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Abstract—Spectrum optimization is a promising means to
tackle the crosstalk problem in DSL systems, and corresponds
to a challenging nonconvex optimization problem. Iterative con-
vex approximation (ICA) methods have been proposed in the
literature to deal with this optimization problem. These methods
consist in solving a series of improving convex approximations
and are typically implemented in a per-user iterative approach.
In this paper we develop a novel class of iterative methods
that focus explicitly on per-user iterative implementations, and
which consist of improved per-user approximations that are
tighter and simpler to solve (in closed-form) than state-of-the-
art ICA methods. As a result, the proposed methods improve
the convergence speed as fewer approximations are required to
converge, and display a significantly lower computational cost.
Furthermore, three of the proposed methods can tackle the issue
of getting stuck in bad locally optimal solutions, and hence
improve solution quality with respect to existing ICA methods.

I. INTRODUCTION

Modern digital subscriber line (DSL) systems suffer from

crosstalk, i.e., electromagnetic interference among different

copper lines in the same cable bundle. The presence of

crosstalk transforms the DSL access network into a chal-

lenging multi-user multi-carrier interference environment, in

which the transmission of one user can significantly impact

the transmission of all other users.
Dynamic spectrum management (DSM) refers to a promis-

ing set of multi-user techniques to tackle this crosstalk prob-

lem. In this paper, we will focus on DSM through spectrum

optimization, which consists of jointly optimizing the transmit

spectra of the interfering users, so as to prevent the impact of

crosstalk and to maximize data rates.
The DSM spectrum optimization problem corresponds to

a challenging nonconvex problem, for which many DSM

algorithms have been proposed in the literature, ranging from

fully autonomous [1], [2], [3], and distributed [2], [4], [5], [6],

to centralized algorithms [7], [8]. In particular, the approach

of iterative convex approximation (ICA) has been recognized

to be very efficient, such as the CA-DSB [2] and SCALE

[5] algorithms. These algorithms consist in solving a series of

improving convex approximations to the nonconvex problem

until convergence to a locally optimal solution or a stationary

point. The complexity of this ICA approach depends on two

factors: (i) the type of approximation, where a tighter approxi-

mation generally results in fewer iterations until convergence,
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and (ii) the computational cost of solving the corresponding

approximation. Such ICA algorithms (for distributed or cen-

tralized computation) are typically implemented in a per-user

iterative approach, as this is demonstrated to be highly efficient

[3], [2], [9], [4], [5], [6]. For instance, it is shown that these

iterative implementations can solve small- to medium-scale

DSL scenarios, i.e. up to 6 users, within a few seconds [2].

However, for large-scale DSL scenarios, i.e. 10 to 50 users,

these iterative methods can take several minutes. Moreover, it

is shown in [2] that these methods can sometimes get stuck

in bad locally optimal solutions.
In this paper we design a novel class of iterative approxi-

mation methods that explicitly focus on the typical per-user

iterative implementation. The proposed methods consist of

improved per-user approximations that are much tighter and

simpler to solve than existing state-of-the-art ICA methods.

More specifically, we introduce IASB1 and IASB2, which

consist of improved per-user convex approximations, as well

as IASB3, IASB4 and IASB5, which consist of per-user non-

convex approximations. We will show that the corresponding

per-user approximations can easily be solved in closed-form,

i.e., by computing the roots of a linear, quadratic or cubic

polynomial, even for large-scale DSL scenarios, in contrast to

existing ICA methods. Furthermore, we will show how IASB3,

IASB4 and IASB5 can tackle the issue of getting stuck in

bad locally optimal solutions. Both a reduction in the number

of iterations required for convergence and an improvement in

solution quality (i.e., improved data rate performance) will be

demonstrated using a realistic DSL simulator.

II. SYSTEM MODEL AND SPECTRUM OPTIMIZATION

We consider a cable bundle that consists of a set N =
{1, . . . , N} of N DSL users (i.e., lines) with the standard

assumption of synchronous discrete multi-tone (DMT) mod-

ulation and with a set K = {1, . . . ,K} of K tones (i.e.,

frequency carriers). We assume no signal coordination at the

transmitters and at the receivers. Furthermore, we assume

that the interference is treated as additive white Gaussian

noise. Under these standard assumptions for DSL spectrum

coordination, the spectrum optimization problem (SO problem)

can be formulated as follows

(SO problem) : min
sk∈Sk,k∈K

∑

k∈K

fk(sk)

subject to
∑

k∈K

sk ≤ P
tot,

(1)



with sk = [s1
k, . . . , sN

k ]T denoting transmit powers of all users

on tone k, the vector constant P
tot = [P 1,tot, . . . , PN,tot]T

denoting the total power budgets for all users, and the set

Sk = {sn
k , n ∈ N|0 ≤ sn

k ≤ sn,mask
k ,∀n ∈ N} denoting

the feasible set on each tone k with constant spectral mask

sn,mask
k for user n. Each term fk(sk) in the objective function

corresponds to the following nonconvex function

fk = fk(sk) = −
∑

n∈N

wn log







1 +
sn

k
∑

m 6=n

an,m
k sm

k + zn
k







,

(2)

with wn denoting the weight given to the data rate of user n,
an,m

k denoting the normalized channel gains from transmitter

m to receiver n on tone k, and zn
k denoting the normalized

noise power for line n on tone k. The standard SNR gap is also

included in the normalized channel gains and noise power.

III. SPECTRUM OPTIMIZATION THROUGH ITERATIVE

CONVEX APPROXIMATION

The ICA approach to tackle the SO problem consists in

solving a series of improving convex approximations. This

procedure is given in Algorithm 1.

Algorithm 1 Iterative convex approximation (ICA) for SO (1)

1: Choose an initial approximation point s̃k ∈ Sk, k ∈ K
2: while not converged to stationary point do

3: Approximate fk(sk) in problem (1) by convex function

f cvx
k (sk; s̃k), k ∈ K

4: Solve corresponding convex problem to obtain

s
cvx,∗
k , k ∈ K

5: Set s̃k = s
cvx,∗
k ,∀k ∈ K

6: end while

The ICA procedure is guaranteed to converge to a locally

optimal solution or a stationary point of the SO problem under

the following conditions [10]:

f cvx
k (̃sk; s̃k) = fk (̃sk),∀k ∈ K, (3)

∇f cvx
k (̃sk; s̃k) = ∇fk (̃sk),∀k ∈ K, (4)

f cvx
k (sk; s̃k) ≥ fk(sk),∀sk ∈ Sk, k ∈ K, (5)

which impose that the approximation f cvx
k (sk; s̃k) coincides at

first-order with the true objective function fk(sk) around the

approximation point s̃k, k ∈ K, and also that the approxima-

tion is an upper bound on the true objective function. The CA-

DSB and SCALE algorithms are two effective ICA procedures

that, respectively, use the convex approximations fCADSB
k and

fSCALE
k of Table I in which parameters bn

k (̃sk), αn
k (̃sk) and

cn
k (s−n

k , s̃k) are constants that depend on the approximation

point s̃k, and which are computed in closed-form such that

conditions (3-5) are satisfied, see [2], [5].

For the concrete implementation of ICA, one typically

follows an iterative approach (for centralized [2], [9] as well

as distributed implementations [1], [2], [4], [5], [6]), i.e., each

user iteratively computes its own transmit powers taking the

fixed interference of the other users into account. This comes

down to the typical per-user iterative implementation as shown

in Algorithm 2, in which s−n
k refers to the vector containing

Algorithm 2 Per-user iterative ICA approach

1: Choose an initial approximation point s̃k ∈ Sk, k ∈ K
2: for outer iterations do

3: for user n = 1 to N do

4: for inner iterations do

5: Update per-user approximation fapp
k (sn

k ; s−n
k , s̃k) in s̃n

k
6: Solve per-user problem (7) to obtain sapp,n,∗

k , k ∈ K
7: Set s̃n

k = sapp,n,∗
k , k ∈ K

8: end for

9: end for

10: end for

transmit powers on tone k of all users except for user n, and
lines 4 to 8 focus on solving the following per-user version of

the SO problem:

min
sn

k
∈Sn

k
,k∈K

∑

k∈K

fk(sn
k ; s−n

k )

subject to
∑

k∈K

sn
k ≤ P

n,tot,
(6)

with Sn
k = {sn

k |0 ≤ sn
k ≤ sn,mask

k }. More specifically, lines 4

to 8 come down to solving (6) with an iterative approximation

approach, where each approximation (line 6 of Algorithm 2)

corresponds to the following per-user problem

min
sn

k
∈Sn

k
,k∈K

∑

k∈K

fapp
k (sn

k ; s−n
k , s̃k)

subject to
∑

k∈K

sn
k ≤ P

n,tot.
(7)

Note that we do not require that the approximation function

fapp
k we use to be convex. This per-user problem is typically

solved by focusing on its dual problem formulation as follows:

max
λn≥0

g(λn) with (8)

g(λn) := −λnPn,tot +
∑

k∈K

[

min
sn

k
∈Sn

k

fapp
k (sn

k ; s−n
k , s̃k) + λnsn

k

]

.

(9)

The dual problem (8) is a one-dimensional problem in the

dual variable λn, which can be solved using a simple bisection

search, or (sub-)gradient update approaches [8]. However, the

evaluation of the objective function g(λn) corresponds to an

optimization problem on its own, i.e., (9). This problem can

be decomposed over tones for a given λn, resulting in K
independent one-dimensional subproblems, which are convex

subproblems if fapp
k (sn

k ; s−n
k , s̃k) is convex in sn

k . This is also

referred to as dual decomposition. It can be shown that for CA-

DSB, i.e., fapp
k = fCADSB

k , and SCALE, i.e., fapp
k = fSCALE

k ,

these decomposed subproblems in (9) can be solved in closed-

form by computing the roots of a polynomial of degree N ,

which is only simple to obtain when N < 5, i.e., for DSL

scenarios with less than 5 users. Therefore iterative fixed point

updates were proposed in [2], [5] to solve the subproblems in

(9), instead of computing closed-form solutions.



TABLE I
PER-USER OBJECTIVE AND APPROXIMATION FUNCTIONS, AND DEGREE OF CORRESPONDING POLYNOMIAL TO SOLVE SUBPROBLEMS IN (9)

True (nonconvex) per-user objective function fk Degree

fk(sn
k
; s−n

k
) =

(A)
︷ ︸︸ ︷

−wn log







1 +
sn
k

∑

m6=n

a
n,m

k
sm
k

+ zn
k







(B)
︷ ︸︸ ︷

−wq log







1 +
s
q

k
∑

m6=q

a
q,m

k
sm
k

+ z
q

k







2N-1

−wt log







1 +
st
k

∑

m6=t

a
t,m

k
sm
k

+ zt
k







︸ ︷︷ ︸

(C)

−

∑

p∈N\{n,q,t}

wp log







1 +
s
p

k
∑

m6=p

a
p,m

k
sm
k

+ z
p

k







︸ ︷︷ ︸

(D)

Per-user approximation functions f
app
k

Degree

fCADSB
k (sn

k ; s−n
k

, s̃k) = −

∑

n∈N

[

wn log

(

sn
k

+
∑

m6=n
a

n,m

k
sm
k

+ zn
k

)]

+ bn
k
(̃sk)sn

k
+ cn

k
(s−n

k
, s̃k) N

fSCALE
k (sn

k ; s−n
k

, s̃k) = −

∑

n∈N

[

wnαn
k
(̃sk) log

(

sn
k∑

m 6=n
a

n,m

k
sm

k
+zn

k

)]

+ cn
k
(s−n

k
, s̃k) N

f IASB1
k

(sn
k
; s−n

k
, s̃k) = −wn log







1 +
sn

k∑

m6=n

a
n,m

k
sm

k
+zn

k







+ bn
k
(̃sk)sn

k
+ cn

k
(s−n

k
, s̃k) 1

f IASB2
k

(sn
k
; s−n

k
, s̃k) = f IASB1

k
(sn

k
; s−n

k
, s̃k)− L

(
sn
k
− s̃n

k

)2
2

f IASB3
k

(sn
k
; s−n

k
, s̃k) = −

∑

p∈{n,q}







wp log







1 +
s

p

k∑

m6=p

a
p,m

k
sm

k
+z

p

k













+ bn
k
(̃sk)sn

k
+ cn

k
(s−n

k
, s̃k) 3

f IASB4
k

(sn
k
; s−n

k
, s̃k) = −wn log







1 +
sn

k∑

m6=n

a
n,m

k
sm

k
+zn

k






− wqα

q

k
(̃sk) log







s
q

k∑

m6=q

a
q,m

k
sm

k
+z

q

k







+ bn
k
(̃sk)sn

k
+ cn

k
(s−n

k
, s̃k) 2

f IASB5
k

(sn
k
; s−n

k
, s̃k) = −wn log







1 +
sn

k∑

m6=n

a
n,m

k
sm

k
+zn

k






−

∑

p∈{q,t}







wpα
p

k
(̃sk) log







s
p

k∑

m6=p

a
p,m

k
sm

k
+z

p

k













+ bn
k
(̃sk)sn

k
+ cn

k
(s−n

k
, s̃k) 3

The per-user iterative approach using dual decomposition is

recognized as being very effective in tackling the SO problem

in the sense that it can find locally optimal solutions to the SO

problem with only small computational cost. More specifically,

in [2] it is shown that the SO problem up to dimension KN =
2000 can be solved within a few seconds.

However, there are also some drawbacks when using exist-

ing ICA methods, such as CA-DSB and SCALE. First, the SO

problem can have many locally optimal solutions, depending

on the considered DSL scenario, where many of those locally

optimal solutions can correspond to a quite suboptimal data

rate performance, as demonstrated in [2]. Existing ICA meth-

ods feature no mechanism to tackle this issue and, depending

on the chosen initial point and the considered DSL scenario,

may converge to a locally optimal solution with very seriously

deteriorated data rate performance. A second issue is that

for large-scale DSL scenarios with 50-100 users and more

than 1000 tones, ICA methods may take several minutes or

even hours. Any improvement to reduce the execution time is

desirable for such large-scale scenarios.

IV. A NOVEL CLASS OF PER-USER ITERATIVE

APPROXIMATION METHODS

In this section, we propose a class of novel per-user iter-

ative methods that rely on five new per-user approximations

fapp
k (sn

k ; s−n
k , s̃k) for which the subproblems in (9) can be

easily solved in closed-form, i.e., by computing the roots

of a linear, quadratic, or cubic polynomial, even for large-

scale DSL scenarios. This is much simpler than existing ICA

methods for which the closed-form solution requires comput-

ing the roots of a polynomial of degree N , as mentioned in

Section III. Next to the significant reduction in computational

cost for closed-form solutions, we show that these novel

approximations are tighter than those of existing ICA methods,

and can even result in improving final solution quality.



A. Design Approach

For the design of our new approximations, we start from

the true (nonconvex) per-user objective fk(sn
k ; s−n

k ) as given in
Table I, which is a one-dimensional function in sn

k that consists

of a convex term (A) and concave terms (B), (C) and (D).

Then, we replace some of the concave terms by either a linear

or a nonlinear first-order approximation around current appro-

ximation point s̃k, so as to obtain a per-user overapproximation

fapp
k (sn

k ; s−n
k , s̃k) that satisfies convergence conditions (3-5) in

sn
k . This approximation is then used in Algorithm 2, where (7)

is solved using the dual approach (8-9). Our proposed per-user

approximations are carefully chosen so that the corresponding

KKT stationarity condition, valid for each subproblem in (9),

∂

∂sn
k

fapp
k (sn

k ; s−n
k , s̃k) + λn = 0 (10)

can be rewritten as a polynomial equation in sn
k that can be

easily solved. Solution of the subproblems in (9) is then either

one of the roots of this polynomial or one of the endpoints of

the feasible interval Sn
k .

B. Novel Methods

1) Iterative Approximation Spectrum Balancing 1 (IASB1):

Our first method corresponds to Algorithm 2 with the per-

user approximation function fapp
k = f IASB1

k (sn
k ; s−n

k , s̃k), as
given in Table I, which is obtained by a first-order linear

approximation of the concave terms (B), (C) and (D) of fk,

where constants bn
k (̃sk) and cn

k (s−n
k , s̃k) are chosen (in closed-

form) for the given approximation point s̃k so as to satisfy

(3-5). Function f IASB1
k (sn

k ; s−n
k , s̃k) corresponds to a one-

dimensional convex function in sn
k , and satisfies the following:

Lemma 4.1: Approximation f IASB1
k (sn

k ; s−n
k , s̃k) is

tighter than approximation fCADSB
k (sn

k ; s−n
k , s̃k), i.e.,

f IASB1
k (sn

k ; s−n
k , s̃k) ≤ fCADSB

k (sn
k ; s−n

k , s̃k)
Proof: The proof is straightforward and consists in show-

ing that the second derivative of f IASB1
k (sn

k ; s−n
k , s̃k) in sn

k

is smaller than that of fCADSB
k (sn

k ; s−n
k ). Omitted for space

reasons.
A tighter approximation results in fewer approximations to

converge to a local optimum of (6), i.e., fewer inner iterations

are required in Algorithm 2. Furthermore, following a dual

decomposition approach to solve the corresponding convex

approximation (7) with fapp
k = f IASB1

k , the decoupled sub-

problems in (9) can be solved in closed-form as follows

sn
k =




wn

λn + bn
k (̃sk)

−




∑

m 6=n

an,m
k sm

k + zn
k









sn,mask

k

0

(11)

where [x]ba means max(min(x, b), a), and which we obtain by

extracting sn
k from (10) with fapp

k = f IASB1
k , and projecting on

the feasible interval Sn
k . The proposed per-user approximation

is thus both tighter than that of CA-DSB, and much easier

to solve (in closed-form) than CA-DSB and SCALE. The

computational costs are summarized in the last column of

Table I. A concrete improvement in number of approximations

and complexity will be demonstrated in Section VI.
Finally we want to note that the update formula (11) of

IASB1 corresponds to that of the DSB algorithm proposed in

[2]. However, both update formulas are derived in a funda-

mentally different way, where IASB1 gives some important

additional insights. More specifically, it shows that (11) is

the solution of a convex problem satisfying conditions (3-

5), which proves that this per-user iterative update is non-

decreasing and converges to a (univariate) local optimum,

properties which were not known previously for DSB.

2) Iterative Approximation Spectrum Balancing 2 (IASB2):

The per-user approximation of IASB1 can be further improved

by the per-user approximation f IASB2
k of Table I. It adds an

additional term to f IASB1
k with constant parameter L, which

is used to make the approximation tighter in the interval Sn
k

compared to that of IASB1. More specifically, a positive value

for L makes f IASB2
k a lower approximation of f IASB1

k . Note

that the value of L cannot be chosen too large to ensure

that f IASB2
k remains a convex overapproximation of fk in the

interval Sn
k . We propose the following positive value for L:

L = min (x, y)
with x = wn

2
(
ŝn

k
+
∑

m 6=n
an,m

k
ŝm

k
+zn

k

)
2

y =
∑

m 6=n

wmŝm
k (am,n

k
)2

(
ŝm

k +2
∑

p6=m
am,p

k
ŝp

k
+2zm

k

)
/2

((ŝm
k

+
∑

p6=m
am,p

k
ŝp

k
+zm

k
)(
∑

p6=m
am,p

k
ŝp

k
+zm

k
))2

,

(12)

with ŝk = (sn,mask
k , s̃−n

k ). The derivation of the proposed

value for L is omitted for space reasons, but it can be easily

shown that this value guarantees that f IASB2
k remains a convex

upper bound to fk in the interval Sn
k and satisfies convergence

conditions (3-5) at s̃n
k . The improved tightness is stated by the

following lemma:

Lemma 4.2: Per-user approximation f IASB2
k is tighter than

approximations f IASB1
k and fCA−DSB

k .

Proof: Proof trivial since fk ≤ f IASB2
k ≤ f IASB1

k .
For the solution of the subproblems in (9) with fapp

k =
f IASB2

k , we start from the corresponding KKT stationarity

condition (10) with fapp
k = f IASB2

k , and we observe that it

can be reformulated as a simple quadratic equation in sn
k .

Subproblems in (9) can then be solved in closed-form by

computing the roots of this quadratic polynomial and taking

the best of the roots after projection on the interval Sn
k . More

formally:

sn,∗
k = argmin

x∈X
f IASB2

k (x; s−n
k , s̃k) + λnx, (13)

with the set of candidate optimal solutions X defined as

X = {[a1]
sn,mask

k

0 , [a2]
sn,mask

k

0 },

with a1 and a2 denoting the roots of the quadratic polynomial.

In summary, approximation f IASB2
k is tighter than f IASB1

k ,

but requires a slightly higher computational cost to solve the

corresponding approximate problem in closed-form.

3) Iterative Approximation Spectrum Balancing 3 (IASB3):

Our next method corresponds to the per-user approximation

fapp
k = f IASB3

k of Table I, which is obtained by a first-order

linear overapproximation of terms (C) and (D) of fk. Function

f IASB3
k is nonconvex in sn

k . Its improved tightness is stated in

the following lemma:



Lemma 4.3: Per-user approximation f IASB3
k is tighter than

approximation f IASB1
k and fCA−DSB

k .

Proof: Proof trivial since it is easy to see that fk ≤
f IASB3

k ≤ f IASB1
k ≤ fCA−DSB

k .

For IASB3, we observe that the KKT stationarity condi-

tion (10) can be rewritten as a cubic equation in sn
k . The

subproblems in (9) can then be solved in closed-form by

computing the roots of a cubic polynomial and checking those

roots after projection on the interval Sn
k in addition to the

boundary points. More formally:

sn,∗
k = argmin

x∈X
f IASB3

k (x; s−n
k , s̃k) + λnx, (14)

with the set of candidate optimal soluitons X defined as

X = {0, sn,mask
k , [b1]

sn,mask

k

0 , [b2]
sn,mask

k

0 , [b3]
sn,mask

k

0 },

and with b1, b2, b3 the roots of the cubic equation.

We would like to highlight here that the IASB3 method cor-

responds to the ASB method of [1] if bn
k (̃sk) and cn

k (s−n
k , s̃k)

are fixed to zero. The addition of bn
k (̃sk) and cn

k (s−n
k , s̃k)

however ensures that IASB3 converges to a per-user local

optimum, as opposed to ASB. One huge advantage of IASB3

compared to CA-DSB, SCALE, IASB1 and IASB2 is that the

nonconvex nature of f IASB3
k allows to get out of bad locally

optimal solutions, as will be demonstrated in Section VI,

which results in improvements in the data rate performance.

Finally we would like to highlight that a good choice of q is

relevant and determines the solution quality and convergence

speed. The ‘reference line’ heuristics for ASB provided in [1],

[3] can be used for this. A further analysis of this choice is a

subject of further study.

4) Iterative Approximation Spectrum Balancing 4 (IASB4):

A fourth method uses the approximation f IASB4
k of Table I

which is obtained by a first-order linear overapproximation of

terms (C) and (D), and a nonlinear overapproximation of term

(B) based on the following inequality (in the variable v)

− log(1 + v) ≤ −αq
k (̃sk) log(v) + constant, (15)

with the constants αq
k (̃sk) = y/(1 + y) and y =

s̃q
k/(

∑

m 6=q aq,m
k s̃m

k + zq
k) chosen so that conditions (3-5) are

satisfied for f IASB4
k in s̃k. The overapproximation of term (B)

is similar to that used by fSCALE
k , but then only applied in

one term instead of all terms. Approximation f IASB4
k is less

tight compared to f IASB3
k , because term (B) is replaced by

an overapproximation. However, the advantage of f IASB4
k is

that the KKT stationarity condition (10) can be rewritten as

a quadratic equation. Thus the subproblems in (9) can be

solved in closed-form by computing the roots of a quadratic

polynomial, instead of a cubic polynomial. Formally:

sn,∗
k = argmin

x∈X
f IASB4

k (x; s−n
k , s̃k) + λnx, (16)

with the set of candidate optimal solutions X defined as

X = {0, sn,mask
k , [c1]

sn,mask

k

0 , [c2]
sn,mask

k

0 },

with c1 and c2 denoting the roots of the quadratic polynomial.

Similarly to IASB3, the IASB4 method corresponds to an

approximation which is not necessarily convex in sn
k . This

allows to escape from a bad locally optimal solution when

choosing a proper value for q, as will be shown in Section VI.

5) Iterative Approximation Spectrum Balancing 5 (IASB5):

Our last proposed method uses the approximation f IASB5
k

of Table I which is obtained by a first-order linear overap-

proximation of term (D) of fk and a first-order nonlinear

approximation of the form (15) for terms (B) and (C). For

this nonconvex approximation, we observe that the KKT

stationarity condition (10) can be rewritten as a cubic equation.

Thus, the subproblems in (9) can be solved in closed-form by

computing the roots of a cubic polynomial as follows:

sn,∗
k = argmin

x∈X
f IASB5

k (x; s−n
k , s̃k) + λnx, (17)

with the set of candidate optimal solutions X defined as

X = {0, sn,mask
k , [d1]

sn,mask

k

0 , [d2]
sn,mask

k

0 , [d3]
sn,mask

k

0 },

with d1, d2 and d3 the roots of the cubic equation.

Similarly to IASB3 and IASB4, the IASB5 method involves

an approximation which is not necessarily convex in sn
k ,

allowing to tackle the issue of getting stuck in bad locally

optimal solutions when choosing good values for q and t.

V. ITERATIVE FIXED POINT UPDATE IMPLEMENTATION

The CA-DSB and SCALE algorithms resort to iterative

fixed point updates to solve their per-user approximations,

instead of solving a polynomial of degree N . Similar iterative

fixed point updates can be derived for our proposed methods.

Similarly as in [2], [5], this can be done by starting from

(10) and isolating one occurrence of sn
k to the left side

of the equation sign to obtain a fixed point update form

sn
k = [h(sn

k ; s−n
k , s̃k)]

sn,mask

k

0 , with h denoting the right side

function in sn
k , and with projection on Sn

k . For IASB1, this

fixed point update corresponds to (11). The drawbacks of these

fixed point updates compared to the closed-form approach are

(i) that one does not know how many updates are required

to converge, (ii) that convergence to a local optimum of the

per-user approximation is not guaranteed, and (iii) that the

fixed point update approach for IASB3, IASB4 and IASB5

loses the beneficial ability to get out of bad locally optimal

solutions. Performance of the fixed point update approach for

our proposed methods will also be assessed in the next section.

VI. SIMULATIONS

We consider 24AWG twisted pair lines. SNR gap is 12.9

dB, corresponding to a coding gain of 3 dB, a noise margin

of 6 dB and a target symbol error probability of 10−7. Tone

spacing ∆f is 4.3125 kHz. DMT symbol rate is 4 kHz.

A. Improved Convergence

The first scenario is a 7-user downstream ADSL scenario

with line lengths 5km, 4km, 3.5km, 3km, 3km, 2.5km, and

3km. The distances between central office and remote ter-

minals are 0km, 0km, 0.5km, 0.5km, 3km, 3km, and 3km,

respectively. The maximum transmit power is 20.4 dBm. This

scenario consists of 7 lines and 224 tones that reflect a

whole range of different channel and interference settings.

More specifically, it consists of lines with large and small



signal-to-noise ratios, as well as large and small interferers.

In total, it consists of 7 × 224 = 1568 different per-user

per-tone problems, for which we compare the performance

of the proposed iterative approximation methods. We started

all methods from the same all-zero starting point. For this

particular problem, it turned out that all methods converged to

the same locally optimal solution (this is certainly not always

the case as shown in Section VI-B), hence the comparison

between numbers of approximations and iterations is fair.

The second colum of Table II shows the average number of

per-user approximations to converge up to accuracy 0.1dBm

of local optimum (using the proposed closed-form solution

approach to solve the per-user approximations). It can be seen

that the proposed methods require much fewer approximations

to converge than CA-DSB and SCALE. In this case, IASB5

performs best, in particular requiring 69% fewer approxima-

tions than SCALE (for IASB5, we chose {q, t} = {6, 5} when

n 6= 5 and n 6= 6, while {q, t} = {7, 5} and {q, t} = {6, 7}
when n = 6 and n = 5, respectively).
The third column of Table II displays results when the

fixed point update approach is used instead of the closed-form

approach to solve the per-user approximations (up to accuracy

0.1dBm). We can see that the proposed methods need two to

three times fewer iterations to converge to a locally optimal

solution compared to CA-DSB and SCALE.

B. Improved Solution Quality

The second scenario is a 6-user upstream VDSL scenario

with line lengths 1.2km, 1km, 0.8km, 0.6km, 0.45km and

0.3km. The maximum transmit power is 11.5 dBm. To demon-

strate the improved data rate performance of the proposed

methods, we plot the different per-user approximations for

user 5 on tone 600. The approximation point is chosen at

the spectral mask -30 dBm. It can be seen that the CA-DSB,

SCALE, IASB1 and IASB2 approximations get stuck in a bad

locally optimal solution at -30 dBm when solved using the

closed-form approach, whereas the nonconvex approximations

of IASB3, IASB4 and IASB5 succeed in getting out of the bad

locally optimal solution and result in the true global optimum

at 0 dBm. In fact, IASB3 matches the original nonconvex

objective. Note however that the fixed point update approach

gets stuck in -30 dBm for all methods.

Better behaviour of the nonconvex variants is also confirmed

when looking at the final solution quality for the considered

VDSL scenario: we saw an overall weighted data rate im-

provement of 3% to 5% for IASB3 and IASB5 compared to

CA-DSB/SCALE, depending on the choice of q and t.

VII. CONCLUSION

Novel per-user iterative approximation methods have been

proposed for DSL spectrum optimization. These methods

involve improved convex as well as nonconvex per-user ap-

proximations that are much tighter and much simpler to solve

(in closed-form) compared to existing ICA methods. The

proposed methods therefore display a significantly improved

convergence speed as much fewer approximations are required

to obtain convergence, i.e., up to 69% reduction for the tested

DSL scenarios. When using the iterative fixed point update

implementation, the proposed methods require two to three

TABLE II
AVERAGE NUMBER OF APPROXIMATIONS AND FIXED POINT UPDATE

ITERATIONS FOR DIFFERENT ITERATIVE APPROXIMATION METHODS

Method Avg number of Avg number of fixed
per-user approximations point update iterations

CA-DSB 3.147 4.195
SCALE 5.557 6.385
IASB1 2.365 2.365
IASB2 2.291 2.291
IASB3 2.155 2.358
IASB4 2.155 2.358
IASB5 1.702 2.055
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Fig. 1. Original nonconvex per-user objective and its approximations

times less iterations than CA-DSB or SCALE. Furthermore, it

is shown that, when using closed-form solutions for per-user

approximations, the nonconvex nature of the approximations

used in IASB3, IASB4 and IASB5 allows to escape from

bad locally optimal solutions, and can improve final solution

quality (e.g., data rates) with respect to existing ICA methods.
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