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Abstract—Topological optimization tool using genetic algo- process to maximize the performance of each generation [10]
rithm as c_)ptimization a_lgorithm are known as very expe_nsive in [14].
computation time. In this paper, we study an approach to improve In this paper, we study another approach to adapt dynami-

performance of topological optimization tool by introducing a . . . .
dynamic variation of the population size of children during cally the size of a population. This is based on the evolution

the process of optimization. This method allows to improve Of the size of the population form generation to generation.
performance of each generation by adapting the number of Section Il describes the topology optimization tool used as
children created and by introducing a coefficient of reproduction  reference tool. Section Il details all modifications madéhte

for each individual inside the population of parents. Through = g0 netic algorithm in order to allow the dynamic variation of
this coefficient of reproduction, the number of children assigns . . .

to each parent is calculated. The number of evaluations at each the population size. Secthn IV presents the study case.tedle
generation changes and the tool can saves evaluations in orderand used for the evaluation of the proposed adaptation. The

to increase the number of iterations. section V gives the results and proposes an analysis of the
Index Terms—topologyoptimization, design, inverse problem, |atter.
Voronoi diagram, genetic algorithm

[l. TOPOLOGY OPTIMIZATION TOOL
. INTRODUCTION o o
Topology optimization tool uses a combination of three

More and more often during the design process of a nef,qyles (Figure 1) : an optimization algorithm, a material
device, optimization methods tale an importante place {isyipytion formalism and a module of evaluation. The op-
order to help the designer to find the best solution, wethghization algorithm allows to modify the value of all opti-
electromechanical or other. These methods differentf@®t  ,i;a1ion parameters according to some informations assfitne
selves from the design variables on wich they are performeg. 4 agient from previous solutions. The material distiitu
There are three main categories of differents methods. Tfaenajism allows to translate design parameters into a riaite
first one, called dimensionnal optimization, or the paraiwet yisiribution inside a design space. And finally, the evadumat

optimization, uses design parameters to size a solutiors@hon,qye the is used to evaluate each solution, i.e. To compute
geometry has been predifined by the designer. The secQpd fiiness or the gradient.

one, called shape optimization, changes the boundary batwe

each subdomain of material whose the topology is defined by

the designer. And finally, the thirst method, called topglog

optimization, uses parameters describing the materiati-dis

bution inside a design space. Unlike the two first methods,

the third method does not need an initial solution defined by Obéifjﬁ;fa?jligfftl:ns f
the designer. This tool is often used in a first step to produce

a solution that will be next optimized through parametric or
shape optimization methods.

There are differents kinds of topology optimization tool
[1]-[3] according to the optimization algorithm used. The
tool studied in this paper is based on a genetic algorithm Figure 1. Three modules composing a topology optimization tool
[4]. This kind of tool has already been used successfully for
mechanical and electromechanical problem [6]-[9]. Howeve Specified above in the introduction, a genetic algorithm
as the genetic algorithm uses a lot of evaluations during tlee used as optimization algorithm. For the material distri-
process of optimization, many studies aimed to decrease thution formalism and the module of evaluation, we choose
timing cost. One possible approach consists in dynamicalgspectively a Voronoi diagram [5] and a commercial soféyar
changing the size of the population during the optimizatioBomsof.
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A. The genetic algorithm To simplify notation, next sections consider all parangiar

The genetic algorithm is an algorithmic representatiorhef t 9&Nerationt except when is mentionned.

natural evolution described by Darwin’s laws. The algarith
uses a set ofV, solutions, assimilated as a population of
Ny individuals. The fithess of each individual represents its
performance. This is used by the algorithm to evolve the
population. At each iteration, called generation, a paputa
of children is created from the main population. To keep the
population size constant, only the best individuals of tteém
and the child population are preserved while the other are
deleted.

The genetic code of the individual in generationk is
characterized by a vector of lengffi composed by a set of
D discretes variables and a set/gf— D continuous variables

Cloning

Clx(k_)//

)?i(k) = {301(13)7 . ,xl(.i)), xl(.f?)ﬂ, cey xfk}]} 1) Selection

For the same generatidn the matrix X *) corresponds to
the population ofN, solutions where each line represents is
a vector)?i(k) characterizing/coding an individual.

The flowchart on Figure 2 shows the sequence of thel) Part 1 : Selection of parentsTo create the population

Figure 3. Matrix flux during the process of a generation

implemented genetic algorithm. The genetic algorithm dmin of parents,X”, the algorithm selects individuals inside the
some change on the population by creating new solutiofin population to compose an intermediate population, i.e
which will replace old worse solutions. These new individuathe parents populationX’. In order to improve the current
come from a genetic manipulation decomposed into thr@epulation, the genetic algorithm uses the fitness infaonat
parts : selection of parents, reproduction of parents aitidtel to compute the probability of a solution to be selected fer th
selection. After each part, a new population is created :Nn@xt generation. Tournament is often used to select parents
population of parentg((k), a population of childsx®) and and create the parents population. If we néédindividuals

a population of elitesX**1) that will constitue the main in the parents population, we must randomly sel¥gtpairs
population for the next generation.
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of individuals inside the main population with the possthil
of repetition. For each pair, the best solution is selectad f
the parent population. This method gives a higher proligbili
to the best solution to reproduce.

2) Part 2 : Reproduction:In order to preserve the existing
population, a branch of the reproduction consist in cloratig
individuals from the parent populatiopX” = X’. One other
method, not illustrated in the Figure 2, consists in prasgrv
the gene pool directly from the main populatiopX” = X.

5 L—,g;fg;:. o However, the main part of the reproduction is made in

e . parallel, on the second branch of the reproduction. This par
g Child population is decomposed into two consecutives steps : the crossouder an
§ _____ . . the mutation. The creation of a new solution, a child, is made

by crossing the gene of two parents (2). This operation is
performed with a probability. otherwisethe child is created
by copying of a randomly selected parent. To implement this
probability, an uniform continuous random vector is used:
R; ~U.(0,1).

If R; < Pe

n | Crossover (X, X.)
¢ { If R; > p. (2)

| Copy (X, or X7)

with 7, s ~ Uy (0,N;). To perform the crossover, a binary
random mask, € 1%, is created in order to specify
which parts from genetic information of the firts parent,

The evolution of each population through the generatioﬁ'{, : {zp1,22,... 2N}, and the second parenﬂf;
k, and the associated notations is illustrated on Figure B, 1,zs2,... 25 n}, Will be combined:



Crossover oy w4 = { Tr,n :]‘: M = (1) 4 Eachcellis defined by a set of three parametérs z, )
L Tsn 1M = () with A the material andx,y) the position of the Voronoi
withn =1,2,..., N center. Each solution is therfore characterized3by.el pa-

After this first step, the mutation operation is performetmeters describing the material distribution.
to introduce some diversity inside the gene pool of the new!n this paper, we take into account the graphical aspect of
population. This operation is applied to each individuadthva the problem to performs the crossover. The graphical cuesso

mutation probabilityp,,, that determine if a gene is changedses a graphical pivot in order to select which Voronoi aente
are selected to the new solution (Figure 6). The graphical

Mutation iy, Tin = { erin N0 < pm pivot implemented here is a randomly chosen circle in the
’ L Gn It 7 > prm (4) design space. Voronoi centers outside and inside the circle
withn =1,2,..., N respectively from parent 1 and from parent 2 are selected to

wherea is an uniform random value that can take two valu@erform the crossover. The graphical approach proved to be
If n is less thanD thena,, ~ Uy (min, maz) or elsea,, ~ €ffective for topology optimization problem [16].
U.(0,1).

3) Part 3 : Selection for descendantislext to the reproduc-
tion step, the population is composed2¥, individuals. An
eltist selection consisting in selecting thg best solutions is
therefore performed to compose the new population that will
go through the next iteration.

Parent 1 Parent 2

Child

;

B. The Voronoi formalism IR Not selected part
The material distribution formalism involves two stepseTh E[] selected part
first one aimes at discretizing the design space into smiddl ce _ _
The second one consists in filling each cells with materials. Figure 6. Diagram of Voronoi cells

In the case of a Voronoi formalism, the discretization of the
design space is performed by a Voronoi diagram. A Vorong! tne evaluation tool
diagram (Figure 4) is composed by a set of cells, each is

defined by a reference point, named the Voronoi center. The third module is the evaluation tool. It allows to compute

the fitnesses of all solutions produced by the genetic dlguri
In this paper, it is composed by a finite element commercial
software:Comsol®.

The strategy used to evaluate the solutions with the FEM
sofware consists in creating a mesh adapted to the topology,
i.e. adapted to the discretization defined by the Vorondscel
This avoids problem with the degradation of the solutiort tha
occurs when the material distribution is projected on a fixed
mesh (Figure 7).

Y §

X
Figure 4. Diagram of Voronoi cells

Let P the set of Voronoi center in the Euclidean space
with V' (P;) the associated cell. For all pointz. from the
Euclidean space, there is one closest pditsuch as the
pointz, € V (Py). The Voronoi diagram is then borned inside
a design space and a material is associated to each celteFigu
5 gives a representation of the Voronoi formalism.

Figure 7. Material projection on a a mesh (a) and on an adaptst (g
Design space Material library

Automatic mesh adds an additional time cast, for all
evaluations. However, if the time to compute the fitness,
is mush greater than the time cost to create a mesh :

D Material A = [0]
[ Material B=11]

B Material C =[2]

the total cost of all evaluations does not really change.
tCell of Voronoi
Center of the cell (x; y) [1l. DYNAMIC VARIATION IN POPULATION SIZE
[M,, My, M3, ..., MNc] =[1,21,..,0 . . . . . .
[P, Py, Py .. Py d =[0.3,0.7, .., 0.8, 0.8] The aim of the genetic algorithm described in section I

is to produce at each generation children improving the main
Figure 5. Voronoi formalism population. The creation of each child is based on a random



selection of parent with respect to fitnesses and the papunlat The study case we opted for is an electromagnetic inverse
size of each generation of children is defined as constgmbblem. With this, the global solution can be imposed, the
during all the optimization process. However, there is noroblem is a physical problem, and with some hypothesis, the
possibility to know the best size of the population. A largéme computing can be low.
population gives to the algorithm a better global search, th More precisely, it concerns the material quality measure-
exploration while a small population gives to the algoritam ment. In this field, electromagnetic sensors, like the one
better local search, the intensification. During the opation illustrated on Figure 8, are used to detect holes or cracks
process , the algorithm must use exploration and intendita inside materials by observin the response of the sensor to an
step when it is needed. With a static population, it is ng{C excitation. To decreasing the time cost of one evaluation
possible to switch between these two steps and it is harddo fsome simplification are made. The first consists in redudieg t
the best population size without some tests since it styonghitial 3D problem to a 2D problem. Second one, the current is
depends on the problem studied. a DC-current and finally, we can obtain a map of the magnetic
With dynamic variation in population size, it is possible tdlux density inside the design space.
change the number of individuals inside the population and
thus to evolve between intensification ant exploration. The 19.0[mm)
method proposed in this paper consists in assigning to each 25[mm]
individual a coefficient of reproduction,. ;.
Each individual inside the main population is used once in
the parents population. Pairs of parent are created, byorand 16.5(mm]
selection with respect to their rank in the population. The
probability p; of selecting the parenitis calculated as follow
(6) and (7),

5.0[mm]
e

D [0] : Iron
[ (a1 : Air
[ (2] : Copper

5.0[mm] Design space

ti — l (6) 30.0[mm)
T
. Figure 8. Problem characterization
p; = 100 x Nil @)
j=1lj The last simplification consists in searching the material

Each pair of parents, and j, creates through reproductiondistribution in the design space (Figure 8) that reprodues
cri + cr; solutions. The total size of the population nexpest the m.ag.netlc f|eldl d|§trlput|on produged_ by the sensor
the reproduction is therefoy" c,.;. The way of defining the on an a priori known d|str|but|on.c.)f mat_erlgl instead of the
reproduction coefficients is based on the following genergiSPonse of the sensor to a specific excitation.
idea. On the one hand, when a lot of children improve the The problem has therefore one fitness and no constraints.
main population, the population size has to increase ttiéurt The fitness is the difference between the target magnetd fiel
favour the exploration. On the other hand, when a few @fistribution, B (¢1,¢2) and the one produced by the material
children improve the main population its size has to deeeadistribution produced by the optimization algorithf (1, £2)
for helping intensification. :

We consider that to improve the main population, a child 2
must have a better fitness than the median value of the main f (137 ]\7[) _ // B — Bl de, dés. 8)
population. In other words, if the child is better than 50% of B
the main population, the population is improved. i

Each parent is rewarded when its children improve the maltiS we can
population and punished when no children improve the maf@iNts: &1, =
population during two generations. The reward and the puni-
tion consist respectively in incrementing and decremertire

write in a discreet version with x 50 measure

0.034 / _ 0.005¢ .
5o and&; = =55

2

0 30 | B (& 4:8.0) = B' (€L o)
reproduction step for the next reproduction step. Z Leree Leree (9)
Each new solution have a coefficient of reproduction initial =1 ¢=1 B (gi,w, 5;_’4))
ized toc,; = 1 and the best solution have a minimal value
fixed t0 ¢y pest = 2. To perform the material distribution, ony two materials are
used in the design space: air and iron. Parameters are defined
IV. STUDY CASE by :
To study the performance of the dynamic population size
method, we applied it on a study case presenting the follpwin M e 1Veet gnd P e ge%évl}' (10)
characteristics : ’
« having a low cost in time computing; The reference solution is illustrated on Figure 9. It inésid
« having a physical problem (electromagnetic); one crack and one hole. The target field distributid(¢;, &)

« having a know global solution. produced by the reference solution is shown on Figure 10.



Table |
O STATISTICAL VALUES OF ALL SIMULATIONS

static dynamic static dynamic
Population size| 10 10 100 100
Minimum 34 39 (+14%) 62 | 41 (-33.9%)
Figure 9. Material distribution of the target solution Median 49 44 (-10.3%) 71 57 (-19.8%))
Maximum 115 | 60 (-47.8%))| 117 | 125(+8.5%)

Figure 12 confirms that small populations are better than big
populations for this problem. With an initial children pdau
tion size set to 100 individuals, the ppulation size de@gas
Figure 10. Target magnetic flux density field (norm) with a geayes density CoNntinuously. The minimum value obtained is 2 individuals
illustration. Dark color corresponds to the maximum value and the optimization finish with a children population sie¢ s

to 11 individuals.
With an initial population of 10 individuals, Figure 13
V. RESULTS shows that the population size evovles slightly, stayinggb

Two sizes of populations, 10 and 100 individuals, were us@gtween 2 and 15 individuals. The strategy of evolution ef th

to shows the behavior of the algorithm during the opimizaticchildren population size does not allow population sizeeow

process, both for 20.000 evaluations. The choice of thase vathan .2 bgcause the minimal reproduction coefficient of ttst be
for the population size is important because we know th§plution is always setto 2.~ .
for this problem, 10 individuals gives better results th@® 1 The evolutions of the population size observed on Figure 11
individuals in static mode. However, this result comes frofand 12 tend to demonstrate the ability of the proposed method
empirical tests and we do not know exactly which value € evolve towards a population size better suites to thesadd,f
finally the best. All solutions are compared through the nempProblem. These evolutions also suggest that the dynamic of
of evaluations because of the variability in the number ¢f€ Population size evolution is not high enough. Indeeey ov
generations. For both configurations, the mutation prdipgbi 20-000 evalutions, the population size just reached papala
the crossover probability and the initial number of Vorond?f @bout ten individuals.
cells are respectively set t%“i%, 90% and 100 cells.

Figure 11 shows the volution of the median value ¢ 150
the children population obtained from 5 independant rui
executed with dynamic and static population size for anaihit

population size of 10 and 100 individuals. The graphic shov ; 100

the slightly better performance of the dynamic mode contpar 3

to the static mode in the case of 10 and 100 individual g

The exploration observed at the beginning of the optimimati 5 501

process seems boosted while the intensification appeating =

the end of the optimization not. Figure 11 highlight theistat §

and dynamic mode with 10 individuals are better than with 1( % 100 200 300 200 500 500
individuals. But in the case of dynamic population size wit.. Number of generations

100 individuals, the evolution of the best solution durihg t _. ) ) o
R . .Figure 12. Evolution of the children population size durihg process of
process of Op“mﬁza-t'on is almost the same than the erDiU“thimization with an initial value of 100 individuals for theest run
of the best solution for the case of static population with 10
individuals. Statistical values are noted in Table I.

4 16
0 N 14
c 10 ind Static @ [
° ) ) € 12
o, — — — 10 ind Dynamic o
15} - - —
glo = = = 100 ind Dynamic t_ﬁlo
: s 100 i nd Static 3 8f
> S 6
5 10%} s
) - @ gt
s = = = — = o
8 = Ll
10t - . . - 6 0 . ’ .
0 20 40 60 80 100 0 1000 2000 3000 4000
Optim zation evolution, % Nunber of generations

Figure 11. Graphic of convergence with median value fromedults : a Figure 13. Evolution of the children population size durthg process of
comparison between static population size and dynamic ptpulsize. optimization with an initial value of 100 individuals for tHeest run



Figures 14 and 15 shows the final material distributioto decrease. The difficulty to find a solution is measured by
of the best solution for the four cases studied. We can st coefficient of reproduction and the most effective rieact
that all solutions have converged to a local optimum. Tweeems to decrease the size of the population.
characteristics are nevertheless identifiable: the crackwre In ordre to evaluate the ability of this strategy to dynam-
larger and an additional crack appear on the right side of thoally adapting the population size, we applied it on a study
design space. With 10 individuals, the intensification dtep case for different initial population size both with staéind
favored over the case with 100 individuals. The main outconggnamic population size. We observed a decreasing evolutio
is a better drawn hole. of the children population size during the optimization.thVi
this strategy, both configurations give better results.

For future work, it is also possible to change the main
population size to favor a set of best solutions during the
reproduction in order to help the exploration or the inten-
sification step. Effectively, with a big population size,sbe
individuals will have a high probability to reproduce with
worst individuals and with a small population reproduction
between solution with a high level of similarity is favored.
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