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Abstract—Topological optimization tool using genetic algo-
rithm as optimization algorithm are known as very expensive in
computation time. In this paper, we study an approach to improve
performance of topological optimization tool by introducing a
dynamic variation of the population size of children during
the process of optimization. This method allows to improve
performance of each generation by adapting the number of
children created and by introducing a coefficient of reproduction
for each individual inside the population of parents. Through
this coefficient of reproduction, the number of children assigns
to each parent is calculated. The number of evaluations at each
generation changes and the tool can saves evaluations in order
to increase the number of iterations.

Index Terms—topologyoptimization, design, inverse problem,
Voronoï diagram, genetic algorithm

I. I NTRODUCTION

More and more often during the design process of a new
device, optimization methods tale an importante place in
order to help the designer to find the best solution, wether
electromechanical or other. These methods differentiate them-
selves from the design variables on wich they are performed.
There are three main categories of differents methods. The
first one, called dimensionnal optimization, or the parametric
optimization, uses design parameters to size a solution whose
geometry has been predifined by the designer. The second
one, called shape optimization, changes the boundary between
each subdomain of material whose the topology is defined by
the designer. And finally, the thirst method, called topology
optimization, uses parameters describing the material distri-
bution inside a design space. Unlike the two first methods,
the third method does not need an initial solution defined by
the designer. This tool is often used in a first step to produce
a solution that will be next optimized through parametric or
shape optimization methods.

There are differents kinds of topology optimization tool
[1]-[3] according to the optimization algorithm used. The
tool studied in this paper is based on a genetic algorithm
[4]. This kind of tool has already been used successfully for
mechanical and electromechanical problem [6]-[9]. However,
as the genetic algorithm uses a lot of evaluations during the
process of optimization, many studies aimed to decrease this
timing cost. One possible approach consists in dynamically
changing the size of the population during the optimization

process to maximize the performance of each generation [10]-
[14].

In this paper, we study another approach to adapt dynami-
cally the size of a population. This is based on the evolution
of the size of the population form generation to generation.
Section II describes the topology optimization tool used as
reference tool. Section III details all modifications made to the
genetic algorithm in order to allow the dynamic variation of
the population size. Section IV presents the study case selected
and used for the evaluation of the proposed adaptation. The
section V gives the results and proposes an analysis of the
latter.

II. TOPOLOGY OPTIMIZATION TOOL

Topology optimization tool uses a combination of three
modules (Figure 1) : an optimization algorithm, a material
distribution formalism and a module of evaluation. The op-
timization algorithm allows to modify the value of all opti-
mization parameters according to some informations as fitness
or gradient from previous solutions. The material distribution
formalism allows to translate design parameters into a material
distribution inside a design space. And finally, the evaluation
module the is used to evaluate each solution, i.e. To compute
the fitness or the gradient.
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Figure 1. Three modules composing a topology optimization tool

Specified above in the introduction, a genetic algorithm
is used as optimization algorithm. For the material distri-
bution formalism and the module of evaluation, we choose
respectively a Voronoï diagram [5] and a commercial software,
Comsol©.



A. The genetic algorithm

The genetic algorithm is an algorithmic representation of the
natural evolution described by Darwin’s laws. The algorithm
uses a set ofNs solutions, assimilated as a population of
Ns individuals. The fitness of each individual represents its
performance. This is used by the algorithm to evolve the
population. At each iteration, called generation, a population
of children is created from the main population. To keep the
population size constant, only the best individuals of the main
and the child population are preserved while the other are
deleted.

The genetic code of the individuali in generationk is
characterized by a vector of lengthN composed by a set of
D discretes variables and a set ofN −D continuous variables
:
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For the same generationk, the matrixX(k) corresponds to
the population ofNs solutions where each line represents is
a vector ~X

(k)
i characterizing/coding an individual.

The flowchart on Figure 2 shows the sequence of the
implemented genetic algorithm. The genetic algorithm brings
some change on the population by creating new solutions
which will replace old worse solutions. These new individuals
come from a genetic manipulation decomposed into three
parts : selection of parents, reproduction of parents and elitist
selection. After each part, a new population is created : a
population of parentsX(k), a population of childsX(k) and
a population of elitesX(k+1) that will constitue the main
population for the next generation.
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Figure 2. Genetic algorithm flowchart

The evolution of each population through the generation
k, and the associated notations is illustrated on Figure 3.

To simplify notation, next sections consider all parameters in
generationk except when is mentionned.
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Figure 3. Matrix flux during the process of a generation

1) Part 1 : Selection of parents:To create the population
of parents,X′′, the algorithm selects individuals inside the
main population to compose an intermediate population, i.e.
the parents population,X′. In order to improve the current
population, the genetic algorithm uses the fitness information
to compute the probability of a solution to be selected for the
next generation. Tournament is often used to select parents
and create the parents population. If we needNp individuals
in the parents population, we must randomly selectNp pairs
of individuals inside the main population with the possibility
of repetition. For each pair, the best solution is selected for
the parent population. This method gives a higher probability
to the best solution to reproduce.

2) Part 2 : Reproduction:In order to preserve the existing
population, a branch of the reproduction consist in cloningall
individuals from the parent population,clX

′′ = X′. One other
method, not illustrated in the Figure 2, consists in preserving
the gene pool directly from the main population,clX

′′ = X.
However, the main part of the reproduction is made in

parallel, on the second branch of the reproduction. This part
is decomposed into two consecutives steps : the crossover and
the mutation. The creation of a new solution, a child, is made
by crossing the gene of two parents (2). This operation is
performed with a probabilitypc otherwisethe child is created
by copying of a randomly selected parent. To implement this
probability, an uniform continuous random vector is used:
Ri ∼ Uc (0, 1).

crX
′′
i =

{

Crossover (X ′
r,X

′
s) If Ri < pc

Copy (X ′
r or X ′

s) If Ri ≥ pc
(2)

with r, s ∼ Ud (0, Ns). To perform the crossover, a binary
random mask,~m ∈ 1

N , is created in order to specify
which parts from genetic information of the firts parent,
~X ′
r : {xr,1, xr,2, . . . xr,N}, and the second parent,~X ′

s :
{xs,1, xs,2, . . . xs,N}, will be combined:



Crossover :cr xi,n =

{

xr,n If mn = 0
xs,n If mn = 1

with n = 1, 2, . . . , N

(3)

After this first step, the mutation operation is performed
to introduce some diversity inside the gene pool of the new
population. This operation is applied to each individual, with a
mutation probability,pm, that determine if a gene is changed:

Mutation :mu xi,n =

{

crxi,n If rn < pm
αn If rn > pm

with n = 1, 2, . . . , N

(4)

whereα is an uniform random value that can take two value.
If n is less thanD then αn ∼ Ud (min,max) or elseαn ∼
Uc (0, 1).

3) Part 3 : Selection for descendants:Next to the reproduc-
tion step, the population is composed of2Ns individuals. An
eltist selection consisting in selecting theNs best solutions is
therefore performed to compose the new population that will
go through the next iteration.

B. The Voronoï formalism

The material distribution formalism involves two steps. The
first one aimes at discretizing the design space into small cells.
The second one consists in filling each cells with materials.
In the case of a Voronoï formalism, the discretization of the
design space is performed by a Voronoï diagram. A Voronoï
diagram (Figure 4) is composed by a set of cells, each is
defined by a reference point, named the Voronoï center.
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Figure 4. Diagram of Voronoï cells

Let ~P the set of Voronoï center in the Euclidean space
with V (Pi) the associated celli. For all point xe from the
Euclidean space, there is one closest pointPk such as the
point xe ∈ V (Pk). The Voronoï diagram is then borned inside
a design space and a material is associated to each cell. Figure
5 gives a representation of the Voronoï formalism.
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Figure 5. Voronoï formalism

Each cell is defined by a set of three parameters(M,x, y)
with M the material and(x, y) the position of the Voronoï
center. Each solution is therfore characterized by3Ncel pa-
rameters describing the material distribution.

In this paper, we take into account the graphical aspect of
the problem to performs the crossover. The graphical crossover
uses a graphical pivot in order to select which Voronoï center
are selected to the new solution (Figure 6). The graphical
pivot implemented here is a randomly chosen circle in the
design space. Voronoï centers outside and inside the circle
respectively from parent 1 and from parent 2 are selected to
perform the crossover. The graphical approach proved to be
effective for topology optimization problem [16].

Figure 6. Diagram of Voronoï cells

C. The evaluation tool

The third module is the evaluation tool. It allows to compute
the fitnesses of all solutions produced by the genetic algorithm.
In this paper, it is composed by a finite element commercial
software:Comsol©.

The strategy used to evaluate the solutions with the FEM
sofware consists in creating a mesh adapted to the topology,
i.e. adapted to the discretization defined by the Voronoï cells.
This avoids problem with the degradation of the solution that
occurs when the material distribution is projected on a fixed
mesh (Figure 7).

Figure 7. Material projection on a a mesh (a) and on an adapted mesh (b)

Automatic mesh adds an additional time cost,tm, for all
evaluations. However, if the time to compute the fitness,tf ,
is mush greater than the time cost to create a mesh :

tf ≫ tm, (5)

the total cost of all evaluations does not really change.

III. DYNAMIC VARIATION IN POPULATION SIZE

The aim of the genetic algorithm described in section II
is to produce at each generation children improving the main
population. The creation of each child is based on a random



selection of parent with respect to fitnesses and the population
size of each generation of children is defined as constant
during all the optimization process. However, there is no
possibility to know the best size of the population. A large
population gives to the algorithm a better global search, the
exploration while a small population gives to the algorithma
better local search, the intensification. During the optimization
process , the algorithm must use exploration and intensification
step when it is needed. With a static population, it is not
possible to switch between these two steps and it is hard to find
the best population size without some tests since it strongly
depends on the problem studied.

With dynamic variation in population size, it is possible to
change the number of individuals inside the population and
thus to evolve between intensification ant exploration. The
method proposed in this paper consists in assigning to each
individual a coefficient of reproduction,cr,i.

Each individual inside the main population is used once in
the parents population. Pairs of parent are created, by random
selection with respect to their rankri in the population. The
probability pi of selecting the parenti is calculated as follow
(6) and (7),

ti =
1

ri
(6)

pi = 100 ×
ti

∑Np

j=1 tj
(7)

Each pair of parents,i and j, creates through reproduction
cr,i + cr,j solutions. The total size of the population next
the reproduction is therefor

∑

cr,i. The way of defining the
reproduction coefficients is based on the following general
idea. On the one hand, when a lot of children improve the
main population, the population size has to increase to further
favour the exploration. On the other hand, when a few of
children improve the main population its size has to decrease
for helping intensification.

We consider that to improve the main population, a child
must have a better fitness than the median value of the main
population. In other words, if the child is better than 50% of
the main population, the population is improved.

Each parent is rewarded when its children improve the main
population and punished when no children improve the main
population during two generations. The reward and the puni-
tion consist respectively in incrementing and decrementing the
reproduction step for the next reproduction step.

Each new solution have a coefficient of reproduction initial-
ized to cr,i = 1 and the best solution have a minimal value
fixed to cr,best = 2.

IV. STUDY CASE

To study the performance of the dynamic population size
method, we applied it on a study case presenting the following
characteristics :

• having a low cost in time computing;
• having a physical problem (electromagnetic);
• having a know global solution.

The study case we opted for is an electromagnetic inverse
problem. With this, the global solution can be imposed, the
problem is a physical problem, and with some hypothesis, the
time computing can be low.

More precisely, it concerns the material quality measure-
ment. In this field, electromagnetic sensors, like the one
illustrated on Figure 8, are used to detect holes or cracks
inside materials by observin the response of the sensor to an
AC excitation. To decreasing the time cost of one evaluation,
some simplification are made. The first consists in reducing the
initial 3D problem to a 2D problem. Second one, the current is
a DC-current and finally, we can obtain a map of the magnetic
flux density inside the design space.

Design space
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5.0[mm]2.5[mm]
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Figure 8. Problem characterization

The last simplification consists in searching the material
distribution in the design space (Figure 8) that reproducesas
best the magnetic field distribution produced by the sensor
on an a priori known distribution of material instead of the
response of the sensor to a specific excitation.

The problem has therefore one fitness and no constraints.
The fitness is the difference between the target magnetic field
distribution,B (ξ1, ξ2) and the one produced by the material
distribution produced by the optimization algorithmB′ (ξ1, ξ2)
:

f
(
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)

=

∫ ∫

|B − B′|
2

B
dξ1dξ2. (8)

This we can write in a discreet version with50× 50 measure
points,ξ′1,ψ = 0.03ψ
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(9)

To perform the material distribution, ony two materials are
used in the design space: air and iron. Parameters are defined
by :

~M ∈ 1Ncel and ~P ∈ ℜ2Ncel

{0;1} (10)

The reference solution is illustrated on Figure 9. It includes
one crack and one hole. The target field distributionB (ξ1, ξ2)
produced by the reference solution is shown on Figure 10.



Figure 9. Material distribution of the target solution

Figure 10. Target magnetic flux density field (norm) with a grayscale density
illustration. Dark color corresponds to the maximum value

V. RESULTS

Two sizes of populations, 10 and 100 individuals, were used
to shows the behavior of the algorithm during the opimization
process, both for 20.000 evaluations. The choice of these value
for the population size is important because we know that
for this problem, 10 individuals gives better results than 100
individuals in static mode. However, this result comes from
empirical tests and we do not know exactly which value is
finally the best. All solutions are compared through the number
of evaluations because of the variability in the number of
generations. For both configurations, the mutation probability,
the crossover probability and the initial number of Voronoï
cells are respectively set to100

Ncel
%, 90% and 100 cells.

Figure 11 shows the volution of the median value of
the children population obtained from 5 independant runs
executed with dynamic and static population size for an initial
population size of 10 and 100 individuals. The graphic shows
the slightly better performance of the dynamic mode compared
to the static mode in the case of 10 and 100 individuals.
The exploration observed at the beginning of the optimization
process seems boosted while the intensification appearing at
the end of the optimization not. Figure 11 highlight the static
and dynamic mode with 10 individuals are better than with 100
individuals. But in the case of dynamic population size with
100 individuals, the evolution of the best solution during the
process of optimization is almost the same than the evolution
of the best solution for the case of static population with 10
individuals. Statistical values are noted in Table I.
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Figure 11. Graphic of convergence with median value from all results : a
comparison between static population size and dynamic population size.

Table I
STATISTICAL VALUES OF ALL SIMULATIONS

static dynamic static dynamic
Population size 10 10 100 100
Minimum 34 39 (+14%) 62 41 (-33.9%)
Median 49 44 (-10.3%) 71 57 (-19.8%))
Maximum 115 60 (-47.8%)) 117 125(+8.5%)

Figure 12 confirms that small populations are better than big
populations for this problem. With an initial children popula-
tion size set to 100 individuals, the ppulation size decreases
continuously. The minimum value obtained is 2 individuals
and the optimization finish with a children population size set
to 11 individuals.

With an initial population of 10 individuals, Figure 13
shows that the population size evovles slightly, staying always
between 2 and 15 individuals. The strategy of evolution of the
children population size does not allow population size lower
than 2 because the minimal reproduction coefficient of the best
solution is always set to 2.

The evolutions of the population size observed on Figure 11
and 12 tend to demonstrate the ability of the proposed methode
to evolve towards a population size better suites to the adressed
problem. These evolutions also suggest that the dynamic of
the population size evolution is not high enough. Indeed, over
20.000 evalutions, the population size just reached population
of about ten individuals.

0 100 200 300 400 500 600
0

50

100

150

Number of generations

C
h
i
l
d
r
e
n
 
p
o
p
u
l
a
t
i
o
n
 
s
i
z
e

Figure 12. Evolution of the children population size duringthe process of
optimization with an initial value of 100 individuals for thebest run

0 1000 2000 3000 4000
0

2

4

6

8

10

12

14

16

Number of generations

C
h
i
l
d
r
e
n
 
p
o
p
u
l
a
t
i
o
n
 
s
i
z
e

Figure 13. Evolution of the children population size duringthe process of
optimization with an initial value of 100 individuals for thebest run



Figures 14 and 15 shows the final material distribution
of the best solution for the four cases studied. We can see
that all solutions have converged to a local optimum. Two
characteristics are nevertheless identifiable: the cracksis more
larger and an additional crack appear on the right side of the
design space. With 10 individuals, the intensification stepis
favored over the case with 100 individuals. The main outcome
is a better drawn hole.
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Figure 14. Best material distribution with an initial population size of 10
individuals : static (top) and dynamic (bottom) population size
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Figure 15. Best material distribution with an initial population size of 100
individuals : static (top) and dynamic (bottom) population size

VI. CONCLUSIONS

With optimization algorithms working with populations of
solutions, it is often hard to define wich population size is the
best to solve the problem. For helping the optimization algo-
rithm in the exploration step, the population size must have
the same order of magnitude than the number of parameters.
But this value can be change during the optimization process
while it evolves to intensification. It is therefore important to
implement a strategy of evolution of the population size to
adapt it to the needs of the algorithm.

In this paper, we introduced a coefficient of reproduction
for each individual inside the main population that gives the
possibility to control the size of the population of children
at each generation. Each parent creates a number of children
depending on a coefficient of reproduction. This coefficient
change at each generation, according to the performance
of children. With the strategy proposed, the evolution of
the number of individuals is inevitable when the algorithm
converge to the final solution. If we consider that it is more
and more hard to find a better soluiton, the coefficient will tend

to decrease. The difficulty to find a solution is measured by
the coefficient of reproduction and the most effective reaction
seems to decrease the size of the population.

In ordre to evaluate the ability of this strategy to dynam-
ically adapting the population size, we applied it on a study
case for different initial population size both with staticand
dynamic population size. We observed a decreasing evolution
of the children population size during the optimization. With
this strategy, both configurations give better results.

For future work, it is also possible to change the main
population size to favor a set of best solutions during the
reproduction in order to help the exploration or the inten-
sification step. Effectively, with a big population size, best
individuals will have a high probability to reproduce with
worst individuals and with a small population reproduction
between solution with a high level of similarity is favored.
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