sv)

1950–1954 119

1955–1959 67

1960–1964 72

1965–1969 99

1970–1974 93

1975–1979 96

1980–1984 118

1985–1989 115

1990–1994 123

Lozier climatology 102

Levitus climatology 83
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which are also present upstream near the Gulf Stream separation, are consistent with the results of
Grey et al. (2000), who suggest that these enhanced transports, especially in the sub-tropical gyre,
increase the transport of warm near-surface waters northwards throughout the period. Further
investigations are needed to identify any sequence of events which might indicate a cause for
the observed changes.

One limitation of the above analysis is that the timing of the pentads was chosen to be each half
decade (e.g. 1960–1964) and these do not necessarily catch any specific physical events (such as a
high or low phase of the NAO). The World Ocean Atlas (NODC, 1998) provides temperature
anomalies on a 1-degree grid for each 5 year running pentad from 1945–1949 up to 1992–1996,
as well as climatological values of temperature and salinity. For each pentad, the pentadal tem-
perature anomalies were added to the climatological temperature. Then, these modified tempera-
ture values, combined with the climatological salinity, were used to calculate densities. The
calculated density was then used in the JEBAR relation and the diagnostic model was run for each
of the overlapping pentads.

The pentadal transport plots for the pentads that match those in the previous analysis are con-
sistent with, and as noisy as, those from the previous analysis. Rather than show transport plots
from each pentad, we will focus on transport time series from a number of interesting locations in
the North Atlantic: the Iceland Basin, the eastern/central Labrador Sea, along the path of the
North Atlantic Current, within the recirculation gyres of the mid-Atlantic Bight and along the
path of the separated Gulf Stream. Fig. 3 shows the locations of the these points and the transport
time series from each location. The time series for the Gulf Stream is shown separately from the
other four as its scale overwhelms the transport variations at the other locations where the trans-
ports are smaller. Our diagnosed Gulf Stream transport varies between 60 and 150Sv over the
time period analyzed. Although some of the variability may be associated with meandering and
other changes in the jet path, a clear quasi-decadal signal in strength also seems to be present.
The same signal phase is also seen in the recirculation gyres to the north of the Gulf Stream, with
diagnosed transports ranging from 5–30Sv. Downstream, the North Atlantic Current transports
also indicate significant transport variability (5–25Sv), but other than in the 1950s, this variability



Fig. 3. Time series of Gulf Stream transport (Sv) at 37N, 62W for each 5 year running pentad between 1945 and 1996;

(a) for the Iceland Basin at 60 N 25 W (dash dot line), the eastern/central Labrador Sea at 56N 49W (solid line), along

the path of the North Atlantic Current at 51N 35W (dotted line) and within the recirculation gyres of the mid-Atlantic

Bight at 42N 58W (dashed line); (b) Time series of transport (Sv) for the same 5 year running pentads as in; (c) Map of

North Atlantic, indicating the location of five points where the diagnosed time series for each overlapping 5 year pentad

between 1945 and 1996 are given; circle—Gulf Stream, triangle—recirculation gyres, square—North Atlantic Current,

star—Labrador Sea and plus—Iceland Basin.
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is not in phase with the Gulf Stream transports. Instead, it is much more in phase with the diag-
nosed transports in the eastern Labrador Sea, except in the 1950s when the North Atlantic Cur-
rent transports are weak and the Labrador Sea transports are strong. The Labrador Sea
transports are also high in the early 1990s.
5. Summary and discussion

A diagnostic finite element model is used to examine the transports in the North Atlantic
Ocean. Although basic, the model is still able to accurately diagnose the large scale North Atlantic
transport structure. Improved transport estimates and Gulf Stream structure are found when the
Gridded Lozier isopycnal climatology is used for the density terms in the JEBAR relation. The
isopycnal climatology also improves the diagnosed transport structure in the sub-polar gyre
and leads to a representation of the recently discovered countercurrent structure in the Labrador
Sea (Lavender et al., 2000).

To examine interdecadal variability, the large number of XBT observations available are used.
For each pentad between 1950–1954 and 1990–1994 the climatology is modified based on a ver-
tical displacement to fit XBT profiles. A mean displacement field for each time period is produced
and then used to create new thermohaline density climatologies. These pentadal climatologies are
then used to calculate the density gradients for the diagnostic model, leading to transport esti-
mates for each pentad. To further this analysis, temperature anomaly data from the World Ocean
Atlas were used for each 5 year running pentad between 1945 and 1996. Although the transport
plots from the pentadal data are noisy due to localized changes in the density data, they still show
clear signals in the behavior of the gyres and major currents over time.

Changes in the structure and magnitudes of the sub-tropical and sub-polar transports are found
through the time period. Gulf Stream transports and especially the slope water recirculation gyres,
are low through the late 1960s and 1970s and high in the 1950s and from the 1980s onwards.
Strong transports in the slope water gyres are normally consistent with these circulation features
being connected to (and in phase with) transport changes in the Labrador Current. Rossby and
Benway (2000) showed that slow interannual variations in the path of the separated Gulf Stream
may be governed by the outflow of waters from the Labrador Shelf region. Our study suggests
that indeed the magnitude of the slope water recirculations is very sensitive to a potential connec-
tion with the Labrador Current and flow across the Newfoundland Shelf. Consistent with this
idea, we also find that the path and northward extent of the Gulf Stream, in these diagnostic cal-
culations, varies with the strength and horizontal extent of the slope water gyres. As an additional
example of this, if we use the thermohaline densities from the 1994 World Ocean Atlas (Levitus
and Boyer, 1994), which poorly represent the slope water gyres, to calculate the JEBAR term, we
get a much more northern Gulf Stream path (with poor separation) and a truncated southern ex-
tent to the sub-polar gyre.

A large variability in the baroclinic transport between the sub-tropical and sub-polar gyres is
found, of the order of ±23Sv. This is significantly larger than the ±17% variability found by Curry
and McCartney (2001), and may be related to strong gradients and small scale features produced
by the lifting and lowering used in constructing the pentadal densities. Such small scale features
would be most prevalent when data is sparse, such as in the earlier period of our analysis. If we
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examine only the pentads since 1965–1969, we find a smaller variability of ±16Sv, which is 15% of
the mean for that period. Larger transport signals would also be expected here, since with the
inclusion of the JEBAR term in our calculations, we are estimating more than just the flat-bottom
Sverdrup relation. Despite the greater variance, the transports variations found here are in phase
with the index of Curry and McCartney (2001), which is in turn related to the NAO index (at a
lag), although without a direct high correlation.
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Abstract

Numerical methods that are usually employed in ocean modelling are typically finite-difference, finite

and spectral-element techniques. For most of these methods the coupling between the momentum and con-
tinuity equations is a delicate problem and it usually leads to spurious solutions in the representation of

inertia-gravity waves. The spurious modes have a wide range of characteristics and may take the form

of pressure (surface-elevation), velocity and/or Coriolis modes. The modes usually cause aliasing and an

accumulation of energy in the smallest-resolvable scale, leading to noisy solutions. The Fourier analysis

has proven practical and beneficial to describe the spurious solutions of several classical schemes. However

it is restricted to uniform meshes on which the variables are regularly distributed. In this paper, a linear

algebra approach is proposed to study the existence and the behaviour of stationary spurious modes asso-

ciated with zero frequency, for some popular finite-difference and finite-element grids. The present
approach is performed on uniform meshes but it applies equally well to regular as well as unstructured

meshes with irregular geometry for the finite-element schemes.
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1. Introduction

The shallow-water equations are of considerable importance for a variety of problems of coastal
and environmental engineering, including oceanic, atmospheric and groundwater flows. Oce-
anic models typically employ gridpoint, finite and spectral-element techniques. However, most
of these methods may lead to spurious solutions in the representation of inertia-gravity waves
(Batteen and Han, 1981; Williams, 1981), when solving the shallow-water and Navier–Stokes
equations.

Walters and Carey (1983) investigated the nature of spurious pressure modes by means of a
one-dimensional Fourier analysis of the linearized shallow-water equations. They found that spu-
rious solutions may arise from the coupling of the momentum and continuity equations when
representing inertia-gravity waves. This problem is encountered in both finite-difference and fi-
nite-element formulations. Its severity depends upon the placement of velocity and surface-eleva-
tion (or pressure) variables on a mesh, and upon the choice of appropriate basis functions for
finite-element discretizations.

The spurious modes usually take the form of surface-elevation, velocity and/or Coriolis modes.
They are small-scale artifacts introduced by the spatial discretization scheme which do not prop-
agate but are trapped within the model grid, and associated with zero frequency. If the spurious
solutions are left undamped, they can cause an accumulation of energy in the smallest-resolvable
scale, leading to noisy solutions.

For example, subject to the no-slip boundary condition the B-grid (Mesinger and Arakawa,
1976) exhibits surface-elevation modes and hence a checkerboard pattern of noise in both the
gravity wave and inertial limits, while the C-grid (Mesinger and Arakawa, 1976) is prone to Cori-
olis modes in the inertial limit only, provided the grid resolution is low relative to the Rossby ra-
dius of deformation (Walters and Carey, 1984). The finite-element pairs P1–P1 and P1–P0 (Brezzi
and Fortin, 1991) suffer from surface-elevation modes in a similar manner as for the A- and B-
finite-difference grids (Walters and Carey, 1983; Le Roux et al., 1998). The B- and C-grids and
the P1–P1 and P1–P0 pairs are described later in Section 3.

Attention has been focused almost exclusively on the spurious surface-elevation modes since
these were argued to be the most troublesome (Walters and Carey, 1983). A number of arguments
have been advanced to explain their origin and to provide a basis for selecting grids that perform
well. This has resulted in several strategies using the following methods: mixed-order finite-element
interpolation (Walters and Cheng, 1980; Walters, 1983), equal-order elements with variables car-
ried at sets of points staggered in space (Williams, 1981; Hua and Thomasset, 1984), vorticity and
divergence instead of velocity in the momentum equations (Staniforth and Mitchell, 1977) and
wave-equation (Lynch and Gray, 1979) and Petrov–Galerkin (Hughes et al., 1986) formulations.

The Fourier analysis has proven practical and beneficial to describe the spurious solutions of
several classical finite-difference and finite-element schemes (Walters and Carey, 1983). However,
it is restricted to uniform meshes on which the variables are regularly distributed.
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Triangular finite-elements are attractive for ocean modelling due to their inherent flexibility for
representing irregular boundaries and for local mesh refinement. However, the finite-element
method has not been widely used in ocean modelling to date. This is because the ocean modelling
community has been using finite-difference techniques for a long time and did not invested signif-
icant efforts to develop finite-element approaches.

For most of existing finite-element schemes the occurrence of spurious solutions is implicitly
linked to an imbalance in the number of degrees of freedom between the discrete surface-elevation
and the two components of the discrete velocity vector (Le Roux et al., 1998). It is then crucial to
describe the behaviour of the spurious modes and their impact on the quality of the numerical
solution, and possibly try to cure them. On structured meshes, macro element techniques (Brezzi
and Fortin, 1991) may permit to ‘‘eliminate’’ the spurious modes. On unstructured meshes this is
usually more difficult, and appropriate filtering techniques or the use of artificial dissipation are
usually employed.

This paper is a first step towards the understanding of the behaviour of spurious solutions that
may arise on unstructured grids. In order to do so, a linear algebra approach is proposed to study
the existence and the behaviour of stationary spurious modes associated with zero frequency, for
some popular finite-difference and finite-element grids. The present approach is performed on uni-
form meshes but it applies equally well to regular as well as unstructured meshes with irregular
geometry for the finite-element schemes. The two-dimensional linearized form of the shallow-
water equations are used in their inviscid and viscous forms, with appropriate boundary condi-
tions, including the Coriolis terms.

The paper is organized as follows. The model equations are presented in Section 2. The discrete
spurious modes are then examined in Section 3 for several popular finite-difference and finite-ele-
ment schemes, in both inviscid and viscous cases. In Section 4, some concluding remarks complete
the study.
2. The shallow-water model

2.1. Governing equations

Let X be the model domain with boundary C. The inviscid linear shallow-water equations are
expressed in Cartesian coordinates (LeBlond and Mysak, 1978) as
ut þ f k� uþ grg ¼ 0; ð1Þ

gt þ Hr � u ¼ 0; ð2Þ

where u = (u,v) is the horizontal velocity field, g is the surface-elevation with respect to the refer-
ence level z = 0, f and g are the Coriolis parameter and gravitational acceleration, respectively; k is
a unit vector in the vertical and the mean depth H is assumed constant. Note that g plays the role
that pressure plays in the Navier–Stokes equations. For a contained flow, Eqs. (1) and (2) are
solved subject to the no-normal flow boundary condition
u � n ¼ 0 on C; ð3Þ

where n is the outward pointing normal at the boundary.
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2.2. The free modes

In the continuum case the free modes of (1) and (2) are examined by perturbing about the basic
state u = v = g = 0. We seek solutions of (1) and (2) of the form ðu; v; gÞ ¼ ð~u;~v; ~gÞeiðkxþlyþxtÞ, where
k and l are the wave numbers in the x- and y-directions, respectively, and x is the angular fre-
quency. Substitution into (1) and (2) then leads to a square matrix system for the Fourier ampli-
tudes ~u, ~v, ~g. For a non-trivial solution to exist, the determinant of the matrix must equal zero, and
this constraint leads to the following dispersion relation for the frequency
xðx2 � f 2 � gHðk2 þ l2ÞÞ ¼ 0: ð4Þ

The first solution x = 0 is the geostrophic mode and it would correspond to the slow Rossby mode
on a b-plane, while the other two solutions x = ± (f 2 + gH(k2 + l 2))1/2 correspond to the free-sur-
face gravitational modes with rotational correction. Since x is purely real, all modes are neutrally
stable and neither amplify nor decay.
3. Examination of the spurious discrete modes

3.1. A Fourier approach

Walters and Carey (1983) examined the numerical dispersion relations of the shallow-water and
the compressible Navier–Stokes equations using a Fourier approach. For a given spatial scheme,
in which the velocity and surface-elevation variables are uniformly distributed on a regular mesh,
a set of selected discretized equations is obtained. Solutions of the form ðu; v; gÞ ¼
ð~u;~v; ~gÞeiðkxþlyþxtÞ are again sought. Substitution into the selected discretized equations leads to
a square matrix system for the Fourier amplitudes ~u, ~v, ~g. For a non-trivial solution to exist,
the determinant of the matrix must equal zero. This constraint leads to a dispersion relation
for the frequency, from which the eigensolutions may then be obtained analytically using appro-
priate boundary data. In their study, where the Coriolis effects are not considered, Walters and
Carey (1983) described two basic sets of spurious modes.

For the first set, the velocity field is zero and non-constant elevation/pressure functions lie in the
null space of the discrete gradient operator. Solution uniqueness is then lost since any multiple of
a spurious mode can be added to any solution of the discrete equations and still satisfy them. It
was also noted that this family of spurious modes is common to discretizations of both the shal-
low-water and the (compressible or incompressible) Navier–Stokes equations. For solution
uniqueness, the null space of the discrete gradient operator must only contain constant surface-
elevation functions, reflecting the fact that surface elevation is only determined to within an arbi-
trary additive constant, determined by fixing the surface-elevation reference level.

The second set of possible modes are those for which the elevation is zero and the velocity field
is in the null space of the discrete divergence operator. Having noted their possible existence, little
else is said about them in Walters and Carey (1983). Attention is focused almost exclusively on the
spurious elevation modes of zero velocity, since these are argued to be the most troublesome. The
occurrence of such spurious elevation solutions has been observed in a variety of finite-difference
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(Walters and Carey, 1984) and finite-element (Walters, 1983; Le Roux, 2001) approximations to
the shallow-water equations.

The Fourier analysis is restricted to uniform meshes on which the variables are regularly dis-
tributed. As a first step towards the understanding of the behaviour of spurious solutions on
unstructured meshes, a linear algebra approach is now investigated, including the Coriolis effects.

3.2. A linear algebra approach

The linear algebra approach described herein is based on the study of the discrete operators
(e.g. gradient, divergence, Coriolis) obtained by discretizing (1) and (2) in time and space. The
velocity and surface-elevation components of the spurious solutions, if they exist, are then
searched in the null space of these discrete operators. As previously mentioned, such a study ap-
plies equally well to uniform as well as unstructured meshes with irregular geometry. As a first
step, only uniform meshes will be considered in the following.

For a given time step Dt = tn+1 � tn we introduce a general time discretization scheme of the
form
unþ1 � un

Dt
þ f k� ðcunþ1 þ ½1� c�unÞ þ gðargnþ1 þ ½1� a�rgnÞ ¼ 0; ð5Þ

gnþ1 � gn

Dt
þ Hðar � unþ1 þ ½1� a�r � unÞ ¼ 0 ð6Þ
with 0 6 a 6 1 and 0 6 c 6 1. Observe that a = c = 0,1/2,1 yield the respective forward Euler,
Crank–Nicolson and backward Euler type schemes.

Eqs. (5) and (6) are then discretized in space and rewritten in matrix form as
AXnþ1 ¼ BXn ð7Þ

with Xn ¼ ðun

1; . . . ; un
N ; g

n
1; . . . ; gn

MÞ at time tn and
A ¼
Mu þ cC aG

aD Mg

� �
and B ¼

Mu þ ðc� 1ÞC ða� 1ÞG
ða� 1ÞD Mg

� �
;

where Mu, Mg are the velocity and surface-elevation mass matrices, respectively, and C, G, D are
the Coriolis, gradient and divergence discrete operators, respectively.

The surface-elevation, velocity and Coriolis spurious modes are specific eigenmodes associated
with zero frequency. Hence, those modes have a zero phase speed, they do not propagate but are
trapped within the model grid. We thus search for stationary eigenvectors X = (u1, . . . ,
uN,g1, . . . ,gM), such that Xn+1 = Xn, associated with the generalized eigenvalue problem
AX ¼ kBX; ð8Þ
where k = 1. Eq. (8) then leads to
AX ¼ BX; i:e: ðA–BÞX ¼ 0; ð9Þ
or, equivalently
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CN ;N GN ;M

DM ;N 0M ;M

� �
ui

gj

 !
¼

0

0

� �
ð10Þ
with i = 1, . . . ,N and j = 1, . . . ,M, independently of the parameters a and c and the mass matrices
Mu and Mg.

We also let E = (CD)t.
We now introduce the schemes that are used for the spatial discretization. Eight candidate fi-

nite-element pairs and finite-difference grids (shown in Fig. 1) for representing velocity and sur-
face-elevation are described and evaluated in the remainder of this paper. In particular, their
ability to approximate the shallow-water system in a spurious mode-free manner is investigated
using structured meshes. The grids employed correspond to biased right isoceles triangles for
the finite-element pairs and regular squares for the finite-difference grids.

The two candidate finite-difference grids are the classical B- and C-grids of Mesinger and Arak-
awa (1976). For both schemes the elevation field is carried at the center of the computational cells,
and the elevation and velocity variables are staggered in space. For the B-grid the two components
of the velocity field are located at the cell corners, while the normal velocities are carried at cell
edge midpoints for the C-grid.

Conventional finite-element terminology is adopted to describe the six candidate triangular fi-
nite-element pairs of this study. The nomenclature Pm–Pn means that velocity components and
surface elevation are, respectively, represented as piecewise-defined polynomials of degree m

and n. Enhancements of this basic terminology are introduced as needed. Five finite-element
velocity/surface-elevation pairs denoted P1–P1, P NC

1 –P 1, P1 iso P2–P1, P2–P1 and MINI are first
described. Common to all five is a piecewise-linear continuous representation of surface-elevation
and they differ from one another in their representation of velocity.

The P1–P1 pair has velocity and surface-elevation nodes co-located at triangle vertices and the
corresponding basis functions are piecewise-linear. The P NC

1 –P 1 pair (Hua and Thomasset, 1984;
Le Roux, submitted for publication), has velocity nodes at triangle edge midpoints and linear
. Two finite-difference grids and six finite-element pairs are presented. The symbols (d) and (s) indicate velocity

urface-elevation nodes, respectively, while the symbol (h) indicates normal velocity nodes.
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basis functions are used to approximate the two velocity components on the element�s two-trian-
gle support. Since this particular representation of velocity is only continuous across triangle
boundaries at midpoint nodes, and discontinuous everywhere else around a triangle boundary,
this element is termed non-conforming (NC) in the finite-element literature. The P1 iso P2–P1 ele-
ment pair (Bercovier and Pironneau, 1991) has piecewise linear basis functions for velocity on a
refined triangulation obtained by dividing each triangle into four subtriangles using the midpoints
of triangle sides. There are thus 6 velocity nodes over each unrefined triangle, the same as for a
quadratic approximation of velocity, termed P2. The designation P1 in P1 iso P2 denotes linear
velocity elements on subtriangles, whereas iso P2 indicates that the nodal placement is that asso-
ciated with quadratic elements on unrefined triangles. The P2–P1 pair (Hood and Taylor, 1974)
has quadratic velocity basis functions while the MINI element has continuous piecewise-linear
basis functions at the vertices and bubble functions at the barycenters for velocity (Arnold
et al., 1984).

Finally, the last finite-element pair, the P1–P0 pair, has linear basis functions for velocity but
discontinuous piecewise-constant basis functions for surface-elevation.

The eight finite-element and finite-difference schemes are now used to compute the dimension of
the null space of the following matrices: G, D, C, A–B for f = 0 and f 5 0, and E. The calculations
are carried out using the numerical linear algebra routines of MATLAB and they are performed
on a uniform 15 · 15 Cartesian mesh made up of 196 quadrilaterals or 392 biased right isoceles
triangles. The no-normal flow boundary condition (3) is used and the results are summarized
in Table 1. It should be noted that the numerical values used for the parameters (f = 10�4 s�1,
g = 9.81ms�2, H = 100m, Dx = Dy = 20km), have no impact on the results.

3.2.1. Surface-elevation modes
Spurious surface-elevation modes correspond to the elevation part of the eigensolutions in (10)

having zero velocity components. Hence, they are non-constant eigenvectors lying in the null
space of the discrete gradient operator. Solution uniqueness is then lost since any multiple of a
spurious mode can be added to any solution of the discrete equations and still satisfy them.
Table 1

Dimension of the null space of the matrices: G, D, C, A–B for f = 0 and f 5 0, and E on a uniform 15 · 15 Cartesian

mesh made up of 196 quadrilaterals. The inviscid case is considered with u Æn = 0 on C. The first column refers to the

finite-difference grid or the finite-element pair type, while columns 2 and 3 indicate the number of velocity (N) and

elevation (M) unknowns, respectively

Mesh 15 · 15 N M G D C A–B f = 0 A–B f 5 0 E

P1–P0 390 392 15 13 0 28 28 0

P1–P1 390 225 4 169 0 173 127 0

C-grid 364 196 1 169 26 170 170 1

B-grid 390 196 1 195 52 196 146 1

P NC
1 –P 1 1176 225 1 952 56 953 171 1

MINI 1174 225 1 950 0 951 125 0

P2–P1 1566 225 1 1342 0 1343 87 0

P1 iso P2–P1 1566 225 1 1342 0 1343 87 0
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Among the schemes examined in Table 1, only the finite-element pairs P1–P0 and P1–P1 exhibit
elevation modes since the null space of their discrete gradient operator is more than one-dimen-
sional. The dimension of the null space increases with increasing grid resolution for the P1–P0 pair
while this is not observed for the P1–P1 pair. This is due to the fact that there are twice as many
discrete continuity equations for the P1–P0 pair than discrete momentum equations to satisfy
them. For the other finite-element pairs and finite-difference grids the null space of the discrete
gradient operator is one-dimensional. The corresponding eigenvector is the hydrostatic mode,
which can be simply considered as a constant of integration associated with the solution of the
governing equations.

3.2.2. Coriolis modes
Coriolis modes may be defined as the velocity part of the eigensolutions in (10) having zero (or

constant) surface-elevation components. They are thus non-constant eigenvectors lying in the
intersection of the null spaces of the discrete Coriolis and divergence operators, i.e. the null space
of E, and they correspond to the inertial limit case.

In Table 1, it is observed that only the finite-difference B- and C-grids and the finite-element
pair P NC

1 –P 1 may generate spurious Coriolis modes. Indeed, the null space of the discrete Coriolis
operator is zero-dimensional for the other pairs. The last column in Table 1 gives the dimension of
the null space of E. It thus appears that the B- and C-grids and the P NC

1 –P 1 pair only exibit one
Coriolis mode each, and this result is independent of the grid resolution. However, the Coriolis
spurious mode associated with the C-grid is quite different from those of the B-grid and the
P NC

1 –P 1 pair.
Indeed, because the mass matrices for the P NC

1 –P 1 pair and the B-grid are diagonal, the strong
enforcement of the no-normal flow boundary condition introduces several lines of zero entries in
the Coriolis matrix, and those exactly coincide with the number of boundary nodes. Hence, the
null space of the discrete Coriolis operator corresponds to the number of boundary nodes for
the B-grid and the P NC

1 –P 1 pair. As a result, those schemes exhibit a Coriolis mode having non-
zero tangential velocities at the boundary nodes of the domain and zero velocities elsewhere.
The spurious mode takes the form of a curl vector propagating around the boundary. Some ele-
mentary calculations show that this type of Coriolis mode is easy to compute and filter, even for
the P NC

1 –P 1 pair on unstructured meshes with irregular boundaries.
The Coriolis mode associated with the C-grid is mainly due to the spatial averaging of the Cori-

olis terms on the grid and it behaves quite differently. Indeed, this mode takes the form of a set of
identical cells located around some interior points obtained by joining the horizontal and vertical
lines defining the grid. Let (i, j) the position of such a point. The cells are then defined by
vðiþ 1

2
; jÞ ¼ 1, uði; jþ 1

2
Þ ¼ �1, vði� 1

2
; jÞ ¼ �1 and uði; j� 1

2
Þ ¼ 1. To circumvent the Coriolis

modes of the C-grid in the inertial limit, the C–D grid has been introduced (Adcroft et al.,
1999). It consists of augmenting the C-grid variables with D-grid velocity variables.

3.2.3. Velocity modes
The last kind of stationary spurious modes that are now examined are termed velocity modes.

To date, those modes do not seem to have been thoroughly examined. Velocity modes may be
defined as the velocity part of the eigensolutions in (10) having non-constant surface-elevation
components.
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When f = 0, then C = 0 in (10), and the dimension of the null space of (A–B) is simply the
dimension of the null space of G plus the dimension of the null space of D, which is easily observed
in Table 1. In this case the eigensolutions have constant surface-elevation components if the
scheme is free of elevation modes and non-constant surface-elevation components otherwise.
The velocity part of the eigensolutions lies in the null space of the discrete divergence operator
and may thus contain curl vectors (which are highly desirable) and true spurious solutions as well.

When f 5 0, Table 1 shows that the dimension of the null space of (A–B) is considerably re-
duced, except for the C-grid and the P1–P0 pair. Some long and tedious algebra shows that the
dimensions of the discrete divergence and curl operator exactly coincide for the C-grid. Hence,
each velocity vector lying in the null space of the divergence operator may be written in the form
of a curl vector of some scalar function, at the discrete level. Note this property comes in part
from the fact that after applying the no-normal flow boundary condition there are no remaining
velocity unknowns on the boundary. The image of the curl vector by the Coriolis operator be-
haves like a gradient, and because the null space of the gradient operator is one-dimensional this
explain why the Coriolis term has no effect upon the null space of (A–B) for the C-grid.

For the B-grid and the other finite-element pairs of Table 1, the null space of (A–B), even re-
duced by the influence of the Coriolis operator, may still contains spurious modes among the
desirable curl vector solutions. In order to estimate the number of spurious modes for the schemes
of Table 1, the dimension of the discrete curl operator has to be determined. The main difficulty is
to take into account the influence of the boundary at the discrete level. This will be the object of a
further study.

3.3. The viscous case

We now consider the viscous linear shallow-water equations in Cartesian coordinates
ut þ f k� uþ grg� vDu ¼ 0; ð11Þ

gt þ Hr � u ¼ 0; ð12Þ
subject to the no-slip boundary condition u = 0 on C, where v is a positive diffusivity parameter.
As for the inviscid case, the system (11) and (12) is then discretized in time and space and rewritten
on the matrix form
LN ;N þ CN ;N GN ;M

DM ;N 0M ;M

� �
ui

gj

 !
¼

0

0

� �
ð13Þ
with i = 1, . . ., N and j = 1, . . . M, and L represents the discrete Laplacian matrix.
We also let F = (LD)t.
The eight finite-element and finite-difference schemes proposed earlier are used to compute the

null space of the following matrices: G, D, C, A–B for f = 0 and f 5 0, and F. The grid and param-
eters are the same as those used earlier to compute the results of Table 1, except that the no-slip
boundary condition is now imposed with v = 500m2 s�1. The results are summarized in Table 2.

As for the inviscid case the finite-element pairs P1–P0 and P1–P1 exhibit elevation modes since
the null space of their discrete gradient operator is again more than one-dimensional. But



Table 2

Dimension of the null space of the matrices: G, D, C, A–B for f = 0 and f 5 0, and F on a uniform 15 · 15 Cartesian

mesh made up of 196 quadrilaterals. The viscous case is considered with u = 0 on C. As for Table 1, columns 2 and 3

indicate the number of velocity (N) and elevation (M) unknowns, respectively

Mesh 15 · 15 N M G D C A–B f = 0 A–B f 5 0 F

B-grid 338 196 2 144 0 2 2 0

P1–P0 338 392 54 0 0 54 54 0

P1–P1 338 225 8 125 0 8 8 0

C-grid 364 196 1 169 26 1 1 0

MINI 1122 225 1 898 0 1 1 0

P NC
1 –P 1 1120 225 1 896 0 1 1 0

P2–P1 1458 225 1 1234 0 1 1 0

P1 iso P2–P1 1458 225 1 1234 0 1 1 0
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contrary to the inviscid case the B-grid has now 2 spurious surface-elevation modes since those are
no longer linked by the no-normal flow boundary condition. Note that only the null space of P1–
P0 increases with increasing grid resolution. For the other finite-element pairs and finite-difference
grids the null space of the discrete gradient operator is one-dimensional and it just contains the
hydrostatic mode.

In Table 2, it is observed that the B-grid and the P NC
1 –P 1 pair do not exhibit Coriolis modes

contrary to the inviscid case. This is due to the no-slip boundary condition which prevents the
appearance of lines of zero entries in the Coriolis matrix, since there are no longer velocity un-
knowns lying on the boundary. However, the Coriolis mode associated with the C-grid, and
due to the spatial averaging of the Coriolis terms on the grid, is still present and it remains un-
changed in the viscous case. Note the dimension of the null space of E is still one for the C-grid.

Finally, the dimension of the null space of (A–B) in Table 2 remains the same in the case f = 0
and f 5 0, which indicates that the Coriolis terms have no effect upon the results. Further, the null
space of (A–B) exactly coincides with the null space of the discrete gradient operator. Conse-
quently, the null space of (A–B) just contains the hydrostatic mode for the MINI, P NC

1 –P 1, P2–
P1 and P1 iso P2–P1 pairs. For each of those pairs, the multiple zero eigenvalue of (A–B) present
in the inviscid case has been split into a number of non-zero eigenvalues under the influence of the
discrete Laplacian operator. However, the numerical impact of the viscosity on the velocity
modes, when they exist, is still unclear and this has not been yet precisely determined. Note the
dimension of the null space of F is zero for all the finite-difference grids and finite-element pairs
examined here.
4. Conclusion

Most of the numerical methods that are used in ocean modelling poorly approximate the rep-
resentation of inertia-gravity waves and usually lead to spurious solutions. The spurious modes
may take the form of surface-elevation, velocity and/or Coriolis modes, and have dramatic effects
upon the existence and the quality of the numerical solution. The occurrence of spurious modes is
a manifestation of loss of convergence.
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In this paper, a linear algebra approach is proposed to study the behaviour of spurious solu-
tions that may arise from the linearized form of the shallow-water equations. The existence
and the behaviour of stationary spurious modes associated with zero frequency are addressed
for some popular finite-difference and finite-element grids in both the inviscid and viscous cases.

Spurious velocity modes do not seem to have been thoroughly examined in the past. In order to
better identify them and describe their behaviour more accurately, we have suggested to determine
the null space of the discrete curl operator for a given numerical scheme. Further, there also exists
non-stationary spurious solutions, e.g. inertial modes, that have not been examined in the present
paper. All these issues will be the object of a further study.
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Abstract

The purpose of this article is to introduce techniques for performing h, r, and hr adaptivity in the context

of numerical ocean modelling. These supplements to a standard numerical discretization offer the possibil-

ity of focusing degrees of freedom, and hence computational resources, in certain important regions. Full

flexibility of the definition of these regions may be supplied through a priori and a posteriori error mea-

sures, or through consideration of the physics of the underlying problem. One of the most significant
advantages present with the use of unstructured meshes in ocean modelling is the possibilities this opens

up for the use of adaptive algorithms. Indeed it is hard to envisage unstructured mesh based models becom-

ing a serious viable alternative to models based upon structured meshes until the efficient and robust use of

adaptive meshing is employed. Examples of the use of adaptive methods are presented here for free surface

flows and circulation in the Mediterranean Sea. Practical issues relating to mesh quality, including aniso-

tropy, element shape, discretization errors, and matrix conditioning are also discussed.
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1. Introduction

Modelling of the World�s oceans is an extremely complex task and numerical simulation is a
necessity. Due to the variety of important physical processes present, as well as the wide range
of spatial and temporal scales, this represents a formidable challenge. Numerical models of
physical phenomena truncate the infinite degrees of freedom describing the system�s exact
behaviour to a finite number of unknowns which may be solved for computationally. The par-
ticular nature of the truncation is determined by one�s choice of method, e.g. finite difference,
finite volume, finite element, or spectral. In addition each method has various options that con-
trol its quality when applied to a particular problem. The most obvious of these is local accu-
racy; each method may be made to approximate the underlying equations to higher order in
the hope that improved models will result. However this is not necessarily the case, especially
in simulations over long time scales where qualitative properties of model may be more impor-
tant than local truncation errors. Higher order methods will also typically be more expensive,
and therefore for acceptable computations the finite number of unknowns must be reduced,
although dependent on the problem being solved they may ultimately be more efficient. What-
ever the choice of numerical method, physical processes which act on scales smaller than is re-
solved by the finite number of unknowns will not be present in the model. Therefore important
characteristics of the true flow may not be admitted, leading to errors, as well as possibly insta-
bilities which must be controlled numerically, typically at the expense of accuracy. The situa-
tion is therefore far from trivial, and often made worse by complex geometries and external
forcing.

In general the finite number of unknowns described above may be considered to be located at
the nodes of a mesh which covers the problem domain, and upon which the numerical discretiza-
tion is constructed. The current standard in the majority of ocean models (see Haidvogel and
Beckmann (1999) for background material) is for the mesh to be structured, so that in the hori-
zontal a curvilinear mesh of quadrilaterals is used to fit the coastlines of the region being modelled
as well as possible. It is termed structured since the topology of the mesh is uniform in space, i.e.
each quadrilateral (other than those at boundaries) is surrounded by precisely eight neighbours,
four of which share an edge, the other four sharing only a corner. Note that it is often the case in
practice that meshes are block structured, so that different structured meshes are used and then
combined along interfaces. For example this may be used to enable higher resolution in certain
regions of interest, to enable a better representation of complex coastlines, and to remove the
problem of poles in a structured mesh on the sphere. In the vertical the situation is much the same,
the mesh is made up of columns stretching from the ocean surface down to the sea bed. The only
available flexibility is in the choice of vertical coordinate. These choices may be viewed as being
equivalent to the mesh in the vertical being aligned with surfaces of constant depth (z-coordinate
models); to linearly conform to both the bathymetry and the free surface (r-coordinate models);
to be aligned with surfaces of constant density (isopycnal-coordinate models); or some hybrid
combination of more than one approach. Research has found that due to the physics governing
ocean dynamics the choice of both the discretization in the horizontal and the vertical coordinates
is of fundamental importance in the design of numerical models, see Haidvogel and Beckmann
(1999); Griffies et al. (2000) and the references therein.
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In contrast, unstructured meshes (the topic of this volume) allow a virtually arbitrary mesh
structure. For example the problem geometry may be partitioned into tetrahedra, the flexibility
then comes from the fact that each tetrahedron may, in theory, have an unlimited number of
neighbours. This flexibility naturally allows a far better representation of coastlines and
bathymetry; increased local resolution with no need for internal mesh boundaries; the spherical
pole problem is no longer an issue; and perhaps most importantly, and the topic of this article,
this choice is the most natural for developing a model with a dynamically adaptive mesh. An
unstructured mesh has the advantage that the finite number of unknowns, and hence the result-
ing computational power, may more simply and generally be placed in particular regions. So
that for example in a simulation of the North Atlantic, a higher density aligned mesh may
be placed in and around the Gulf Stream, whilst lower resolution may be used in other regions
deemed less important. A more optimal use of computational power is thus possible. But what
happens when one wishes to model a transient situation where the desired locations of increased
resolution are unknown and computed as part of the simulation, or periodically appear and
disappear, or vary their position within the domain? Examples may be periodic transient over-
flows, eddies moving across a basin, wetting and drying in coastal regions, or even a simulation
where the Gulf Stream path varies dramatically or shuts down completely. The constant nature
of any mesh may even enforce subtle constraints on solution behaviour—an unacceptable
situation.

The ability to compute on a mesh which dynamically adapts to vary resolution and follow com-
ponents of the solution is very attractive. It offers increased efficiency; flexibility in that one model
may be used on a variety of scales and problems; the ability to test whether the mesh is unduly
affecting results (for example by comparing results from a fixed mesh, and adapting meshes based
upon differing criteria); as well as the ability to make quantitative statements regarding the mag-
nitudes of certain error measures. In addition, an adapting unstructured mesh is able to achieve
the equivalent of a truly hybrid or general vertical coordinate. An obvious example would be a
situation where the bathymetry and free surface are resolved, the mesh is free to follow isopycnals,
as well as being able to vary resolution throughout the domain. For example localized non-hydro-
static dynamics may be resolved, with fewer vertical cells being used in shallower regions, or re-
gions where the flow is closer to barotropic.

The purpose of this article is to introduce and review a variety of adaptive methods, to ex-
plain how they may be used in an oceanographic context, and to present some simple examples.
In Section 2 brief background material on underlying equations and finite element discretiza-
tions is presented. In Section 3 motivation for adaptive meshes is given by considering stan-
dard interpolation error theory. Consequently the transformation viewpoint of adaptivity is
introduced through examples in both one and higher dimensions. Section 4 describes mesh opti-
mization, or h-adaptivity. An example of this approach applied to idealized wind driven circu-
lation in a basin is given. Section 5 introduces the concept of mesh movement, or r-adaptivity.
Several alternate techniques are described and some simple examples given. In Section 6 the
possibility of combining different approaches to adaptivity is discussed, and again an example
is given to demonstrate the additional power and flexibility of a combined hr-adaptive method.
In Section 7 the issues of mesh quality, error measures, and their impact on computations are
briefly addressed.
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2. Background on ocean modelling and the finite element method

The underlying problem considered here is assumed to be described by the non-hydrostatic
Boussinesq system of equations
ou

ot
þ ðu� ûÞ � ruþ 2X� u ¼ �rp � grg� qgkþr � ��s; ð1Þ

r � u ¼ 0: ð2Þ
Here, u represents the three-dimensional (3-D) velocity, p is the perturbation pressure, q is the per-
turbation density, X is the Coriolis rotation vector, and g the acceleration due to gravity. û is a
term used to account for a moving reference frame, for example in this work it takes the form
of node velocities for numerical discretizations on moving meshes. The stress tensor ��s is used
to represent viscous terms. An equation of state is used to govern the relationship between q
and quantities such as temperature and salinity which are governed by advection-diffusion equa-
tions of the form
oT
ot
þ ðu� ûÞ � rT ¼ r � ð��jrT Þ; ð3Þ
where ��j is a tensor representing diffusive processes. The free surface height g � g(x,y, t) measured
from the rest state of the ocean may be modelled either via the integrated continuity equation, or
for simplicity here by the kinematic boundary condition which simply states that particles on the
free surface remain on it, i.e.
og
ot
þ ðuH � ûHÞjz¼g � rHg ¼ wjz¼g; ð4Þ
where $H � (o/ox,o/oy)T, and uH and ûH are the horizontal components of u and û respectively.
The system is now closed by imposing suitable initial and boundary conditions. For simplicity

here the normal component of velocity is generally taken to be zero on all boundaries except the
free surface where stress free normal and tangential conditions are employed. Suitable boundary
conditions for pressure are then Neumann conditions on the boundaries where the normal com-
ponent of velocity is specified, and Dirichlet conditions on the free surface (Gresho and Sani,
1987, 1998).

A standard finite element discretization of (1)–(4) represents solution variables as summations
over a finite set of spatial basis functions. Basis functions typically take the form of being unity at
a single node of the mesh and then taking the value zero at all other nodes, the variation across
elements being polynomial. The resulting representation of solution variables is thus piecewise
polynomial. In this work piecewise linear basis functions are used for all variables, in certain nota-
tion this is referred to as a P1 � P1 element choice. The discrete forms of the solution variables
are then substituted into the governing equations and a Galerkin projection is taken by multiply-
ing each equation by a basis function, integrating over the domain, and applying Green�s theorem
where appropriate to reduce the regularity required of basis functions. Discretization of the tem-
poral derivative yields a large system of coupled nonlinear equations to be solved. Nonlinearity
may be dealt with by Newton or Picard iteration for example, and the coupling may be treated
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more efficiently by factorization and projection type approaches. Further details of the particular
techniques employed here may be found in (Ford et al., 2004).
3. Motivation for adaptive methods

In this section the construction of error measures based upon interpolation theory is reviewed
and used as motivation for performing optimisation based anisotropic mesh adaptivity. The
resulting a priori estimates can give a simple guide to complex areas of the flow which may war-
rant increased resolution, and have been used as such in (Löhner et al., 1985; Peraire et al., 1987),
importantly they also yield information on the anisotropy required. It is important to note how-
ever that the field of error measure design is vast with interpolation theory playing a small, albeit
important, role. Discussions on the more complex subjects of a posteriori error estimation may be
found in (Strouboulis and Oden, 1990; Ainsworth and Oden, 1997), and goal based error estima-
tion in (Pierce and Giles, 2000; Oden and Prudhomme, 2001). The design of high quality error
measures of physical relevance to ocean modelling is a crucially important task, some steps in that
direction are given in Power et al. (submitted).

3.1. Interpolation error in 1-D

Suppose that a sufficiently smooth function u � u(x) is approximated by its piecewise linear
Lagrange interpolant Phu on a mesh x0 < x1 < � � � < xN. Standard theory states that the interpo-
lation error over the mesh cell [xi�1,xi] satisfies
ei � ku�Phuk1;i 6 ĉh2
i ku00k1;i: ð5Þ
Here hi :¼ xi�xi�i is the local mesh spacing, ĉ is an O(1) constant independent of the mesh, and
k Æk1,i is the max-norm over the mesh cell [xi�1,xi]. A global interpolation error may be obtained
by taking the maximum over all mesh cells. In de Boor (1973) it is established that the optimal
choice of mesh is given by making
h2
i ku00k1;i ¼ Constant; 8i 2 f1; . . . ;Ng: ð6Þ
3.2. Equidistribution

A computational technique which asymptotically reproduces (6) was also given in de Boor
(1973), the continuous version of which, generally termed equidistribution, may be written
Z xðnÞ

0

MðsÞds ¼ n
Z 1

0

MðsÞds: ð7Þ
Here n is a new fictive computational variable assumed without loss of generality to be defined on
[0,1]. M is a so-called monitor function which, to correspond with (6), should be taken here to be

ju00j1/2. Equation (7) now describes a coordinate transformation x � x(n) between computational
and physical variables. An adapted mesh may then be taken to be the image of a uniform mesh in



Fig. 1. Plot of a near singular function u and associated meshes in the physical coordinate x and the computational

coordinate n. First two frames show results using ju00j1/2 as monitor function, the third and fourth frames show the same

with arc-length as monitor function.
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the computational domain, i.e. xi :¼ x(i/N) for i = 0,1, . . . ,N. An example of this is given in
Fig. 1, both physical and computational domains are taken to be [0,1], the mesh is constructed
by solving (7) numerically for a coordinate transformation in the case that the function being
approximated is the near singular
uðxÞ ¼ 1

2
þ 1

2
tanh 100 x� 1

2

� �� �
:

The first frame of Fig. 1 shows this function and a resulting adapted mesh of 31 nodes. Due to
the choice of monitor function (or error measure), the adapted mesh is clustered in those regions
where the function�s second derivative is largest. The second frame shows the corresponding struc-
ture of this function in the uniform computational domain, as can be seen the function is smoother
there. Thus, solving a numerical problem on an appropriate adapted mesh can be seen as being
equivalent to solving an easier transformed problem. The particular problem in question here
was optimal interpolation, alternate problems such as discretizations of PDEs may require differ-
ent meshes or coordinate transformations. In this framework this may be achieved simply by
varying the monitor function, for example the result of taking the popular choice of arc-length,
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

x

p
, is shown in the third and fourth frames of Fig. 1. In the physical domain the mesh

points may be seen to be equally spaced along, or equidistribute, arc-length. Again the function is
smoother if viewed in the computational domain. Interpreting and constructing adaptive meshing
in terms of continuous coordinate transformations is extremely useful and shall be used more in
later material. In (Huang et al., 1994) this approach is generalized to construct various methods
which may be used more practically for the adaptive solution of PDEs. Similar ideas are used in
Burchard and Beckers (2004) to construct adaptive vertical meshes in an oceanographic context.

3.3. Interpolation error in higher dimensions

In higher dimensions (for background see Schultz (1969); D�Azevedo (1991); D�Azevedo and
Simpson (1991)), for example over a mesh of tetrahedra K in 3-D, the analogous result to (5)
is given by
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eK � ku�Phuk1;K 6 ĉ max
x2K

max
vjxþv2K

fvT j HðxÞ j vg ð8Þ
for the Hessian H � $T$u, and another O(1) constant ĉ. Note that vTH(x)v is the curvature of the
field u at point x and in direction v. The analogue of the mesh spacing squared in (5) comes in here
as a result of the fact that v is chosen such that x + v lies within tetrahedra K. Importantly the
additional directional information available here may be used to construct optimal anisotropic

meshes. The Hessian may be diagonalized as H = QK QT, where K is the diagonal matrix consist-
ing of the eigenvalues of H (the principal curvatures) and Q is an ortho-normal matrix of eigen-
vectors. Q may be interpreted geometrically as a rotation and K a rescaling. For use as an error
indicator with which to construct adapted meshes it is appropriate to take the absolute values of
the eigenvalues, i.e. in (8) jHj = QjKjQT, and also to limit their values to enable the control
over both maximum and minimum element sizes. As in 1-D where a coordinate transformation
from a uniform domain was constructed to make the mesh spacing locally proportional to
ju00j�1/2, in higher dimensions the linear mapping induced by S ¼ Q

ffiffiffiffiffiffiffiffiffi
j K j

p
may be used to trans-

form uniform isotropic meshes in a computational space to adapted anisotropic meshes in the
physical domain.
3.4. Anisotropic adaptivity

The form of the error estimate (8) in terms of the Hessian means that contours of constant error
form families of conics. Since the absolute value of the Hessian appears in (8) these are ellipsoids
with a common centre. The conic that passes through the nodes of the element indicates a zero
error, the common centre gives the maximum interpolation error if it lies within the element,
otherwise the maximum error is given by its value at the midpoint of an element edge or face,
for details see (D�Azevedo, 1991). For example in 2-D consider K = diag(4,1) and Q a rotation
by an angle p/4. In Fig. 2 elements and their circumellipses are given, the top and bottom rows
give two alternate orientations for the elements, each entry of which show results with different
element shapes. The maximum error within each element can easily be found, this must however
be divided by the volume of the element to give a useful measure of quality, since ultimately an
entire domain must be covered by such elements. Varying the shape, or anisotropy, or the ele-
ments gives the two plotted curves to the left in Fig. 2. The three example elements for each ori-
entation correspond respectively to the leftmost, optimal, and rightmost choices indicated by
these curves. It can be seen that the ratio of the square roots of the eigenvalues (here 2 or 1/2)
gives the optimal scaling ratios for the two element orientations. Additionally, transformation
S can be shown to map the family of ellipses to circles, and hence the optimal element, being
that which maximizes volume for a given circumcircle, is an equilateral triangle in the trans-
formed computational space. Indeed under transformation S the optimal choices in Fig. 2 do
map to equilateral triangles in the isotropic computational space. Hence as in 1-D, an optimal
mesh may be found by constructing a homogenous isotropic mesh in a computational space,
which may then be mapped back to an adapted mesh. Note that the Hessian considered in this
simple illustrative example was constant, and the construction could be performed exactly. In
the next section a local optimization approach is introduced that allows spatially varying Hessian
matrices.
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Fig. 2. Interpolation error over area against element shape for the example given in Section 3.4. The two rows gives

alternate orientations of elements. For each a single node is moved in a direction normal to its opposite edge. The scaled

element shape is then simply this distance divided by the corresponding distance for an equilateral element. Example

elements, as well as their circumellipses are also given. These correspond to the leftmost, optimal and rightmost choices

in the plotted curves. Both orientations achieve the same optimum, which agrees with theoretical bounds.
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4. h-adaptive mesh optimization methods

Although the terms are used as synonyms here, it should be noted that strictly speaking mesh
optimization represents a generalization of classical h-adaptivity. In the previous section a measure
of the interpolation error was derived in terms of the Hessian. It was demonstrated that for a con-
stant Hessian and no geometry constraints an optimal adapted mesh is that which is made up of
uniformly sized equilateral elements in an appropriate transformed space. A non-constant Hes-
sian, adapting to resolve more than one field on a single mesh, and issues related to covering
an arbitrary domain mean that in general this can not be achieved exactly for an entire mesh.
In practice an optimization approach may be used to improve the quality of a mesh based upon
measurements of the elements as viewed in the transformed space. Equivalently the mesh may be
considered as being constructed in a Riemannian space with lengths measured in terms of the
weighted norm
kvkbM ¼ ðvT bM vÞ1=2
: ð9Þ
Here bM is an appropriately chosen metric tensor used to control the adapted mesh, just like the
monitor function in Section 3.2. In the case corresponding to estimate (8) the metric is chosen such
that an element size (or any length) is unity if it has the desired user-defined interpolation error ê,
i.e. bM :¼ ~c j H j =ê. To arrive at definition (9) the metric is assumed for computational simplicity
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to take the value it attains at the midpoint of the vector with magnitude and direction given by v.
For linear basis functions the (second-order) Hessian for each solution field is computed via a
reconstruction process, the results may then be combined to yield a single metric which takes into
account all solution fields. For many further details see (Pain et al., 2001).

An objective functional is now formed which may be used as a gauge of local mesh quality.
Here it is given by the max-norm over all elements of the quantity
Fig. 3

the m
F e ¼
1

2

X
l2Le

ðrl � 1Þ2 þ a
qe
� 1

� �2

; ð10Þ
defined for element e, where Le is the set of edges of element e, rl is the length of edge l, and qe is the
radius of the element�s inscribed sphere. The first term in this functional gauges the size of element e,
and when measured using (9) takes the minimum value zero for an edge with the appropriate length.
The second term is used to measure the shape of element e, and again takes the value zero for an
element with an aspect ratio of unity (this criterion gives the value of a) as measured using (9).

Mesh optimization may now be performed by seeking to minimize the above functional
through a sequence of well defined local topological and geometrical mesh operations. These in-
clude edge collapsing and splitting, edge to edge, edge to face, and face to edge swapping (Pain
et al., 2001). In addition local node movement (or Laplacian mesh smoothing) may also be
employed, this topic will be considered further in a later section.

An example of the use of this approach to mesh adaptivity is given in Fig. 3. Barotropic circu-
lation in a simple flat bottomed Mediterranean Sea is presented. The mesh has adapted to the u

and v components of velocity, which here are driven by a wind forcing with a cosine of latitude
profile in the u direction. The simulation is purely for demonstration purposes, no attempt has
been made to construct a realistic circulation. Initially the mesh had a resolution of approximately
1/4� everywhere, the mesh presented has a resolution varying from 1� in the less active regions to
1/30� in the more active regions.
. Simulation of wind driven circulation in a flat bottom barotropic Mediterranean Sea. Blow-up of a portion of

esh (Left) and flow vectors (Right) are presented. Movies available.
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5. r-adaptive moving mesh methods

h-adaptive methods suffer from the drawback that when components of the flow requiring
adapted aligned meshes move (e.g. eddies, fronts, gravity currents), nodes must be removed from
regions the components have left and new nodes included appropriately in the regions they enter.
This is an inefficient process, and also means that interpolation must be employed which may de-
grade solution quality and overall efficiency. In contrast to making local topological changes to
the mesh and its connectivity, r-adaptive methods make local changes to the resolution by moving
the locations of a fixed total number of mesh points. This represents an attractive approach, both
when the mesh moves in ways dictated by error measures (or solution residuals (Baines, 1994)),
but also when it would be beneficial for the mesh to move approximately with the flow. For
appropriate error measures it may well turn out that the mesh is quasi-Lagrangian in nature,
but is importantly not necessarily restricted to this.

In this way the need for some form of h-adaptivity will be far reduced, although in a totally
robust and flexible method it can never be completely removed. Some methods for performing
r-adaptivity will now be presented, in a later section the possibility of combining the h and r

approaches will be discussed.

5.1. Mesh smoothing based node movement

In Section 4 local node movement was given as one possible operation with which to optimize a
mesh. Since there it is included in an algorithm which uses various other operations, it only locally
improves the quality of patches of elements rather than allowing true mesh movement. The idea
behind Laplacian mesh smoothing is to reposition every node at the centroid of all surrounded
connected nodes, see Fig. 4. If this centroid is computed in the Riemannian space given by the
error metric (i.e. using (9)) then an approach for performing r-adaptivity results, simply by loop-
ing over every node repeatedly in a Gauss–Seidel manner. Viewed in the Euclidean physical space
this is equivalent to considering the mesh to be a network of springs of varying stiffness, the stiff-
ness being equal to the error measure evaluated along element edges. Considering each node in
isolation the problem of minimizing the local spring energy can be used to obtain a new position
of the node, relaxation should be used to ensure a robust algorithm. Further algorithmic details
and examples may be found in Ait-Ali-Yahia et al. (1996). In the first frame of Fig. 5 an example
of this approach is given, an initially uniform structured (for simplicity) mesh on X :¼ [� 1,1]2 has
been adapted via node movement to resolve the top hat function
Fig. 4. Node movement via a spring analogy or weighted smoothing. Left frame may be considered an initial node

position in relation to its neighbours and the right the result after movement of the centre node. Alternatively, the left

frame may be interpreted as the image of the adapted right image under the transformation to the Riemannian space

introduced in Section 4.
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uðx; y; tÞ ¼
1:0 if r < 0:18;

0:0 if r > 0:22;

ð0:22� rÞ=0:04 otherwise;

8><>: ð11Þ
where r2 = (x � xc)
2 + (y � yc)

2, xc ¼ �0:4 cosð2pt=10) and yc ¼ 0:4 sinð2pt=10Þ. Here the result-
ing mesh corresponding to t = 0 is given, a movie for 0 6 t 6 100 is also available. The metric here

is taken to be the analogue of arc-length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j ruj2

q
I2 where I2 is the 2-D identity matrix.

5.2. Variational based mesh movement

The previous approach to mesh movement can be interpreted as the construction of a uniform
mesh in a transformed space such that the adapted mesh equidistributes a measure of error, c.f.
Sections 3.3 and 3.4. Here an alternate method is presented which seeks to use variational tech-
niques to construct a transformation which minimizes a measure of error or problem complexity.
Coordinate transformations (n = n(x, t) or equivalently x = x(n, t)) are sought such that the com-
putational variable n is the function of the physical variable x which minimizes a functional
involving various adaptation properties (e.g. error, alignment, orthogonality, and smoothness).
Again, an adapted mesh in the physical x coordinate may then be defined as the image under this
transformation of a uniform mesh in the computational n coordinate. In 3-D consider the adap-
tation functional
I½n� ¼ 1

2

Z
X

X3

i¼1

ðrniÞTG�1
i rnidx; ð12Þ
where $ represents the gradient with respect to x, the Gi = Gi(x,u) are monitor functions in the
language of Section 3.2 or error metrics in the language of Section 4, which take the form here
of 3 · 3 symmetric positive definite matrices. The mesh transformation may then be found by
solving the nonlinear elliptic Euler–Lagrange equations (Gelfand and Fomin, 1963) corresponding
to (12), these take the form
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� dI
dni
¼ r � ðG�1

i rniÞ ¼ 0; i ¼ 1; 2; 3: ð13Þ
Further details may be found in Huang and Russell (1999), it is also shown there how it is often
advantageous to introduce a time derivative and relax the mesh towards that given by the exact
solution of (13). In the implementation employed here this parabolized system is discretized, for
simplicity, with centred finite differences in space and the resulting ODE system for node position
solved with the code DASSL (Brenan et al., 1989). An example of a mesh resulting from this
approach is given in the second frame of Fig. 5, here the same top hat function is used and the
monitor functions are taken to be equal and given again by arc-length.

5.3. Free surface mesh movement

An even simpler use of mesh movement may be used to account for free surface movement in
oceanographic applications. It should be noted that sigma and isopycnal coordinate models may
be interpreted as being equivalent to adaptive methods in the sense that they are posed in terms of
solution dependent coordinate transformations in the vertical. However, achieving this via numer-
ical rather than analytical coordinate transformations means that generalizations to include the
techniques of Sections 5.1 and 5.2 are far more straightforward. Indeed this may be seen as a first
step towards the equivalent of a completely general vertical coordinate, controlled by both phys-
ical and error measure considerations. It may well turn out that the resulting mesh is close to iso-
pycnal in the ocean interior whilst being closer to a r or z coordinate as appropriate near the
domain surface, bottom, or coastal regions.

When the free surface equation (4) is solved the entire mesh may be stretched in the vertical to
account for this. On a structured mesh with nodes stacked one on top of the other this is straight-
forward. However with a mesh unstructured in the vertical the new value of free surface height g
must be passed down through the mesh. This is achieved here either by interpolation or by inte-
grating the differential equation og/oz = 0 down from the free surface with the value of g there
being imposed as a boundary condition. The term g$g in (1) may then be computed, and the mesh
updated. Here nodes at the free surface remain on the free surface and nodes on the sea bed are
stationary, with a linear update in between.

An example is given in Fig. 6 for Laitone�s approximation of a solitary wave (Laitone, 1960)
u ¼
ffiffiffiffiffiffi
gd

p H
d

sech2ðf ðx; tÞÞ; w ¼
ffiffiffiffiffiffiffiffi
3gd

p H
d

� �3=2 z
d

sech2ðf ðx; tÞÞ tanhðf ðx; tÞÞ;

g ¼ Hsech2ðf ðx; tÞÞ; f ðx; tÞ ¼
ffiffiffiffiffiffiffi
3H

4d3

r
ðx� ctÞ; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gdð1þ d=HÞ

p
;

. Simulation of Laitone�s approximation to a solitary wave. Mesh movement is employed in the vertical, which

as been stretched by a factor two for visualization. The time step is Dt = 0.2 and results are shown at t = 0 (left)

= 7.4 (right). Movie available.
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where d is the still water depth, H is the height of the soliton above this. In Ramaswamy (1990)
this problem was considered where a similar arbitrary Lagrangian–Eulerian (ALE) method was
employed, and is used here as a guide to parameter choices. The domain is taken to be 16d units
long with d = 10, H = 2, and gravity takes the value g = 9.8. With these values the speed of the
soliton is approximately c = 10.844. As can be seen from the position of the bulge, the wave speed
is well approximated on a coarse mesh using this approach.
6. hr-adaptive methods

Both h and r methods have advantages and disadvantages (Huerta et al., 1999). For exam-
ple, with r methods the number of nodes is kept constant; since the level of complex
dynamic behaviour may vary throughout a simulation this is very unlikely to always be near-
optimal. In addition, it may be difficult to achieve in a straightforward manner large local
variations in resolution, it is also possible that constraints in the topology of the mesh mean
that inappropriately shaped or tangled meshes result. These problems would largely disap-
pear if a component of h-adaptivity were available when mesh movement alone was found
to be insufficient to cope with the solution dynamics. In contrast h methods alone may not be
the most efficient manner for performing adaptive simulations in fluid based situations, where
regions which require enhanced resolution may well move with the flow. This will result in
the excessive use of interpolation, especially when compared to an r method which would typi-
cally require none. In addition, since in these regions small elements may well be present
along with high velocities and so any CFL based time step restriction present may be
severe, an r method which moves the mesh approximately with the flow would have the
effect of reducing transport velocities, and hence also time step restrictions for these smaller ele-
ments, c.f. the properties of semi-Lagrangian methods. A combined hr method thus seems the
ideal.

There are few examples of combined hr-adaptive methods in the literature. In (Lang et al.,
2003) a 2-D moving mesh method (based on the ideas presented in Section 5.2) is coupled with
an h-adaptive method which locally alters the mesh in order to achieve a desired error tolerance
as well as improving poorly shaped elements. An alternate approach is used in (Dompierre et al.,
2002) where a 2D mesh optimization method is used which incorporates a moving mesh through
repeated weighted mesh smoothing (Sections 4 and 5.1). In (Askes and Rodrı́guez-Ferran, 2001)
the domain is split into appropriate regions where h and r adaptivity are applied separately. These
references all demonstrate that the combined use of both the h and r approaches to adaptivity
results in improvements over either applied individually.

The use of these ideas, the methods introduced in Sections 4 and 5, and the interpretation of
each method in terms of coordinate transformations is being used to develop a robust and efficient
hr method in 3-D specifically tailored to oceanographic applications. An example of sloshing free
surface motion in a tank is given in Fig. 7. Mesh movement is used to account for the majority of
adaptivity required. However as the mesh stretches and becomes inappropriately shaped and
sized, as dictated by error measures, the mesh optimization algorithm presented in Section 4 alters
the mesh. Movies are available online, including a blow-up of the top right hand corner so that the
mesh optimization can be more clearly seen.



Fig. 7. Free surface dynamics in a sloshing tank with hr-adaptivity (mesh movement and mesh optimization). The

vertical has been stretched by a factor two here for visualization. (Movie and blow-up of top right-hand corner

available online.)

Fig. 8. Results from a simulation of Laitone�s solitary wave, c is the speed of the soliton, gmax is the amplitude of the

soliton, and the subscript h denotes the numerically computed values. The solid line corresponds to simulations with an

hr-adaptive method where the number of nodes is taken as an average over the course of a simulation, each result thus

comes from a different computation with decreasing interpolation errors ê. The individual symbols correspond to

various meshes used with r-adaptive mesh movement in the vertical.
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The Laitone soliton simulation presented in Section 5.3 has been repeated, this time with the
same parameters as before but now the domain is taken to be 160d in length, so that the significant
dynamical behaviour is restricted to a far smaller proportion of the domain. The simulation is
conducted for 50 time units so that the soliton is still far from the domain walls. In Fig. 8 results
from both r and hr methods are presented, the legend gives the number of nodes in the horizontal
and vertical for the r simulation. No attempt has been made to optimize either these choices, or
the interpolation errors for the u, v and g fields used in the mesh optimization, these were reduced
in a uniform manner to account for increases in the total number of nodes in each simulation.
Both the speed of the soliton (which was computed using a linear least squares fit to the position
of the maximum free surface height), and the maximum free surface height at the end of the sim-
ulation can be seen to be drastically improved for the hr method over simple mesh movement
alone. Note that for this example the vanishing of the �surface-layer� means that an h-adaptive
method needs to modify the mesh more frequently than is necessary from error consideration,
thus resulting in a non-competitive method.
7. Error measures and mesh quality

Throughout this work interpolation error has been used as a guide for anisotropic adaptivity.
Although this may represent a bound on discretization error in certain situations, and hence be a
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valid choice for use as an error indicator, in other situations it may be wise to consider additional
or alternate measures. For example the gradient error may also be used, in the language of Section
3.3, by replacing the Hessian with the Hessian squared (D�Azevedo and Simpson, 1991). However
these error measures are based upon a priori estimates and do not make use of any information on
the underlying differential equation. This may be incorporated by making use of a posteriori mea-
sures (Babuška and Rheinboldt, 1978; Ainsworth and Oden, 1997), which involve the solution of
local dual problems to account for the accumulation and propagation of errors through the mesh.
Similar ideas are exploited in (Power et al., submitted), where an adjoint to the forward model is
used to compute the sensitivities of the various fields throughout the domain. Whichever method
is used to guide the mesh adaptivity it is important that anisotropic information as described in
Section 3.4 be incorporated (Apel, 1999).

When a highly anisotropic mesh is used within a finite element computation, issues related to
the quality of the mesh must be considered. For example it is well known that discretization er-
rors, as well as the conditioning of resulting linear systems that must be solved as part of the solu-
tion procedure, may be adversely affected by a poor quality mesh (with quality being dependent
both on the size and shape of elements in relation to solution fields). For example, early bounds
on discretization errors in appropriate norms (e.g. obtained from gradient errors as opposed to
the interpolation error (8)) included factors of the form h=

ffiffiffiffiffiffiffiffiffiffiffiffi
sinðhÞ

p
, where h is a measure of the

mesh size and h the minimum interior element angle (Zlámal, 1968). This factor goes to zero with
element size as expected, however the bound approaches infinity for angles close to zero––this is
termed the minimum angle condition for meshes. As a consequence angles close to p are also for-
bidden––the maximum angle condition. It was later shown by Babuška and Aziz (1976) that
although this condition remained, the minimum angle condition was not essential. Therefore long
thin elements are permitted provided no angles approach p. These results were extended to tetra-
hedral elements by Křı́žek (1992). It is important to note however that these non-sharp bounds are
derived without taking into account any anisotropic behaviour in solution fields. Rippa (1992)
demonstrated that optimal triangulations are those which are long (respectively, thin) in direc-
tions where the field being approximated has small (respectively, large) second derivative. This
corresponds exactly to the situation of Section 4, i.e. an optimal mesh is one which is made up
of (as far as possible) equilateral tetrahedra in an appropriate Riemannian space. Meshes which
are made up of elements which appear of good quality in Euclidean space, e.g. from a Delaunay
mesh generator, but are constructed with no dependence on the underlying fields being approxi-
mated, may actually therefore fall foul of maximum angle type conditions, resulting in poorer
quality discretizations.

Poorly shaped elements also have an impact on the conditioning of linear systems. For
example, following a finite element discretization, the ratio of the maximum and minimum
eigenvalues (the condition number) of the resulting matrix to be inverted may be directly related
to the cost of iterative solvers and the impact of roundoff errors. Again, poorly shaped ele-
ments have an adverse impact on the condition number, this time both angles near to zero
and p should be avoided. However, coefficients of the underlying PDE as well as the solution
fields themselves can have an impact on quality. It is conjectured here that as with interpolation
and discretization errors as discussed above, a more accurate gauge of the mesh quality is
achieved in an appropriate transformed space where the solution fields appear more uniform
and isotropic.
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As a simple demonstration the Navier–Stokes system has been set up on a unit cube with
boundary conditions to impose an exponential profile on the u velocity component only
uðx; y; zÞ ¼ exp �10 ðy � 1=2Þ2 þ ðz� 1=2Þ2
� �� �

;

the Reynolds number corresponding to the scale of which is 10 here, the time step is 10�3. In
Fig. 9 a plot of the condition number of the discretized momentum equation matrix to be in-
verted, against number of nodes in the adapted mesh is presented. The results were obtained after
10 adapts (20 time steps) by varying a constraint on the maximum aspect ratio (measured in
Euclidean physical space) and also by varying the total number of nodes achieved by altering
the interpolation errors ê. Also shown is a sample mesh in the case of a maximum aspect ratio
of 100. It can be seen that the use of more anisotropy in the mesh actually improves the condi-
tioning of the resulting system. Note also that for an equivalent number of nodes a more aniso-
tropic mesh should result in smaller errors, thus if plotted against this the result would be even
more pronounced. For further details refer to (Fried, 1972; Strang and Fix, 1973; Shewchuk,
2002). It should be noted that these comments, valid for symmetric matrices and conjugate gra-
dient based methods, become less valid for GMRES as the system being inverted becomes more
non-normal (is non-commutative with its transpose). For example, as happens when a larger Rey-
nolds number is used and when the advection term is treated implicitly. Although they still may be
regarded as a guide provided the Reynolds number is not too large. More suitable bounds on
convergence rates may be obtained by considering pseudospectra (Reddy and Trefethen, 1994;
Embree, 1999).
8. Concluding remarks

Various alternate approaches for performing mesh adaptivity and their application to numer-
ical ocean modelling have been described. Adaptive unstructured mesh ocean models have many
attractive features, and hence their further investigation is crucial. A combination of both mesh
optimization and mesh movement (resulting in an hr method) offers increased robustness, flexibil-
ity, and optimality. Background theory on each of these methods, possibilities for combining
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them and some examples have been presented. It was also discussed how the quality of the mesh
as measured in a transformed space may give more useful results with regards the important issues
of discretization error and matrix conditioning. It was argued that as well as allowing the more
efficient use of finite computational resources, the correct use of adaptive anisotropic meshes
may result in an easier to solve and more accurate discrete system than standard fixed isotropic
mesh methods. Work is ongoing on further analysis of these issues and the application of the tech-
niques presented to realistic oceanic simulations. A long term additional goal is the inclusion of
spectral elements and ultimately a combined hrp-adaptive method (Babuška and Suri, 1990).

At the time of writing the current status of this work is that the model introduced in (Ford
et al., 2004) is able to simulate flows in extremely complex 3-D domains (Gorman et al., submit-
ted), in the presence of buoyancy and rotation, on adaptive meshes employing the optimization
techniques described in Section 4 (see Pain et al., 2004 for further examples). The model also
makes use of mesh movement in the vertical, as introduced in Sections 5.3 and 6, to allow the
modelling of tides for example. The use of more general r-adaptivity in 3-D is currently under
development and will be the subject of future publications.
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Abstract

The accuracy and efficiency of an Eulerian method is assessed by solving the non-linear shallow water
equations and compared with the performances of an existing semi-Lagrangian method. Both methods

use a linear non-conforming finite element discretization for velocity and a linear conforming finite element

discretization for surface elevation. This finite element pair is known to be computationally efficient and

free of pressure modes. The model equations are carefully derived and a comparison is performed by sim-

ulating the propagation of slow Rossby waves in the Gulf of Mexico. Simulations show that the Eulerian

model performs well and gives results comparable to high order semi-Lagrangian schemes using kriging

interpolators.
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1. Introduction

The ocean circulation may be represented as the interaction of many different physical pro-
cesses in a domain of complex shape. Those interactions are often non-linear and spatially local-
ized. As a consequence, a numerical model of the world ocean should be able to deal with
non-linearities, irregular geometries and localized phenomena.

Unstructured grids permit to accurately represent complex domains. Their flexibility also al-
lows to achieve high resolution in regions of interest thanks to suitable grid refinements. In the
last years an increased interest has been paid toward ocean or coastal models using unstructured
meshes. For those models, the spatial discretization is based either on finite elements (e.g. LePro-
vost et al., 1994; Myers and Weaver, 1995; Lynch et al., 1996; LeRoux et al., 2000; Legrand et al.,
2001; Hanert et al., 2003; Nechaev et al., 2003; Danilov et al., 2004), spectral elements (e.g. Isk-
andarani et al., 1995; Iskandarani et al., 2003) or finite volumes (Casulli and Walters, 2000; Chen
et al., 2003).

The numerical treatment of non-linear advection terms in the mass and momentum equations
can be done either with an Eulerian, a Lagrangian or a semi-Lagrangian scheme. In Eulerian
schemes, the evolution of the system is monitored from fixed positions in space. As a consequence,
those methods are easy to implement as all the variables are computed at fixed grid points in the
domain. However, their accuracy is often not so high as Lagrangian methods where the informa-
tion is integrated along characteristics. Eulerian methods are used in most ocean circulation mod-
els. In Lagrangian schemes, the evolution of the system is monitored from fluid parcels that move
with the flow. Such schemes often allow much larger time steps than Eulerian schemes. Their main
disadvantage is that the distribution of fluid parcels can quickly become highly non-uniform
which can render the scheme inaccurate. Such a problem can be circumvented by using semi-
Lagrangian schemes. The idea behind those schemes is to choose a completely new set of parcels
at every time step. This set of parcels is chosen such that they arrive exactly on the nodes of a
regularly spaced mesh at the end of each time step. This method has proved to work particularly
well in atmosphere modelling, especially when combined with a semi-implicit scheme (Robert,
1981; Robert, 1982; Robert et al., 1985). An extensive review of the applications of semi-Lagrang-
ian methods to atmospheric problems is provided by Staniforth and Côté (1990). In ocean mod-
elling, Behrens (1998) and LeRoux et al. (2000) showed that the combination of semi-Lagrangian
schemes and finite elements could be an interesting approach.

In the present study, we compare an Eulerian and a semi-Lagrangian finite-element shallow
water model to assess both approaches in the context of ocean modelling. Both models use a lin-
ear non-conforming approximation for velocity and a linear conforming approximation for ele-
vation. Such a finite element pair is denoted P NC

1 � P 1. Non-conforming finite elements have
been introduced by Crouzeix and Raviart (1973) to solve Stokes equations. They have proved
to be well suited to represent transport processes thanks to an important flexibility and the ability
to allow upwind weighed formulations (Hanert et al., 2004). The combination of linear conform-
ing and non-conforming finite elements has first been studied by Hua and Thomasset (1984) to
solve the shallow water equations. They showed that this finite element pair is computationally
efficient and properly models the dispersion of the inertia-gravity waves. LeRoux (submitted
for publication) performed a dispersion analysis and showed that the discrete frequency was
monotonic for all resolutions.
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The paper is organized as follows. We first present the model equations and the finite element
discretization in Sections 2 and 3 respectively. The P NC

1 � P 1 finite element pair is described in Sec-
tion 4. The Eulerian and semi-Lagrangian schemes are derived in Sections 5 and 6 respectively.
Section 7 presents the numerical experiments and a discussion of the methods performances.
Conclusions are given in Section 8.
2. Governing equations

We consider the following formulation of the shallow water problem: Let X be the two-dimen-
sional model domain, we seek the velocity u(x, t) and the surface elevation g(x, t) which are solu-
tions of the following equations:
og
ot
þ $ � ½ðhþ gÞu� ¼ 0; ð1Þ

ou

ot
þ u � $uþ f k� u ¼ �g$g; ð2Þ
where h is the reference depth of the fluid, f is the Coriolis parameter, k is a unit vector in the
vertical direction, g is the gravitational acceleration, $ is the two-dimensional gradient operator.

Another form of Eqs. (1) and (2) can be obtained by introducing total derivatives and writing
the mass equation in terms of the logarithm of h + g:
D lnðhþ gÞ
Dt

þ $ � u ¼ 0; ð3Þ

Du

Dt
þ f k� u ¼ �g$g; ð4Þ
where D/Dt = o/ot + u Æ $ denotes the total or Lagrangian derivative. Eqs. (3) and (4) will be
used to derive the semi-Lagrangian scheme. Obviously, the two sets of equations are strictly
equivalent in the continuous limit, while in the numerical or discrete limit, they are no longer
equivalents.

The selection of the logarithmic form of the mass equation follows the approach of LeRoux
et al. (2000). Such a formulation of the continuity equation may not appear obvious. First of all,
the logarithmic term may be problematic as it cannot be computed exactly in a numerical
scheme. The resulting semi-Lagrangian scheme is then likely to be non-conservative. The same
conservation issue arises from the interpolation procedures that are also generally non-conserva-
tive. Therefore, the conservation has to be explicitly enforced at each time step by adding a con-
stant elevation correction to the computed elevation field. This is a classical way to proceed even
if other strategies exist to deliver conservative semi-Lagrangian schemes. The interest of the log-
arithmic form of the mass equation is to get a linear divergence term at the prize of a lineari-
zation of the logarithm. Other forms could also be selected (e.g. Behrens, 1998) but will not
be analyzed here.

For both sets of equations, the solution is specified by imposing no normal flow boundary
conditions (u Æ n = 0 on oX) and initial conditions.
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3. Finite element spatial discretization

Let P be a partition of the domain X into NE disjoint open elements Xe:
�X ¼
[NE

e¼1

�Xe and Xe \ Xf ¼ ; for e 6¼ f ;
where �X is the closure of X. Each element Xe has a boundary oXe and the outward unit normal to
oXe is ne. Let C be the ensemble of interelement boundaries Cl = oXe \ oXf with e > f inside the
domain, with all possible combinations:
�C ¼
[NC

l¼1

�Cl and Cl \ Cm ¼ ; for l 6¼ m;
where NC is the number of elements in C. Each Cl 2 C is associated with a unique unit normal
vector n which points from Xe to Xf. In this paper, P will be a triangulation of non-overlapping
triangles. The total number of vertices and segments in the triangulation are denoted NV and NS.

The variational or weak formulation of Eqs. (1) and (2) is built in such a way that the solution
for elevation is continous everywhere whereas the solution for velocity can be discontinuous
between the elements Xe. It requires continuity constraints on the solution values and reads:

Find gðx; tÞ 2 E and uðx; tÞ 2 U such that
XNE

e¼1

Z
Xe

og
ot

ĝ� ðhþ gÞu � $ĝ

� �
dXþ

XNE

e¼1

Z
oXe

ðhþ gÞĝu � ne dC ¼ 0 8ĝ 2 E; ð5Þ

XNE

e¼1

Z
Xe

ou

ot
� û� ð$ � ðuûÞÞ � uþ f ðk� uÞ � ûþ g$g � û

� �
dXþ

XNE

e¼1

Z
oXe

ðuu � neÞ � ûdC

þ
XNC

l¼1

Z
Cl

½u� � ½aðûÞ�dC ¼ 0 8û 2 U; ð6Þ
where ½s� ¼ sjXe � sjXf is the jump of s on an interior edge Cl; sjXe denotes the restriction of s on Xe,
and E and U are suitable functional spaces. The test functions ĝ and û belong to E and U respec-
tively. The last integral in (6) is a continuity constraint that weakly imposes the continuity of the
velocity between elements. The function a has to be selected to balance the continuity requirement
versus the fulfilment of the differential equations in the weak formulation. It reads:
aðûÞ ¼
u � nðk� 1=2Þû on Xe;

u � nðkþ 1=2Þû on Xf ;

�

where k 2 [�1/2,1/2]. Centered and upwind momentum advection schemes are obtained by choos-
ing k = 0 and k ¼ 1

2
signðuðxÞ � nðxÞÞ respectively. In the following, we will use the upwind para-

metrization that is usually selected (Houston et al., 2000; Hanert et al., 2004).
With this choice for the weight function and some standard algebra (Houston et al., 2000;

Hanert et al., 2004), the variational formulation may be rewritten as:
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Find gðx; tÞ 2 E and uðx; tÞ 2 U such that
XNE

e¼1

Z
Xe

og
ot

ĝ� ðhþ gÞu � $ĝ

� �
dXþ

XNC

l¼1

Z
Cl

hðhþ gÞu � ni½ĝ� þ ½ðhþ gÞu � n�hĝið ÞdC

¼ 0 8ĝ 2 E; ð7Þ

XNE

e¼1

Z
Xe

ou

ot
� û� ð$ � ðuûÞÞ � uþ f ðk� uÞ � ûþ g$g � û

� �
dXþ

XNC

l¼1

Z
Cl

huu � nik � ½û�dC

¼ 0 8û 2 U; ð8Þ
where hsi and hsik denote the average and weighed average of s on the segment Cl respectively,
with:
hsi ¼ 1

2
ðsjXe þ sjXf Þ;

hsik ¼ ð1=2þ kÞsjXe þ ð1=2� kÞsjXf :
A finite element approximation to the exact solution of Eqs. (1) and (2) is found by replacing g
and u with finite element approximations gh and uh in (7) and (8). Those approximations respec-
tively belong to finite dimensional spaces Eh � E and Uh � U. They read:
g � gh ¼
XNV

i¼1

gi/i;

u � uh ¼
XNS

j¼1

ujwj;
where gi and uj represent elevation and velocity nodal values, and /i and wj represent the elevation
and velocity shape functions associated with a particular node. The nodal values are then com-
puted by using the Galerkin procedure which amounts to replacing ĝ by /i and û by (wj, 0) and
(0,wj) in Eqs. (7) and (8) respectively, for 1 6 i 6 NV and 1 6 j 6 NS.
4. The non-conforming mixed PNC
1 � P1 discretization

In this study, the elevation and velocity variables are approximated by linear conforming (P1)
and linear non-conforming (P NC

1 ) shape functions respectively (Fig. 1). Elevation nodes are thus
lying on the vertices of the triangulation and velocity nodes are located at mid-segments. With this
choice of shape functions, the discrete elevation field is continuous everywhere whereas the dis-
crete velocity field is only continuous across triangle boundaries at mid-side nodes and discontin-
uous everywhere else around a triangle boundary. A major advantage of non-conforming shape
functions is their orthogonality property:
Z

X
wpwq dX ¼ Aq

3
dpq;



Fig. 1. Linear conforming (left) and non-conforming (right) shape functions.
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where Aq is the area of the support of wq, and dpq is the Kronecker delta. Such an unusual prop-
erty increases the computational efficiency of the numerical model. Like the elevation, the depth h

is discretized with linear conforming shape functions.
To improve the efficiency of the scheme, it may appear natural to perform the following

approximation in the variational formulation (7) and (8):
Z
Cl

hðhþ gÞu � ni½/i�dC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ
Z

Cl

½ðhþ ghÞuh � n�h/iidC ’ 0: ð9Þ
As P1 shape functions are continuous, the jump of the elevation shape function vanishes and
the first term in (9) is exactly equal to zero. The second term is neglected in order to enforce mass
conservation. Indeed, the thickness flux is discontinuous between triangles and neglecting the sec-
ond integral amounts to weakly impose its continuity. As a result, mass conservation is guaran-
teed at the cost of a small loss of accuracy.

A second approximation in the formulation (7) and (8) amounts to use a global linear approx-
imation for the product of uh with f:
Z

Xe

f ðk� uhÞwj dX ¼
Z

Xe

f
XNS

i¼1

ðk� uiÞwiwj dX ’
Z

Xe

XNS

i¼1
fiðk� uiÞwi|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðf k�uÞh

wj dX; ð10Þ
where fj represent the value of the Coriolis parameter at a velocity node. Eq. (10) greatly simpli-
fies the algebra and has a small impact on the accuracy of the solution since f varies very
smoothly.

To summarize, the space discretized equations for the Eulerian formulation simply read:
XNE

e¼1

Z
Xe

ogh

ot
/i � ðhþ ghÞuh � $/i

� �
dX ¼ 0 for 1 6 i 6 N V ; ð11Þ

XNE

e¼1

Z
Xe

ouh

ot
wj � uh$ � ðuhwjÞ þ ðf k� uÞhwj þ g$ghwj

� �
dX

þ
XNC

l¼1

Z
Cl

huhuh � nik½wj�dC ¼ 0 for 1 6 j 6 N S: ð12Þ
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The last boundary term can be interpreted as follows. Weak continuity of the normal flow
through the segment Cl between adjacent elements Xe and Xf is imposed in the usual way of
the Discontinuous Galerkin formulation. For a so-called fully upwind scheme (k ¼ 1

2
signðu � n)),

the continuity is enforced as a weak inlet boundary condition for Xe if the characteristics that
go through Cl are going in Xe. This is fully in line with the mathematical theory of hyperbolic par-
tial differential equations and the presentation of the Discontinuous Galerkin formulation in the
pioneering paper of LeSaint and Raviart (1974).

The proposed Eulerian formulation strictly conserves mass but does not exactly conserve the
total energy of the flow. The formulation appropriate for semi-Lagrangian time stepping can
be obtained by applying the same spatial discretization procedure to Eqs. (3) and (4).
5. Eulerian scheme

To obtain an Eulerian discretization of the nonlinear shallow water equations, (11) and (12) still
need to be discretized in time. In order to simplify the notations, we present the temporal discret-
ization of (1) and (2). So, for a given time step Dt = tn+1 � tn, we obtain:
unþ1 � un

Dt
þ un � $un þ f k� bunþ1 þ ð1� bÞun

� �
þ g a$gnþ1 þ ð1� aÞ$gn
� �

¼ 0; ð13Þ

gnþ1 � gn�1

2Dt
þ $ � chunþ1 þ ð1� cÞhun�1

� �
þ $ � ðgnunÞ ¼ 0; ð14Þ
where a, b and c are implicity coefficients in [0,1] used to vary the time centering of the gradient,
Coriolis and divergence terms respectively.

In Eqs. (13) and (14), all linear terms are discretized with a so-called h-scheme and the non-lin-
ear terms are treated explicitly. In such an approach, the most constraining terms (i.e. those
responsible for the propagation of inertia-gravity waves) can be treated implicitly. In particular,
the Coriolis term is always discretized semi-implicitly. The value of the other parameters is prob-
lem dependent and is given below where numerical experiments are described. A leap frog time
scheme is used in Eq. (14) to discretize the term $ Æ (gnun). Indeed, the scheme would be uncondi-
tionally unstable if an Euler scheme was used instead. However, when the surface-elevation is
small compared to the depth of the fluid, i.e. g� h, the term $ Æ (gnun) may be neglected in
(14) and an Euler scheme can then be used in the mass equation. The divergence term $ Æ (hu)
is then discretized at time steps n + 1 and n instead of n + 1 and n � 1. It should be noted that
treating the non-linear terms explicitly, does not lead to very constraining stability conditions
for large scale applications. However, for applications that require high resolution, it may be
penalizing.

After replacing gh and uh by their expression in terms of the nodal values in Eqs. (11) and (12)
and applying the temporal discretization described above, the following set of linear equations is
obtained:
BUU GUH

�DHU MHH

� �
Unþ1

Hnþ1

 !
¼

RU

RH

� �
; ð15Þ
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where Un+1 and Hn+1 are the nodal values vectors, defined as:
Fig. 2

are re
Unþ1 ¼
ui

vi

� �
and Hnþ1 ¼ ðgjÞ;
with 1 6 i 6 NS and 1 6 j 6 NV. The matrix in the left hand side (lhs) of (15) and the vector in the
right hand side (rhs) of (15) are explicitly written in Appendix A.

Thanks to the orthogonality of linear non-conforming shape functions, the matrix BUU is com-
posed of four diagonal sub-matrices. Its inverse can thus be easily computed. The solution vector
for the velocity is expressed from (15) as:
Unþ1 ¼ �B�1
UUGUHH

nþ1 þ B�1
UURU; ð16Þ
and then substituted in the mass balance equation, to give:
ðMHH þ DHUB
�1
UUGUHÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�AHH

Hnþ1 ¼ RH þ DHUB
�1
UURU; ð17Þ
where the matrix AHH is a sparse matrix (as shown in Fig. 2) having an average of 13 non-zero
entries per line.

A linear solver is only required to solve Eq. (17). Once the elevation nodal values are obtained,
the velocity nodal values are computed explicitly from (16). The substitution greatly reduces the
computational cost as we solve a system of only NV equations instead of 2NS + NV, i.e. approx-
imately 7NV equations. Fig. 2 shows the sparcity patterns of the initial and final system of equa-
tions. Both matrices are represented on the same scale. A generalized minimal residual iterative
solver (Saad and Schultz, 1986) has been selected as AHH is a nonsymmetric matrix in view of
the Coriolis term.
. Sparcity patterns of the system matrix before (left) and after (right) the substitution procedure. Both matrices

presented on the same scale.
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6. Semi-Lagrangian scheme

In the semi-Lagrangian method, total derivatives are treated as time differences along particles
trajectories while preserving the gridpoint nature of Eulerian schemes. This is achieved by select-
ing a specific set of fluid parcels at each time step and requiring that they arrive at mesh nodes at
the end of the time step. Therefore, the total derivative of a function f is simply the value of f at the
arrival point (a mesh node) minus the value of f at the departure point (usually not a mesh node),
divided by Dt. By tracking back fluid parcels in time, it is possible to locate their upstream posi-
tions at previous time steps. An interpolation formula is then needed to determine the upstream
value of the advected quantity at the departure points.

The temporal discretization used for the semi-Lagrangian scheme reads:
unþ1 � un
d

Dt
þ f k� ðbunþ1 þ ð1� bÞun

dÞ þ gða$gnþ1 þ ð1� aÞ$gn
dÞ ¼ 0; ð18Þ

ðlnðhþ gÞÞnþ1 � ðlnðhþ gÞÞnd
Dt

þ $ � ðcunþ1 þ ð1� cÞun
dÞ ¼ 0; ð19Þ
where the subscript d denotes the evaluation at the departure point and the absence of subscript
denotes evaluation at the arrival point. The coefficients a, b and c are defined as in the Eulerian
case. It should be noted that semi-Lagrangian discretizations generally allow the use of larger time
steps than Eulerian discretizations.

As for the Eulerian scheme, we substitute u in terms of g in the continuity equation at the dis-
crete level. Since Eq. (19) is weakly nonlinear due to the logarithm, a Newton�s procedure has to
be used to linearized it. An Helmholtz equation for the elevation is then produced.
6.1. Calculation of total derivatives

The semi-Lagrangian procedure requires to evaluate the departure points of the fluid parcels. If
(xm, t + Dt) denotes the arrival point of a fluid parcel, its departure point is then (xm � dm, t). The
displacement of the parcel, dm, is obtained from a number of iterations (usually two) of a second-
order mid-point Runge–Kutta corrector:
dðkþ1Þ
m ¼ Dt uðx� dðkÞm =2; t þ Dt=2Þ; ð20Þ
with a first order estimate dð0Þm ¼ Dtuðx; tÞ. This amounts to approximate the exact trajectory of the
fluid parcel by a straight line (Fig. 3). The velocity at time t þ Dt

2
in (20) is found by extrapolating

the velocity field at time t and t � Dt, using a two time level scheme (Temperton and Staniforth,
1987; McDonald and Bates, 1987) and yielding an O(Dt2)-accurate estimate. When iteratively
solving (20), interpolation is required to compute the velocity between mesh points. As observed
by Staniforth and Côté (1990), negligibly small differences in the solution result from using linear
rather than cubic interpolation while solving equation (20). Hence linear interpolation is adopted
here.

Once the departure points are computed, the advected variables have to be evaluated at those
points. As they usually do not lie on mesh nodes, some form of interpolation is needed. The choice



Fig. 3. A two-time-level semi-Lagrangian advection scheme. Approximate and exact trajectories arrive at node xm

at time tn + Dt. Here, dm is the displacement of the particle in the x-direction in time Dt.
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of the interpolator has a crucial impact on the accuracy of the method. In regular domains with
structured meshes, various polynomial interpolation schemes have been tried, including linear,
quadratic, cubic and quintic Lagrange polynomials, and bicubic splines. McCalpin (1988) showed
that low order interpolations can have a very diffusive effect. As a result, semi-Lagrangian models
of the atmosphere are usually build with high order interpolations. Among those, bicubic spline
interpolations are found to be a good compromise between accuracy and computational cost
(Purnell, 1976; Pudykiewicz and Staniforth, 1984).

However, most of atmospheric models are based on orthogonal grids, made up of quadrilater-
als. It is found that when the mesh loses its orthogonality, the bicubic spline interpolation is much
less accurate. Since we intend to interpolate on an unstructured ocean mesh, another method
is needed and interpolation schemes that do not depend on the geometry should be prefered.
LeRoux et al. (1997) suggested to use a kriging scheme.

6.2. Kriging interpolation

The term ‘‘kriging’’ has been introduced by Matheron (1973) to honor the pioneering work of
Krige (1951). A kriging interpolator can be defined as the best linear unbiased estimator of a
random function. It yields equally favourable results for structured and unstructured meshes.
Given a serie of N measurements fi of a function f at different locations xi (1 6 i 6 N), kriging
constructs an approximate function fh expressed as the sum of a drift a(x) and a fluctuation
b(x):
f ðxÞ � f hðxÞ ¼ aðxÞ þ bðxÞ:

The drift is generally a polynomial which follows the physical phenomenon and the fluctuation

is adjusted so that the interpolation fits the data points exactly.
For the sake of simplicity, we illustrate kriging by constructing the approximate function in the

one dimensional case, using a linear drift:
f hðxÞ ¼ aðxÞ þ bðxÞ ¼ a1 þ a2xþ
XN

j¼1

bjKðjx� xjjÞ;
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where the function K, known as the generalized covariance, fixes the degree of the fluctuation. The
coefficients a1,a2,b1, . . .,bN are calculated by requiring that: (1) the interpolation has no bias, (2)
the squared variance of the fluctuation is minimal and (3) the interpolation fits the data points
exactly (Trochu, 1993). Those constraints read:
XN

j¼1

bj ¼ 0;
XN

j¼1

bjxj ¼ 0 and f hðxiÞ ¼ f ðxiÞ for 1 6 i 6 N :
Hence, the following linear system, known as the dual linear kriging system, is obtained:
ð21Þ
where Kij = K(jxi � xjj). The matrix of the linear system is a full matrix with zeros on the diagonal.
As it only depends on mesh node positions, a LU decomposition needs only to be performed once.
Nevertheless, each interpolation requires the resolution of a linear system. The computational cost
can thus be significant, especially for problems with large data sets. The final system of discrete
shallow water equations is still solved with a GMRES iterative solver.

The accuracy of the kriging interpolation method is determined by a suitable choice of the
drift and the fluctuation. The drift is usually a low order polynomial. The choice of an
admissible generalized covariance has been discussed by Matheron (1980) and Christakos
(1984) and the most employed are K(h) = �h, K(h) = h2 lnh and K(h) = h3, with h = jxi � xjj,
for 1 6 i, j 6 N.
7. Numerical simulations and discussions

In this section, we perform some experiments to assess the different numerical models intro-
duced previously. As a test problem, we consider the propagation of slow Rossby waves. Despite
the fact that they are very slow, Rossby waves have a major effect on the large scale circulation,
and thus on weather and climate. For instance, Rossby waves can intensify western boundary cur-
rents, as well as push them off their usual course. As those currents transport huge quantities of
heat, it is readily understood that even a minor shift in the position of the current can dramatically
affect weather over large areas of the globe. Those waves can be represented with the shallow
water equations.

The two numerical tests used in LeRoux et al. (2000) are reproduced here with the P NC
1 � P 1

pair in the Eulerian and semi-Lagrangian approaches. For both tests, the model is run as a re-
duced gravity model with parameters set to correspond to the first internal vertical mode of
a baroclinic model. A second passive layer is implicitly assumed infinitely deep and at rest.
The depth of the fluid h is set constant.
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7.1. Equatorial Rossby soliton

We first reproduce the propagation of the equatorial Rossby soliton of Boyd (1980). This exper-
iment has also been performed by Iskandarani et al. (1995) with their spectral element shallow
water model. The model equations are rewritten in their dimensionless form on an equatorial b
plane. Dimensionless variables read: x 0 = x/L, t 0 = t/T, u 0 = u/U and g 0 = g/h. The characteristic
length (L), time (T) and velocity (U) scales are expressed in terms of the Lamb parameter E:
Fig. 4

non-d

rangin
L ¼ a

E1=4
; T ¼ E1=4

2X
; U ¼

ffiffiffiffiffiffi
g0h

p
; E ¼ 4X2a2

g0h
;

where a is the radius of the Earth and X denotes here the angular frequency of the Earth rotation.
The reduced gravity and mean depth are taken as g 0 = 4 · 10�2 ms�2 and h = 100m respectively.
The mean gravity wave speed is then U = 2ms�1 and it corresponds to the wave speed of the first
baroclinic mode. Those values yield a time scale of 41h and a length scale of 296km.

The rectangular domain non-dimensional extent is 32 · 8. The mesh is unstructured and its res-
olution goes from 0.5 to 1 non-dimensional unit (Fig. 4a). There are 1768 elements and 946 nodes.
The temporal discretization is semi-implicit (a = b = c = 1/2) and the non-dimensional time step is
set to 0.25. As initial conditions, we use the zeroth-order solution introduced by Boyd (1980) at
time t 0 = 0. This solution reads:
u0ðx0; y 0; t0Þ ¼ AB2 ð6y 02 � 9Þ
4

sech2ðBðx0 � ct0ÞÞ expð�y 02=2Þ;

v0ðx0; y 0; t0Þ ¼ �4AB3y0 tanhðBðx0 � ct0ÞÞ sech2ðBðx0 � ct0ÞÞ expð�y 02=2Þ;

g0ðx0; y 0; t0Þ ¼ AB2 ð6y 02 þ 3Þ
4

sech2ðBðx0 � ct0ÞÞ expð�y02=2Þ;
where A = 0.771 and B = 0.395. The non-dimensional, linear, non-dispersive velocity phase speed
is c ¼ � 1

3
� 0:395B2. The initial elevation field is shown in Fig. 4b. It should be noted that
0.16727

(a)

(b)

. (a) Mesh used in the equatorial Rossby soliton experiment. (b) Isolines of the elevation field at initial time, the

imensional maximum value is specified in the bottom-right corner. There are 10 isolines at equidistributed values

g from zero to the maximum value specified.
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Boyd (1985) gives a first order solution to the Rossby soliton problem. This solution is however
not considered in this work.

At the beginning of the integration, the soliton loses approximately 5% of its amplitude which
propagates eastward as equatorial Kelvin waves. This is due to the initial condition that is not
exactly a solitary wave. Meanwhile, the soliton propagates westward with little change in shape
and amplitude, in agreement with the theory. The elevation field after 32 non-dimensional time
units is shown in Fig. 5 for the Eulerian scheme and the semi-Lagrangian method. The asymptotic
solution of Boyd (1980) is also given. The semi-Lagrangian approach is based on linear and kri-
ging interpolation schemes. The latter use the following generalized covariance functions: �h,
Asymptotic solution of Boyd (1980)

0.16953

Eulerian

0.15358

SL linear

0.13947

SL kriging, K(h)=-h

0.14759

SL kriging, K(h)=h^2 ln(h)

0.15813

SL kriging, K(h)=h^3

0.16283

SL kriging, K(h)=-h^5

0.16787

Fig. 5. Elevation fields after 55 days (t = 32T) obtained from the asymptotic relation, the Eulerian scheme and various

the semi-Lagrangian schemes. The non-dimensional maximum value is specified at the bottom-right corner of each

panel. The number of isolines is the same as in Fig. 4.
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h2 ln(h), h3 and �h5. The Eulerian scheme preserves the shape of the soliton quite well with mod-
erate damping. It gives a phase speed of 0.783ms�1 which is in good agreement with the asymp-
totic solution of Boyd (1980) that predicts a value of 0.79ms�1. The semi-Lagrangian models
provide a phase speed ranging from 0.78 to 0.83ms�1 for Lagrangian linear and the various kri-
ging interpolations. It is observed that the phase speed increases with the order of the interpola-
tion used. As expected, the semi-Lagrangian method using low order interpolating schemes shows
more damping. As the order of the interpolation increases, the solution gets better. However, for
high order interpolations, there is very little numerical diffusion and instabilities may arise. This is
observable in Fig. 5 for the kriging scheme with K(h) = �h5.

7.2. Eddy propagation in the Gulf of Mexico

In the second experiment, the slowly propagating Rossby modes are simulated in the case of the
evolution of a typical anticyclonic eddy at midlatitudes. The Gulf of Mexico is chosen as the do-
main to test the model in a realistic geometry. In the present simulation, we ignore the inflow and
outflow through the Yucatan Channel and Florida Straits and the basin is assumed closed.
Although this experiment is highly idealized, it is expected to represent some of the features of
the life cycle of anticyclonic eddies in the Western part of the Gulf. The experiment focuses mainly
on the westward propagation of the eddies and their interaction with the boundary. This is why
the unstructured mesh, shown in Fig. 6, has a higher resolution in the western part of the domain.
There are 8001 elements and 4092 nodes. The domain extent is approximately 1800km · 1350km
and the resolution of the mesh goes from 20 to 60km.

A Gaussian distribution of g, centered at the origin of the domain, is prescribed at initial time:
Fig. 6

60km
gðx; y; 0Þ ¼ C exp½�Dðx2 þ y2Þ�;
. A triangular unstructured mesh of the Gulf of Mexico. The resolution goes from 20km in the western part to

in the eastern part.
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where C = 68.2m and D = 5.92 · 10�11 m�2. The b-plane assumption is made (i.e. f = f0 + by) and
f0 and b are evaluated at 25� N. The reduced gravity and mean depth are taken as g 0 = 1.37 ·
10�1 ms�2 and h = 100m, respectively, so that the mean gravity wave speed is c �

ffiffiffiffiffiffi
g0h
p

�
3:7ms�1. The radius of deformation at midbasin is thus Rd � c/f0 � 6 · 104 m. The initial velocity
field is taken to be in geostrophic balance and so
Fig. 7

maxim

rangin
uðx; y; 0Þ ¼ 2
g0

f
CDy exp½�Dðx2 þ y2Þ�;

vðx; y; 0Þ ¼ �2
g0

f
CDx exp½�Dðx2 þ y2Þ�:
By setting C = 68.2m, the maximum flow speed is 1ms�1. The parameters values are chosen to
match the observations of the eddies made by Lewis and Kirwan (1987). In (13) and (14), the tem-
poral discretization is now explicit for the divergence term, and semi-implicit for Coriolis and the
gradient terms (a = b = 1/2, c = 0). The time step is set to 300s, hence the gravitational Courant
number is close to 0.1.

In this experiment, we consider the Eulerian scheme and the semi-Lagrangian method using
Lagrangian linear and kriging (with K(h) = h3) interpolation schemes. The Lagrangian linear
interpolation is chosen to illustrate the poor results obtained with low order interpolations.
The kriging scheme with K(h) = h3 is selected as it appeared to give good results for the soliton
experiment, with very small damping. This interpolation scheme is equivalent to cubic spline inter-
polation (LeRoux et al., 1997).

The semi-Lagrangian method using the kriging scheme develop some small-amplitude noise in
the velocity field, which progressively amplified as the integration progressed and ultimately led to
unacceptable results. As most high order schemes, such an approach exhibiting better accuracy is
more sensitive to errors accumulation. Some harmonic diffusion was therefore introduced for
velocity. At the end of each time step, a diffusive correction is applied to the provisional velocity
field computed from the semi-Lagrangian scheme, denoted u*. The corrected velocity field, u, is
then obtained by solving:
0,68.2 0,1.0

. Isolines of the elevation field (bottom-left) and flow-speed field (bottom-right) at initial time. The minimum and

um values are specified under each figure. For both variables, there are 15 isolines at equidistributed values

g from the minimum to the maximum values specified (in m and ms�1 respectively).



Fig. 8

interp

(in m
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u� u	

Dt
¼ m$2u	;
subject to zero-flux boundary conditions, where m is the diffusion coefficient. A value of
m = 175m2 s�1 was found sufficient to suppress the noise in the velocity field.
. Isolines of the elevation field at different times of the propagation for the Eulerian, semi-Lagrangian with linear

olator and semi-Lagrangian with kriging interpolator (K(h) = h3) schemes. The minimum and maximum values

) are specified at the bottom right corner of each panel. The number of isolines is the same as in Fig. 7.
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At initial time, the eddy is located in the middle of the Gulf of Mexico (Fig. 7) and different
stages of its propagation are shown in Figs. 8 and 9 for the Eulerian and the semi-Lagrangian
models. Shortly after initialization, there is a readjustment of the flow and g loses approximately
10% of its amplitude. Afterward, the Rossby wave propagates westward with a slight southwest-
erly drift that is due to non-linear effects. The reduction in amplitude that follows the readjust-
ment is due to the explicit and/or implicit diffusion in the numerical schemes. The implicit
Fig. 9. Isolines of the flow-speed field at different times of the propagation for the Eulerian, semi-Lagrangian with

linear interpolator and semi-Lagrangian with kriging interpolator (K(h) = h3) schemes. The minimum and maximum

values (in ms�1) are specified at the bottom right corner of each panel. The number of isolines is the same as in Fig. 7.



Fig. 10. Isolines of the elevation field after 11 weeks for the inviscid Eulerian scheme, and for the Eulerian and kriging

semi-Lagrangian schemes with an explicit diffusion m = 175m2 s�1. The minimum and maximum values are specified at

the bottom right corner of each panel. The number of isolines is the same as in Fig. 7.
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diffusion is due to the upwind treatment of momentum advection for the Eulerian scheme, and to
the interpolation procedure for the semi-Lagrangian schemes. The Eulerian and the high order
semi-Lagrangian schemes qualitatively give comparable results. For both schemes, the translation
speed is approximately 6.8kmday�1 which is in good agreement with that predicted by the theory
(bR2

d ¼ 6:5kmday�1). The linear semi-Lagrangian schemes shows more dispersion and gives a
slower propagation speed. The maximum values of the elevation and flow-speed fields show that
the semi-Lagrangian scheme using a linear interpolation is very diffusive as the eddy loses approx-
imately 70% of its amplitude compared to the Eulerian scheme during the simulation. This is due
to the low order interpolation procedure. The high order semi-Lagrangian scheme performs better
but the viscosity required to avoid instabilities leads to a 8% reduction in g compared to the Eule-
rian scheme, after 11 weeks of simulation.

The Eulerian scheme is stable enough to run without explicit diffusion whereas the high order
semi-Lagrangian scheme requires some explicit diffusion to run properly. The stability of the Eule-
rian scheme is partly due to the upwind treatment of momentum advection which has a diffusive
effect. We estimate the amount of artificial diffusion in the Eulerian scheme by running that model
with an explicit diffusion m = 175ms�2. By comparing the results of the Eulerian and high order
semi-Lagrangian model when both use the same explicit diffusion, it is possible to estimate the
effect of the artificial diffusion ‘‘hidden’’ in the Eulerian model. The high order semi-Lagrangian
model is assumed to have a very small implicit diffusion. The final elevation fields obtained with
the inviscid Eulerian, the viscous Eulerian and the viscous kriging semi-Lagrangian schemes are
shown in Fig. 10. It can be seen that the results obtained with the viscous Eulerian scheme are very
close to those obtained with the viscous kriging semi-Lagrangian scheme. This suggests that the
amount a artificial diffusion introduced in the Eulerian scheme by the upwind treatment of
momentum advection is very small and has less impact than the explicit diffusion needed to
run the high-order semi-Lagrangian scheme.
8. Conclusions

The non-linear shallow water equations have been discretized on an unstructured triangular
grid by using the P NC

1 � P 1 finite element pair. Eulerian and semi-Lagrangian advection schemes
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have been compared and assessed in the context of ocean modelling. It has been shown that the
Eulerian method gives an accurate representation of the Rossby waves as the amplitude
and phase speed of those modes are well preserved during propagation. The method works
well without explicit diffusion and the implicit numerical diffusion, mainly due to an upwind
momentum advection discretization, seems to have a small impact on the accuracy of the
results.

Semi-Lagrangian schemes well reproduce Rossby waves when a high order kriging interpola-
tion is used. Indeed, a high order accuracy is then reached even on unstructured grids. However,
we were forced to add a small Laplacian diffusion to the model to be able to get an acceptable
solution. In other words, numerical diffusion has to be incorporated explicitly when using the high
order semi-Lagrangian model. In the Eulerian approach, it is observed that the amount of numer-
ical diffusion introduced by upwinding is quite small in comparison.

The comparison of the computational cost between Eulerian and semi-Lagrangian methods is
not straightforward as it depends strongly on the implementation, on some numerical strategies
and on the linear solver. In one hand, the main advantage of the semi-Lagrangian method com-
pared to the Eulerian scheme, is the possibility of using larger time steps. However, the use of
larger time steps leads to a poorer conditioning of the linear system and the benefit in terms of
computational cost is not always as good as expected. Moreover, the interpolation procedure
and the tracking calculation requires cumbersome implementation and a high computational
cost. In the other hand, the Eulerian approach is quite more easy to implement and seems
to be considerably much cheaper in terms of CPU requirements. As implemented in our
codes, the semi-Lagrangian calculations are at least ten times more expensive than the Eulerian
ones.

The Eulerian P NC
1 � P 1 model seems to be a promising initial step toward the construction of an

ocean general circulation model using unstructured triangular meshes. The P NC
1 � P 1 finite ele-

ment pair combines several advantages such as the absence of pressure modes, a reasonable com-
putational cost even compared to traditional finite-difference schemes and the possibility to
efficiently perform upwinding while computing momentum advection.
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sur la Nature et les Technologies (FQRNT).
Appendix A. Details on the matricial form of the discrete equations

The matrix figuring in (15) is written as:
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The matrix BUU is composed of the velocity mass matrix and the Coriolis matrix. As non-con-
forming shape functions are orthogonal, the four sub-matrices in BUU are diagonal and the inverse
of BUU may thus be easily computed. The matrices GUH and DHU respectively correspond to the
gradient and divergence matrices. If h is constant, the divergence matrix is proportional to the
transpose of the gradient matrix. Finally, the matrix MHH is the elevation mass matrix.

The rhs of Eq. (15) reads:
where uh
n denotes the value of uh at time step n.
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Abstract

In this paper the numerical solution of advection–diffusion problems in free-surface hydrodynamic is

analyzed. A new finite volume scheme for unstructured grid is derived. It is shown how both, mass conser-

vation and maximum principle can be assured by the present method. The issue of numerical accuracy is
also addressed in two and three-dimensional problems. Suggestions for grid generation are also implied.
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1. Introduction

Numerical modelling of free-surface hydrodynamic is by itself a challenging task (see, e.g., Stell-
ing, 1984; Casulli and Zanolli, 2002). Once the velocity field and free-surface elevation have been
computed, one is often interested in the transport of a scalar variable such as salinity, temperature
or any passive constituent that may represent sediment or a biological specie. This latter problem
may not be trivial especially if high resolution together with specific qualitative behavior of the
numerical solution is expected.
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From an analytical point of view the differential equation governing the advection and diffusion
of a scalar variable can be written equivalently in a conservative or in a non-conservative form
each expressing two important properties, namely the conservation of the scalar quantity and
the satisfying of a general maximum principle. Whereas analytically one can easily switch from
one formulation to the other under rather general assumptions that the fluid is incompressible
and that the scalar quantity is a differentiable variable, from a numerical point of view this
may not be the case. Specifically, when the conservative equation is discretized, one may be able
to show that the resulting numerical solution is conservative but the discrete maximum principle
may not be guaranteed. Similarly, when the non-conservative equation is discretized, one may be
able to show that the resulting numerical solution satisfies the discrete maximum principle but
conservation may not be guaranteed.

Assuming that the discrete volume conservation is assured by the hydrodynamic variables (fluid
velocity and free surface elevation), in this paper the advection–diffusion equation of a scalar
quantity will be discretized in such a fashion that the resulting numerical solution is mass conserv-
ative and, at the same time, satisfies the maximum principle.

Furthermore, the issue of numerical accuracy will also be addressed by use of appropriate flux
limiting functions. Accurate transport computations require two aspects: (a) a high resolution
algorithm and (b) an accurate flow field. Additionally, it will be shown that a properly devised
grid may also play an important role to obtain a higher numerical accuracy.

Although the concepts presented in this paper can apply to several free-surface hydrodynamic
model as long as conservation of fluid volume is guaranteed, particular attention will be devoted
to a class of highly efficient semi-implicit algorithms that allows for high-resolution and long time
range simulations at low computational cost. These are a semi-implicit method for two- and three-
dimensional hydrostatic free-surface flow on unstructured grids (Casulli and Walters, 2000) and a
more recent semi-implicit algorithm for non-hydrostatic multidimensional flows (Casulli and Zan-
olli, 2002).
2. A two-dimensional transport model

The two-dimensional equations describing free-surface flows are the well known vertically aver-
aged, shallow water equations. Such equations, expressing the physical principle of conservation
of momentum and fluid volume, are given by
ut þ uux þ vuy � fv ¼ �ggx þ mhðuxx þ uyyÞ � cu; ð1Þ

vt þ uvx þ vvy þ fu ¼ �ggy þ mhðvxx þ vyyÞ � cv; ð2Þ

gt þ ðHuÞx þ ðHvÞy ¼ 0; ð3Þ
where u(x,y, t) and v(x,y, t) are the vertically averaged velocity components in the horizontal x
and y directions, respectively; g(x,y, t) is the free-surface elevation; f is the Coriolis parameter;
mh is a prescribed non-negative coefficient of horizontal eddy viscosity; c is a non-negative bottom
friction coefficient and H(x,y, t) = h(x,y) + g(x,y, t) is the total water depth with h(x,y) being
bathymetry measured from the undisturbed water surface.
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The mass conservation of a scalar variable is expressed by the following differential equation:
ðHCÞt þ ðHuCÞx þ ðHvCÞy ¼ ðKhHCxÞx þ ðKhHCyÞy; ð4Þ
where C(x,y, t) denotes the vertically averaged concentration of any scalar transported specie and
Kh is a prescribed non-negative horizontal diffusivity coefficient.

2.1. Orthogonal unstructured grid

Before discretizing Eqs. (1)–(4), the horizontal (x,y) domain is covered by a set of non-overlap-
ping convex polygons. Each side of a polygon is either a boundary line or a side of an adjacent
polygon. Moreover, it is assumed that within each polygon there exist a point (hereafter called
center) such that the segment joining the centers of two adjacent polygons and the side shared
by the two polygons have a non-empty intersection and are orthogonal to each other (see Fig.
1). One such a grid is called unstructured orthogonal grid (see Casulli and Walters, 2000).

Once the (x,y) domain has been covered with an unstructured orthogonal grid, one has Np

polygons, each having an arbitrary number of sides Si P 3, i = 1,2, . . . ,Np. Let Ns be the total num-
ber of sides in the grid and let kj, j = 1,2, . . . ,Ns be the length of each side. The sides of the ith polygon
are identified by an index j(i,‘), ‘ = 1,2, . . . ,Si, so that 1 6 j(i, ‘) 6 Ns. Similarly, the two polygons
which share the jth side of the grid are identified by the indices i(j, 1) and i(j, 2) so that 1 6 i(j, 1) 6 Np

and 1 6 i(j, 2) 6 Np. Let Pi be the area of the ith polygon. Moreover, m(i, j) denotes the neighbor of
polygon i that shares the side j with the ith polygon. The non-zero distance between the centers of
two adjacent polygons which share the jth side is denoted with dj (see Fig. 1).

The discrete velocities and water surface elevation are defined at staggered locations as follows.
The water surface elevation gn

i , assumed to be constant within each polygon, is located at the cen-
ter of the ith polygon; the velocity component un

j normal to each side of a polygon, oriented from
i(j, 1) to i(j, 2) and assumed to be constant over the side, is defined at the point of intersection be-
tween the side and the segment joining the centers of the two polygons which share the side; the
concentrations Cn

i are located at the center of the ith polygon. Finally, the water depth hj is spec-
ified and assumed constant on each side of a polygon.
Fig. 1. Orthogonal unstructured grid.
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2.2. Numerical approximation

The semi-implicit scheme used to discretize Eqs. (1)–(3) on an orthogonal unstructured grid is a
particular case of the three-dimensional algorithm presented in Casulli and Walters (2000) for a
one layer calculation. In this scheme the gradient of surface elevation in the horizontal momentum
Eqs. (1) and (2) and the velocity in the free-surface Eq. (3) are discretized by the h-method. More-
over, for stability, the bottom friction is discretized implicitly.

Since Eqs. (1) and (2) are invariant under solid rotation of the x and y axis on the horizontal
plane, a consistent semi-implicit finite difference discretization for the horizontal velocity compo-
nent perpendicular to each side of a polygon is taken to be
unþ1
j ¼ Fun

j � g
Dt
dj
½gnþh

iðj;2Þ � gnþh
iðj;1Þ� � Dtcn

j unþ1
j ; ð5Þ
where h is an implicitness factor and F is an explicit finite difference operator which accounts
for the contributions from the discretization of the Coriolis, advection and horizontal viscosity
terms.

A semi-implicit finite volume discretization for the free-surface Eq. (3) at the center of each
polygon is taken to be
P ig
nþ1
i ¼ P ig

n
i � Dt

XSi

‘¼1

si;‘kjði;‘ÞH n
jði;‘Þu

nþh
jði;‘Þ; ð6Þ
where si,‘ is a sign function which accounts for the orientation of the normal velocity defined on
the ‘th side of the polygon i.

By denoting with Sþi the set of sides belonging to the ith polygon through which the water is
leaving the ith polygon and with S�i the set of sides through which the water is entering the ith
polygon, Eq. (6) can also be written as follows:
P iH nþ1
i ¼ P iH n

i � Dt
X
j2Sþi

jQnþh
j j �

X
j2S�i

jQnþh
j j

0@ 1A; ð7Þ
where Qnþh
j ¼ kjH n

j unþh
j is the flow rate across the jth side of the grid.

When the implicitness factor h is chosen in the range 1
2
6 h 6 1 the stability of the resulting

scheme (5), (6) is independent from the free-surface wave speed and bottom friction (Casulli
and Cattani, 1994).

Eqs. (5) and (6) constitute a linear system of Ns + Np equations. A robust and efficient algo-
rithm for solving this system has been described in Casulli and Walters (2000).
2.3. Scalar transport

Regarding the transport Eq. (4), it is immediate to recognize that it is written in a conservative
form. This equation, in fact, expresses the principle of conservation of mass. Assuming that the
functions involved in Eq. (4) are differentiable, by expanding the derivatives and by using the
continuity Eq. (3), one obtains the following non-conservative form of the advection–diffusion
Eq. (4)
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Ct þ uCx þ vCy ¼
1

H
½ðKhHCxÞx þ ðKhHCyÞy �: ð8Þ
Eq. (8) is equivalent to its conservative form (4) and expresses another important property,
namely, the maximum principle. Thus, its analytical solution C(x,y, t) is always bounded, above
and below, by the maximum and by the minimum, respectively, of its initial and boundary values.

From the analytical point of view, one can switch between Eqs. (4) and (8) thus to say that the
solution C(x,y, t) is conservative and satisfies the max–min property. Once these equations are dis-
cretized, however, the corresponding numerical solution will, in general, either be conservative or
satisfy a discrete max–min property. As an example, the explicit upwind discretization of Eq. (4) is
given by
P iH nþ1
i Cnþ1

i ¼ P iH n
i Cn

i � Dt
X
j2Sþi

jQn
j jCn

i �
X
j2S�i

jQn
j jCn

mði;jÞ

24 35þ Dt
X

j2S�i [Sþi

Dn
j ½Cn

mði;jÞ � Cn
i �; ð9Þ
where Qn
j ¼ kjH n

j un
j and Dn

j ¼ kjH n
j

Kh
j

dj
are the advective and the diffusive flux coefficients,

respectively.
The new mass P iH nþ1

i Cnþ1
i resulting from the finite volume Eq. (9) is conserved because it is ex-

pressed in flux form. In general, however, the resulting numerical solution Cnþ1
i will not satisfy a

discrete max–min property. Hence, unrealistic new maximum or new minimum may be generated.
A conservative discretization of Eq. (4) will yield a solution that also possesses the discrete

max–min property, only if it is consistent with the discretized continuity Eq. (7). An explicit finite
volume approximation for the advection–diffusion Eq. (4), that yields a numerical solution which
is conservative and satisfies the discrete max–min property, is given by
P iH nþ1
i Cnþ1

i ¼ P iH n
i Cn

i � Dt
X
j2Sþi

jQnþh
j jCn

i �
X
j2S�i

jQnþh
j jCn

mði;jÞ

24 35þ Dt
X

j2S�i [Sþi

Dn
j ½Cn

mði;jÞ � Cn
i �;

ð10Þ

where the advective coefficient is now defined as Qnþh

j ¼ kjH n
j unþh

j . Clearly, since a finite volume
approach is being used, this scheme is mass conservative. In order to show that the numerical
solution obtained from (10) also possesses the discrete min–max property both sides of this equa-
tion are divided by P iH nþ1

i . Then, by using the discretized continuity Eq. (7) and by grouping
together all the terms with Cn

i and Cn
mði;jÞ, one has
Cnþ1
i ¼

P iH n
i � Dt

P
j2Sþi

jQnþh
j j þ

P
j2S�i [Sþi

Dn
j

 !

P iH n
i � Dt

P
j2Sþi

jQnþh
j j �

P
j2S�i

jQnþh
j j

 !Cn
i

þ Dt

P
j2S�i

jQnþh
j jCn

mði;jÞ þ
P

j2S�i [Sþi

Dn
j Cn

mði;jÞ

P iH n
i � Dt

P
j2Sþi

jQnþh
j j �

P
j2S�i

jQnþh
j j

 ! : ð11Þ
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One can now verify that, if the time step size Dt is chosen sufficiently small so that
P iH n

i � Dtð
P

j2Sþi
jQnþh

j j þ
P

j2S�i [Sþi
Dn

j ÞP 0, then the right hand side of (11) is a weighted average

of Cn
i and Cn

mði;jÞ, j 2 Sþi [ S�i . Since the weights are non-negative and their sum is exactly 1, the
discrete max–min property follows readily (Greenspan and Casulli, 1988).

Note that the only and crucial improvement of Eq. (10) over (9) consists in the use of the advec-
tive coefficient Qnþh

j at the semi-implicit time n + h. It is this choice, in fact, that being consistent
with the discrete continuity Eq. (7) leads to the discrete max–min property.

2.4. High resolution schemes

One known disadvantage of a first order upwind method such as given by (10) is poor accuracy
due to high artificial (or numerical) diffusion (see, e.g., LeVeque, 1990). In order to recover some
accuracy, Eq. (4) is discretized in a more general formulation as
P iH nþ1
i Cnþ1

i ¼ P iH n
i Cn

i � Dt
X
j2Sþi

jQnþh
j jCn

i �
X
j2S�i

jQnþh
j jCn

mði;jÞ

24 35
� Dt

2

X
j2S�i [Sþi

Un
j jQnþh

j j½Cn
mði;jÞ � Cn

i � þ Dt
X

j2S�i [Sþi

Dn
j ½Cn

mði;jÞ � Cn
i �; ð12Þ
where Un
j is the so-called flux limiter function. Thus, for example, if Un

j ¼ 0 then Eq. (12) reduces
to the upwind scheme (10). The second order central difference scheme is obtained for Un

j ¼ 1. The
first order but less diffusive downwind formula is obtained for Un

j ¼ 2.
For a linear finite volume scheme of the form (12) the max–min property can only be assured

with a sufficiently fine grids so that the distances dj are so small to satisfy the following inequality:
Un
j jQnþh

j j 6 2Dn
j : ð13Þ
Clearly, inequality (13) may be too restrictive for advection dominated diffusion problems. This
inequality also indicates that Eq. (12) cannot apply to pure advection (Kh = D = 0) unless the up-
wind method (Un

j ¼ 0) is used.
Since, in general, a restriction on the grid size dj is not desirable, one can choose the limiter

function Un
j in such a way that inequality (13) is always satisfied although the desired scheme

(and the corresponding accuracy) may not be obtained. Thus, for example, if a second order accu-
racy is sought, one may choose Un

j ¼ /n
j , where /n

j is given by
/n
j ¼ min 1;

2Dn
j

jQnþh
j j

 !
: ð14Þ
Although the choice of the flux limiter function as given by Eq. (14) provides the closest possible solu-
tion to obtain a second order method, the values of Un

j so obtained may be far from being 1. Thus, the
flux limiter function is allowed to depend on the solution Cn

i . In so doing the resulting scheme will be-
come nonlinear but, with a properly chosen limiter function, the conservative property and the max-
imum principle will remain valid while higher resolution is obtained. To this purpose one sets
Un
j ¼ /n

j þ wðrn
j Þ; ð15Þ
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where w is an additional contribution to the flux limiter function that depends on the ratio of con-
secutive gradients rn

j . For j 2 Sþi , rn
j can be defined as
rn
j ¼

1

Cn
mði;jÞ � Cn

i

P
‘2S�i

jQnþh
‘ j½Cn

i � Cn
mði;‘Þ�P

‘2S�i

jQnþh
‘ j

: ð16Þ
There are many ways to determine a form for U. A few possible choices that have been widely
studied and applied (see, e.g., van Leer, 1979; Sweby, 1984; Roe, 1985) are
Minmod: UðrÞ ¼ max½/;minð1; rÞ�; ð17Þ

van Leer: UðrÞ ¼ max /;
r þ jrj
1þ jrj

� �
; ð18Þ

Superbee: UðrÞ ¼ max½/;minð1; 2rÞ;minð2; rÞ�; ð19Þ

so that U(r) 6 2, w(r) = U(r) � / P 0 and w(r) = 0 for r 6 0. Thus, by substituting Eq. (15) into
(12) one gets
P iH nþ1
i Cnþ1

i ¼ P iH n
i Cn

i � Dt
X
j2Sþi

jQnþh
j jCn

i �
X
j2S�i

jQnþh
j jCn

mði;jÞ

24 35
� Dt

2

X
j2S�i [Sþi

wn
j jQnþh

j j½Cn
mði;jÞ � Cn

i � þ Dt
X

j2S�i [Sþi

dnþh
j ½Cn

mði;jÞ � Cn
i �; ð20Þ
or, equivalently,
P iH nþ1
i Cnþ1

i ¼ P iH n
i Cn

i � Dt
X
j2Sþi

jQnþh
j jCn

i �
X
j2S�i

jQnþh
j jCn

mði;jÞ

24 35� Dt
2

X
j2S�i

wn
j jQnþh

j j½Cn
mði;jÞ � Cn

i �
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2

X
j2Sþi
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j
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j
jQnþh

j j

P
‘2S�i

jQnþh
‘ j½Cn

i � Cn
mði;‘Þ�P

‘2S�i

jQnþh
‘ j

þ Dt
X

j2S�i [Sþi

dnþh
j ½Cn

mði;jÞ � Cn
i �; ð21Þ
where dnþh
j ¼ Dn

j � 1
2
wn

j jQnþh
j j ¼ maxð0;Dn

j � 1
2
jQnþh

j jÞ. By grouping together the terms with Cn
i and

Cn
mði;jÞ, Eq. (21) can also be written as8 9
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Since 0 6 w 6 2 and 0 6 w/r 6 2, all the coefficients of Cn
mði;jÞ on the right hand side of Equation

(22) are always non-negative. Additionally, with a sufficiently small time step size, the coefficient
of Cn

i will be non-negative as well. Moreover, since the sum of all these coefficients is exactly equal
to the right hand side of Eq. (7), the new concentration Cnþ1

i given by Eq. (22) is a weighted aver-
age of Cn

i and Cn
mði;jÞ. Accordingly, the max–min property, and hence stability, is implied. The

above limitation on the time step size is assured by the following inequality:
Dt 6
P iH n

i

2
P

j2Sþi

jQnþh
j j þ

P
j2Sþi [S�i

dnþh
j

: ð23Þ
Should this restriction be too severe for the hydrodynamic model, a sub-cycling approach can be
used. To this purpose it is sufficient to observe that the discrete continuity Eq. (7) is still satisfied at
any substep level provided that the total water depths at substep level are linearly interpolated
between H n

i and Hnþ1
i .

2.5. Advection in a curved channel

As an example, consider a U-shaped channel of length L = 8570m, width W = 120m and con-
stant depth h = 10m. The channel is open at both ends where a different water surface elevation
g1 = 9cm and g2 = �9cm is specified in order to drive a constant flow. The channel is then covered
with a uniform grid of square polygons with side k = 20m· (see Fig. 2a).

A steady flow is assumed after 1h of hydrodynamic simulation using a time step Dt = 30s. Then
a tracer of constant concentration C = 1 is specified at the inflow open boundary for 12min and
the horizontal diffusion coefficient is set to zero so that pure transport is being considered.

Fig. 3 shows the computed concentrations at times t = 2h 15min, t = 3h 30min and t = 4h
45min by using the upwind method obtained from Eq. (12) without flux limiter (U = 0). Fig. 4
shows the computed concentrations at same times obtained with the same method where the
superbee flux limiter (19) was activated. In both cases precise mass conservation and maximum
principle was obtained and, as expected, use of the flux limiter leads to a less diffusive solution
as shown in Fig. 4.
Fig. 2. U-shaped channel discretized with a uniform square grid (a) and a with flow-alligned grid (b).



Fig. 4. High resolution obtained with a flux limiter.

Fig. 3. Tracer concentration obtained with the upwind method.
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2.6. Role of grid alignment

In the previous example of pure advection in a two-dimensional steady flow, the expected solu-
tion for the tracer concentration is a step function with values C = 0 and 1.

The known diffusive character of the upwind method, with no surprise, is shown in Fig. 3. The
second run that uses the flux limiter shows a rather sharp solution in the first straight section of
the channel. This, however, deteriorates in the curved section and maintains its modified shape
again in the second straight section of the channel. This loss of accuracy can be attributed to both,
the use of inaccurate flow field (as obtained in the curved section of the channel) and the inability
of the present flux limiter approach to prevent numerical diffusion in this region.

These results suggest that the grid alignment may play an important role in the accuracy of the
computed results. Indeed, whenever possible, the grid lines should be aligned with the flow or with
the expected net flow.

As a second example, in fact, the above curved channel is covered with a boundary fitted tri-
angular grid and with grid lines aligned to the expected flow (see Fig. 2b).

Fig. 5 shows the computed concentrations by using the superbee flux limiter. Again, precise
mass conservation and maximum principle was obtained. Moreover, a comparison between Figs.
4 and 5 shows the importance of grid alignment with the flow: in this latter example one can
clearly observe a much more realistic profile and sharper fronts.

This example shows that, in addition to a high resolution method, a properly devised grid plays
an important role for the accuracy of the numerical result. After all, a flow that is perfectly aligned



Fig. 5. Higher resolution on a flow aligned grid.
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to the grid is equivalent to a set of one-dimensional transport problems for which these methods
are proven to be extremely accurate (LeVeque, 1990). Consequently, for practical two-dimen-
sional problems the grid generation issue should also address the possibility of producing grids
that are flow aligned, or, at least with grid lines oriented with the net flow field.
3. Three-dimensional extensions

The concepts described above also extend to three-dimensional advection–diffusion problems.
The governing hydrodynamic equations are the Reynolds averaged Navier–Stokes equations that
express the physical principle of conservation of momentum and water volume:
ut þ uux þ vuy þ wuz � fv ¼ �px þ mhðuxx þ uyyÞ þ ðmvuzÞz; ð24Þ

vt þ uvx þ vvy þ wvz þ fu ¼ �py þ mhðvxx þ vyyÞ þ ðmvvzÞz; ð25Þ

wt þ uwx þ vwy þ wwz ¼ �pz þ mhðwxx þ wyyÞ þ ðmvwzÞz �
q
q0

g; ð26Þ

ux þ vy þ wz ¼ 0; ð27Þ
where u(x,y,z, t,), v(x,y,z, t) and w(x,y,z, t) are the velocity components in the horizontal x-, y-
and vertical z-directions, respectively; p(x,y,z, t) is the normalized pressure and mh and mv are
non-negative coefficients of horizontal and vertical eddy viscosity, respectively. Finally, q denotes
the water density and q0 is a constant reference density.

Integrating the continuity Eq. (27) over depth and using a kinematic condition at the free-sur-
face leads to the following free-surface equation (see, e.g., Casulli and Zanolli, 2002)
gt þ
Z g

�h
udz

� �
x

þ
Z g

�h
vdz

� �
y

¼ 0: ð28Þ
The mass conservation of a scalar variable is expressed by the following differential equation:
Ct þ ðuCÞx þ ðvCÞy þ ðwCÞz ¼ ðKhCxÞx þ ðKhCyÞy þ ðKvCzÞz; ð29Þ
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where Kh and Kv are prescribed non-negative horizontal and the vertical diffusivity coefficients,
respectively.

The system is finally closed by an equation of state that relates the water density to the concen-
tration of each scalar variable. This equation takes the form
q ¼ qðCÞ: ð30Þ
3.1. Numerical approximation

Once the (x,y) domain has been covered with an unstructured orthogonal grid, along the ver-
tical direction a simple finite difference discretization, not necessarily uniform, is adopted. By
denoting with zkþ1

2
a given level surface, the vertical discretization step is defined by Dzk ¼

zkþ1
2
� zk�1

2
, k = 1,2, . . . ,Nz.

The three-dimensional space discretization consists of prisms whose horizontal faces are the
polygons of a given orthogonal grid and whose height is Dzk.

The discrete velocities and water surface elevation are defined at staggered locations as follows.
The water surface elevation gn

i , assumed to be constant within each polygon, is located at the cen-
ter of the ith polygon; the velocity component normal to each face of a prism, assumed to be con-
stant over the face, is defined at the point of intersection between the face and the segment joining
the centers of the two prisms which share the face; the pressure pn

i;k and the concentrations Cn
i;k are

located at the center of the ith polygon and half way between zkþ1
2

and zk�1
2
. Finally, the water

depth hj is specified and assumed constant on each side of a polygon.
Since Eqs. (24) and (25) are invariant under solid rotation of the x and y axis on the horizontal

plane, with a properly chosen reference frame, a consistent semi-implicit finite difference discreti-
zation for the horizontal velocity component on each vertical face of a prism takes the following
form:
unþ1
j;k ¼ Fun

j;k �
Dt
dj
½pnþh

iðj;2Þ;k � pnþh
iðj;1Þ;k� þ

Dt
Dzn

j;k

mv
j;kþ1

2

unþ1
j;kþ1 � unþ1

j;k

Dzn
j;kþ1

2

� mv
j;k�1

2

unþ1
j;k � unþ1

j;k�1

Dzn
j;k�1

2

 !
;

k ¼ mj;mj þ 1; . . . ;Mn
j ; ð31Þ
where un
j;k denotes the horizontal velocity component normal to the jth side of the grid, at vertical

level k and time step n. The positive direction for un
j;k has been chosen to be from i(j, 1) to i(j, 2). F

is an explicit finite difference operator which accounts for the contributions from the discretization
of the Coriolis, atmospheric pressure, baroclinic pressure, advection and horizontal viscosity
terms.

The vertical space increment Dzn
j;k is defined as the distance between two consecutive level sur-

faces, except near the bottom and near the free surface where Dzn
j;k is the distance between a level

surface and the bottom or free-surface, respectively. Thus, in general, Dzn
j;k depends on the spatial

location and near the free-surface it also depends on the time step. The vertical space increment
Dzn

j;k is also allowed to vanish in order to account for wetting and drying. Of course, the discrete
momentum equation (31) are not defined at the grid points characterized by Dzn

j;k ¼ 0 . Finally, mj

and Mn
j , 1 6 mj 6 Mn

j 6 Nz, denote the lower and upper limit for the k-index representing the bot-
tom and the top finite difference stencil, respectively. As indicated, m and M depend on their
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spatial location and M may also change with the time level to account for the free-surface dynam-
ics. For notational simplicity, the subscript and the superscript to mj and Mn

j will be omitted in the
following development.

In analogy with Eq. (31) a consistent semi-implicit discretization for the vertical component of
the velocity at the top face of each computational prism is derived from Eq. (26) and takes the
following form:
wnþ1

i;kþ1
2

¼ Fwn
i;kþ1

2
� Dt

Dzn
i;kþ1

2

½pnþh
i;kþ1 � pnþh

i;k � þ
Dt

Dzn
i;kþ1

2

mv
i;kþ1

wnþ1

i;kþ3
2

� wnþ1

i;kþ1
2

Dzn
i;kþ1

� mv
i;k

wnþ1

i;kþ1
2

wnþ1

i;k�1
2

Dzn
i;k

 !
;

k ¼ mi;mi þ 1; . . . ;Mn
i � 1; ð32Þ
where the explicit finite difference operator F accounts only for the contributions from the discre-
tization of the advection and horizontal viscosity terms.

In each computational cell below the free-surface, the finite volume form of the incompressibil-
ity condition (27) is taken to be
XSi

‘¼1

si;lkjði;‘ÞDzn
jði;‘Þ;kunþh

jði;‘Þ;k þ P i wnþh
i;kþ1

2

� wnþh
i;k�1

2

� �
¼ 0; k ¼ mi;mi þ 1; . . . ;Mn

i � 1: ð33Þ
At the free-surface, the finite difference approximation of Eq. (28) is taken to be
P ig
nþ1
i ¼ P ig

n
i � Dt

XSi

‘¼1

½si;lkjði;‘ÞDzn
jði;‘Þ;M unþh

jði;‘Þ;M � þ DtP iwnþh
i;M�1

2

; ð34Þ
Finally, by assuming that the pressure in the surface cells is hydrostatic, the system is closed by the
following hydrostatic relation:
pnþ1
i;M ¼ gðgnþ1

i � zMÞ: ð35Þ
The set of Eqs. (31)–(34) forms a linear system of Nz(Ns + 2Np) with unknowns unþ1
j;k , wnþ1

i;kþ1
2

, pnþ1
i;k

and gnþ1
i to be solved at each time step. An efficient numerical algorithm to solve this system can

be found in Casulli and Zanolli (2002).
When the space and time scale of the hydrodynamic problem allows the hydrostatic approxi-

mation to be valid, the governing Eqs. (24)–(26) and the corresponding discretizations (31),
(32) are simplified. The discrete incompressibility condition (33) and the discrete free surface
Eq. (34), however, remain valid as given above (for details see Casulli and Zanolli, 2002).

3.2. Scalar transport

By using the incompressibility condition (27), the mass conservation Eq. (29) can also be writ-
ten in a non-conservative form which implies the maximum principle.

In order to derive a conservative scheme for Eq. (29) that also yield the max–min property, it
must be consistent with both, the discretized continuity Eq. (33) and the discretized free surface
Eq. (34). Assuming that the vertical component of the velocity is positive, a general semi-implicit
form of such a scheme is derived in a similar way to its two-dimensional equivalent (20) and is
taken to be
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where Qnþh
j;k ¼ kjDzn

j;kunþh
j;k , Qnþh

i;k�1
2

¼ P iwnþh
i;k�1

2

and Dn
j;k ¼ kjDzn
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j;k
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, Dn

i;k�1
2
¼ P i

Kv
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2

Dzn
i;k�1

2

are the advective

and the diffusive flux coefficients, respectively; d ¼ maxð0;D� 1
2
jQjÞ and w(r) is the additional

contribution to the flux limiter function that depends on the ratio of consecutive gradients.
Note that an implicit discretization is used for the vertical diffusion terms in order to prevent

that the use of relatively small vertical space increment leads to a severe stability restriction.
One interesting property of the present discretization is in the fact that when only one layer is

considered (M = 1) then Dz = H and the finite volume scheme (36) reduces to the corresponding
two-dimensional Formula (20).

When the flux limiter function is taken to be one of (17), (18) or (19), by using the discrete con-
tinuity Eqs. (33) and (34) and with similar arguments as given for the two-dimensional model, a
sufficient condition that yields the max–min property, and hence stability of Eq. (36), can be
shown to be
Dt 6
P iDzn

i;k

2
P

j2Sþi

jQnþh
j;k j þ 2 Qnþh

i;kþ1
2

��� ���þ P
j2Sþi [S�i

dnþh
j;k

: ð37Þ
With properly specified boundary conditions, Eq. (36) form a set of Np linear, tridiagonal systems
with unknowns Cnþ1

i;k on the same water column. The coefficient matrix of these systems is strongly
diagonally dominant, symmetric and positive definite. Thus, the scalar concentration Cnþ1

i;k can be
readily determined by solving these systems with a direct method.

Once the new concentrations Cnþ1
i;k have been computed for each scalar variable, the equation of

state (30) is used to update the water density qnþ1
i;k in every computational prism.

3.3. Lock exchange

The third example is concerned with the so-called ’’lock exchange’’ problem. This is a severe test
case that requires both, an accurate non-hydrostatic flow algorithm, as well as an accurate advec-
tion scheme.



Fig. 6. Initial configuration for the lock exchange problem.

Fig. 7. Lock exchange solution at t = 10s.
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A rectangular basin of length L = 2m, and depth h = 0.3m is initially filled with two fluids with
different densities q1 = 1.03 and q2 = 1.0, separated by a vertical dam located centrally in the basin
(see Fig. 6).

No physical diffusion was considered but a positive horizontal and vertical viscosity has been
specified in order to prevent the development of Kelvin–Helmholtz interfacial instability. The ini-
tial velocity is zero and the initial free surface is flat, horizontal.

The computational domain is discretized using an horizontal grid of Np = 200 equilateral trian-
gles of side ‘ = 2cm and a uniform vertical increment of Dzk = 1cm.

The calculation is carried out with a time step Dt = 0.01s. Once the dam is removed the result-
ing solution shows the evolution of the fluid interface. The numerical solution obtained at time
t = 10s with the superbee flux limiter is shown in Fig. 7. As expected, the mass is rigorously con-
served and the maximum principle is never violated.

The present results are in agreement with early calculations obtained with traditional finite dif-
ference method and with experimental results (see Casulli and Stelling, 1998)). It is also to be
noted that the chosen grid is uniform and flow independent. Nevertheless, also in this example
use of flux limiters leads to a high resolution of the density profile.
4. Conclusions

A finite volume algorithm for solving the scalar transport equation in free surface hydrody-
namic has been derived, discussed and applied. The discrete velocity field and free surface eleva-
tion are assumed to strictly satisfy the volume conservation. Although most concepts presented
here also extend to general unstructured grid models, a detailed analysis has been presented on
orthogonal unstructured grids for which a recent, robust, efficient and conservative hydrodynamic
model is available.

The resulting algorithm for advection–diffusion equation is locally and globally mass conserv-
ative. Moreover it satisfies a discrete maximum principle. Accordingly, the computed results are
stable and are guaranteed to have oscillation free profiles. Higher resolution can be obtained by
using appropriate flux limiters and, whenever possible, by using a grid that is oriented with the
expected net flow.
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Further studies concerning the applications of the present algorithm to estuaries and coastal
seas are in progress and the preliminary results obtained so far are definitely encouraging.
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Abstract

We present an unstructured grid finite volume three-dimensional hydrostatic model. An important

aspect in 3D models is the choice of horizontal discretisation. For problems that are governed by complex

coastal boundaries an unstructured grid approach seems attractive. This paper focuses on the development

of a new unstructured grid three-dimensional hydrostatic model. An efficient and highly scalable implicit

solution technique is adopted for the solution of the free surface elevation and an semi-Lagrangian
approach is adopted for the advection of momentum and scalars. A number of tests are presented which

show that the model is capable of simulating Kelvin waves in a circular basin and the North Sea.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical models of coastal and ocean flows have generally employed finite differences on
Cartesian grids. However, standard Cartesian meshes are restricted in their ability to fit arbitrary
geometries. Adcroft and Marshall (1998) demonstrated that the staircase representation of coast-
lines, which is typical of structured grids, exerts a spurious form stress on model boundary
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currents. A number of methods exist to overcome this problem and of these, finite volume and
finite element unstructured grid approaches have many attractive features. Both methods have
been demonstrated to work well in both ocean modelling and climate studies, for example Dani-
lov et al. (2004) and Iskandarani et al. (2003) as well as in coastal studies (Pietrzak and Labeur,
2004, Casulli and Walters, 2000, Zhang and Baptista, in press). In this paper we present a new
coastal ocean circulation model.

Walters and Casulli (1998) introduced a finite element method based on the Raviart–Thomas
element. Their objective was to develop a robust method suitable for extreme hydraulics events
with extensive flooding and drying. They therefore selected low order elements free of computa-
tional modes, such that continuity could be satisfied and in which wetting and drying was greatly
simplified. Miglio et al. (1999) adopted a similar method. However, they used a different pressure
gradient formulation, which effectively used the circumcentres of the elements instead of the
centroids.

Here we adopt as a starting point the unstructured grid finite volume approach of Casulli and
Walters (2000). This approach employs a semi-implicit time integration scheme in place of the
commonly used technique of mode splitting. This scheme avoids the difficulties in maintaining
consistency between internal and external modes which are a potential drawback of the latter ap-
proach. The technique of Casulli and Walters (2000) also allows for the inclusion of flooding and
drying in a straightforward manner. They adopted an unstructured orthogonal grid, see Nicola-
ides (1993) and developed a method that allows any polygonal shape to be used. The simplicity of
this approach, the grid flexibility and good scaling properties are attractive features of this
method. However it, like the other previous work cited above, also suffers from one serious draw-
back: the grid is orthogonal. This places severe restrictions on the grid. On a triangular grid the
circumcentres must be used in place of the centroid as the cell centre. Unless all of the angles of a
given triangle are acute, the circumcentre will lie outside the triangle. In order to overcome this
problem we use a pressure gradient discretisation which removes the orthogonality constraint.
In addition we have developed a different semi-Lagrangian advection scheme.

In the following a new model is presented that is based upon an unstructured grid finite volume
approach for the solution of the three-dimensional shallow water equations. With one layer the
model reduces to a semi-implicit method for the two-dimensional vertically integrated equations.
The paper is organised as follows: the shallow water equations are described in Section 2, the
unstructured grid is described in Section 3, the discretisation of the equations is described in Sec-
tions 4 and 5, the scalability in Section 6, some test cases are described in Section 7 and conclu-
sions are presented in Section 8.
2. Equations of motion

Large scale coastal flows may be modelled by the shallow water equations, a well known sim-
plification of the Navier–Stokes equations based on the hydrostatic pressure assumption.

Let d be any unit vector in the horizontal plane and let e be the projection of the fluid velocity,
u, onto d. Then the shallow water equations are given by
r � u ¼ 0 ð1Þ
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mv oe

oz
þ 2ðX � kÞk� uð Þ � d ð2Þ
Here, g is the free surface height, mh and mv are the horizontal and vertical turbulence viscosities, X

is the Earth�s rotation vector, k is the upward unit normal vector and g is acceleration due to
gravity.

We choose to present Eq. (2), the momentum equation, in this form to demonstrate its rota-
tional invariance: it is not necessary to solve for horizontal momentum components in the direc-
tions of the conventional basis vectors, and we do not propose to do so.

By integrating Eq. (1) from the bed (z = h) to the surface (z = g) and applying kinematic bound-
ary conditions at the surface and bed we obtain an expression for the free surface. Once again, we
choose to present this equation in basis independent form
og
ot
þrxy �

Z g

h
uxy dx ¼ 0 ð3Þ
The vertical velocity follows from Eq. (1), the continuity equation.
3. The unstructured grid

3.1. Variable resolution

In order to achieve accurate results in particular regions of interest, in this case the coastal re-
gion, it is necessary to employ a grid with a small mesh size. However, using a very fine grid in
regions whose detailed structure is of less interest is a highly inefficient use of computational re-
sources. To be able to resolve the coast accurately while modelling the sea at acceptable cost, it is
therefore necessary to vary the grid resolution in space. In addition, since coastal flows are
strongly influenced by the shape of the coastline, it is important that flow artifacts introduced
by the presence of grid corners on the coast be avoided. While some grid variation is possible
using curvilinear structured grids, to achieve highly variable resolution in complex geometries,
it is necessary to employ unstructured grids.

In previous work similar to this, a requirement was made that the grid used be orthogonal (Ca-
sulli and Walters, 2000). That is, the line joining two adjacent column centres must be orthogonal
to the column face between them. On a triangular grid, this can be achieved by using the circum-
centres as the centres of the triangles. However, unless all of the angles in a triangle are acute, its
circumcentre will lie outside the triangle. Generating triangular grids in complex geometries which
contain no obtuse angles is a formidable challenge. We therefore choose not to impose an orthog-
onality requirement. This choice allows the use of a much wider range of grids but has implica-
tions for the treatment of the pressure gradient term.
3.2. Element shape

The generation of unstructured grids based on simplices is a well developed field. This is in large
part due to the long history of unstructured finite element codes. In the shallow water case, the
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Fig. 1. Elevation and perspective views of prismatic and tetrahedral elements showing face centres and a representative

selection of face normal vectors. It is evident in the case of the tetrahedron that the horizontal components of those

vectors are small.
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geometry of the problem presents particular challenges to the use of 3-dimensional simplices (tet-
rahedra) in staggered grid finite volume calculations. Since the horizontal cell dimensions may be
orders of magnitude larger than the vertical dimension, the cell face normal vectors of a tetrahe-
dron will be approximately vertical making accurate resolution of horizontal velocities difficult.
By instead using prisms as cells we can ensure vertical cell faces thereby obtaining horizontal nor-
mal vectors and hence accurate horizontal velocity resolution (Fig. 1).

The use of prismatic elements also simplifies the task of grid generation. First a two-dimen-
sional grid is generated for the domain. This grid defines a set of water columns stretching from
the free surface down to the bed. Each water column is then divided into a series of cells. This is
currently implemented as a z-level scheme, although other vertical discretisations are in principle
possible (Pietrzak et al., 2002). A further important benefit of this grid structure is that the scalar
and momentum evaluation points are aligned vertically. This both facilitates the efficient evalua-
tion of the pressure gradient term and enables a partial decoupling of the momentum and conti-
nuity equations which has advantageous scaling properties. We will return to this matter in
Section 6.

3.3. Grid notation

To facilitate discussion of the discretised problem, we adopt the following conventions based
loosely on those found in Casulli and Walters (2000). Let G be an unstructured grid and (G,E)
its graph. We adopt the convention that i will always indicate an index in G while j will always
indicate an index in E. For example xi refers to the position of the ith column centre while xj refers
to the position of the jth column face. Let Si be the set of the indices of the column faces adjacent
to column i. Then define the function j such that j(i, l), 1 6 l 6 jSij is the index of the lth column
face adjacent to column i. Similarly, we define i(j, l), l 2 {1,2} to be the column(s) adjacent to face
i. Fig. 2 illustrates this naming scheme. Finally, we will reserve the index k to refer to the layer of a
given cell and define L and a function k in an analogous manner to S and the function j. The layer



Fig. 2. Grid fragment showing indexing conventions for water columns and column faces.
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of a horizontal face above level k is k þ 1
2

and the layer below is naturally k � 1
2
. Observe that this

numbering is physically consistent in that ðk þ 1Þ � 1
2
¼ k þ 1

2
.

In addition to the index numbers for water columns and column sides, some notation will be
used to consistently refer to the data associated with those objects. These are displayed in Table
1. The notation n and N require a little explanation. Nj is the fixed normal vector associated with
column side j. ni,j on the other hand is the normal vector at side j which points outwards relative to
the adjacent column cell i. This is most often used in the case of the quantity (n Æ N)i,j which has
value 1 if Nj is outward pointing and �1 if it is inward pointing relative to column i. Then,
ðn �NÞiðj;1Þ;j ¼ �ðn �NÞiðj;2Þ;j ð4Þ
In the case of horizontal cell faces, we remove some notational clutter by specifying, without loss
of generality, that all normal vectors point upwards. That is, we require
8gi 2 G8k 2 LiNi;k�1
2
¼ ð0; 0; 1Þ
4. Discretisation of the equations

Generalising the approach in Casulli and Walters (2000), we adopt a semi-implicit finite differ-
ence discretisation of the momentum equation and semi-implicit finite volume discretisations of
the continuity equation. For the remainder of this section, let G be an unstructured grid and
(G,E) its graph.



Table 1

Notation for data associated with water columns and column sides

Ai Cross section area

A*,k Cell face area

h* Bed depth

L* Set of layer indices of a water column or column side

ni,*,[,k] Cell or column face outward normal vector

N*[,k] Cell or column face normal vector

Si Set of column side indices of water column i

u*,k Cell face normal velocity component

u*,k Velocity vector

x*[,k] Position

Dz*,k jjx�;kþ1
2
� x�;k�1

2
jj

dj Distance between xi(j,1) and xi(j,2)

g* Free surface height

kj Length of polygon edge

gi[,k] Cell or water column per se

e*[,k] Cell or water face per se

An asterisk is a wildcard for a member of {i, j} while square brackets ([]) indicate an optional argument. For temporally

variable data, time step will be indicated with a superscript.
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4.1. The free surface equation

As one way of ensuring conservation of mass, we adopt a finite volume discretisation of the
Eq. (3)
Ai
ogi

ot
þ
X
j2Si

ðn �NÞi;j
X
k2Lj

Aj;kuj;k

 !
¼ 0 ð5Þ
Adopting a semi-implicit h scheme in time and rewriting in vector notation, we have
Aig
nþ1
i ¼ Aig

n
i � hDt

X
j2Si

ððn �NÞi;jAj � U nþ1
j Þ � ð1� hÞDt

X
j2Si

ððn �NÞi;jAi � U n
j Þ ð6Þ
where
Aj ¼

Aj;kðj;1Þ

..

.

Aj;kðj;jLjjÞ

26664
37775; U j ¼

uj;kðj;1Þ

..

.

uj;kðj;jLjjÞ

26664
37775
The continuity equation integrated over a single cell rather than the whole water column is used to
solve for ui;kþ1

2
. In this case Eq. (1) becomes
Ai ui;kþ1
2
� ui;k�1

2

� �
þ
X
j2Si

ðn �NÞi;jAj;kuj;k ¼ 0 ð7Þ
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4.2. The momentum equation

The momentum equation is solved for the velocity component normal to each cell face. The
terms of the continuity equation are divided into three groups and dealt with separately. First
let F be an explicit finite difference operator representing the Coriolis, advection and horizontal

viscosity terms. Next let H be a linear function on {gi} such that Hj approximates og
onj

���
xj

. Finally,

we discretise the vertical viscosity term with the conventional finite difference approach. Under
this discretisation scheme, Eq. (2) becomes
unþ1
j;k ¼ Fun

j;k � gDt hH nþ1
j þ ð1� hÞH n

j

� �
þ Dt

Dzn
j;k

mv
j;kþ1

2

unþ1
j;kþ1 � unþ1

j;k

Dzn
j;kþ1

2

� mv
j;k�1

2

unþ1
j;k � unþ1

j;k�1

Dzn
j;k�1

2

 !
ð8Þ
Once again we rewrite this expression in vector form
Mn
j U nþ1

j ¼ Bn
j � hgDtHnþ1

j DZj ð9Þ
where
Mn
j ¼

�zn
j;kðj;1Þ þ an

j;kðj;1Þ�1
2

�an
j;kðj;1Þ�1

2

�an
j;kðj;2Þþ1

2

Dzn
j;kðj;2Þ þ an

j;kðj;2Þþ1
2

þ an
j;kðj;2Þ�1

2

�an
j;kðj;2Þ�1

2

� � �
�an

j;kðj;jLjjÞþ1
2

Dzn
j;kðj;jLjjÞ þ an

j;kðj;jLjjÞþ1
2

26666664

37777775

with an

j;k ¼ mv
j;k

Dt
Dzn

j;k
and
Bn
j ¼

�zn
j ðFun

j;kðj;1Þ � ð1� hÞgDtH n
j Þ

..

.

Dzn
j ðFun

j;kðj;jLjjÞ � ð1� hÞgDtHn
j Þ

26664
37775
Mn
j ð1; 1Þ and Mn

j ðkðj; jLjjÞ; kðj; jLjjÞÞ may have additional terms inserted to account for bottom
friction and wind stress respectively. We have adopted the formulation for these terms presented
in Pietrzak et al. (2002).

In order to evaluate the Coriolis and advection terms, it is also necessary to calculate vj,k,
the component of velocity normal to face j,k. Casulli and Walters (2000) reconstruct the
velocity based on interpolation of the normal velocity components at nearby faces. However,
Zhang and Baptista (in press) observe that it is possible to efficiently solve for the tangential
velocity using (2). They claim that this approach is more accurate. Zhang and Baptista (in
press) observe that the matrix Mn

j is independent of horizontal direction so that the tangential
velocity may be obtained simply by solving (9) for a right hand side modified in the obvious
manner
Mn
j Vnþ1

j ¼ Cn
j � hgDtInþ1

j DZj ð10Þ
Here, C and I are defined in the analogous manner to B and H above.
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4.3. The pressure gradient term

On an orthogonal staggered grid, the pressure gradient can be discretised in a straightforward
manner with a central difference scheme
H j ¼ ðn �NÞiðj;1Þ;j
giðj;2Þ � giðj;1Þ

dj
ð11Þ
In the non-orthogonal case, the interval joining two adjacent column centres is not parallel to the
normal of the face between those water columns. It is therefore necessary to use more informa-
tion, and hence a larger stencil, to calculate the projection of the discretised pressure gradient onto
the column face normal. We adopt here the path integral method introduced for curvilinear struc-
tured grids in van Beek et al. (1995) and generalised to unstructured grids in Wenneker et al.
(2002). The essence of this approach is that the positions of nearby column centres are used to
construct a basis for R2 and the gradient of the pressure field is evaluated with respect to that basis
by applying a central difference approximation on the surface elevations at those column centres.
The gradient vector so constructed is then projected onto the water column face normal.

For some arbitrary ej 2 E we will construct {tj,1, tj,2}, a unit (although not necessarily ortho-
gonal) basis for R2. We choose
tj;1 ¼ ðn �NÞiðj;1Þ;j
xiðj;2Þ � xiðj;1Þ

dj
so that
rP � tj;1 �
giðj;2Þ � giðj;1Þ

dj
For numerical reasons, it is important that jtj,1 Æ tj,2j � 1. That is, the basis vectors should be far
from collinear. This can be achieved by using the four water column centres {a,b,c,d} indicated in
Fig. 3 to interpolate the surface elevations at � and f. We then choose
Fig. 3. The grid stencil of the path integral discretisation for the pressure gradient term.
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tj;2 ¼
x� � xf

jjx� � xfjj
¼ xa þ xb � xc � xd

jjxa þ xb � xc � xdjj

The corresponding component of the pressure gradient vector is then given by
rP � tj;2 �
ga þ gb � gc � gd

jjxa þ xb � xc � xdjj

After some rearrangement, this yields an expression for the water column face normal component
of the pressure
H j ¼
tT

j;1

tT
j;2

" #�1

Nj

0@ 1A � ðn �NÞiðj;1Þ;j giðj;2Þ�giðj;1Þ
dj

gaþgb�gc�gd

jjxaþxb�xc�xdjj

" #
ð12Þ
By construction of tj,1, in the special case, where tj,1 = Nj, Hj reduces to (11). It should be noted
that, for each j, Hj is a linear operator on {gi} with coefficients constant in time. It is therefore only
necessary to calculate these coefficients once for each water column face.

An advantage of pressure gradient discretisation on orthogonal grids is that Eq. (11) represents
a symmetric operator and the resulting free surface matrix is symmetric positive definite (Casulli
and Walters, 2000). This enables the use of the conjugent gradient method which is efficient and
guaranteed to converge. The path integral formulation does not share this property and the result-
ing matrix must therefore be solved using a more general technique such as GMRES or BiCG-
Stab. It should be noted, however, that on a high quality grid, that is one in which the cells
are close to regular in shape, the path integral formulation is dominated by tj,1 so that the result-
ing matrix may be considered a perturbed symmetric matrix. It is therefore to be expected that the
additional cost of the matrix solution will not be excessive. Similarly, no significant convergence
problems have been encountered.

It is also necessary to derive an expression for Ij, the column side tangential pressure gradient
component in (10). In the orthogonal case, (11) provides no information concerning the tangential
component of the pressure gradient so Zhang and Baptista (in press) resort to interpolating the
surface heights at the corners of the water columns. The path integral formulation adopted here,
however, yields a direct expression for the full pressure gradient vector so that an expression for
the tangential component follows immediately
Ij ¼
tT

j;1

tT
j;2

" #�1

Tj

0@ 1A � ðn �NÞiðj;1Þ;j giðj;2Þ�giðj;1Þ
dj

gaþgb�gc�gd

jjxaþxb�xc�xdjj

" #
ð13Þ
where Tj is the horizontal column face tangent vector. It should be noted that (13) is not required
for the solution of the surface elevation field so that (10) is, in fact, explicit in g.

4.4. The advection and Coriolis terms

Advection of momentum is simulated using an semi-Lagrangian approach based on the reverse
tracking of streamlines while the Coriolis term is calculated on the basis of an extrapolated veloc-
ity. At this stage we disregard horizontal viscosity. Under this approach, the operator F in (8)
becomes
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Fun
j;k ¼ u�j;k � nj þ f ðvn

j;k þ cðvn�1
j;k � vn

j;kÞÞ ð14Þ
where u�j;k is the velocity interpolated at the end of a streamline followed back through the interval
Dt from the point xj,k, f = 2X Æ k is the Coriolis parameter and c 2 [0,1] is an extrapolation
parameter which is most often set to 0.5. Whereas the derivations in the previous sections apply
on unstructured grids composed of prisms of arbitrary cross-section, we shall assume for the
derivations of the semi-Lagrangian scheme that the grid is composed purely of triangular
prisms.
4.5. Interpolating the velocity

Since the water column sides are known to be vertical, it is only necessary to interpolate the
horizontal components of the velocity field. Should the vertical component be required, for exam-
ple as a diagnostic tool, this can be interpolated from the vertical velocities at cell top and bottom
faces independently of the horizontal components.

The horizontal velocity components are interpolated in a linear two stage process. First, con-
sider Pi,k, the intersection of the plane containing the points {xjkj 2 Si,k} with the water column gi.
Then, for any x 2 Pi,k, the horizontal velocity may be interpolated using linear Raviart–Thomas
basis functions.

Finally, the horizontal velocity vector at any point x 2 gi may be constructed by interpolating
between adjacent planes Pi,k, Pi,k+1 along the vertical line through x.
5. Streamline tracking

The quality of the streamline algorithm has been recognised as an important factor in the suit-
ability of an semi-Lagrangian advection model (Oliveira and Baptista, 1998). Care must be had
that the calculated streamlines do not exhibit unphysical behaviour, such as crossing each other
or a closed boundary. If momentum, and ultimately other scalar quantities, are to be conserved it
is also imperative that the conservation of mass which is ensured by the finite volume discretisa-
tion of the continuity equation is translated to closed streamlines.

The approach we adopt is a generalisation of that originally developed for structured grids in
two dimensions in Dunsbergen (1994). First, a velocity field, û, is constructed throughout the grid.
This velocity field is then integrated analytically to produce an expression for the evolution of the
position of a point under the flow in time. This function can then be evaluated to find appropriate
Lagrangian trajectories for (14). There are a number of properties which are desirable in such a
field

(1) It must agree with known data.
(2) It must be easy to integrate analytically.
(3) The streamlines produced by integrating the field must not cross each other or closed

boundaries.
(4) It should satisfy the continuity equation everywhere.
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If we choose a cell-wise linear velocity field then condition 2 is satisfied automatically since the
position function may be recovered by solving a system of at most three first order linear ODEs
for each cell. It is an immediate consequence of Gauss� Theorem that a cell-wise linear velocity
field which satisfies the continuity equation integrated over a cell in fact satisfies continuity at
every point in that cell. Since a finite volume discretisation was adopted for the continuity equa-
tion, any cell-wise linear interpolation û which satisfies
Z

e�;k

û �N�;k dA ¼ A�;ku�;k ð15Þ
will ensure that condition 4 is satisfied. Due to the linearity of û, an equivalent condition to (15) is
that, at any cell face centroid, û �N�;k ¼ u�;k. So, on a grid whose face centres are defined to be the
centroids of those faces, and for cell-wise linear û, condition 4 is equivalent to condition 2.

One possible solution is to use the same Raviart–Thomas basis functions used to interpolate
velocity in Section 4.5. Such a field, however, is not in general continuous. In particular this means
that the face normal velocity component may change sign discontinuously at the cell face in vio-
lation of condition 3. This is a fatal problem. Not only does it adversely affect the conservation
properties of advected quantities, it prevents the unambiguous following of streamlines which
is essential for the semi-Lagrangian scheme.

An alternative approach is to require that the normal velocity to each cell face be constant over
that cell face. This constraint ensures that the velocity field is continuous along cell faces. It also
significantly reduces the complexity, and hence the cost, of calculating the field in each cell. For
each cell gi,k, the velocity field may be written
ûi;kðxÞ ¼ Ai;kxþ bi;k ð16Þ

Since the cell sides are known to be vertical
oû
oz
¼ ov̂

oz
¼ 0 ð17Þ
Similarly, since the top and bottom faces of a cell are horizontal
oŵ
ox
¼ oŵ

oy
¼ 0 ð18Þ
A consequence of (17) and (18) is that Ai,k is block diagonal. In other words, the equations for û
and v̂ are decoupled from the equation for ŵ. This reduces the problem of integrating the velocity
field to the solution of a two-dimensional linear first order ODE and a single first order linear
ODE.
5.1. Accuracy

An semi-Lagrangian linear interpolation as proposed in the preceding sections is equivalent to a
linear upwind scheme. Such schemes are first order in space. The constant face normal velocity
component requirement of the streamline algorithm is also a first order discretisation. A mecha-
nism for making the streamline tracking component second order was proposed in Dunsbergen
(1994) while flux-corrected transport algorithms were proposed in Oliveira and Fortunato
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(2002) as a better alternative to simple linear interpolation. The improvement of the semi-
Lagrangian scheme will form an important part of the future development of the model.
6. Scalability

The scale of the problems under consideration dictates that the code must be implemented for
parallel computers. For this to be successful, both the operation count per step and the com-
munication load must scale appropriately. A feature of the shallow water equations is that it
is possible to solve for free surface height and vertical velocity profile separately so that the size
of the largest semi-implicit linear system which needs to be solved at each time step depends on
the horizontal but not the vertical resolution. The same technique means that the communica-
tion load for the solution of that system is only dependent on the horizontal resolution. If
we assume that a sparse system of m equations may be solved by Krylov subspace methods
in Oðm2Þ operations (Trefethen and Bau, 1997) then the following scaling relationships in Table 2
will hold.

It is important to note that the computational requirements increase with resolution faster than
the communication requirements. This guarantees that for sufficiently large problems, computa-
tional resources rather than communication bandwidth will be the limiting factor. Since commu-
nication is the weak link in many current cluster computing facilities, this result is important in
establishing that this is a problem which can be solved effectively on those machines.
7. Examples

7.1. Closed circular streamlines

A key feature of the streamline tracking algorithm is that streamlines of a steady two-dimen-
sional flow which remain in the domain should be closed (Batchelor, 1967, pp. 75–77). To test this,
a simple rotating flow in a circular basin was specified and a streamline traced backwards through
several rotations (Fig. 4). The basin diameter is 150km and the streamline is at a radius of 75km.
The velocity at the streamline is 0.5m/s. The error in the closure of the streamline is approximately
1m in 470km, a relative error of 2 · 10�6. Since some of the input data was calculated to single
precision, this error may be attributable to machine noise.
Table 2

Scaling properties of the Navier–Stokes and shallow water equations. Nx and Nz are characteristic horizontal and

vertical cell counts respectively

3D Navier–Stokes Decomposed

3D Shallow water

Operations per time step OððN 2
xNzÞ2Þ OððN 2

xÞ
2Þ

Communications per time step OððN 2
xNzÞðNxNzÞÞ OðNxðN 2

xÞÞ



Fig. 4. Streamline tracking in a rotating flow. The basin width is 150km and the streamline is tracked at a range of

75km. The error in the tracking is not visible at this scale.
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7.2. Standing wave in a basin

The accuracy of the pressure discretisation and the degree of artificial diffusion present in the
scheme are tested by constructing a standing wave in a channel. This test case is based on that
found in Pietrzak et al. (2002). As in that case, we specify a long, shallow basin 1000m in length
and 200m in width. The depth is set at 10.197m resulting in a theoretical long wave phase speed
of 10m/s. The basin was meshed with an unstructured grid of triangles with a requested typical
side length of 10m. Vertical layers were established at intervals of 1.02m. Since an objective of
this test is the observation of artificial diffusion, the dissipative terms (the vertical viscosity and
the bed friction) were set to zero. The system is driven only by an initial surface elevation of
cosine form with wavelength twice the basin length and amplitude 5mm. The low amplitude
is designed to ensure that the wave response of the system is linear. The implicitness (h) of
the time integration is set to 0.51 and the simulation was run for 2000s (10 periods of the stand-
ing wave). The test was repeated for time steps of 1, 2, 5 and 10s. On an unstructured grid, the
Courant number is not a precisely defined quantity, however using the specified typical side
length, we can obtain approximate Courant numbers of 1, 2, 5 and 10 respectively. The evolu-
tion of the surface height at one end of the channel is shown in Fig. 5. Very good agreement
with the predicted period and minimal loss of amplitude are observed in the low Courant num-
ber cases while phase lag and loss of amplitude are somewhat more visible as the Courant num-
ber increases.

7.3. Kelvin wave in a basin

To test the efficacy of the pressure gradient and Coriolis discretisations, simulations were con-
ducted of the propagation in a closed basin of a wave. The first simulation was conducted in a
circular basin of radius 250km with a water depth (h) of 5m. The latitude was set at 45, h was
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Fig. 5. Surface height evolution at the centre of one end of the channel.
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set to 0.51 and the time step was 20min. The viscosity and bed friction terms were set to zero. The
system was driven by an initial free surface displacement and velocity
gðr; hÞ ¼ 0:05eðr�r0Þ=LD cos h ð19Þ

uhðr; hÞ ¼ 0:05
ffiffiffiffiffiffiffiffi
g=h

p
eðr�r0Þ=LD cos h ð20Þ

urðr; hÞ ¼ 0 ð21Þ
where LD is the Rossby radius, in this case approximately 68km. In the limiting case of an infi-
nitely large basin, this is the expression for a Kelvin wave of amplitude 5cm (Csanady (1982)).

Some results of this simulation are presented in Fig. 6. The Kelvin wave is not the only free
mode exhibited by a circular basin (Lamb, 1932; Csanady, 1982). In this simulation we also ob-
served a mode crossing the basin. Due to the generation of higher frequency basin modes the
amplitude of the Kelvin wave decreased almost immediately to 0.3m. The continued evolution
of the Kelvin wave is illustrated in Fig. 7.

This simulation has been run for up to three months simulation time with good results. After 3
months the solution becomes noisy. With bottom friction was imposed the model was stable over
a year of simulated time, but the Kelvin wave was damped. The noise generated appears to be
related to the Coriolis term and further work on its discretisation is underway.

To demonstrate the capacity of the model to accurately resolve coastlines, we created a basin
with the coastline and bathymetry of the North Sea. Typical mesh length scales range from 20km
in the open sea down to 300m on the coast (Fig. 8(a)). A mesh of this quality with this range of
scales would be impossible to construct using conventional Cartesian methods. To simplify
boundary conditions, the open boundaries were closed. The complex geometry of the basin makes
the calculation of an initial Kelvin wave solution impractical. Instead, we simply applied an initial
set-up so that the surface height in the North-Eastern corner of the simulation was 40cm higher
than that in the English channel. The bottom friction coefficient was set to 0.0025. Horizontal vis-
cosity was, as in the derivation of the model, neglected. The time step was set to 20min. The Kel-
vin wave was observed to propagate around the edge of the basin with a phase velocity consistent
with theoretical expectations.



Fig. 6. A Kelvin wave in a round basin. (a) The grid used for the Kelvin wave test case. (b) The Kelvin wave after 53h.

The wave has travelled just over one rotation. The surface height in this figure ranges from �0.029m to 0.030m. (c) The

Kelvin wave after 242h (just over 10 days). The surface height range is now �0.026m to 0.030 m. (d) The Kelvin wave

after 480h (20 days). The surface height range is �0.022m to 0.026m.
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Fig. 8. Propagation of a Kelvin wave in a closed basin. The shading indicates surface elevation displacement from a

reference value. Fifteen equally spaced contours are added in each case. (a) The grid used for the North Sea simulation.

(b) The initial state. (c) After 7h the trapped coastal wave is clearly visible. (d) At 49h the trapped wave has travelled

around the basin almost twice.
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8. Conclusion

A new unstructured mesh three-dimensional finite volume model for the shallow water equa-
tions has been presented. The model builds on existing work in this field (Casulli and Walters,
2000; Miglio et al., 1999; Walters and Casulli, 1998) by applying a different and more flexible pres-
sure gradient discretisation and a novel streamline tracking algorithm based on analytical integra-
tion of the velocity field. The examples shown demonstrate the advantage of an unstructured grid
approach and illustrate a key advantage of the streamline tracking algorithm presented here. The
authors believe that this model forms a basis for the simulation of shallow water in complex
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geometries, and in particular coastal seas, with significant advantages over more traditional
techniques.
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Abstract

The grid generator amatos has been developed for adaptive modeling of ocean and atmosphere circu-

lation. It features adaptive control of planar, spherical, and volume grids with triangular or tetrahedral ele-

ments refined by bisection. The user interface (GRID API), a Fortran 90 module, shields the application

programmer from the technical aspects of mesh adaptation like amatos� hierarchical data structure, the

OpenMP parallelization, and the effective calculation of a domain decomposition by a space filling curve

(SFC) approach.

This article presents the basic structure and features of amatos, the powerful SFC ordering and decom-
position of data, and two example applications, namely the modeling of tracer advection in the polar vortex

and the development of the adaptive finite element atmosphere model PLASMA (parallel large scale model

of the atmosphere).
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1. Introduction

The grid generator amatos (Behrens, 1996, 2003) has been developed to make adaptive mesh
generation available for dynamic time dependent flow problems as arising in climate simulations.
The philosophy of amatos is to hide away all nontrivial tasks concerning mesh generation and
adaptation from the application programmer. The complete mesh generation process can be con-
trolled by approx. 25 Fortran 90 subroutines provided by a programming interface (GRID API).
This Fortran 90 module also defines additional variables, data structures and constants.

The generic field of application for amatos is atmosphere and ocean circulation modeling with
semi-Lagrangian advection schemes. The time stepping scheme, however, is not part of amatos.
The semi-Lagrangian background is merely reflected by the choice of service routines (e.g., inter-
polation) implemented in the user interface, which may be extended for further needs. A complete
description of the functionality in amatos cannot be the focus of this article, however, there are
several techniques included in the library that are new to the atmospheric and oceanic modeling
communities and are worth mentioning. This is the intention of Section 2.

Recently, several authors showed different approaches to adaptive ocean or atmosphere mod-
eling (e.g. Blayo and Debreu, 1999; Bacon et al., 2000; Giraldo, 2000; Barros and Garcia, 2004).
Most of the approaches differ from the one taken here, by the way the grid is refined. While most
adaptive models to date use locally structured quadrilateral grids, amatos generates triangular
grids. In order to manage unstructured and hierarchical triangular grids efficiently, we utilize
space-filling curves (SFC). A description of the benefits of SFC can be found in Section 3.

Finally with the machinery of amatos at hand, we show some examples of successful adaptive
experiments. Starting from simple linear advection, we show results of the development of an
adaptive dynamical kernel in Section 4.
2. Features of amatos

In essence, amatos is a grid generation library that supports the development of adaptive
ocean and atmosphere models. The refinement strategy used in the 2D version as well as in the
3D version of amatos is bisection of triangle�s resp. tetrahedra�s marked edge (Bänsch, 1991).
The user has to provide an initial coarse mesh and a topographic outline of the domain. The initial
mesh should be as coarse as possible in order to take maximum advantage of the underlying tree
structure. amatos then refines the mesh uniformly up to a given basic level and refines further
locally, based on marked grid cells. Two sequences of meshes, starting from the user-given initial
mesh, are depicted in Figs. 1 and 2. Note that for spherical grids and also for irregular boundaries,
the refined cells are not necessarily nested into the original coarse cells.

amatos supports arbitrary finite element methods (among them spectral elements) by provid-
ing a signature data structure that defines the basic properties of a finite element. That is

• the order of approximation,
• the number of degrees of freedom (DOF) per element,
• the degrees of freedom per element�s node/edge/interior,
• the DOF�s position in barycentric coordinates.



Fig. 1. Initial triangulation (icosahedron) and uniform refinement of a spherical grid.

Fig. 2. Initial triangulation and subsequent uniform and adaptive refinement of a square grid.
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Once element types are defined as an abstract item (before compiling the library), a registration
mechanism allows users to allocate as many variables as required on each pre-defined element
type at run time. Examples of element types and their signatures are given in Table 1.

Since finite element methods (FEM) use basis functions that are defined every where in the com-
putational domain, interpolation within the FEM framework is easy to achieve. One only has to
evaluate the basis function with the right coefficients at the given coordinate. Additionally, ama-
tos provides cubic spline interpolation and radial basis function (RBF) interpolation. A RBF
interpolation function is given by
Table

Comp

Eleme

i_ord

i_unk

i_npo

i_gpo

i_epo

r_gwe

r_ewe
If ðxÞ ¼
XK

l¼1

½kl � uðknl � xkÞ� þ P ðxÞ;
1
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where If(nl) = f(nl) for l = 1: K fulfills the interpolation condition, K is a given number of neigh-
boring sample points nl, k Æ k is the Euclidean norm, and P(x) is a polynomial that is required
to close the arising problem of calculating coefficients kl from the given interpolation conditions.
For a more detailed description of RBF the reader is referred to Buhmann (2003).

In particular the RBF interpolation is suitable for adaptive refinement, since it is constructed
for arbitrarily scattered data points. Additionally, RBF interpolation can be easily used to esti-
mate gradients at arbitrary points, even if the particular FEM representation does not allow
for derivation. This is true, because the basis functions u can be chosen such that an analytic
derivative is easy to calculate. amatos defines a unified user interface to all the available interpo-
lation and gradient estimation routines.

The interpolation is provided for semi-Lagrangian time discretization schemes. Since the semi-
Lagrangian discretization of advection dominated partial differential equations is based on inter-
polation of the above mentioned type, there are no stability issues with the refinement scheme
used by amatos. Neta and Williams (1986) found instabilities for so called criss-cross grids with
a special finite element discretization of the advection equation. amatos�s refinement scheme can
produce those grids as can be seen in Fig. 2. Users therefore should avoid discretization schemes
that are vulnerable to criss-cross instabilities.

In order to gain maximum performance in both, the grid generation phase and the numerical
calculation phase, these two phases of a typical adaptive program are well separated in the phi-
losophy underlying the design of amatos. Fig. 3 demonstrates this splitting. The grid is viewed
VectorGather

Numerical
Calculations

VectorScatter

Grid
Manipulations

Time (h):      0.00
(c) J. Behrens 2000
Program: Flash90

Time (h):      0.00
(c) J. Behrens 2000
Program: Flash90

Time (h):      6.00
(c) J. Behrens 2000
Program: Flash90

Fig. 3. amatos uses a gather and scatter step to switch between numerical calculation phase and grid manipulation

phase within the adaptive program.
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as a container of data that can be accessed by a user program by gather or scatter operations.
Once a gather operation has been conducted data is available in a consecutive (vector-like) data
structure. Code optimization for such data structures is easily performed. In order to efficiently
perform grid manipulations and parallel data communication, the grid is in an object oriented tree
structured data format. Note that for typical programs the gather and scatter steps incur an over-
head of less than 1%.

Before compiling the library, the user has to choose between the planar, spherical, or volume
version of amatos. OpenMP parallelization is toggled by the corresponding compiler directives.
amatos has been successfully executed on different hardware and operating systems, including
SGI Origin, SUN Fire, IBM Regatta, Linux with Intel�s Fortran90 compiler ifc. Corresponding
Make-files are included in the package.
3. Grid partitioning with a space-filling curve approach

Grid partitioning is a crucial part of adaptive mesh generation, because the computational load
of realistic simulations demands for efficient parallelization, and for an adaptive mesh the parti-
tioning has to be recalculated frequently. In amatos, Behrens and Zimmermann (2000) employ a
space filling curve approach (SFC). This partitioning is very fast, guarantees optimal load balanc-
ing and good data locality by construction and results in rather short (though not optimal) inter-
face length. For the quality of SFC induced partitions see Zumbusch (2001). Moreover, due to the
fractal nature of the SFC the resulting ordering retains data locality on any level of memory hier-
archy from cache levels to main memory. Last but not least, the SFC induces a very efficient
ordering of stiffness matrices for solvers with ILU-type pre-conditioners. Thus, a further local
renumbering on sub-domains becomes obsolete.

The global SFC index is calculated at the time of an element�s construction. As depicted in Fig.
4(a) and (b), the algorithm is straight forward on the hierarchical mesh when regarding the indices
as binary numbers. Stepping down all levels of refinement and adding the corresponding
bits according to the relative position in the bisected parent triangle yields the SFC index. The
Fig. 4. Construction of the space filling curve (SFC) through the elements for (a) uniform planar, (b) irregularly refined,

and (c) uniform tetrahedral grids.



Fig. 5. SFC through the elements and a mesh partitioning into 14 sub-domains.
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algorithm can easily be extended to tetrahedral grids, again relying on bisection refinement Fig.
4(c). Fig. 5 shows an adaptive grid on the sphere with a SFC through the elements and a zoom
into the refined region. The partitioning is obtained by simply dividing the SFC index space into
equal sets.

In most applications, one is ultimately interested in ordering the unknowns (degrees of free-
dom, DOF). Taking this into account, amatos sets up an ordering of all DOF located at vertices,
edges, and/or elements (depending on the FE basis function) by collecting and counting them on
the way along the elements� SFC. For matrix ordering, the reverse of this numbering should be
taken to obtain a local arrow head down shape in the sparsity pattern. When the user retrieves
data arrays from the GRID API, all arrays are sorted along this reverse SFC (rSFC).

Often, numerical schemes require the solution of a sparse linear system. A powerful class of
methods, widely used for such problems, are Krylov subspace solvers with preconditioning based
on incomplete matrix factorization. The efficiency of these pre-conditioners strongly depends on
matrix ordering. In the following, we present an example showing that the rSFC can compete with
other matrix reordering strategies.

The sparsity pattern of a typical stiffness matrix for linear FE with rSFC numbering of DOFs
can be studied in Fig. 6. Most entries are clustered very close to the diagonal. More complex
matrices for coupled linear equations with several variables and mixed FE (e.g., in the atmosphere
model PLASMA, see section 4.2) can be set up according to the SFC numbering, too, with a sim-
ilar sparsity pattern.

For incomplete LU-factorization (ILU) preconditioning, the rSFC ordering proves to be a
powerful candidate among well known fill-in reducing orderings like reverse Cuthill-McKee
(RCM) and quotient minimum degree (QMD). An example for a coupled linear equation in
PLASMA with approx. 200,000 unknowns is given in Table 2. We employ the FoSSI solver inter-
face (Frickenhaus et al., 2004) and choose the PETSc solver library (Balay et al., 2003) with
BiCGstab and level ILU(l) as pre-conditioner to reduce the residual by a factor of 10�13. Original
and rSFC ordering are provided by the calling routine, while RCM and QMD ordering are cal-
culated by the PETSc solver.



Fig. 6. Sparsity pattern of the stiffness matrix for an adaptively refined grid with original numbering (nodes in the order

of creation) and rSFC numbering of nodes.

Table 2

Influence of matrix orderings on the iteration count and computation time for ILU(1)–preconditioned BiCGstab on

one processor of a SunFire 15k: natural amatos numbering (original), reverse Cuthill-McKee (RCM), quotient

minimum degree (QMD), reverse space filling curve (rSFC)

Ordering Original RCM QMD rSFC

# iterations 66 22 20 12

Solution time (s) 355.0 94.5 92.7 77.9
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4. Examples

4.1. Advection model for tracer transport

First experiments with adaptivity in atmospheric modeling allowed to model tracer advection in
the polar vortex with high resolution on a workstation computer (Behrens et al., 2000). Snapshots
of the adaptive grid are depicted in Fig. 7. In the mentioned study it could be shown that increas-
ing resolution locally decreases numerical dissipation such that fine filaments, caused by shear
stress in the wind field, can be represented. For a more detailed discussion see the cited
publication.

4.2. Barotropic shallow water model of the atmosphere: PLASMA

In order to achieve reliable assessments of future climate development and the impact of
anthropogenic influence an improved understanding of natural climate variability on time-scales
from seasons to decades is required. For this, nonlinear interactions between atmospheric



Fig. 7. Snapshots from an adaptive model (5 km minimal resolution) for tracer transport in a simulated wind field of

the polar vortex.
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processes at different spatial and temporal scales play a fundamental role. A realistic representa-
tion of such multi-scale interaction is important not only for climate modeling but also for numer-
ical weather prediction. The application of adaptive techniques for atmospheric flows, therefore,
seems to be natural. For the development of the atmospheric model PLASMA (Parallel LArge-
scale Self-adaptive Model of the Atmosphere) we utilized the mesh generator amatos and con-
trolled the refinement strategy by atmospheric flow processes.

To date, a barotropic version of the model has been implemented based on the nonlinear shal-
low-water equations (SWE). SWE describe the horizontal flow of an hydrostatic gas with constant
density within a shallow atmospheric layer. The current implementation of PLASMA uses a sca-
lar formulation of the SWE on the unit sphere S, derived from the constrained vector formulation
in (Côté, 1988) by applying rots and divs to the momentum equation. By defining vorticity
f: = rotSu and divergence d: = divSu we obtain our model equations on S for the simulation time
T and the static underlying orography Uoro:S! R
@tfþ u � rSfþ fdþ f d ¼ �u � rSf ;

@tdþ u � rSdþ DSU� f f ¼ �ðn� uÞ � rSf �
P3

i;j¼1

ðrSuiÞjðrSujÞi � u � u;

@tUþ u � rSUþ Ud� Uorod ¼ u � rSUoro;

�DSw ¼ f;

DSv ¼ d;

rotSwþrSv ¼ u:

ð1Þ
This set of equations represents the scalar formulation of the SWE applying a Helmholtz
decomposition. f is the Coriolis parameter and n the unit vector in the vertical direction, u:S ·
(0,T)! R3 with u Æ n = 0 denotes the horizontal velocity field and U:S · (0,T)! R the geopoten-
tial height field. The spherical differential operators $S, DS, rotS, divS, rotS on S have been defined
according to ideas by (Dziuk, 1988). Functions w,n :S · (0,T)! R denote the stream function and
the velocity potential respectively.

For the numerical implementation of these spherical SWE the Lagrange-Galerkin method
has been applied (Morton et al., 1988; Süli, 1988). This method combines the semi-Lagrangian
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method (SLM) with the finite element method (FEM) on the sphere. The SLM discretizes the
material derivative along trajectories and has good stability properties (Pironneau, 1989; Quarte-
roni and Valli, 1997). The FEM on the sphere (Dziuk, 1988) is constructed on an approximating
polyhedron consisting of a triangular grid with nodes on the sphere. A detailed description of the
numerical methods can be found in Läuter (2003).

For developing appropriate numerical schemes the mesh generator amatos plays a crucial role.
amatos provides complex adaptive data structures for spherical triangular grids. Furthermore
the solver package FoSSI (Frickenhaus et al., 2004) solves large linear systems generated by
the elaborate treatment of nonlinearities in the model equations.

To evaluate the implemented numerical schemes, different test cases have been regarded. In
order to compute the numerical error exactly, we have chosen cases for which an analytical solu-
tion is known. Test cases include simulations of solid body rotation with different rotation axes.
The angle a denotes the inclination of the flow�s rotation axis to the earth�s axis, see Fig. 8. For
a = 0, the test case is a steady state solution of the SWE consisting of a zonal flow corresponding
to test case 2 of Williamson et al. (1992). For a ¼ p

4
a non-stationary periodic solution is obtained.

Initial conditions are given by
Fig. 8

rotatio
u0ðxÞ ¼ c0aðaÞ � x() f0ðxÞ ¼ c02aðaÞ � x; d0ðxÞ ¼ 0; 8x 2 S

U0ðxÞ ¼ � 1
2
½ðc0aðaÞ � xÞ2 þ c02aðaÞ � xX � x� þ H ; 8x 2 S
where c0: = u0/R, aðaÞ :¼ ð� sinðaÞ; 0; cosðaÞÞT � u0 ¼ 30m/s is the maximum velocity, R the earth�s
radius and X the angular velocity vector of the earth. The constant H is determined in such a way
that the mean value of U0 corresponds to an atmospheric scale height of 8km. With the underly-
ing orography UoroðxÞ ¼ ðX�xÞ

2

2
we obtain the solutions for solid body rotation.

Fig. 9 displays the temporal evolution of the relative L2 discretization error of the numerical
solution for different time steps and grid widths. For a = 0, the discretization error decreases con-
siderably for increased spatial resolution. Because this test case is in steady-state, the SLM pro-
vides a good approximation of the upwind points independently of the time step length. Thus,
the dependence of discretization error on the time step is rather small. For the non-steady
solid-body rotation with a ¼ p

4
the discretization error decreases significantly with decreasing time

step, because the calculation of the trajectories with the SLM strongly depends on the time step.
. Validation of PLASMA. Inclination angle a and initial condition of the velocity field u for the solid body

n with a = 45� (non-stationary analytical solution).



Fig. 9. Simulation of analytical test cases with PLASMA. Temporal evolution of the relative discretization error L2 for

the geopotential height field U.
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The influence of increased spatial resolution is rather small. For these simulations of analytical test
cases we have demonstrated, that the discretization error decreases for increasing spatial and tem-
poral resolution and thus the experimental convergence of the numerical method has been proven.

We have obtained first insights into the capability of the model to cope with more realistic
atmospheric flow situations by studying the development of quasi-stationary planetary Rossby
waves, forced by orography. Here, we intended to reproduce Rossby waves by forcing a tropo-
spheric westerly current with one localized mountain. The scale height of the atmospheric layer
is 8km. A mountain of 2km height with a zonal extension of �6700km and a meridional exten-
sion of �3900km is situated at 30� N, 0� W. The westerly flow has its maximum of 30 m/s at 30� N
and a meridional extension of 20� (cf. the orography and the initial geopotential height field to-
gether with the initial wind field in the upper row of Fig. 10).

For this test case, two simulations over 20 days have been performed, one with a static, uniform
grid with grid width of 522km (middle row, right plot of Fig. 10), the other one with a time-depen-
dent, adaptive grid, generated every time step by amatos according to the development of the
flow. The grid refinement criteria is determined for every time step by the absolute values of vor-
ticity and divergence. The initial grid has a uniform grid width of 428km, the grid after 20 days
simulation time is displayed in the lower row, right plot of Fig. 10. One can notice fine resolution
in the region of the westerly flow and coarse resolution outside the jet region.

Both simulations reveal the development of quasi-stationary, orographically forced Rossby
waves with wavelengths of �5000km which is in good agreement with typical wave lengths of ob-
served Rossby waves and results from Rossby wave theory. After 20 days, both simulations show
a similar large scale structure of these waves (see Fig. 10, left plots in middle and lower row). Non-
negligible differences can be found in the structure of the smaller scale areas of high and low geo-
potential values northward and southward of the jet. The feedback of these structures into large
scale waves and therefore into the adaptive grid control of amatos can only be studied by per-
forming longer simulations. This will be a matter of future research.

The demonstrated successful application of adaptive mesh control with amatos in the global
atmospheric model PLASMA represents a feasible approach to an adequate representation of
two-way feedback between global and regional scales. Numerical convergence could be proved
as well as the model�s capability to simulate the most important feature of the extra-tropical large
scale circulation, namely the planetary Rossby-wave formation. Future studies will put special
emphasis on two-way feedback and the influence on the variability of Rossby-waves.



Fig. 10. Simulation of Rossby waves with PLASMA. Upper row: initial geopotential height field (left, in m2/s2) and

orography (right, in m2/s2). Middle row: geopotential height fields after 20 days for static uniform grid (left, in m2/s2)

and corresponding grid with 522km grid width (right). Lower row: Geopotential height fields after 20 days for process-

controlled adaptive grid (left, in m2/s2) and corresponding grid with grid widths between 428 and 1041km (right).
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4.3. amatos in oceanography

From the grid generation point of view, the difference between atmospheric and oceanographic
modeling is the highly irregular geometry of ocean basins. amatos is capable of handling com-
plex boundaries given by polygonal lines or land-ocean bitmaps. While still an initial mesh has
to be given by the user, this initial grid is required to only approximately resemble the given do-
main. In a first step, this initial mesh is corrected such that all boundary nodes exactly match an
actual boundary position. In the refinement, inserted new boundary nodes are moved such that
the grid resembles the domain outline.

Some adjustments are necessary to correct numerical schemes in amatos that depend on the
tree structure and nesting of refined grids, since at the boundary exact nesting can no longer be
satisfied. Special care regarding the initial grid has to be taken near corners and bays in order
to guarantee a good mesh quality and coverage of the domain. An example mesh of a complex
geometry is depicted in Fig. 11.



Fig. 11. Example of a grid that resolves a highly irregular coast line, that is Lago Titicaca in the Andes of South

America. Left: initial grid, right: after refining 12 levels.
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5. Outlook

An ongoing project is the concise validation and code optimization of amatos version 2.0. The
support of arbitrary finite element types introduced more data nodes which in turn made consid-
erable extensions of the SFC support and the routines for data retrieval necessary.

Further plans reflect the needs of applications carried out with amatos. In the range of the
PLASMA project, error estimators based on mathematical and physical criteria are developed.

A major concern are sparse linear solvers. As amatos is parallelized with OpenMP while state
of the art parallel sparse solver packages are based on MPI, we had to find a way to establish effi-
cient communication between OpenMP-threads and MPI-task (Rakowsky et al., 2003). However,
a pure OpenMP library of sparse solvers remains desirable and we have started to implement the
most promising domain decomposition solvers in OpenMP (Frickenhaus et al., 2004). Another
promising approach is to make use of amatos� hierarchical data structure in a multi-grid solver,
e.g., a cascading multi-grid solver (Bornemann and Krause, 1998).
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Abstract

The portable software FoSSI is introduced that—in combination with additional free solver software

packages—allows for an efficient and scalable parallel solution of large sparse linear equations systems aris-

ing in finite element model codes. FoSSI is intended to support rapid model code development, completely
hiding the complexity of the underlying solver packages. In particular, the model developer need not be an

expert in parallelization and is yet free to switch between different solver packages by simple modifications

of the interface call.

FoSSI offers an efficient and easy, yet flexible interface to several parallel solvers, most of them available

on the web, such as PETSC, AZTEC, MUMPS, PILUT and HYPRE. FoSSI makes use of the concept of

handles for vectors, matrices, preconditioners and solvers, that is frequently used in solver libraries. Hence,

FoSSI allows for a flexible treatment of several linear equations systems and associated preconditioners at

the same time, even in parallel on separate MPI-communicators. The second special feature in FoSSI is the
task specifier, being a combination of keywords, each configuring a certain phase in the solver setup. This

enables the user to control a solver over one unique subroutine. Furthermore, FoSSI has rather similar fea-

tures for all solvers, making a fast solver intercomparison or exchange an easy task. FoSSI is a community
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software, proven in an adaptive 2D-atmosphere model and a 3D-primitive equation ocean model, both for-

mulated in finite elements.

The present paper discusses perspectives of an OpenMP-implementation of parallel iterative solvers

based on domain decomposition methods. This approach to OpenMP solvers is rather attractive, as the

code for domain-local operations of factorization, preconditioning and matrix–vector product can be read-

ily taken from a sequential implementation that is also suitable to be used in an MPI-variant. Code devel-

opment in this direction is in an advanced state under the name ScOPES: the Scalable Open Parallel sparse

linear Equations Solver.
� 2004 Elsevier Ltd. All rights reserved.

Keywords: Sparse parallel solvers; Iterative solvers; Finite element; User interface
1. Introduction

Modularized software is the basis for efficient and portable code development and is a prereq-
uisite for rapid software development of co-operating working-groups for example in the field of
earth system modeling. The resulting inter-operability of software components nowadays plays an
important role also in scientific computing. This is due to the fact that inter-disciplinary research
has become a major paradigm. However, software infrastructure for efficient co-operation are fre-
quently missing. Furthermore, creation of long-term re-usable and thus portable software requires
knowledge about the life-time and capabilities of the used software components. In the field of
scientific research another serious problem may arise. During research successful algorithms turn
to be no longer applicable with growing problem complexity. As an example one may consider the
development of a finite-element-model that in the initial phase uses linear elements and later needs
higher-order elements, e.g., for stability reasons. In such a case it may turn out that the initially
used solver libraries cannot be used in the final code version. It may then be not feasible to switch
to another solver within the remaining project time. The solution to this problem is to use an al-
most omnipotent solver that integrates almost all solvers present on the web. Such a solver pack-
age can be found for example within the SLES module of PETSC (Balay et al., 2002), the Portable
Extendible Toolkit for Scientific Computing. However, it still remains an open problem how
developers of the model code may test various combinations of solvers and preconditioners of-
fered by the underlying solver library within a reasonable time and without deep knowlegde of
the spectrum of applicable methods. Thus there is a strong demand for a simple-to-use program-
ming-interface for the end user that is programmed and maintained by an expert, who is able to
rapidly extend the interface on user-demands. FoSSI, the Family of Simplified Solver Interfaces, is
such a collection of user-interfaces to different parallel sparse linear solvers, grown up on user de-
mands. The interfacing is greatly simplified for linear systems with matrix-representations in com-
pressed sparse row (CSR) format. The supported MPI-parallel (Gropp et al., 1994) sparse
iterative solvers (Saad, 1996; van der Vorst, 2003) are PETSC, PILUT (Karypis and Kumar,
1997), AZTEC (Tuminaro et al., 1999), HYPRE (Falgout and Yang, 2002), and the parallel direct
solver MUMPS (Amestoy et al., 2000). The interfaces are able to keep several matrices and pre-
conditioners within each solver library, allowing to reuse distributed matrix values and factoriza-
tions for consecutive solves. Each solver is equipped with a single subroutine for solver
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configuration and invocation. Different tasks within the interface, e.g., distribution of matrix val-
ues, incomplete factorization, solution and cleanup, can be combined within a single task-identi-
fier. The parallelism is completely hidden behind the specification of an MPI-communicator,
allowing to use various solvers at the same runtime, or, alternatively, allowing parallel solution
of many different linear equation systems synchronously. FoSSI can be downloaded from the
web under

http://www.awi-bremerhaven.de/InfoCenter/IT/WorkingGroups/SciComp/FoSSI.html. Version
1.2 is tested on the following list of platforms (Type/OS/MPI/Compilers):

SGI/Irix6.5/MPT/MIPS, IBM-Power4/AIX5.1L/POE/XLF,XLC, IA32-PC/RedHat 9/LAM-
MPI/Intel, SUNFire/Solaris9/ClusterTools/Forte-7.
2. FoSSI—overview

FoSSI emerged from a user interface developed for the PILUT-solver (Karypis and Kumar,
1997) within the FENA project, which is the precursor of the Finite Element Ocean Model FEOM
(Danilov et al., 2004). It has been found that the usage of such a powerful user interface makes
code development very efficient. Nevertheless, PILUT in its MPI-2 variant turned out not to be a
good choice on some compute platforms , e.g., the IBM-Regatta. Therefore, and for convenience
(user acceptance), the interface principles have been overtaken for other solver libraries, such as
PETSC, AZTEC and HYPRE. All three of these offer the user a wide area of accessible data
structures and configuration options. Especially the library internal storage of distributed matri-
ces, vectors and preconditioners and their reference by handles can be exploited within the user
interfaces by attributing to each parallel linear equations system a FoSSI-handle, which is simply
a user selected number out of a limited range. The second principle of the mentioned libraries is to
separate the setup of matrices, vectors, preconditioners, the configuration of the solver, the invo-
cation of the solver and the deallocation of solver internal data structures. This feature has been
made transparent to the user within the FoSSI-interfaces by means of the task specifier concept. A
task specifier is a sum of elementary task specifiers, each being a configuration or action option for
the parallel solver. For example, in the PETSC-interface a parallel matrix structure is generated,
filled with symmetrically scaled values by specifying the task PET_STRUCT + PET_MVALS +

PET_SYM_SCAL. A more detailed preconditioner configuration is given by the task specifier
PET_PCASM + PET_ASMB + PET_ICC + PET_OVL_2, which sets up an additive Schwarz-precon-
ditioner with overlap 2 in a symmetric implementation (known in PETSC as PETSC_ASM_
BASIC), and an incomplete Cholesky factorization on the subdomains. This setup is specified to-
gether with the solve specifier, e.g., PET_SOLVE + PET_CG for a conjugate gradient iterative
solver.

For a good solver selection and tuning, the user needs detailed performance (timing) informa-
tion. At least, the number of applied iterations and the times for factorization and solution should
be given back to the user or be printed on output. FoSSI gives some more information back to the
user, such as the elapsed time for setup of a parallel matrix, for gathering the solution, for the full
call, or even the cumulated time for all calls. The specifier PET_REPORT orders performance
information in text form before the code returns from the FoSSI-interface routine. The main lim-
itation of the current state of FoSSI is its required input format of matrices and vectors. FoSSI

http://www.awi-bremerhaven.de/InfoCenter/IT/WorkingGroups/SciComp/FoSSI.html
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uses global matrix and vector data. However, the interface needs only values on rows that are
actually used by the MPI-task the row is attributed to (according to the user-given partitioning).
In this way, the user does not have to take care about distributed data formats. This limitation
will be overcome in the implementation of a self-contained solver library equipped with a FoSSI
similar user interface. This solver will be independent of other solver packages (see last section).
3. FoSSI used in atmosphere and ocean modeling

FoSSI is currently used in two projects: first, within the Finite Element Ocean Model FEOM
(Danilov et al., 2004), which is a 3D primitive equation ocean model on a static mesh of columns
of tetraeders, and second, within the PLASMA model (Läuter et al., 2003), which is a 2D-adap-
tive atmosphere model based on the shallow water equations on the sphere, formulated in finite
elements with a semi-Lagrangian discretization of time. Both codes currently work with upto
approxiomately 0.5 million degrees of freedom. The setup times for the matrix and vector distri-
bution through FoSSI is negligible within both models (below 0.5s for four CPUs, perfectly
scaling; data not shown). It has been found within the adaptive code, that the overhead to re-
distribute data based on new global matrix structures due to re-meshing is also negligible.
Detailed performance data is not given in the present paper as the underlying numerical cores
of the model codes are described in other papers. Accordingly, we do not report on performance
measurements of the employed solver packages. However, it is worth mentioning that the PETSC-
solver has demonstrated a superior scalability and flexibility with respect to the spectrum of pre-
conditioners. The HYPRE algebraic multigrid preconditioners used for the solution of 3D tracer
advection equation in the FEOM code showed comparable performance.
4. An OpenMP implementation performance outlook

For some model codes, based on OpenMP-parallelization (see Chandra et al., 2000), a solver
based on the same parallelization technique is needed, as the coupling of a multi-threaded
(OpenMP) code to an MPI-solver, waiting in the background, may become rather costful.
Although it is possible to communicate data between threads and MPI-tasks in a safe way
(Rakowsky et al., 2002), an optimal scheduling of the threads and/or MPI-tasks may require each
of them to run on a separate processor. In particular, a ‘‘spinning’’ MPI-Task is awakening faster,
but does not allow for a fast context switch to a corresponding OpenMP-thread running on the
same processor. The consequence is, that on some compute platforms, for a scalable code the
number of required processors is the number of MPI-tasks in the solver plus the number of
threads in the rest of the code. Such a processor setup obviously is not easily load-balanced, as
the processors running the multi-threaded code have to wait for the solution of the linear equa-
tions system, thus wasting compute time.

Generally, an OpenMP (multi-threaded) parallel iterative solver can be programmed on the
basis of a sequential (single CPU) code by distributing parallel work within OpenMP parallel
do-loops. Here, the problem of memory affinity arises: for larger SMP computers memory is dis-
tributed over several CPU-boards of the system, being remotely accessible at an increased latency
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time, typically an extra 200–300ns per cache line. Thus, requests for data from a remote board
generate overhead in terms of idle CPU time. On some systems this can be overcome by a so called
‘‘first touch memory allocation policy’’, meaning, that physical memory addresses are generated
at the first time memory is accessed (e.g., initiallized), rather than when it is allocated. This allows
the operating system to place pages of memory near the accessing CPU, e.g., on the same system
board. As memory access on cache-based systems is organized in the cache hierarchy by reference
to pages, the memory of a data array may be stored physically on more than one system board.
Obviously, to reach performance, the programmer must organize memory accesses in his code in
such a way that memory affinity is preserved throughout the runtime of the program code. This
means, that parallel memory access patterns must be repeated, i.e., access to an array of data must
be parallelized in the same way throughout the code, such that each thread deals most of the time
with processor near, i.e., affine memory.

Iterative sparse solvers are based on three time intensive operations: preparation of a precon-
ditioner (in most cases a variant of incomplete factorization), the matrix–vector product and the
preconditioning step (application of a preconditioner to approximately solve a sub-problem with-
in the iterative algorithm). The matrix–vector product can be easily OpenMP-parallelized through
a parallel outer (row-) loop. If the matrix is ordered with near diagonal structure, it makes sense to
store vectors and matrix values in a processor affine memory, such that only a minor fraction of
matrix–vector values is accessed from remote memory. In contrast, the more robust precondition-
ers based on incomplete factorizations of higher level, have an immanent sequential part in their
preparation as well as in their application. One standard way to overcome this problem is to treat
the problem with a domain decomposition technique (see Chan and Mathew, 1994), separating
work into independent subdomains, each treated by its own processor. Within OpenMP, regard-
ing the memory affinity, this is naturally done by introducing a thread-index into shared (global)
data structures. Technically spoken, a static global data array is always shared between the
threads, and its pages physical locations may be gouverned by memory affinity. To preserve mem-
ory affinity in a transparent way, each subdomain may be given a leading index to the global ar-
rays used for communication, e.g., a buffer vector Buff[i] becomes Buff[t][i], where t is
the logical thread number (obtained from omp_get_thread_num()). Within this approach, it is
straight forward to code the basis of OpenMP-parallel solvers from MPI-parallel solvers. The
MPI-send and receive operations can simply be replaced by memory copy operations between
buffers. Furthermore, the code for factorization and preconditioner application can be taken over
from an MPI-implementation without changes. In the next version of FoSSI, an efficient and ro-
bust parallel solver will be provided to the community that is independent of the parallelization
paradigm, namely, the user may chose the MPI- or the OpenMP-version with the same set of fea-
tures and rather similar performance characteristics.

To demonstrate the efficiency of the approach discussed above, performance measurements are
presented in Table 1, allowing to compare the overhead of communication of the MPI- and the
OpenMP version of code. It is seen that the vector update (also known as vector gather) in the
domain decomposition method is more efficient in OpenMP than in MPI (columns 2 vs. 3). This
is due to the overhead of the MPI-implementation over the direct memory-to-memory-copy in the
OpenMP-code, although the MPI communication is forced to work over shared memory. In the
matrix–vector product, the MPI version of code shows more overhead than expected from
the pure update timings. Obviously, the matrix–vector product of the domain-decomposed code



Table 1

Communication times in seconds for 1000 vector updates/matrix–vector products on IBM-p690 (1.3GHz); the matrix is

from the 2D-Poisson problem

#CPUs MPI-update OMP-update MPI-mvu OMP-mvu mv omp-for

2 0.06 0.06 23.9 20.5 20.6

4 0.09 0.05 12.47 10.4 10.4

8 0.11 0.03 6.26 6.1 5.7

16 0.13 0.06 3.51 3.5 3.3

30 0.15 0.2 2.32 3.1 4.1

mvu means domain decomposed matrix–vector product with vector update. mv omp-for is the row-loop-parallel

OpenMP version of the global sparse matrix–vector product.
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performs similarly fast as the parallel loop code. On a p690, four 8-CPU subsystems (Multi-Chip-
Modules) are coupled by a communication bus, thus the communication overhead is expected to
increase when more than eight CPUs are used. It is noteworthy that we did not analyse how proc-
esses and threads were distributed over the 32 CPUs. To achieve a reliable memory affinity it is
necessary to bind processes/threads to CPUs.
5. Conclusion

We introduced a convenient way to access various parallel solvers for finite element modeling
codes of geophysical flow, even for the unexperienced user. The Family of Simplified Solver Inter-
faces provides a flexible and highly performing parallel tool. Further development in the field of
robust iterative solvers parallelized in OpenMP and MPI are in progress and necessary, in partic-
ular, for real domain decomposed model codes, i.e., where global matrices and vectors are not
available. The emerging solvers will also take into consideration system specific optimization op-
tions such as processor binding for memory affinity and higher optimization techniques for vector
architectures. In contrast to the existing solvers with FoSSI-interfaces, these new solvers will allow
for a matrix and vector distribution in such a way that the user may program the code around the
solver in a completely domain decomposed way with only processor local data structures. This is
achieved by handing over the communication routine for vector updates to the user. It is planned
to make these solvers accessible to the scientific community for non-commercial use in source
form as a portable maintained stand-alone software package under the acronym ScOPES.

As presented in this paper, FoSSI may serve as a starting point to rapid parallelization of model
codes strongly preserving the performance characteristics of the underlying solver packages. Fur-
thermore, FoSSI can be read as an exemplary code for modularization techniques that make code
development much easier. The reader is strongly encouraged to make free use of the concepts and
the know-how gathered within the freely available source code of FoSSI.
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Abstract

A cross-sectional non-linear model of wind induced circulation in a stratified basin of constant depth,

neglecting rotational effects, is used to examine the influence of grid resolution upon the accuracy of inter-

nal wave propagation. In addition the effect upon the accuracy and stability of the solution on an irregular
grid of using a scale selective formulation of horizontal diffusion is considered.

The initial response to an along-basin wind impulse is coastal downwelling at the downwind end, with

upwelling of heavy water and convective mixing at the upwind end. Subsequently a horizontal density front

and associated internal waves propagate away from the coast. Calculations show that the intensity of the

horizontal and vertical currents associated with the front depends upon vertical and horizontal eddy viscos-

ity, with intensity and hence horizontal gradient increasing as viscosity decreases.

Calculations using a range of uniform and variable horizontal grids show the importance of a fine near-

coastal grid on the short time scale when the front is formed. With an irregular grid and constant horizontal
viscosity physically unrealistic short waves appear as the frontal region propagates onto the coarser grid.

However when horizontal viscosity is computed using a Smagorinsky formulation, this acts as a grid size

dependent filter and removes the physically unrealistic short internal waves, thereby stabilizing the solution.

If the empirical coefficient in the Smagorinsky formulation is too large, excessive smoothing can occur,

spoiling the advantages of using an irregular grid. A reduced value of the coefficient reflecting the grid

refinement on an irregular grid gave a stable solution without excessive smoothing.
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1. Introduction

Historically the application of irregular (in the sense that the grid resolution in physical space
varies with position, usually by the use of a transformation of the equations i.e. a mapping tech-
nique) or unstructured grid schemes either in the form of finite differences and boundary fitted
coordinates (e.g. Johns et al., 1981) or the more common finite element method (e.g. Luettich
and Westerink, 1995) in three-dimensional oceanographic models has primarily focussed upon
homogeneous sea regions. In such cases enhanced spatial variability and hence the need for a finer
grid increases as the water shallows and the coastline is approached. This has led to grid refine-
ments in near coastal regions with a coarser grid offshore. As we will show the situation is more
complex in the case of internal wave propagation.

Although unstructured grids have been used for some time in large scale baroclinic (stratified)
oceanographic models (Naimie et al., 2001 and references therein), in recent years there has been
an increasing interest in the problem of developing unstructured grid models for internal wave
propagation and determining an optimal arrangement of the grid in these models. In particular
the role of internal waves in shelf edge regions has become increasingly important. Recently pro-
cesses involving the generation and propagation of internal waves and the mixing associated with
them upon the large scale circulation (e.g. Spall, 2001), with application to climate studies has
been recognized as an important problem. In the case of internal waves generated in shelf edge
regions there is a clear case for enhanced resolution in the generation region to follow complex
variations in bottom topography. However, as we will show, even in the case of flat bottom topog-
raphy, the physical aspects of internal wave generation and propagation may restrict the degree to
which a grid can be refined, and the need to use some form of scale selective horizontal diffusion
parameterization.

To illustrate the importance of these effects in a problem involving internal wave generation and
propagation we examine the case of the wind response of a stratified region to a sudden wind im-
pulse. In order to separate on the short time scale, and hence study in isolation the initial upwind
and downwind response to an imposed wind stress, a closed cross-sectional model of 400 km ex-
tent rather than a short lake type situation was used. A constant water depth h = 250 m was as-
sumed. This geographical extent and water depth corresponds to a cross-sectional model of the
northern North Sea which is stratified in summer (Davies, 1980). This problem is an ideal test case
in that in the absence of rotation and for a constant water depth there is an analytical solution for
a linear two-layer system (Heaps, 1966).

For the non-linear problem there is no analytical solution, however an accurate solution
(namely a ‘‘benchmark’’) can be obtained using a fine horizontal uniform grid. The degree to
which the solution from the irregular grid calculations differs from this ‘‘benchmark’’ as the grid
varies can be used to assess the influence of grid variation upon the accuracy of the solution. The
analytical solution together with the numerical solutions presented here yields significant insight
into the parameters that control the success or failure of irregular grids in modelling internal wave
propagation.

The objective of the paper is to use this problem to determine the key parameters that control
the accuracy and stability of an irregular grid three-dimensional model when applied to internal
wave propagation. The importance of using a scale selective horizontal diffusion is examined. A
three-dimensional non-linear model (Xing and Davies, 2001) which has been applied previously
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with a regular grid in realistic sea regions, is used here with an irregular grid to examine the impor-
tance of grid resolution upon internal wave production and propagation.

An overview of the three-dimensional model with brief details of the numerical methods used is
given in the next section. In subsequent sections the numerical results with a range of uniform and
non-uniform grids are presented, with conclusions given in a final section.
2. Hydrodynamic numerical model

As the three-dimensional non-linear hydrodynamic equations and transport equation for
temperature using Cartesian coordinates in the horizontal and r coordinates in the
vertical have been given previously (Xing and Davies, 2001) only brief details will be presented
here.

Since the model solves the fully non-linear baroclinic equations it contains the Baroclinic Pres-
sure Force terms, the full three-dimensional momentum advection terms, and the vertical and
horizontal diffusion terms. In initial calculations horizontal viscosity (Am) and diffusivity (Ah)
are given by Am = 100 m2 s�1 and Ah = 100 m2 s�1. Subsequently a shear and grid size dependent
formulation for Am using a Smagorinsky (1963) formulation, given by
Am ¼ CDxDy
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with C an arbitrary scaling coefficient and Dx, Dy horizontal grid spacing is applied. In the model,
u, v, w denote velocity in the x, y, z coordinates. At the land boundary the normal component of
flow is set to zero. The surface stress is set equal to the wind stress. At the seabed a linear friction
law is applied with a coefficient K = 0.0005 ms�1, an appropriate value in a shallow region. The
numerical solution proceeds by discretizing the equations on an Arakawa C grid, with a single
time-stepping method. By this means uncoupling of solutions that can occur in the two time step
‘‘leap frog’’ method is avoided. The irregular nature of the grid in physical space was produced by
introducing a mapping factor into the hydrodynamic equations (e.g. Johns et al., 1981). By this
means a central and hence second order accurate finite difference scheme could be applied to dis-
cretize the transformed (mapped equations). The model equations are transformed by a mapping
factor from a variable grid to a unit length Cartesian grid by letting variables, f, be functions of
variables (X,Y) which are in turn functions of x and y, thus
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with subscript denoting partial differential.
As we will show, in some calculations, there is a sharp horizontal density gradient associated

with internal wave propagation. To be able to retain this effect, temperature advection is solved
using a Total Variation Diminishing (TVD) scheme described by James (1996). This method has
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been very successful in advecting sharp density gradients associated with internal tides over steep
topography (Xing and Davies, 1998).
3. Calculations

3.1. Analytical and bench-mark solution

In all calculations described subsequently a cross-sectional region of lateral extent 400 km,
bounded by two coastlines, with a constant depth h = 250 m was examined. Rotational effects
were ignored. A uniform initial temperature distribution with corresponding density given by
the profile in Fig. 1 was assumed. The eddy viscosity profile (Fig. 1) is identical to that used by
Davies (1980) with diffusivity having the same profile and values. Motion was started from a state
of rest by the sudden imposition of a wind pulse of 0.5 Pa and duration 12 h. This is identical to
that used by Davies (1980), and is designed to produce internal waves without excessive mixing.
By this means results can be understood in terms of the analytical model of Heaps (1966).

By approximating the density distribution used in the numerical model, by two homogeneous
layers of thickness h1 and h2 with density q1 and q2 in each layer, it is possible to derive an ana-
lytical solution (Heaps, 1966) for the internal motion. One important difference between layered
and continuous models is that in a two-layered model only the surface mode (seiche) and the first
Fig. 1. Profiles of (a) initial density, (b) assumed (specified) eddy viscosity profile.
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internal seiche, together with their higher harmonics can be generated, whereas in a continuously
stratified basin, an infinite number of internal modes with higher harmonics are possible.

Neglecting the effect of bottom friction on the periods of the seiches, and approximating
the density distribution by two layers h1 = 55 m, h2 = 195 m, with q1 = 1026.3 kgm�3 and
q2 = 1027.5 kgm�3 (see Fig. 1) gives a first internal mode seiche period of T1 = 317 h. The extent
to which the numerical model reproduces this will indicate how well it can advect the density field.

Heaps (1966) showed that for a suddenly applied wind stress of the form used here, a narrow
coastal region of downwelling at the downwind end of the basin, with a corresponding upwelling
at the opposite end occurred. As time progressed the higher modes were damped. Physically this
corresponds to the lateral propagation and broadening of the boundary layers. Internal seiche
motion then takes place. During this period further damping of the higher modes occurs due
to bottom and internal friction, leaving eventually the first mode, which has a single node in
the centre of the basin.

This problem is ideal for testing an irregular grid in that the initial response occurs in the lateral
boundary layers with a subsequent propagation away from these into the interior. Consequently
the grid must be able to resolve the initial response, and the subsequent propagation, without
excessive damping or smoothing of the propagating internal wave field. The analytical solution
therefore suggests that the crucial test of accuracy is the near coastal response on the short time
scale.

However, the solution with the non-linear numerical model will be more complex than the ana-
lytical. One source of additional complexity arises from the non-linear terms, which allow energy
to move to shorter wavelengths with the possibility of non-linear instability. The other is that at
the upwelling favourable end of the basin, heavy (cold) water is moved above lighter (warm) and
convective mixing occurs. By using a wide basin the two different responses can initially be studied
in isolation, enabling the irregular grid to be studied under different conditions.

Before applying the irregular grid it is essential to obtain an accurate solution on a fine regular
grid which can be used as a ‘‘benchmark’’ solution against which the accuracy of other solutions
can be determined. A benchmark grid size was chosen based on the convergence of the solutions
and had 6250 grid boxes each of 64 m and used to determine the accuracy of the coarser grid solu-
tions. In order to examine the influence of reducing grid resolution, and hence understand its im-
pact in the irregular grid calculations, a range of uniform grids of decreasing resolution namely
UG1 (0.2 km), UG2 (2.0 km) and UG3 (20 km) was also used (Table 1). For the variable grid res-
olution meshes (Table 1) the placement of the boxes was either by means of a piecewise linear
Table 1

Details of the various grid resolutions

Grid Resolution (km)

UG1 0.2 (uniform)

UG2 2.0 (uniform)

UG3 20.0 (uniform)

VG1 2.0–20.0 (variable)

VG2 0.2–12.3 (variable)

VG3 0.2–3.25 (variable)
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‘‘curve’’ (VG1, VG2) or by means of a quadratic curve (VG3), see Fig. 2. In all calculations fol-
lowing Xing and Davies (2001), 27 sigma levels were used in the vertical, with enhanced resolution
in the surface wind driven high shear layer.

Results from the benchmark solution show that during the first 10 h a surface wind driven cur-
rent (Fig. 3) occurs with downwelling at the down wind end of the basin, and a corresponding
upwelling at the opposite end. This leads to a displacement of the temperature surfaces in a near
coastal layer, of the order of a couple of grid boxes wide. The circulation in the basin is shown by
the streamlines (Fig. 3, t = 10 h), with closely spaced streamlines indicating stronger currents.

At the downwind end of the basin a horizontal temperature gradient is produced which grad-
ually propagates to the left (Fig. 3, t = 20 h). Associated with the wind forced surface current
upwelling occurs at the other end of the basin, leading to some convective mixing, which reduces
the horizontal temperature gradient which propagates away from the coastal boundary.

The rate of propagation of the temperature front can be understood in terms of the first internal
mode period of the basin, which has a period T1 = 317 h. Associated with this, in a two-layer
model there is a speed of propagation of the internal wave (Ci = 2.53 kmh�1). Consequently based
on the two-layer analytical model after 40 h the temperature disturbance generated at the lateral
boundaries has propagated 101 km. From Fig. 3, t = 40 h it is evident that the temperature front
has propagated 100 km. This suggests that the TVD method used to advect temperature in the
numerical model, besides retaining the sharp temperature gradient can also propagate the distur-
bance at the correct speed on a uniform grid.

As time progresses, internal seiche motion in the basin produces downwelling at the left end,
with corresponding upwelling at the right end, giving rise to nearly horizontal temperature sur-
faces at t = 160 h. Since both ends of the basin have experienced upwelling and downwelling peri-
ods by this time, the solution exhibits symmetrical features about the centre (Fig. 3). By t = 160 h
the higher modes are substantially damped by bottom and internal friction, and the first internal
mode corresponding to a linear anti-symmetric vertical displacement of temperature surfaces,
about a zero displacement in the centre of the basin remains. This solution on the 64 m grid is
Fig. 2. Spatial distribution of grid boxes in the near coastal region, with (+) grid VG1, (h) grid VG2 and (�) grid VG3.



Fig. 3. Temperature contours (in pink) and stream functions over the whole basin at t = 10, 20, 30, 40 h and t = 80, 160

and 320 h, computed with the high resolution (64 m) grid. (For intepretation of colour in this figure legend, the reader is

referred to the web version of the article.)
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in excellent agreement, in terms of the time decay of the modes with the analytical solution,
although non-linear and convective mixing give rise to some physical differences.

The progressive time damping of the higher modes which contribute to the initial up/
downwelling in the coastal boundaries can be seen in the across basin variation with time of



Fig. 4. Contours of temperature at 90 m below the surface at t = 40, 60, 120, 160, 240 and 320 h computed with the high

resolution (64 m) grid.

200 P. Hall, A.M. Davies / Ocean Modelling 10 (2005) 193–209
the temperature at about 90 m below the surface (Fig. 4). At t = 40 h, it is evident that outside the
boundary layers, which by this time, have extended 100 km from the basin sides (see earlier
discussion) the temperature is unchanged. However at the basin edges there is significant spatial
variability due to contributions from the higher modes. By t = 160 h a more linear across basin
temperature variation occurs which then oscillates at about the period of the first internal seiche.
The gradual increase in mean across basin temperature is due to diffusion from the warm surface
layer down to depth.

This initial calculation with a high-resolution regular grid clearly shows that horizontal resolu-
tion will be particularly important in the coastal regions on the short time scale when higher hor-
izontal modes are present. The processes that affect the sharpness and intensity of the temperature
front that propagates away from the lateral boundary will also affect the resolution required to
accurately resolve this feature, and the success or failure of an irregular grid.

3.2. Calculations using a range of grid resolutions

In this series of calculations initially the effect of changes in horizontal grid resolution is exam-
ined. In particular their influence upon the small-scale features generated in the lateral boundary
layer during the initial stage of the calculation is considered. Calculations are performed with a
range of uniform grids UG1, 2, 3 (Table 1) in order to gain some insight into how the numerical
solution responds to a decrease in grid resolution. These calculations with the uniform grid give
significant insight as to the behaviour of the solution on irregular grids, namely grids VG1–VG3
(Table 1). These grids are designed (Fig. 2) to yield grid refinements in the boundary layer going
gradually from 2 km (nearshore) to 20 km (offshore), variable grid (VG1), from 0.2 km (near-
shore) to 12.3 km (offshore) (VG2), and finally 0.2 km (nearshore) to 3.25 km (offshore) (VG3).
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In addition to the influence of grid resolution, in subsequent calculations the effect of changes in
vertical and horizontal viscosity is briefly considered.

As shown earlier the initial response is at the coast, with the coastal boundary layer gradually
propagating towards the centre of the basin. Associated with this is a region of significant vertical
velocity and strong horizontal gradient in the u component of current. To gain some insight into
the influence of grid resolution and viscosity upon the solution a detailed series of calculations
using a range of Av and Am values were performed with both the uniform and variable grids.
These calculations showed that as Av was reduced below that used by Davies (1980), the surface
wind driven current in the centre of the basin increased. This gave an enhanced horizontal gradi-
ent in u, and increased downwelling in the frontal region at t = 40 h. Decreasing the horizontal
viscosity on the high-resolution grid produced no significant difference in the large-scale circula-
tion. However on the coarser grid horizontal diffusion influenced the solution.

To consider the effects of grid resolution (both uniform and irregular) in detail we will consider
the case where vertical viscosity is a tenth of that used by Davies (1980) and horizontal viscosity is
low at Am = 10 m2 s�1. A cross-basin plot of horizontal and vertical velocity magnitude at t = 40 h
at a depth of about 90 m below the surface, the region of the thermocline where the vertical veloc-
ity is a maximum was produced (Fig. 5). This plot shows the gradient in horizontal velocity and
the rapid increase in vertical velocity for a range of grids. As the horizontal grid size is increased,
the coastal boundary layer widens, and shows less spatial variability as the model does not have
sufficient resolution to adequately resolve the region of rapid change.

In particular the cross-basin variation of the u component of current determined with the
uniform 2 km (grid UG2) or variable (grid VG2) shows an artificial (compared with the higher
resolution (grid UG1 or VG3)) variation close to the left coastal boundary. This appears to be
associated with the formation of two vertical gyres. In the case of the coarse grid (20 km) the
Fig. 5. Across basin plot of (i) u current, and (ii) w current. For grid UG1 (black solid line), UG2 (black dotted), UG3

(black dashed), VG1 (grey solid), VG2 (grey dotted) and VG3 (grey dashed).
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model cannot resolve the spatial variability of u current that occurs in the lateral boundary layer.
The vertical velocity w computed with the fine grid (UG1) has a region of rapid change (partic-
ularly on the right side of the basin), which is well resolved on the 0.2 km grid (UG1). The region
is also well resolved on the variable resolution grids (VG2 and VG3). However there are some
problems with the VG1 and UG3 grids where the resolution is too coarse. To quantify the accu-
racy of the solution root mean square errors (RMS) and maximum errors (E) of the difference
between u and w velocities at t = 40 h computed with the grids, and the benchmark solution were
determined. RMS errors for u and w for the right-hand side of the basin (the left-hand side had a
comparable distribution) show a maximum on the coarse grid (Fig. 6) in the region of maximum u
and w velocity. As the centre of the basin is approached errors decrease to zero, as the distur-
bance is confined to the coastal region at t = 40 h. Refining the grid leads to a significant reduc-
tion in the error with the variable grid model giving an RMS error below 8.4 · 10�3 ms�1 (u),
2.3 · 10�4 ms�1 (w), and 2.1 · 10�1 �C(T). Although the maximum error (E) not plotted is larger
(a)

(b)

Fig. 6. RMS errors (ms�1) in (a) u velocity, (b) w velocity over the right-hand side of the basin for a range of grid

resolutions given by UG1 (red), UG2 (green), UG3 (blue), VG1 (cyan), VG2 (pink) and VG3 (yellow). (For

intepretation of colour in this figure legend, the reader is referred to the web version of the article.)
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than the RMS error (namely 2.3 · 10�2 ms�1 (u), 4.2 · 10�4 ms�1 (w) and 2.9 · 10�1 �C (T)) it
can be used to determine the maximum error in a particular parameter for a given grid (e.g.
2.9 · 10�1 �C for T on grid VG1).

As discussed previously, as time progresses the disturbance propagates into the interior of the
basin, leading to non-zero errors in this region (not presented). However the nature of the prob-
lem is that the higher modes are damped with time. Hence, maximum errors for a given grid dis-
tribution are reduced (not shown).

An extended series of calculations (not presented) showed that the spatial variability of both u
and w was sensitive to the value of horizontal eddy viscosity, with higher values of Am as expected
reducing the horizontal gradients in u and w. Just how Am influences the solution will be discussed
later. In addition to this for a fixed Am, as the value of vertical eddy viscosity is reduced, then for a
given grid resolution there is a more intense surface current, leading to an enhanced up/downwel-
ling in the lateral boundary layers, and a sharper horizontal gradient in u and w, that must be
resolved. Consequently the horizontal gradients in u and w are not influenced simply by the value
of Am but are affected by Av values.

3.3. Influence of horizontal viscosity

In this section we consider in more detail how horizontal viscosity influences the solution, and
the effect of using a Smagorinsky formulation. As horizontal viscosity is reduced the resolution
within the lateral boundary layers becomes more important on the short time scale (of order
10 h for the problem considered here). As discussed previously the time scale for disturbances
to propagate out of the boundary layer is determined by the internal wave speed which depends
in a two-layer system upon density and thickness of each layer and water depth. On the longer
time scale with an irregular grid small scale features associated with the initial excitation of higher
modes (seiches) propagate away from these boundary layers into regions where the grid is coarser.
As shown in the analytical solution (Heaps, 1966) the damping of these higher modes is larger
than for the lower modes and consequently any disturbance that propagates from the lateral
boundaries will be damped with time. However this could be a problem on an irregular grid where
propagation into a coarse grid region could lead to a spurious solution if the propagation to the
coarse grid region was rapid compared with the damping. Since the analytical two-layer solution
shows that the speed of propagation and damping of higher modes depends upon density and
layer thickness then as water depth and density differences between layers increases, and bottom
friction (which influences mode damping) decreases, then the boundary layer generated at the
coast will be more intense and propagate more rapidly into the interior. Consequently in order
to maintain stability a larger value of Am must be applied, or this should be determined in terms
of the local horizontal shear and grid size. This problem is examined in this section.

In an initial calculation (Calc. 1) variable grid VG3 was used with a low value of Am and ver-
tical viscosity. Cross-basin contours of T, u, w at 90 m below the surface at 10 h intervals up to
80 h (Fig. 7a) show a disturbance propagating away from each coastal boundary with some indi-
cation of a Gibbs type oscillation in the T field following the frontal region, as it propagates into
the coarser grid, suggesting a lack of resolution in this region. On the longer time scale (Fig. 7b) it
is evident that the intensity of the ripples particularly on the T contours increases. As the model is
fully non-linear any short waves that are produced can, on the longer time scale, transfer energy



(a) (b)

Fig. 7. Across basin contours of (i) temperature (�C), (ii) u velocity (ms�1), (iii) w velocity ·10�3 (ms�1) at (a) t = 10

(red line), 20 (green), 30 (blue), 40 (cyan), 60 (magenta), 80 (yellow) h and (b) t = 120 (red), 160 (green), 240 (blue),

320 h. (cyan) computed with variable grid resolution VG3. (For intepretation of colour in this figure legend, the reader

is referred to the web version of the article.)
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down to grid scale waves giving rise to an unstable solution due to non-linear instability. This to-
gether with the irregular nature of the grid will be the reason for the oscillations found on this
(a) (b)

Fig. 8. As Fig. 7 but for Am computed with the Smagorinsky formulation (C = 0.2).
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longer time scale. Root mean square and maximum errors between this solution and a benchmark
using the 64 m grid at times t = 40, 80 and 160 h show (results not presented) that initially the
error is a maximum in the near coastal region. As time evolves, and the solution propagates into
the interior the error in the coastal region decreases, with an increase away from the coast.

Calculations (not presented) showed that as the value of Am was increased, then more horizon-
tal smoothing was introduced and a stable solution could be obtained. However this excessive
smoothing negated the effects of having an enhanced resolution in the lateral boundary layers.
To try and avoid this, the Smagorinsky form of horizontal diffusion with C = 0.2 was applied
(Calc. 2) using the irregular grid.

From Fig. 8a it is evident that although on the very short time scale (t < 20 h) the model can
reproduce the disturbance coming from the coastal boundary, on the slightly longer time scale
t = 80 h, as the disturbance reaches the coarser grid excessive horizontal smoothing takes place.
Differences in accuracy between this and the benchmark solution are reflected in the RMS errors
in the temperature field (Fig. 9). This figure shows that even with grid VG3 there is an unaccept-
ably large RMS error in the temperature field in the centre of the basin associated with excessive
smoothing in the temperature field. Similarly on the long time scale (t = 240 h, Fig. 8b) the tem-
perature field shows none of the small-scale structure found previously. In addition there are no
spikes in the vertical velocity field. This excessive smoothing on the irregular grid using the
Smagorinsky formulation with C = 0.2 can be attributed to the fact that Am determined with this
formulation depends not only on horizontal shear but grid scale Dx which increases in the coarse
grid region of the model. This calculation suggests that to retain the scale selective filtering
qualities of the Smagorinsky form of Am without excessive damping and the introduction of
unacceptable errors the value of C needs to be reduced.
Fig. 9. RMS errors (�C) in the temperature for various values of C, namely C = 0.2 (green), C = 0.002 (blue) used in the

Smagorinsky formulation of Am. Also given (red) are RMS values using the same value of Am as in the benchmark

calculation. All calculations were performed using grid VG3. (For intepretation of colour in this figure legend, the

reader is referred to the web version of the article.)
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Fig. 10. As Fig. 7 but for Am computed with the Smagorinsky formulation (C = 0.002).
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A detailed error analysis (not shown, but illustrated with respect to temperature, Fig. 9) of
cross-basin, T, u, w fields computed using the variable grid (VG3) but with C reduced to 0.002
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on the short time scale (up to t = 80 h) (Fig. 10a) showed an excellent agreement with the bench-
mark solution (Fig. 9). However, even on this short time scale it is apparent (Fig. 10a) that the
maximum value of w associated with the disturbance which propagates from the coastal boundary
has been reduced. On the longer time scale, the T and u distributions (Fig. 10b) were found to be
in good agreement (errors not presented) with those computed with the benchmark although the
magnitude of the vertical velocity spikes has been significantly reduced. A detailed investigation
showed that the use of a Smagorinsky formulation with C = 0.002, with an irregular grid, does
not introduce excessive smoothing (hence negating the advantages of an irregular grid) or allow
for a build up of grid scale energy on the coarse grid leading to a physically unrealistic solution. It
is apparent from Fig. 9, and a detailed error analysis (not presented) that the solution computed
with C = 0.002 and the Smagorinsky form of viscosity was not significantly different to that com-
puted in the benchmark calculation (compare errors in Fig. 9 with those derived using the same
fixed Am value as in the benchmark calculation, and grid VG3). This series of calculations clearly
demonstrates that when the Smagorinsky formulation for Am is used on an irregular grid the
choice of an optimum value of C will depend upon the degree of mesh refinement in the grid.
4. Concluding remarks

Calculations of internal wave seiching in a wide basin using fixed vertical eddy viscosity have
shown that this is an ideal problem for examining the influence of grid resolution upon the accu-
racy of the solution. Results show that reducing vertical eddy viscosity leads to a rapid horizontal
change in both the u and w components of velocity associated with density fronts that propagate
away from the coastal boundaries. If horizontal viscosity is large the accuracy of the solution is
degraded due to excessive horizontal smoothing. Calculations presented here using an irregular
grid with low Am and Av values showed that as the temperature front propagated away from
the coastal boundary into the coarse grid region, a Gibbs type effect occurred behind the propa-
gating front. This suggested a lack of local grid resolution. Since the model was non-linear, on the
longer time scale this lead to short wave ripples in the large-scale solution.

Solutions computed using a Smagorinsky formulation for Am with C = 0.2 showed that signif-
icant smoothing occurred as Am was increased in the coarse grid region. This had the effect of
negating the benefits of using a finer grid in the boundary layers. A solution with C = 0.002
and the irregular grid was however in good agreement with a highly accurate solution. This sug-
gested that in an irregular grid model where a fine grid was used to accurately resolve the internal
wave generation region then the use of a Smagorinsky formulation of Am with C value substan-
tially less (reduced by the order of the grid refinement of the irregular grid in this case 100) than
that used on a uniform grid was required. This avoided excessive damping (which negated the ef-
fect of the fine grid) whilst maintaining a stable solution.

In essence these calculations showed the importance of maintaining a high resolution in internal
wave generation regions, e.g. frontal (Xing and Davies, 2004) and shelf edge (Xing and Davies,
1998). In order to represent their subsequent propagation away from those areas it is essential
to maintain adequate grid resolution to represent these small scale waves. If resolution is inade-
quate then energy can build up at the grid scale, leading in a non-linear model to numerical insta-
bility unless a scale selective filter is applied. On a non-uniform grid the computation of Am using
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the Smagorinsky formulation with C below the classical value used on a uniform grid is an effec-
tive way of maintaining stability without excessive smoothing.
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Abstract

A three-dimensional, triangular-mesh, finite element model has been adapted to allow for the flooding

and drying of intertidal areas. The new algorithm sets velocities in dry areas to zero and removes elements

from the computation when they are completely dry. Model tests simulating an idealized sloping beach that

includes a tidal pool and a narrow deep channel laterally bounded by shallow drying sides, give qualita-

tively reasonable results. A simulation of the Quoddy region of the Bay of Fundy also gave good results

when calibrated against available observations. This region includes extensive intertidal flats, tidal pools

and channels that are blocked at low water by emerging shallows. The model is a clear improvement over

a three-dimensional linear model and a fully nonlinear model without the drying routines using the same
model grid. The drying model reproduces the tidal elevations with higher accuracy and has more realistic

tidal currents.
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1. Introduction

The nearshore ocean environment is subject to many stresses resulting from increasing human
activity including aquaculture, fisheries, recreation, sewage inputs and marine transportation. An
understanding of the physical oceanography of nearshore areas provides a foundation for the
study of processes such as sediment transport and biogeochemistry, as well as a basis for effective
management of the coastal zone. One potentially important physical attribute of many embay-
ments which is often neglected in coastal circulation models, is the presence of significant drying
intertidal areas. Models without the capability of simulating the dry areas may have errors in the
area of the wet domain and/or in the volume of water within the domain. It is the purpose of this
study to provide a means to effectively model the nearshore hydrodynamics of intertidal drying
areas through the inclusion of a new algorithm in a comprehensive, finite element numerical cir-
culation model. With this addition, we will be able to take advantage of the finite element variable
resolution to include detailed nearshore topography and coastlines without sacrificing a realistic
representation of the physical processes.

The presence of intertidal areas influences the hydrodynamics of coastal embayments through a
variety of physical mechanisms. Long waves, such as tides, entering an embayment are distorted
due to the nonlinear interaction of hydrodynamics and basin geometry, transferring energy from
the primary harmonic to higher harmonics. A number of physical mechanisms are responsible for
this feature. The tidally-varying water depth affects the phase speed, and hence the shape of long
waves (e.g. Lamb (1932)). Asymmetric distortions of sea level and velocity also occur in channels
with tidally varying geometry, where the dominant terms in the momentum equation reflect the
balance between advection and the pressure gradient (e.g. Stigebrandt (1980), van de Kreeke
(1988)). Bottom friction also affects long wave propagation, leading to tidal phasing differences
which enhance dispersion through tidal trapping (Okubo, 1973). In many small, well mixed
embayments the primary force balance is between bottom friction and the pressure gradient
(Friedrichs et al., 1992). For these cases, Friedrichs and Aubrey (1988) shows that the flood or
ebb dominance of tidal velocity can be understood in terms of simple geometrical parameters such
as the ratio of the tidal amplitude relative to the channel depth, and the intertidal storage volume
relative to the mean tide volume. A variety of localized effects result from circulation directly over
the tidal flats; these strongly influence the turbidity and sediment properties of the intertidal zone
(LeHir et al., 2000; Uncles and Stephens, 2000).

For realistic cases, the hydrodynamic effects that result from intertidal changes in embayment
geometry must be simulated using a numerical model. The inclusion of intertidal areas in a three-
dimensional circulation model presents many challenges, such as having to account for a time
varying coastline and simulating flows in extremely shallow areas. In a model without drying,
shallow water would be considered either always wet with a specified minimum depth necessarily
below the minimum simulated sea level at that point, or always dry and forming part of the mod-
el�s coastal boundary (e.g. Brooks et al. (1999)). Finite difference models such as those of Flather
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and Heaps (1975) and Leendertse and Gritton (1971) include drying areas with fairly simple grid
point based algorithms that set velocities to zero when the sea surface falls to the ocean bottom, or
some minimum depth of water. Although we use an analogous treatment of velocities here, the
integration over each element to obtain elevation presents an additional complexity. Solutions
presented in finite element studies of solids with phase changes or sintering of metals and ceramics
address similar problems (see Dorri et al. (1987) and Sullivan et al. (1987) for an entry into this
literature). In hydrodynamics, finite element techniques have been developed for deforming the
mesh to accommodate the changing spatial domain (e.g. see Sidén and Lynch (1988)). These tech-
niques have been of limited use because either: (1) the boundary nodes would move or (2) a larger
part of the mesh would be deformed. Such continually changing grid geometry leads to complex,
expensive computations necessary for tracking spatially varying topography with moving nodal
points. A more useful two-dimensional technique has been developed by McLaughlin et al.
(2003) for shallow water in which the physics is reduced to a basic balance between friction
and the pressure gradient. In that case, a fixed mesh is maintained and when the surface elevation
falls to the bottom, the flow can continue at a reduced rate through a simulated porous bottom
layer with different groundwater characteristics.

In contrast to the above, the work presented in this paper describes the adaptation of a three-
dimensional finite element model with full dynamics to include areas that wet and dry at different
levels of the tide. It needs to be emphasized that the purpose of this work is not to accurately
model the intertidal and near intertidal areas, but to have them approximated with enough detail
and accuracy to permit good simulations of the adjacent waters. We first test the properties of this
formulation using a geometrically idealized case in order to examine how well the model simulates
the hydrodynamics associated with water level changes in intertidal areas. This case includes the
pooling of water in an isolated reservoir, as well as the draining and flooding of an intertidal shore
bisected by a deep channel. The model is then applied to M2 tidal motion in the Quoddy region, a
geometrically complex and tidally dominated area in the Bay of Fundy, on the east coast of
Canada (Trites and Garrett, 1983). Here, we emphasize the non-local effects of drying intertidal
areas by comparing the performance of the new model formulated to include intertidal drying,
with a linear-harmonic model and the original nonlinear model without drying. We examine
the model in terms of its ability to explain the observed M2 amplitude and phase, for both sea
level and velocity.
2. Model

2.1. The underlying nonlinear model

The present numerical model, developed for use in areas with drying intertidal elements, is an
adaptation of the model QUODDY which has been applied in several continental shelf studies
(Lynch and Werner, 1991; Lynch et al., 1996, 1997; Werner et al., 1993). [Note that the naming
of the model preceded this application to the Quoddy region by several years.] The model has the
following properties: implicit or explicit time stepping, fully nonlinear, three-dimensional, prog-
nostic in temperature and salinity, advanced turbulence closure scheme (Mellor and Yamada,
1982), free surface and several possible surface or lateral ocean boundaries. QUODDY is
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described in Lynch et al. (1996) so only a cursory description will be given here, bringing out those
parts that will differ in the modified version, QUODDY_dry.

In Cartesian coordinates, the wave equation, from which we determine elevation, f, is
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where we have

f(x,y, t) height of the water surface above the undisturbed level
h(x,y) depth of the undisturbed water (positive down)
H(x,y, t) total depth = f(x,y, t) + h(x,y)
v(x,y,z, t) three-dimensional velocity
�vðx; y; tÞ depth-averaged velocity
Vb(x,y, t) bottom velocity
F(x,y, t) non-advective horizontal exchange of momentum
N(x,y,z, t) vertical eddy viscosity
q(x,y,z, t) water density
q0 reference value for water density
W(x,y, t) wind stress
s0 numerical constant for mass conservation (see Kinnmark (1986) and Section 2.2)
f Coriolis
g gravitational constant
Cd bottom stress drag coefficient
$($xy) the (horizontal) gradient operator

As in Lynch et al. (1996), F(x,y, t) is expressed in Laplacian form, F(x,y, t) = $xy Æ (Ah$xyv), with
Ah, the horizontal eddy viscosity, having a Smagorinsky (1963) type grid resolution dependence.

At each time step, there is a two-dimensional computation of the surface elevation using Eq. (1)
followed by a node by node determination of the horizontal velocity at vertical levels using equa-
tion (2). The implicit treatment of the gravity term (Lynch and Gray, 1979) in the wave equation
gives rise to a large time-invariant matrix which can have significant bandwidth. Solving such a
system requires large memory for direct matrix solutions or extra computation time if iterative
solvers are used. If solved explicitly, the integration collapses to a tri-diagonal matrix. This has
the advantage of reducing the computational requirements of the large system of simultaneous
equations. A disadvantage is the shorter time step which is now limited by the more restrictive
Courant–Friedrichs–Lewy (CFL) limit ðDt < Dx=

ffiffiffiffiffiffiffiffi
2gh
p

Þ instead of Courant condition (Dt < Dx/
jvj). This can increase the number of iterations for a given simulation, lengthening the com-
putation time. For our variable resolution computations we estimate this maximum time step
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by computing min ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai=2gh

p
Þ where Ai is the area of element i and the inequality is satisfied for all

elements in the model domain.
The three-dimensional velocities are computed on user-specified, arbitrarily-spaced, terrain-fol-

lowing levels between z = �h and z=f. At coastal boundary nodes, v Æn = 0. A minimum depth,
h > hmin is set so that H > 0 at all times. In this paper we do not consider baroclinic motions.

2.2. Adaptation for drying areas

In this section we describe briefly how QUODDY_dry differs from the QUODDY scheme pre-
sented above. More detail is given in Appendix A.

Implicit computation of the wave equation (1) in QUODDY requires simultaneous computa-
tions for f. Because the drying model requires tests on individual nodes, it can be run only in ex-
plicit mode where the computation of each elevation does not depend on elevations at
unconnected nodes as would be the case in the implicit algorithm. Also in these computations,
the bottom depth h is not restricted to be greater than a minimum hmin. The elevation at a node
can fall to or below the model bottom depth, i.e. we can have f < �h, (see Fig. 1) and f can con-
tinue to vary in time if connected to at least one node which is wet (f P �h). At coastal bound-
aries where f P �h there is no normal flow (v Æn = 0). It was found empirically in testing that
setting the velocity v = 0 at interior and coastal nodes, when f < �h + 0.05m, improved stability
and permitted a better calibration.

The terrain-following levels are still prescribed down to hmin, as in QUODDY, which means that
they can be below the actual bottom. On levels where �hmin < zj < �h, we set v(zj) = 0, thus the
number of levels active in resolving the three-dimensional motions is reduced in shallow areas
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Fig. 1. Representative section from the eastward part of the central transect in Fig. 2 showing vertical level locations

used in the drying algorithm.
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and dependent on the tidal height (see Appendix A). The bottom velocity for the friction compu-
tation, vb, is taken to be at the deepest vertical node that is wet (z P �h). For the depth averaged
current and for conservation of mass, �v is computed by integrating from the bottom wet node to f.
As mentioned in the previous paragraph, if all vertical nodes at a horizontal position are below
0.05m above the bottom (f < �h + 0.05), then vðzjÞ ¼ 0 ) �v ¼ 0.

The constant s0 has important numerical properties in Eq. (1) (Kinnmark, 1986). It ensures that
solutions satisfy the conservation of mass equation. A value of s0 = 2 · 10�4 s�1 has been typical
in QUODDY (Lynch and Werner, 1991), giving it a magnitude similar to other terms in the equa-
tion such as the Coriolis term. Clearly if the value is taken to be large it can make Eq. (1) behave
like the continuity equation, giving undesirable solutions (Lynch and Gray, 1979) as the model
functions more like a primitive equation model. This undesirable characteristic is seen in finite dif-
ference and finite element models that have coincident elevation and velocity computation points.
If too small, local and global mass conservation properties are poor. In some of the testing of the
drying routines (Section 3) it was found that using a value an order of magnitude or more larger
than 2 · 10�4 s�1 gave better local mass conservation properties without detracting from the
smoothness or stability of the solution. More sophisticated methods of determining s0 such as
those described in Kolar et al. (1994) and Atkinson et al. (2004) are not employed here.
3. Numerical experiments on an idealized mesh

We initially test this model on an idealized mesh (Fig. 2) depicting a square bay, 51km · 51km,
with an open eastern boundary and closed (land) boundaries on the north, south and west sides.
There are 1651 nodes, 3155 elements with approximate minimum and maximum element sides of
0.5 and 4.1km, respectively, and mean 1.25km. The bottom rises linearly from 45m below sea
level at the eastern boundary to 6m above mean sea level in the west. In addition to the intertidal
area with a constant slope, there are two extreme topographic features specified to test model
capabilities: a ‘‘tidal pool’’ 6m deep in the northwest corner, which is isolated at low water;
and in the south-west corner, a narrow, deep (6m) channel with shallow sides narrowing to min-
imal resolution—central nodes at 6m below sea level that will always be wet are connected to
nodes on the channel sides that wet and dry with the tide.

We use 21 vertical levels with the spacing between the levels following a sinusoidal distribution,
(higher resolution, Dz = 1m, near the surface and the bottom) but equally spaced when h 6 20m.
The hmin used here in defining these is 10m. When the bottom depth is shallower than hmin, the
number of active levels will be reduced, although clearly the vertical resolution will remain high
in these areas. The Coriolis parameter is appropriate for a latitude of 45�N. We set the quadratic
bottom stress parameter Cd = 5.0 · 10�3 and use a minimum value of Cdjvbj > 5.0 · 10�4 m Æ s�1,
implying a minimum damping due to unmodelled background currents of 0.1m Æ s�1. Horizontal
eddy viscosity changes with resolution as in Lynch et al. (1996), appropriate for damping unre-
solved motions in the varying mesh size. Although mass is globally conserved in these finite ele-
ment models (Lynch, 1985; Lynch and Holboke, 1997), there can be a local imbalance. In early
tests of this drying scheme, this was clearly seen in the surface of the tidal pool which continued
to drop (�1–2m) when it was isolated from the rest of the bay. By increasing s0 to 1 · 10�2 s�1 the
level of the tide pool varied by less than 0.06m when isolated.



Fig. 2. The finite element mesh used in testing the drying routines. The squares identify the locations of the nodes used

in Figs. 1,3 and 4(a). The tidal pool transect in Fig. 4b are circled. The node illustrated in Fig. A.1 is indicated by the

star. The bathymetry is shaded (metres). With the exception of the narrow channel and the tidal pool, the bathymetry

varies linearly, east to west from 45m below sea level at the open boundary to 6m above sea level. Tidal forcing is along

the eastern open boundary. The other three boundaries are closed. (For discussion purposes, we consider north to be

towards the top of the grid.)
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Along the open boundary there is a sinusoidal tide with amplitude 4m, uniform phase and
12.0h period. The motion is gradually spun up from rest (v = 0). To avoid numerical problems
with initial wetting of dry model levels that are above f = 0, the surface elevation is initially set
to the shallowest depth of the model, (in this case h = �6m, so f = 6m) so they are all wet at start-
up. Over the first tidal cycle the boundary tidal amplitude is ramped up from 0 to 4m and the
mean boundary elevation is ramped down from 6m to 0. In this simulation, the tidal motions
are steady after only 3 or 4 cycles.

The surface elevation from successive nodes in the direction across the sloping bottom is shown
in Fig. 3. The length of time a node is active, i.e. changing in time, varies from zero at the shal-
lowest node (it is never wet) to the full tidal cycle when seaward of the intertidal area. There is also
typical shallow water tidal asymmetry in evidence, seen in the steeper rise and the more gradual
fall of sea level. The surface currents at the same nodes are zero when the surface elevation falls
below the bottom. From the two figures it can be deduced that the second shallowest node is al-
ways dry because the velocity is always zero, even though it does change elevation, being con-
nected to a node that is wet for part of the tidal cycle. The apparent small scale noise seen in
the currents of the shallow nodes is due to wetting and drying of connected nodes and the acti-
vating and deactivating of vertical levels as the tide rises and falls (see Appendix A).

Surface elevation sequences over a tidal cycle for transects crossing the sloping beach (Fig. 4a)
and the tide pool (Fig. 4b) show the amplification and phase lag of the sea level signal in the
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Fig. 3. The surface elevations and surface currents at 22 progressively deeper nodes (the line of squares in Fig. 2). The

shallowest node is at the bottom and the deepest (offshore) node at the top. The x-axis indicates the time since the start

of the model from rest. The successive elevation curves are offset by 2m. When the elevation falls to a level at or below

the bottom and the connected nodes are also dry, the elevation remains frozen until the tide rises. Negative velocities are

onshore, positive velocities are offshore. The successive current curves are offset by 0.5m Æ s�1 in y.
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Fig. 4. The progression of the tide falling (thick solid lines) and rising (dotted lines) (a) over the beach slope (along the

left end of the line of squares in Fig. 2) and (b) over the tidal pool (circles in upper left of Fig. 2). The circles show the x

locations of the nodes on the bottom (h), the thin solid line. The surface elevation can fall below the bottom (see Section

3 and the appendix).
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shallower water. The water level in the tidal pool remains constant when disconnected from the
bay at low water if we use the higher value of s0 given above.



Fig. 5. The surface currents (left) near the time of low water, and (right) near the time of high water.
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It can be seen that the elevation stops changing at a level near the depth of connected nodes as
explained in Appendix A. This artificial movement of the sea surface past the bottom (only in wet-
ting/drying areas) is smallest in regions with small bottom slope and can be minimized in areas
with large bottom slopes by increasing the resolution. Over a tidal cycle there is no net gain/loss
of water from the sea level passing below the bottom since anything lost on ebb tide is gained on
the flood tide and vice versa. It will be a function of the shallow bathymetry variation in the area
modelled as to how significant this characteristic is to the solutions sought. In most cases good
grid resolution in any critical steeply sloping drying areas can mitigate any undesired effects.

Snapshots of the current regime show the phase lag between the eastern (open) and the western
ends of the bay. The water in the east is still falling/rising near the time of low/high water while the
currents are reversing in the west (Fig. 5). At low water, the tidal pool is isolated from the rest of
the bay, the motion on the beach has stopped and the flow out of the narrow channel is confined
to the deep areas. At high water, the upper beach is still flooding and the tidal pool is still filling as
is the narrow channel. The shallow areas beside the tidal pool and the channel are being flooded
from these deeper areas since they offer a less obstructed path for the water to flow.
4. The Quoddy region

The United States/Canada border between Maine and New Brunswick cuts through the St.
Croix river at the head of Passamaquoddy Bay, through the Quoddy region and out into the
Bay of Fundy. The model domain (Fig. 6) encompasses the Quoddy region on both sides of
the border, the eastern coast of Maine, the western coast of New Brunswick, three large islands
and over 30 smaller islands (some of which have land bridges form between them as the tide re-
cedes). The open boundary extends from the southeastern coast of Maine to New Brunswick and
encompasses the entrances around Campobello Island.



Fig. 6. The Quoddy region and model bathymetry. The boxed three letter symbols refer to the tidal comparison

stations. The triangles show the positions of current metre observations. The islands along the northeastern Bay of

Fundy boundary are not included in the model. There was no noticeable influence on solutions in the areas of interest

from setting the depths in this area to those of the surrounding water.
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The Gulf of Maine and the Bay of Fundy are in near resonance with semidiurnal tidal forcing
of the open ocean (Garrett, 1972; Greenberg, 1979) with a tidal range of 16m at the head of the
Bay of Fundy. Comparatively, it is approximately 2–4m in the Gulf. Observations in Passama-
quoddy Bay have found the tidal ranges of M2 (the dominant tidal component) from 2.2 to
2.7m and phases from 95 to 105 degrees. Deer Island blocks off most of the northern embayment
from the southern portion and all of the tidal exchange occurs through Western and Letete
Passages around Deer Island (Brooks, 1992; Trites and MacGregor, 1959). The tidal flow is highly
sheared in these narrow passages (Thompson et al., 2002). A comparison of time series of tidal
elevation and velocity shows Western Passage lags behind Letete Passage in both peak sea eleva-
tion and peak current flood (Brooks, 1992).

The model grid for this area (Fig. 7) has 8084 nodes and 13,778 elements. The length of the
element sides varies from 35m to 3.88km. Depths range from 148m below the undisturbed sur-
face to 5m above mean sea level. The area around Frye Island illustrates the necessity for high
resolution and the significance of intertidal areas to the flow. This area, with complex topography,



Fig. 7. The finite element model grid of the Quoddy region.
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provides a particular focus for aquaculture related studies. At low water, Lime Kiln Bay and Back
Bay will be separated by a tidal flat and tidal pools will form in small bays with shallow sills.

With this model resolution the CFL stability condition dictates a time step of near 2s (see Sec-
tion 2.1). We have found that in these models with very high resolution and extensive drying
areas, experimentation with different damping parameters is necessary to achieve stability and
the best calibration. The results presented below were obtained using the values of: the drag coef-
ficient, Cd, = 0.025; the minimum horizontal eddy viscosity, Ah = 50m2s�1; and the minimum ver-
tical eddy viscosity, N = 1 · 10�4 m2s�1. For better calibration and stability, we set s0 to be
5 · 10�3 s�1. Other parameters were as in Section 3.

4.1. Tidal elevation

The M2 tide on the open boundary was taken from a roughly calibrated model of the outer Bay
of Fundy (Greenberg, unpublished). These boundary amplitudes and the phases from the outer
Bay of Fundy model were adjusted to give a better fit to observations at Beaver Harbour (BHr
in Fig. 6), East Quoddy Head (EQH) and West Quoddy Head (WQH), the stations nearest the
model open boundary.
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Along the outer boundary the tidal amplitude varies from less than 2m to more than 2.6m at
the northeastern extreme (Fig. 8). This drives the tide with a 2.5m amplitude, to the inner area
north of Campobello Island. The narrow and shallow channel to the southwest of the island,
Lubec Channel, has strong currents but has little influence on the tides of the inner model domain.
The tides are only slightly amplified within the model, achieving 2.6m in Passamaquoddy and
Cobscook Bays, and exceeding 2.7m at the head of the St. Croix River.

There is little variation in phase along the open boundary. The tide is delayed as it moves
around Deer Island through Head Harbour Passage, Letete Passage and Western Passage into
Passamaquoddy Bay and Cobscook Bay. The tide in Letang Harbour is only slightly behind
the tide in the adjacent Bay of Fundy. Passamaquoddy Bay has a fairly uniform phase 8� behind
the outer model domain. (A one degree difference in phase lag corresponds approximately to a
2min difference in the arrival of the tide.) There is a progressively increasing phase lag through
Cobscook Bay from 5� at the mouth to more than 17� in the upper reaches.

Tidal constants computed from several tidal elevation records are available for model verifica-
tion. Unfortunately, with the exception of Eastport (Epo), which has a record of over one year,
most of the tide stations had record lengths of approximately 1month, which lowers confidence
Fig. 8. The M2 tide co-amplitude contours (metres) and co-phase lines (degrees, UCT) as calculated with the model.

The computations of tidal constants are not meaningful in the drying areas.



Table 1

A comparison of the M2 tidal amplitude and phase statistics for the linear-harmonic model (FDY), the fully nonlinear

model (QU) and the nonlinear drying model (Qdry)

Amplitude (m) Phase (degrees)

Qdry QU FDY Qdry QU FDY

Mean error �0.016 �0.033 �0.039 �0.9 �1.9 �3.8

Mean jerrorj 0.043 0.048 0.049 1.3 2.0 3.9
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in the tidal constants obtained from data analysis. We have eliminated some stations from the
comparison because of gross inconsistencies with the remaining observations. Where multiple
analyses are available for a single station, the later records are used for the comparisons, since
these were generally longer and more accurate using updated technology and analyses. It is diffi-
cult to prove this since original data are often not available, and changes in the tides over time
have been noted in the Bay of Fundy (Godin, 1992). We note that some variances between the
analyses from single stations were of the same order or greater than the difference between the
analyses and the model. Given the limitations of the available data, taken together with the nar-
row range of amplitude and phase within the model domain, this perhaps limits how definitive we
can be in calibration comparisons. The agreement with the three tidal stations in Cobscook Bay—
Coffin Point (CPt), Garnet Point (GPt) and Edmunds Point (EPt) is very poor with the model
showing large differences in both amplitude and phase with these observations. Since these are
more modern observations with somewhat longer record length, we believe that in this bay, the
model resolution and the topography available to us are inadequate for accurate modelling of this
subregion.

Table 1 gives a comparison between analyses from the available observations, the drying model
(QUODDY_dry), and two different models: a linear-harmonic model (FUNDY) (Lynch et al.,
1992; Greenberg et al., 1998) and the fully non-linear model from which the drying model was
adapted (QUODDY) (Lynch et al., 1996). The latter two models were run with a minimum depth
of 10m. All three models use the same mesh, topography and boundary conditions. Generally
there was progressive improvement from FUNDY to QUODDY to QUODDY_dry. The average
error (model minus data which gives a measure of the bias) and average of the absolute value of
the errors (which gives a measure of the variance or spread) shown in Table 1 are less for the dry-
ing model than for the other two in both amplitude and phase. The error computations do not
include the three Cobscook Bay stations. There was little M2 phase variation among the compar-
ison stations in FUNDY indicating that as expected, nonlinear components of the flow, such as
friction and advection, interact with topography and coastlines to influence phase lags. QUODDY

showed a greater spread in phase while QUODDY_dry gave the best agreement with the observa-
tions. The differences between the model and observed amplitudes are less systematic, but are gen-
erally improved in QUODDY_dry.

4.2. Tidal currents

We have compared the analyzed model currents with those measured by acoustic Doppler pro-
filing current meters (ADCPs). Validation with current meter data can be even more challenging
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than for tidal elevation data. Small bathymetric features, which might not be resolved by the
model, affect both current speed and direction. For instance, if the model depth is different from
the actual depth, continuity considerations dictate that the current magnitude could be poor even
if the transport is correct. In our simulations, the absence of density gradients (both horizontal
and vertical) and wind stress, may miss important influences on vertical current structure. The
current records we examined tend to be noisier and of shorter duration than elevation data. In
some instances, we have found that where the tidal signal is poorly defined in a current record,
the analysis produced a tidal ellipse with a large minor axis; ellipses in areas with small tidal cur-
rents, typically less than 0.05m Æ s�1, were almost circular. Such cases were eliminated from
comparisons.

M2 tidal ellipses were computed on model terrain-following levels at nodal points near corre-
sponding ADCP current meter sites. For comparison, the ADCP data were analyzed on equiva-
lent levels. Plots of the ellipse fits are shown for two stations 46_38 and 172_75 in Fig. 9. Station
46_38 shows excellent agreement between model and observation in phase, orientation and mag-
nitude. As we might expect, the current magnitudes and the relative size of the minor axes increase
with distance from the bottom due to diminished influence of friction. The model agreement with
station 172_75 is not quite as good. The magnitude of the major axis follows the same progression
with depth, but in the central water column the observed ellipses are wider and have a slightly
0.2 m/s

ts2-52aTop

Bottom

46_38_stn2

0.2 m/s

ts2-52aTop

Bottom

172_75_stn1

Fig. 9. A comparison of analyzed model and observed M2 current ellipses and phases of the major axes at stations

46_38 and 172_75 (the stars in Northeastern Passamaquoddy Bay and Northern St. Croix River, respectively, in Fig. 6).

Ellipses are oriented relative to north, the positive y-axis. The solid lines are from the model. The broken and dotted

lines are from the observations. The straight lines indicate the phase of the ellipse major axis with the angle measured

counterclockwise from the positive x-axis.
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differing orientation. The phases are close, but again there is a small unexplained variation in the
data not seen in the model.

The two stations illustrated above are typical of much of the data, but several stations had
anomalies greater than those illustrated. A comparative summary of the different ellipse param-
eters is shown in Fig. 10. These are from 12 stations covering a total of 138 levels. The problematic
cases described above (relating to low magnitude currents) are not included in the plots. Also ex-
cluded were comparisons of major axis orientation and phase in cases where the ellipses were close
to circular, since almost arbitrary values would come from the analysis. The comparison of the
strength of the current along the major axis (Fig. 10a) show good agreement in magnitude and
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generally, similar tendency in vertical variation. There are bigger discrepancies in the phase com-
parisons (Fig. 10b) both in general magnitude and in vertical variation. We think the difference in
vertical variation may be due to the missing forcing described above. The reasons for apparent
large differences in the phase of all or major parts of a profile are less obvious. LeProvost and
Vincent (1986) have noted that velocity computations are less accurate in these models. Noting
the limitations of the current meter data as stated above, and that the model has good continuity
characteristics with an average phase agreement of �1� in the elevation field, we believe data er-
rors could also be contributing to the apparent inaccuracy. The comparison of ellipticity is given
by computing the ratio of the sizes of the major and minor axes (Fig. 10c). In the areas of avail-
able observation the ellipses tended to be largely rectilinear. The data tended to have wider ellip-
ses, possibly for the reasons listed above. It is difficult to draw general conclusions about the
vertical variation in ellipticity from these data. The model performs well in reproducing ellipse ori-
entation (Fig. 10d), but the narrow range of vertical variation in the data and model profiles again
makes it hard to judge the model in this aspect.
5. Discussion and conclusions

We want to re-emphasize that the purpose of including drying areas in a fully nonlinear three-
dimensional model is to get useful results in the non-drying areas. This is achieved by better
approximating the effects of dynamically constricting and closing off channels and accounting
for the proper volume exchanges of water in the nearshore. Although we want qualitatively defen-
sible results, the use and verification of the model in and immediately adjacent to these intertidal
areas is not the goal. Observational verification in such areas would be a significant challenge
which we are happy to avoid here.

Our tests on the idealized mesh indicate our goals are being met. The progressive flooding and
drying over the shallow bathymetry is as we would qualitatively expect. The characteristic shallow
water tidal asymmetry in elevation is reproduced. The extreme resolution tests of a minimally re-
solved (single node width) narrow channel with drying sides and the isolated tidal pool show no
anomalous behaviour (with an appropriate choices of the parameter s0), without producing the
spurious noise that can be found in primitive equation models. The necessity of running the model
in an explicit mode necessitates a smaller time step, thus longer computer runs, but some compu-
tational demands are reduced because the matrix equation is simplified.

We have applied the model (QUODDY_dry) to the Quoddy region of South-west New Bruns-
wick, Canada and compared the results with the associated fully nonlinear model (QUODDY)
without the drying routines and with a linear harmonic model (FUNDY). FUNDY computations
involve a one step solution and take only seconds to solve on any modern desktop computer. We
note that for approximate harmonic solutions, this model is very efficient. The nonlinear and
nonlinear-drying models take hours on present day single processor desktop computers. If
QUODDY is run explicitly with the same time step as QUODDY_dry, the computation times
are very close. When run implicitly, the time step could be doubled giving half the run time, indi-
cating the stability requirements of the basic implicit model are not greatly different from the
drying model. This would suggest that QUODDY_dry is definitely more expensive to run, but
not prohibitively so.
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The three models gave very similar results in calibration to the M2 tidal elevation data. There
were small successive improvements from FUNDY to QUODDY and QUODDY_dry. We believe
the minimal phase variation in FUNDY demonstrates the importance of nonlinearities in this re-
gion. High tidal elevations and currents, the frictional terms, advection and time-varying depth,
absent in this linear model, are all significant for these computations.

The further improvement in calibration seen in QUODDY_dry over QUODDY may also be re-
lated to these nonlinearities. The better inclusion of the shallow areas will enhance bottom friction
and further emphasize time-varying depth. QUODDY_dry�s spatial resolution of the shallow
water bathymetry contrasted to the uniform minimum depth of QUODDY, will lead to spatial
variation in the currents giving rise to larger advective terms. Another significant factor in the
improvement could be the better definition of or even complete drying of shallow channels. An
example of this, Fig. 11, is seen in the comparison of currents in Back Bay from QUODDY

and QUODDY_dry. Back Bay is separated from Lime Kiln Bay by a shallow area that effectively
completely dries at low tide. Even though the elevation from the models (not shown) is almost
identical in amplitude and phase, the currents are very different. These current amplitudes are
smaller in QUODDY_dry by a factor of about two. The difference in the phasing of the tide is
about 1h. Among the intended applications of this model are particle tracking to examine the
spread of disease and determination of minimum currents for oxygen resupply to aquaculture
farms. The more accurate currents of QUODDY_dry will give much more confidence in these
computations.

We feel the model is a useful improvement in high resolution tidal modelling of shallow areas.
Work is continuing on several fronts. Our application to the Quoddy Region will be further devel-
oped. The calibration mismatches will be investigated for several aspects, including: investigating
wider parameter ranges, the collection of more calibration data, further increasing resolution in
Cobscook Bay and critical channels, and runs that will include multiple tidal constituents. These
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will improve our particle tracking ability, and provide for improved bulk measurements of mixing
within the Quoddy region (Thompson et al., 2002). The model is also being applied to other areas.
The model will be further enhanced to include wind stress, computations in spherical coordinates
and prognostic computations of salinity and temperature.
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Appendix A. Aspects of the drying algorithm

The numerical algorithm described in Section 2 involves an integration over the elements to get
the elevation field (f(x,y, t)) and a point-wise computation to get the velocity field (v(x,y,z, t)).
Consistent with this, we remove an element from the computation of f if all three of its nodes
are dry and we use a point-wise check on velocities to set them to zero when they are dry. Consider
the vertical profile of currents and the corresponding terrain-following level variation over a 12h
tidal cycle at a shallow node. The top level always corresponds to the sea surface, f. At a shallow
node such as this, the bottom level is at hmin (=10m). In water where h > hmin, the bottom level is
coincident with �h. We will refer to a node as dry when f, falls below �h.

The surface elevation, f, at point P (Fig. A.1 left) will be frozen in time when f at all points, P
and N1–N6, are below �h. If any one of its neighbours, N1–N6, are still wet, levels at P can con-
tinue to vary until all the surrounding points dry. In the case illustrated (Fig. A.1 right), �h is at
�0.9m and the surrounding nodes are all dry when fp is at �1.6m. Only the top 8 levels (above
the dotted line) rise above �h at some time in the tidal cycle. When, one of the elements surround-
ing P contain all dry nodes at time t (e.g. element P, N1, N2) then it is not included in the inte-
gration that updates fp at time t + Dt. If just one of P, N1, N2 is wet, then the element is
included in the integration, but �v and all v(z) are zero at any dry node.

Because the surface elevation at point P continues to vary only until it and all its connecting
points dry, it can fall to the level of the shallowest point in the cluster. This behaviour is seen
in Fig. 1. If the depths in the cluster are uniform, f(P) would stop moving at a level very close
to �h. The elevation at P in a cluster with minimal depth range could descend below �h(P) only
a small amount reflecting the minimal difference with its neighbours. This would be the case in
areas with small gradients in depths or in areas with large depth gradients but high spatial reso-
lution where the gradients are well sampled.

The currents at any level (Fig. A.1 right) will be zero when that level falls below �h. Note that
these levels can continue to change even after f has fallen below this level. As long as node P is
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wet, all nodes, P,N1–N6, are included in the computation of v(z) at P which potentially includes
those on levels below �h (v(z) = 0) and those computed normally on levels above. A further
restriction sets velocities at all levels to zero when the surface falls below 0.05m above the bottom
(f < �h + 0.05).
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Abstract

We review and compare advection schemes designed for high-order finite element/finite volume methods.

The emphasis is on studying, by numerical examples, the properties of these schemes in terms of accuracy,

and monotonicity, and their viability for oceanic applications. The schemes reviewed are classical spectral

element, Taylor Galerkin Least Square method, the Discontinuous Galerkin method and high-order finite

volume method. The latter two schemes exhibit a definite robustness due to their small, but finite, inherent

numerical dissipation. They also prove the most flexible since their discontinuous representation of the

solution allows easy implementations of flux limiting or adaptive procedure. Finally, an ad-hoc but simple
adaptive procedure is presented to illustrate DGM�s potential; this procedure proved to be extremely effec-

tive at controlling Gibbs oscillations in 1D but was too dissipative on the Hecht problem.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

A number of new ocean circulation models based on unstructured-grid finite element (Lynch
and Werner, 1991; Iskandarani et al., 1995, 2003; Roux et al., 1998; Danilov et al., 2004; Danilov
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et al., 2005; Ford et al., submitted for publication-a, submitted for publication-b) and on finite
volume methods (Casulli and Walters, 2000; Chen et al., 2003) have been developed in the past
few years. Their main advantage is the geometric flexibility inherent in their computational grids
which allows them to easily handle complicated coastlines, and which endows them with a natural
multi-resolution capability. Resolution can be freely distributed and rearranged adaptively to
emphasize particular regions and/or critical dynamical features without undue increase in compu-
tational cost. Multi-scale and adaptive simulations can thus be carried out within the context of a
single model (e.g., coupled simulation of global/basin/coastal circulation).

A number of computational issues remain unresolved with respect to the application of finite
element and finite volume methods to oceanic flows. Prominent among these is the issue of tracer
advection in finite element models. Oceanic flows are largely determined by density gradients,
which in turn depend on the temperature and salt distributions. The evolution of these two tracers
is governed by an advection–diffusion equation characterized by a very large Peclet number.
Advection is thus the dominant process for the transport of water mass properties.

The numerical solution of advection-dominated problems is complicated by the difficulty in
enforcing all the properties of the continuous advective operators in their discrete analogues.
Among the desired properties are conservation, monotonicity, shape preservation, accuracy
and stability. Last but not least, efficient and scalable schemes are essential if large, multi-scale
problems are to be tackled.

In this article we review and evaluate a number of formulations used in solving the advection
equation using high-order, h–p type, finite element and finite volume methods. Our aim is to im-
prove the basic advection schemes built into the family of spectral element ocean models (Isk-
andarani et al., 1995, 2003) As such we focus exclusively on methods that rely on quadrilateral
elements for the spatial discretization, and that use relatively high-order polynomials, of degree
four to nine, to interpolate the solution within each element. We refer to Hanert et al. (2004)
for a review of advection schemes with linear triangular element. The formulations reviewed here
are

• the traditional spectral element formulation of the advection equation using continuous basis
and weight functions, which we refer to in the following as the Continuous Galerkin method
(CGM);

• the Discontinuous Galerkin method (DGM) which uses discontinuous basis and weight
functions;

• a Spectral Finite Volume (SFV) formulation that can be made monotonic with a Flux Correct
Transport (FCT) limiter; and

• a Taylor Galerkin Least Square formulation (TGLS).

The CGM formulation with its diagonal mass matrix is the most efficient since it allows explicit
time-integration schemes to be implemented without requiring the inversion of a system of equa-
tions. The CGM solution converges exponentially fast when the solution is infinitely smooth but
produces large Gibbs oscillations when the smoothness is finite. The high-order scheme�s inherent
lack of numerical dissipation allows these oscillations to propagate with little damping, and to
eventually pollute the solution everywhere. The typical remedy in such situations is to explicitly
include enough dissipation in the form of Laplacian dissipation or filters to damp the noise.



M. Iskandarani et al. / Ocean Modelling 10 (2005) 233–252 235
The problem lies in having to anticipate a priori the behavior of the solution, which is not always
possible. Furthermore, the interelement continuity requirement of the CGM formulation compli-
cates the implementation of both grid-adaptive procedures and slope/flux limiters.

The DGM formulation (Cockburn, 1998) has become the method of choice for solving hyper-
bolic and advection-dominated problems in geometrically complex domains. Its most distinguish-
ing feature is the use of discontinuous basis and weight functions. As such, local grid-adaptation
and slope limiters are considerably simpler to implement. Furthermore, DGM mass matrices con-
sist of small, element-wise block diagonal matrices that can be easily inverted without resorting to
mass lumping. Explicit time stepping is therefore also trivial to implement. (This issue is more of a
concern for low-order finite elements.) Here we attempt to assess the performance of DGM with
and without slope limiters and adaptivity. The latter is introduced as an illustration of the capa-
bility of DGM to implement these algorithms easily thanks to the discontinuous representation of
the fields.

The SFV formulation is included here because of the ease with which traditional multi-dimen-
sional limiters can be implemented. If Gibbs oscillations are to be eliminated completely, then lim-
iters are necessary even though they lead to a local loss of convergence order. Here, we have
implemented the Flux Corrected Transport (FCT) of Zalesak (1979) to enforce monotonicity
of the solution with little modification to Zalesak�s original algorithm. The SFV-FCT formulation
has been used to develop a shallow water code where the layer thickness is guaranteed to remain
non-negative throughout the calculation (Choi et al., 2004).

The only representative of stabilized advection schemes we include here is the Taylor Galerkin
Least Square formulation (TGLS; Donea et al., 2000). Our very pragmatic reason for this choice
is concerned with the solution of the global matrix equation generated by the stabilization proce-
dure. Since iterative solvers are necessary to avoid memory or parallel scalability bottlenecks in
very large problems, it is desirable that the matrix equation be symmetric positive definite so that
robust Preconditioned Conjugate Gradient iteration can be used. The least square formulation
yields a matrix with the requisite properties. Additionally, the extra terms arising from the least
square approach have the same structure as those of the Streamline Upwind Petrov Galerkin
(SUPG) stabilization, and provide the necessary upwind dissipation (Jiang, 1998). These extra
terms do not require any new adjustable parameter, and depend only on the time step employed
in the time integration. Although, we have argued here against the adoption of implicit time-step-
ping schemes, they may still be the appropriate practical choice, particularly if element sizes vary
significantly across the grid. Substantial effort must then be expanded in optimizing the iterative
solver necessary for large scale applications. The majority of our examples here relies on explicit
RK4 time stepping.

Our model advection equation is
T t þ~u � rT ¼ 0; ð1Þ
where T stands for one of the prognostic tracers (e.g., temperature). The conservation form of the
equation for a divergence-free velocity, r �~u ¼ 0, is
T t þr � ð~uT Þ ¼ 0: ð2Þ

We first outline the different formulations and discuss their distinctive properties. We also propose
an ad-hoc adaptation strategy to illustrate the potential of the latter to eliminate oscillations. The
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Hecht problem, which consists of advection of a passive tracer in a Stommel Gyre, is considered in
the limit of marginal resolution in the western boundary current region. The shearing of the tracer
in the swift current leads to small-scale features that are not resolvable on the coarse computa-
tional grid. Gibbs oscillations appear and pollute the solution, and differences in the schemes
are quite noticeable. Various devices are then explored in order to improve the basic schemes.
We finish by comparing CGM and DGM on an active tracer experiment using SEOM-3D.
2. Spatial discretization

We start by describing the common spatial discretization used by the different formulations. We
presume the physical domain to have been divided into quadrilateral elements which can be
mapped individually to a computational plane (n,g) as shown in Fig. 1. The solution within each
element is interpolated with a high-order polynomial according to
Fig. 1

circles
T ðn; gÞ ¼
XN

i¼0

XN

j¼0

T i;jWijðn; gÞ; ð3Þ
where Wij are the interpolation (or trial) functions, and the Ti,j are unknown coefficients that de-
pend on time only. Here we rely exclusively on Lagrangian interpolation so that the coefficients
Ti,j are the solution values at the collocation points.

In two dimensions the interpolation consists of tensorized Lagrangian polynomials of the form
Wij(n,g) = hi(n)hj(g). Two sets of points are commonly used for collocation: the Gauss Lobatto,
and the Gauss roots of Legendre polynomials (Boyd, 1989). Both sets of roots cluster near the
boundaries to defeat the Runge phenomenon, and to stabilize high order Lagrange interpolation.
Legendre polynomials and roots are commonly used because they provide for good interpolation
. Sketch of a quadrilateral element and its N · N cells Xkl = [nk,nk+1] · [gl,gl+1]. The Gauss points are indicated by

.
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properties and accurate numerical quadrature for quadrilateral elements (Canuto et al., 1988;
Boyd, 1989; Karniadakis and Sherwin, 1999). The Gauss-Lobatto roots include the end points
of the interval [�1 1], and are convenient to enforce function continuity across elements and to
impose Dirichlet boundary conditions; they are the collocation points of choice for the CGM for-
mulation. The Gauss roots omit the end points and are, for that reason, used primarily with dis-
continuous type interpolation such as DGM; they also offer improved integration accuracy over
the Gauss-Lobatto points. (A Q-point Gauss quadrature is exact for polynomial of degree
2Q � 1, whereas a Gauss-Lobatto quadrature is exact for polynomials of maximum degree
2Q � 3.) Notice that the Gauss and Gauss-Lobatto roots of a given degree Legendre polynomial
are staggered. The choice of points for collocation and quadrature will be specified for each
formulation.
3. Formulations

3.1. Continuous Galerkin formulation

The weak form of the advection equation amounts to finding a T such that
Z
X

UT tdA�
Z

X
T~u � rUdA ¼ �

Z
oXi

UT~u �~ndS �
Z

oXo

UT~u �~ndS 8U 2 H 1; ð4Þ
where the U�s are weight functions belonging to the Hilbert space H1, and the divergence theorem
has been invoked to integrate by parts the divergence term. The boundary integrals on the right
hand side of Eq. (4) represents the flux in and out of the domain. The application of the classical
(Bubnov) Galerkin procedure leads to a discrete system of ordinary differential equations of the
form M _T � DT ¼ f where T refers to the vector of unknown coefficients, M is the mass matrix, D

represents the discrete divergence operator, and f is the load vector on the system.
The Gauss-Lobatto roots are used for the Lagrangian interpolation within each element to sim-

plify the enforcement of the continuity requirement across elements. The integrals in Eq. (4) are
usually evaluated with quadrature given the complicated nature of the integrands. The proper
choice of quadrature rule is central to the efficiency and accuracy of the spectral element method,
most pertinently for explicit time-stepping schemes. More specifically, choosing the quadrature
points to be those associated with the Gauss-Lobatto collocation points leads to a diagonal ele-
mental mass matrix (Ronquist, 1988). The global mass matrix is then also diagonal and its inver-
sion is trivial. Notice that the Gauss-Lobatto quadrature is inexact: the integrand is a polynomial
of degree 2N, possibly 3N for a highly distorted element, whereas the quadrature is exact only for
polynomials of degree 2N � 1 or lower. This loss of accuracy is tolerable: first, the gain in com-
putational efficiency is very large, and second the phase degradation of the mass lumped matrix
disappears spectrally fast for N > 2.

The spectral element CGM formulation is characterized by exponential convergence under p
refinement when the solution is infinitely smooth. The convergence rate drops when the solution
has finite continuity, and Gibbs oscillations appear when the solution is discontinuous or steep
gradients are under-resolved. These oscillations can be non-linearly amplified and lead to a break-
down in the simulation. Fig. 2 illustrates the Gibbs oscillations using the one-dimensional example
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Fig. 2. One dimensional propagation of a square wave. The discretization consists of 40 elements containing six points

each. The time step is set to 0.001 and 500 steps are taken. The solid black line shows the analytic solution. The

advecting velocity is u = 1. The DG solutions were obtained without limiters (blue line) and with limiters (red line).
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of a square wave advected by a constant flow field. The CGM solution exhibits the most Gibbs
oscillations among the schemes considered because of its ‘‘centered’’ nature, and the absence of
numerical dissipation. A further drawback to the classical formulation is its requirement to main-
tain the continuity of the solution across element edges even though hyperbolic equations such as
(2) can lead to discontinuous solutions. The Discontinuous Galerkin Method was developed in
order to relax the latter requirement.

3.2. Discontinuous Galerkin formulation

The DG formulation differs from the continuous Galerkin formulation primarily in its choice of
function spaces in which to seek the solution. Hyperbolic partial differential equations admit solu-
tions with finite jump discontinuities, and as such the solutions must be sought in the space of
square integrable functions. The immediate advantage is that the continuity requirement across
elements can be waived, and attention must be paid to the fluxes into and out of each element.
The weak formulation leads to an equation similar to Eq. (4) except that U is now discontinuous
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and the domain of integration is defined element-wise. At interelement boundaries where the solu-
tion is discontinuous an upstream-biased choice guarantees stability and convergence (see Cock-
burn, 1998; Karniadakis and Sherwin, 1999 for more details). We note the following:

(1) The mass matrix is local to an element and does not require global assembly. Its size is hence
N · N and can be easily inverted. Our implementation here recovers a diagonal mass matrix.

(2) In our implementation we have collocated the solution on the Gauss roots since they provide
for more accurate quadrature then the Gauss-Lobatto roots. The resulting diagonal mass
matrix is exact for rectangular elements.

(3) The ability of DGM to cope with discontinuities is evident in the second panel of Fig. 2. The
Gibbs oscillations are confined to the immediate neighborhood of the discontinuity, and have
a smaller amplitude then their CGM counterparts.

(4) Since the solution is discontinuous across elements, local element refinement and/or slope lim-
iters can be easily implemented. These two issues are taken up in the next two sections.

Cockburn and Shu (1989) proposed a limiter for linear elements, N = 1, to eliminate Gibbs
oscillations from DGM calculations. The scheme limits the slopes of the Legendre spectral inter-
polation polynomial within an element in comparison with those implied by the variation of the
solution-mean across elements. The higher-order Legendre coefficients, if any, are set to zero
when the limiter is activated. Biswas et al. (1994) modified the limiter to avoid the drastic step
of setting to zero all high-order coefficients. His idea consists of limiting the derivatives of the
solution, starting with the highest order coefficient. The process stops if no modification takes
place; otherwise the next highest coefficient is limited. This ‘‘gradual’’ application of the slope lim-
iter is meant to preserve accuracy when the solution is smooth.

The blue line in the third panel of Fig. 2 illustrate the impact of the Biswas limiter on the square
wave problem. All oscillations have been effectively eliminated at the expense of a somewhat dif-
fused discontinuity. The limiter�s performance, however, deteriorates rapidly as the number of ele-
ment decreases: the shape of the initial profile is altered appreciably and its amplitude its
subtantially dissipated if 10 elements are used instead of 40. Furthermore, while the limiter�s
application to smooth problems seems to preserve the rate of convergence, the error levels
increase substantially. The extension of the Biswas limiter in multiple dimensions represents an-
other impediment to its adoption in general purpose code, as it requires the relative orientation
of three neighboring elements to be resolved in an unstructured environment. We do not pursue
this limiter further, and focus instead on using adaptive refinement to improve our advection
simulation.

3.3. Order adaptation strategy

The poor performance of the DGM slope limiter can be traced to the non-adaptive fixed spa-
tial resolution. Indeed, the effective order in elements where the limiter is active is generally at
most linear if not piecewise constant. The situation is exacerbated by the fact that high-order ele-
ments are generally chosen larger in size then their low-order counterparts to offset their higher
computational cost. The combination of a discountinuous solution and a high-order element with
a large foot print makes for a suboptimal spatial discretization. The alternative, which we explore
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here in a simple one-dimensional setting, is to modify the resolution locally and adaptively,
according to the smoothness of the solution, so as to make optimal use of the computational
resources.

Adaptive schemes depend critically on the criteria driving the grid adaptation. The more
sophisticated models use a posteriori error analysis (see Prudhomme and Oden, 2003; Süli and
Houston, 2003; Adjerid et al., 2002; Adjerid and Massey, 2002) to identify elements where the
numerical error is larger then a predetermined threshold; these elements are then tagged for refine-
ment. The implementation of these algorithms hinges on defining acceptable error levels in ocean
models, and on sophisticated grid management software to handle the evolving finite element grid.

Our approach here is substantially simpler. The main objective of our adaptive scheme is to pre-
vent the growth of Gibbs oscillations, while tolerating their intermittent presence. This choice is
largely motivated by practical considerations: a strict enforcement of monotonicity is expensive;
it will needlessly flatten smooth extrema; and it will in a sense negate the advantages of the high-
order representation.

Our adaptive strategy capitalizes on the discontinuous DGM interpolation to enhance the res-
olution locally with low-order elements when Gibbs oscillations or under-resolution are detected.
The high-order representation is retained in regions where the solution is smooth and we revert to
a low-order representation when and where the solution becomes rough. The measures of smooth-
ness and roughness, and the rules for how to switch between the representations, may be chosen in
many ways. Here, in order to limit the complexity of the adaptation algorithm, and to avoid the
need for complicated data structures, we allow only one level of refinement, and fix a priori the
number KL and order NL of the low-order elements used in the refinement. The adaptive algo-
rithm proceeds as follows:

(1) The local element-wise extrema of the solution are calculated at time n.
(2) Both low- and high-order representations are advanced in time. The fluxes passed between ele-

ments are those appropriate for the local discretization only, i.e. either low- or high-order
fluxes.

(3) The new extrema at time level n + 1 are examined in elements where the high-order represen-
tation is active. The element�s representation is switched to low-order if these extrema are out-
side the bounds of the allowable extrema. The bounds on the solution in element e are
A min
k
ðT kÞ 6 ðT eÞnþ1

6 Aþmax
k
ðT kÞ A� ¼ 1� signðmin

k
ðT kÞÞ�; ð5Þ
where the index k refers to the element-number of adjacent elements, and � is a user-defined
positive small constant. For � > 0 the solution is allowed to trespass the expected bounds on
the solution The benefit is that smooth peaks in the solution should be preserved, and the
adaptation is activated only near ‘‘appreciable’’ oscillations.

(4) The handling of the solution in elements where the low-order representation is active depends
on the order NL. For NL = 0, we are effectively using a first-order finite volume scheme to
advance the solution: this representation is diffusive and guaranteed not to exacerbate Gibbs
oscillations. If NL > 0, some sort of limiter must be used to decrease/eliminate the oscillations.
We need to test if the (KL,NL) solution is representable with the high-order spectral trunca-
tion. To this end we perform an L2 projection onto the space of Legendre polynomials



M. Iskandarani et al. / Ocean Modelling 10 (2005) 233–252 241
and compute the slopes of the Legendre coefficients according to the recipe presented by Mav-
riplis (1994). If the slope is less then a critical value the solution is switched back to the high-
order representation.

A number of numerical experiments were carried out in order to test the performance of the
above adaptive scheme. The linear advection equation is solved in a one-dimensional domain
for a top hat and for a truncated parabola. The aim of the first experiment is to gauge the model�s
performance in the presence of strong discontinuities while the other exhibits a smooth extrema
and a weaker slope discontinuity. The details of the initial conditions and the spatial discretization
can be found in the caption of Fig. 3.

The top panel 3 shows the adaptive scheme using NL = 0, a finite volume scheme, while varying
the number of low-order elements KL used in the refinement. The first remark is that the number
of low-order degrees of freedom should exceed the number of degrees of freedom of the parent
high-order element in order to avoid excessive numerical errors. The latter arise through the dis-
sipative nature of the finite volume scheme. Nevertheless, as KL increases the artificial smearing
decreases substantially, and becomes more confined to the immediate neighborhood of the discon-
tinuity. Notice that increasing the number of low-order elements from 20 to 40 does not improve
the solution much due to the excessive dissipation of the finite volume scheme.

Finally, once the solution is smooth and resolvable on the high-order element, no further
smearing takes place as the high-order representation takes over. The second panel repeats the
same experiment but for NL = 1, a linear interpolation for the low-order elements. In this case
Fig. 3. Adaptive solutions for 1D linear advection. In all cases we have K = 16 spectral elements with N = 6 points per

element. The initial condition for the top two figures is a top hat profile, and for the bottom most figure is T =

max(0,1 � 16(x � 1/2)2). The top figure shows the effect of increasing KL for fixed NL = 0; the middle figure is similar

but for NL = 1 (a linear interpolation). The time stepping is third order RK3 and the time step is either Dt = 10�3 or

Dt = 2 · 10�3; � = 10�3 in Eq. (5).
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the smearing of the solution across the discontinuity is reduced dramatically; Gibbs oscillations,
however, persist as no mechanism has been put in place to reduce them (a slope limiter would be
needed). Finally the third panel shows the performance of the adaptive scheme for a solution with
smooth peak and slope discontinuities only. The preservation of the peak is primarily due to
choosing � = 10�3 > 0 in Eq. (5), and which prevents round-off errors from activating the low-
order representation. Finally, only a very modest amount of dissipation is needed to round the
sharp corners of the inverted parabola.

3.4. Spectral Finite Volume-FCT formulation

In this section we present a relatively novel high-order ‘‘Spectral’’ Finite Volume method to solve
Eq. (2). The main attraction of a finite volume approach is the straightforward ability to implement
slope or flux limiters, and to impose the monotonicity constraint on the numerical solution. Our
formulation here attempts to preserve the high-order approximations and geometric flexibility
of spectral element methods, while minimizing the complexity of the high-order reconstruction step
(see below) in an unstructured grid environment. The scheme formulated here can be viewed as a
combination of the FV-FCT schemes proposed in Sidilkover and Karniadakis (1993) and Gian-
nakouros and Karniadakis (1994), and the discontinuous representation found in Kopriva and
Kolias (1996), and Kopriva (1996). A similar spectral Finite Volume scheme has been proposed
in Wang (2002), Wang and Liu (2002, 2003), and Wang et al. (2004) based on triangular elements.
In this section we give a brief overview of the method, concentrating on the high-order aspects, and
refer the reader to Choi et al. (2004) for a more detailed description.

The finite volume formulation is obtained simply by setting U = 1 in Eq. (4) to obtain:
X
oT
ot
þ
I
oX

T~u �~ndS ¼ 0; T ¼ 1

X

Z
X

T dA; ð6Þ
where T is the average of T over X. The area averages of the solution are the primary unknowns in
a finite volume formulation; the function values are needed to calculate the fluxes entering the (yet
undetermined) finite volume cells. A reconstruction procedure is then needed to recover solution
values from solution averages.

The spatial discretization relies on the spectral element paradigm with its two-level grid struc-
ture: the globally unstructured elemental subdivision, and the locally structured cell subdivision
shown in Fig. 1. The finite volume Eq. (6) is then enforced on each cell by setting X = Xkl where
(k, l) = 1, . . . ,N. In order to take advantage of the interpolation properties of spectral methods, we
choose our collocation points for Tkl to be the Gauss roots, nk, of Legendre polynomial of degree
N, and the cell edges to be the Gauss-Lobatto roots of the Legendre polynomial of degree N. Thus
the cell associated with Tkl is defined by the interval [nk�1,nk] · [gl�1,gl]. The cell-averages T kl can
now be computed by integrating the Lagragian interpolants over the volume of each cell. This is a
linear operation that can be recast as a matrix vector product that maps the N2 values of the func-
tions Ti,j into the N2 cell-averages T k;l:
T kl ¼
XN

i¼1

XN

j¼1

Akl;ijT i;j; Akl;ij ¼
1

Xkl

Z nk

nk�1

hiðnÞhjðgÞ j J j dndg: ð7Þ
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The entries of the averaging matrix must be calculated by numerical quadrature: an N-point
Gauss quadrature will be exact provided the geometric mapping (i.e. the Jacobian) is bilinear.
A similar quadrature is needed for the boundary integrals in Eq. (6).

The T-interpolation is discontinuous at element edges. This simplifies the scheme considerably
as it permits the mapping between the function values Ti,j and its cell averages T k;l to be inverted
uniquely and locally. The algorithmic steps for the high-order aspects of the scheme are

(1) Given the cells averages T
n
k;l, reconstruct the function T n

i;j ¼ A�1T k;l.
(2) Interpolate the function values T n

i;j to cell-edge quadrature points to evaluate the boundary
integrals. The discontinuity on cell edges that coincide with elemental edges is resolved by
choosing the upwind value.

(3) If needed apply the FCT procedure to prevent Gibbs oscillations.
(4) Integrate the equations in time using a high-order time scheme like AB3, RK3 or RK4 to

obtain T
nþ1

k;l .
The implementation of the Flux Corrected Transport (FCT) algorithm of Zalesak (1979) for
our SFV scheme is straightfoward thanks to the finite volume formulation and the two-level struc-
ture of the elemental grid. The high-order fluxes in our implementation rely on the SFV algorithm
presented above, and we follow the prescription laid out in Zalesak, 1979 to define the solution
bounds and limiting procedures as they are independent of the spatial discretization details.
The low-order fluxes use a donor cell scheme whereby each cell Xkl is a finite volume in which
the solution is interpolated as a piecewise constant; this low-order representation guarantees
the monotonicity of the low-order solution. The low- and high-order fluxes, and the solution
bounds are the essential ingredients of the FCT algorithm, and we refer the reader to Zalesak
(1979) and Choi et al. (2004) for more details. The lower panel of Fig. 2 shows the square wave
simulation using the SFV-FCT algorithm. Oscillations have been completely eliminated, and the
discontinuity is captured within a few grid cells. The extension of the above algorithm to multi-
dimensions is straightforward.

3.5. Taylor Galerkin Least Square formulation

The Taylor Galerkin formulation (Donea, 1984) is an extension of the Lax Wendroff method to
finite element discretization. Its principal objective is to transform temporal derivatives into spa-
tial derivatives, using the original partial differential equation, to derive two time-level and high-
order temporal schemes. Here we combine the Taylor Galerkin formulation with a least square
discretization in space to enhance the method�s performance in the advection-dominated regime
(Jiang, 1998). Indeed, the least square discretization provides the same upwind-biased weight
function as the popular Streamline Upwind Petrov Galerkin (SUPG) method. In addition, the
resulting method is parameter-free, and the matrix equations are symmetric positive definite. Pre-
conditioned Conjugate Gradient iterative methods can then be used to solve the algebraic system.
The Taylor Galerkin Least Square (TGLS) method is the only implicit method we investigate
since its matrix equation can be solved with efficient and parallelizable PCG iterations.

A major concern of high-order Taylor Galerkin methods is the presence of second-order or
higher spatial derivatives which complicate the finite element formulation. Donea et al. (2000)
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have recently proposed a systematic approach to derive higher-order approximations which in-
volves only first-order spatial derivatives at the expense of a larger system of algebraic equations.
Here we avoid all these complications by focussing on a Crank-Nicholson discretization of the
advection equation using TGLS.

Our TGLS formulation starts with the following second-order temporal Taylor expansion:
T nþ1 þ Dt
2
r � ~uT nþ1
� �

¼ T n � Dt
2
r � ~uT nð Þ þ OðDt3Þ; ð8Þ
where Eq. (2) has been used to set T t ¼ �r � ð~uT Þ. The least square formulation seeks to minimize
the L2 norm of the residual of Eq. (8); it leads to the following variational form:
Z

X
T nþ1 þ Dt

2
~u � rT nþ1

� �
vdV ¼

Z
X

T n � Dt
2
~u � rT n

� �
vdV ; ð9Þ
where the weight function is v ¼ Uþ Dt
2
~u � rv. Comparing the above equation with a straightfor-

ward Galerkin formulation of Eq. (8), it is clear that the weight function v is upstream biased.
Jiang (1998) has pointed out the relationship of the least square formulation to SUPG: the inte-
grals involving the weight function ~u � r/ have a tensorial structure similar to SUPG without
involving additional unknown parameters. The least square formulation in Fig. 2 (third panel)
produces substantially fewer oscillations than CGM; the amplitude of the oscillations are compa-
rable in the vicinity of the discontinuity, but decreases quickly away from it.

There are a few important remarks to note about this new formulation. First, the least square
formulation require the solution of an algebraic system at each time step. The saving grace is that
the least square statement leads naturally to a symmetric positive definite matrix solvable by
straightforward PCG iterations. Second, the matrix equations changes at each time step when
the velocity field is unsteady, and hence must be recomputed and reinverted.
4. Numerical experiments

A number of numerical two-dimensional experiments are presented to compare the perfor-
mance of the different schemes to oceanographically relevant situations. These tests include the
passive tracer advection of Hecht et al. (1995), and the active tracer experiment of a gravitational
adjustment in a channel of constant depth (Haidvogel and Beckmann, 1999). The emphasis here is
on cases where the solution develops under-resolved features and on assessing the model�s re-
sponse to the ensuing Gibbs oscillations. In addition to these tests we have run simulations for
infinitely smooth solutions to confirm that all schemes achieve exponential convergence under
h–p grid refinement using the rotating Gaussian hill experiment of Smolarkiewicz (1983). In sum-
mary, all schemes achieve their expected high-order convergence rates. At fixed intermediate res-
olution the DGM solution gave the smallest Gibbs oscillations and dispersive errors, and
preserved the shape of the initial pulse best.

4.1. Passive tracer experiments

High-order methods lose their high-order convergence properties when faced with problems
whose solution exhibit finite smoothness, e.g., discontinuities of the solution or its derivatives.
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Although true discontinuities are rare/non-existent in the ocean, under-resolved features can trig-
ger Gibbs oscillations and lead to a breakdown in the simulation. Here, we revisit the Hecht
advection problem (Hecht et al., 1995, 1998, 2000) as it is designed to characterize the behavior
of advection schemes in the under-resolved regime. The test consists of advecting a passive tracer
in a Stommel Gyre and, most importantly, through its western boundary current where it under-
goes severe shearing and straining. The Hecht problem retains only a few essential elements of
oceanic flows; its simplicity however allows us to quickly experiment with several advection
schemes without having to implement them in a full general circulation model. The emphasis here
is on the evaluation of the schemes� performance in a coarse-grid situation; more specifically the
boundary current region is about 70km wide, while the average grid spacing is set to 100km. For
our base experiment we choose a grid of 16 · 9 elements of order 7 (eight points) to discretize the
10,000 · 6300km2 basin. Although the finite element grid can be easily modified to enhance the
resolution in the western boundary region, we refrain from doing so since it is not always possible
to predict the regions where grid enhancement is necessary in realistic cases (short of using a
dynamically adaptive model). The Hecht problem offers a simple setting on which the behavior
of the models can be gauged. The aforementioned does not apply to dynamically adaptive models.

4.1.1. Basic schemes

The initial condition for the tracer is that of a Gaussian Hill centered at (10,000;6700)/3km
from the lower left corner, with a decay length scale of 800km. The initial evolution of the tracer
using the CGM scheme is shown in Fig. 4. The solution remains smooth until the tracer enters the
western boundary region and is subject to the severe shearing and straining of the strong currents.
Gibbs oscillations, symptomatic of under-resolution, appear, grow and propagate in a south–east
direction. At the end of the integration, top left panel of Fig. 5, the extrema of the original tracer
field are lost and replaced by large erroneous values (almost a 100 times larger in negative and
positive amplitudes). We note that the phase of the solution is captured well in spite of the large
amplitude errors.

The results obtained with TGLS are shown in the top right panel of Fig. 5. The least
square approach does not eliminate the Gibbs oscillations entirely; it does, however, reduce their
Fig. 4. Tracer evolution using CGM on basic seventh order 16 · 09 grid, no filtering. The right panel shows the tracer

prior to entering the WBC region (time 20 · 106 s), and the left panel during the crossing of the WBC region (40 · 106 s).



Fig. 5. The tracer distribution at the end of 4.8 year integration. The top panels show the CGM (left) and the TGLS

(right) solutions, while the bottom panels show the DGM (left) and SFV (right) solutions.
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amplitude greatly. The amplitude of these oscillations decrease with enhanced resolution (not
shown); in particular, the TGLS solution exhibits smaller oscillations than a CGM calculation
at the same resolution. Finally, the CPU cost, even for this steady flow problem, is substantially
higher for the least square approach because of its implicit solver.

The solution obtained with DGM is shown in the lower left panel of Fig. 5. It is apparent that
DGM gives the best overall solution. The shape of the tracer concentration is well reproduced,
and the extrema within the cone are well preserved. A portion of the tracer is left over in the
WBC and seems to be stagnant. Its amplitude, however, is substantially smaller than that found
in any of the other schemes, save for the SFV scheme. We note that the present DGM relied on
over-integration to achieve the good results shown herein. Thus, the velocity is collocated on 10
Gauss-Lobatto nodes whereas the tracer is collocated on staggered 8 Gauss nodes; and the 10
Gauss-Lobatto nodes are used to integrate the divergence term in the DGM formulation. A sim-
ilar conclusion can be drawn with respect to the SFV scheme whose solution is depicted in the
lower right panel of Fig. 5.

The absence of large oscillations in the DGM and SFV solutions can be traced back to the up-
wind treatment at element edges. The latter injects a small amount of numerical dissipation which
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prevents the oscillations from growing unchecked. In fact, Cockburn (1998) shows the stabilizing
effects of the numerical flux treatment on the DGM solution; no such analysis is available yet for
SFV.

4.1.2. Modified schemes

Here we investigate the effectiveness of different approaches at controlling and/or eliminating
Gibbs oscillations. The bad performance of the traditional CGM calculations is due to the
total absence of dissipation in the model problem. Furthermore, aliasing in the coarse-grid
western boundary current leads to a large increase in the amplitude of Gibbs oscillations.
Two straightforward mechanisms can be implemented to blunt the growth of these oscillations:
dealiasing and inclusion of artificial dissipation. The latter can take the form of spectral filters,
and or numerical dissipation induced by dissipative schemes (such as a first-order FV) or flux
limiters.

Dealiasing in spectral element calculations amount to calculating the integrals of the advection
terms exactly (Kirby and Karniadakis, 2003). For rectangular elements the integrand of the
advection term is a polynomial of degree 3N and hence requires (3N + 1)/2 Gauss quadrature
points, or (3N + 3)/2 Gauss-Lobatto quadrature points, to be evaluated exactly. The dealiased cal-
culation shown in Fig. 6 shows a substantial decrease in the amplitude of the oscillations; their
pattern, however, remains unaffected in the absence of dissipation. There is a minor cost in imple-
menting dealiasing as it requires each of the variables in the integrand to be interpolated to the
new quadrature points.

Traditional numerical dissipation based on the Laplace operator is not scale-selective enough to
damp the grid scale noise without affecting the larger-scale features. Spectral filters have been pro-
posed to mimic the effect of hyper-viscous dissipation in spectral element calculations; see Boyd
(1989) and Levin et al. (1997). The left panel of Fig. 6 shows the filtered CGM solution. The worst
of the oscillations have been removed while preserving the large-scale structure of the solution.
Spectral filters do present drawbacks however. First, and unlike a Laplacian-like diffusion term,
their action is not guaranteed to decrease the variance of the field, and may actually contribute to
the generation of oscillations (Boyd, 1994). Furthermore, experimentation is required to adjust
the filter frequency and strength to appropriate values. Frequent applications of a weak filter is
generally preferable to the infrequent application of a strong filter.

The activation of the FCT limiter for the SFV scheme, bottom left panel of Fig. 6, yields a
Gibbs-free solution. The SFV-FCT solution is in fact well suited for the Hecht problem where
a coarse-resolution grid is unable to cope with the generation of small-scale structure in the solu-
tion. The non-linear nature of the FCT algorithm allows the limiter to act more ‘‘forcefully’’ as
the tracer passes through the western boundary region.

Finally, the lower right panel of Fig. 6 shows the solution obtained with an adaptive DGM. The
adaptive procedure switched the high-order representation to a finite volume one with 20 · 20
cells in elements where the solution was not smooth. The smoothness of the solution was calcu-
lated using the slope of the spectral coefficients as in Henderson (1999). The solution is for the
most part oscillation-free although there are small out-of-range values. The solution is substan-
tially more diffused in the current example since the majority of the tracer is squeezed through
the coarsely resolved western boundary region. Our adaptive algorithm, with its reliance on finite
volume cells, leads to a substantial amount of numerical diffusion. A more appropriate refinement



0

1575

3150

4725

6300

0 2500 5000 7500 10000

SFV-FCT 16x09
contour from 0.05 to 0.45 by 0.05

max = 0.4780E+00
min = 0.1153E−42

Fig. 6. Hecht test with filtered CGM (top left), dealiased CGM (top right), DGM adaptive (lower left), and the

monotone SFV-FCT scheme (lower right).

248 M. Iskandarani et al. / Ocean Modelling 10 (2005) 233–252
strategy for the present case would use linear or quadratic elements to minimize the numerical dis-
sipation while further localizing the Gibbs oscillations. We leave this topic for a future article.

We stress that the equations solved are still the linear advection equation. The large differences
seen in the solution of the Hecht problem is due primarily to the coarse resolution used in the sim-
ulation. Numerical artificats contaminate the final solution, particularly for the cases with no dis-
sipation. The remedies sought improve the situation marginally since the basic schemes are still
severely under-resolved and under-damped.

4.2. Active tracers

The previous tests revolved around passive tracer experiments with no feedback to the dynam-
ics of the flow. Here we investigate the impact of the DGM and CGM formulations when applied
to the advection of density in SEOM-3D. The problem setting is that of a gravitational adjustment
problem in a rectangular channel 64km wide and 20m deep. The initial configuration consists of a
two-fluid system at rest separated by a vertical wall and with an initial density contrast of 5kg/m3;



Table 1

Comparisons of solution extrema for the gravitational adjustment problem for different viscosities m and Laplacian

diffusivities a

a m = 50m2/s m = 75m2/s m = 100m2/s

CGM DGM CGM DGM CGM DGM

qmin qmax qmin qmax qmin qmax qmin qmax qmin qmax qmin qmax

0 �1.61 6.79 �1.15 6.07 �0.82 5.71

5 �1.50 6.59 �1.16 6.04 �3.84 39.97 �0.88 5.76

10 �1.36 6.39 �3.76 40.96 �1.11 6.01 �1.03 11.95 �0.88 5.78

25 �7.05 52.3 �0.63 5.71 �1.21 10.37 �0.67 5.65 �0.46 6.79 �0.58 5.56

50 �0.55 6.99 �0.32 5.05 �0.66 5.72 �0.26 5.07 �0.36 5.31 �0.17 5.13

75 �0.12 5.32 �0.06 5.05 �0.12 5.18 �0.06 5.02 �0.08 5.09 �0.05 5.02

100 �0.02 5.04 �0.03 5.04 �0.004 5.004 �0.04 5.02 �0.003 5.004 �0.04 5.01
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the wall is lifted and the fluid is allowed to adjust under the influence of gravity. The expected
behavior is that of two fronts moving away from each other at the internal gravity speed of
0.5m/s. The difficulty in this configuration is to maintain the frontal structure in spite of numerical
errors and the dissipation required to stabilize the computations. The numerical grid consists of 16
eight-order polynomials elements in the horizontal and five quartic elements in the vertical.

Table 1 compares the CGM and DGM density extrema for different combinations of viscous
and diffusion coefficients. Ideally, the density should remain within the original bounds:
0 6 q 6 5kg/m3. Numerical errors and Gibbs oscillations, however, conspire to produce spurious
extrema. The frontal structure of the inviscid problem is quite challenging to high-order methods.
Experimentation with the CGM formulation has shown that the solution becomes well resolved
on the present computational grid for a = m = 100m/s2. The blank entries in Table 1 refers to cases
where the simulation was unstable. These cases were isolated to the CGM formulation with weak
dissipation, and which resulted in fronts unresolvable on the computational grid. The DGM for-
mulation, however, was stable for these cases. Notice also the very large spurious values for the
marginally resolved CGM simulations compared to those of DGM.
5. Conclusion

We have surveyed four different high-order formulations to solve the advection equation using
quadrilateral, spectral element type grids. Of the four different formulations considered the
straightforward Continuous Galerkin spectral element method is the most efficient provided
the solution is well resolved on the computational grid. The lack of numerical dissipation in
the scheme requires that dissipation be explicitly prescribed in the form of a Laplacian diffusion
or filter. Dealiasing can help reduce the growth of Gibbs oscillations amplitude in under-resolved
regions but does not dissipate them. Filtering and dealiasing must then be used in tandem.

The Spectral Finite Volume algorithm presented here provides high-order convergence rates
when the solution is smooth. Furthermore, it is readily modified to include an FCT limiter to re-
move erroneous oscillations. There are two computational drawbacks to the SFV formulation.
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First, the flux computations require a relatively expensive, high-order interpolation of the func-
tion values to cell edges; this extra cost is mitigated by the tensor-product nature of the interpo-
lation. Second, the variable Jacobian of quadrilateral elements prevents us from rewriting the
reconstruction matrix in tensor-product form, and full matrix multiplication is required to recon-
struct the solution in two-dimensions; the cost of the reconstruction thus grows as N4. For these
reason we recommend using the SFV formulation with moderate degree polynomials in the range
of 1–6, only, particularly when the FCT limiter is activated.

The marginal improvement of the TGLS solution over the standard CGM scheme does not jus-
tify its higher computational cost. More sophisticated stabilization schemes may prove to be more
robust; efforts may then be spent on developing a robust and scalable iterative solver for non-sym-
metric indefinite systems.

Finally, DGM proved to have a desirable set of properties. Its inherent small dissipative nature
damps the grid-scale noise without affecting the large-scale structure. It has a computational cost
comparable to the CGM formulation, but requires a bit of extra processing to compute interele-
ment fluxes. Finally, the discontinuous nature of its basis functions makes it possible to implement
local h–p adaptive procedures to optimize the solution representation according to its smooth-
ness. The finite volume cell representation turns out to be too diffusive, and we recommend using
at least linear interpolation in the low-order elements.

The optimal advection scheme depends largely on the nature of the problem to be solved; the
reader is hence urged to carefully consider the circumstances of their target problems before
adopting one of the scheme surveyed above. For problems where oscillations are unacceptable,
such as negative layer thicknesses in an isopycnal model, the SFV is a rational choice to force
the solution to remain monotone throughout the calculations. If small out of range values are tol-
erable, then DGM becomes competitive with its combination of robustness and efficiency. Most
importantly, its discontinuous representation of the solution, simplifies tremendously the imple-
mentation of limiters and adaptive solution strategies.
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Danilov, S., Kivman, G., Schröter, J., 2004. A finite-element ocean model: principles and evaluation. Ocean Modelling

6, 125–150.
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