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Abstract

Linear dimensionality reduction techniques such as principal component anal-
ysis are powerful tools for the analysis of high-dimensional data. In this thesis,
we explore a closely related problem, namely nonnegative matrix factorization
(NMF), a low-rank matrix approximation problem with nonnegativity con-
straints. More precisely, we seek to approximate a given nonnegative matrix
with the product of two low-rank nonnegative matrices. These nonnegative fac-
tors can be interpreted in the same way as the data, e.g., as images (described
by pixel intensities) or texts (represented by vectors of word counts), and lead
to an additive and sparse representation. However, they render the problem
much more difficult to solve (i.e., NP-hard).

A first goal of this thesis is to study theoretical issues related to NMF. In
particular, we make connections with well-known problems in graph theory,
combinatorial optimization and computational geometry. We also study com-
putational complexity issues and show, using reductions from the maximum-
edge biclique problem, NP-hardness of several low-rank matrix approximation
problems, including the rank-one subproblems arising in NMF, a problem in-
volving underapproximation constraints (NMU) and the unconstrained version
of the factorization problem where some data is missing or unknown.

Our second goal is to improve existing techniques and develop new tools
for the analysis of nonnegative data. We propose accelerated variants of sev-
eral NMF algorithms based on a careful analysis of their computational cost.
We also introduce a multilevel approach to speed up their initial convergence.
Finally, a new greedy heuristic based on NMU is presented and used for the
analysis of hyperspectral images, in which each pixel is measured along hun-
dreds of wavelengths, which allows for example spectroscopy of satellite images.
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Rn

+ set of nonnegative real column vectors of dimension n
Rm×n

+ set of nonnegative real matrices of dimension m-by-n

Norms

||.||1 ℓ1-norm, ||x||1 =
∑n

i=1 |xi|, x ∈ Rn

||.||2 vector ℓ2-norm, ||x||2 =
√∑n

i=1 x2
i , x ∈ Rn

matrix ℓ2-norm, ||A||2 = maxx∈Rn,||x||2=1 ||Ax||2, A ∈ Rm×n

||.||∞ vector ℓ∞-norm, ||x||∞ = max1≤i≤n |xi|, x ∈ Rn

||.||0 ℓ0-‘norm’, ||x||0 =
∣
∣{i|xi 6= 0}

∣
∣, x ∈ Rm

||.||F Frobenius norm, ||A||F =
√
∑m

i=1

∑n
j=1 A2

ij , A ∈ Rm×n
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Chapter 1

Introduction

Approximating a matrix with one of lower rank is a key problem in data anal-
ysis, and is widely used for linear dimensionality reduction. Typically, we are
given a matrix M ∈ Rm×n, where each of the n columns represents an ele-
ment of a dataset in an m-dimensional space. The aim is to approximate M
with a low-rank matrix, which can be expressed as the product of two matrices
U ∈ Rm×r and V ∈ Rr×n where r is the rank of the approximation:

M ≈ UV ⇐⇒ M ≈
r∑

k=1

U:kVk: ⇐⇒ M:j ≈
r∑

k=1

U:kVkj 1 ≤ j ≤ n,

i.e., M is approximated with the sum of r rank-one factors U:kVk:. Matrix
factorization allows to represent the n columns of M in a smaller r-dimensional
space defined by the columns of U , with coordinates given by the n columns of
V , see Figure 1.1. In fact, each input column M:j for 1 ≤ j ≤ n is a linear com-
bination of a set of r basis elements U:k 1 ≤ k ≤ r with corresponding weights
Vkj . This linear dimensionality reduction technique is widely used in machine
learning, and notably enables noise filtering, classification, visualization, and
interpretation. There exists numerous variants emphasizing different objective
functions measuring the quality of the approximation and different constraints
on the factors, e.g.,

⋄ principal component analysis (PCA) [95], without any constraints and
using the Frobenius norm of the approximation error as the objective
function;

⋄ sparse PCA, adding sparsity constraints on PCA [46];

⋄ weighted low-rank approximation (WLRA), attaching to each entry of
the data matrix a different importance through the use of a weighting in

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Linear dimensionality reduction through matrix factorization.

the objective function. For example, associating a zero weight to missing
or unknown data is equivalent to PCA with missing data (see Chapter 8);

⋄ independent component analysis (ICA) [38], assuming statistical inde-
pendence of the sources (i.e., the columns of matrix U).

In the context of nonnegative data, i.e., when data matrix M is (component-
wise) nonnegative which is denoted M ≥ 0, one might consider nonnegativity
of the input columns to be an important feature, and consequently require the
basis elements to be also nonnegative, i.e., impose U ≥ 0, so that they can
be interpreted in the same way (e.g., these columns can correspond to images
described by nonnegative pixel intensities or to texts represented by vectors of
nonnegative word counts). Furthermore, one can impose nonnegativity of the
weights with V ≥ 0, leading to an essentially additive reconstruction of the
input columns by the basis elements. This representation is then parts-based :
basis elements U:k’s will represent common parts of the columns of M . This
low-rank approximation technique with additional nonnegativity constraints is
referred to as nonnegative matrix factorization (NMF)1 and is often formulated

1Strictly speaking NMF is an approximate problem and should preferably be referred to
as approximate NMF, or nonnegative matrix approximation [52].

2



as follows

min
U ∈ Rm×r

V ∈ Rr×n

||M − UV ||2F such that U ≥ 0, V ≥ 0. (NMF)

Because of these additional constraints,

NMF is an additive linear model for nonnegative data.

For example, let each column of M be a vectorized gray-level image of a face
using (nonnegative) pixel intensities. The nonnegative matrix factorization of
M will generate a matrix U whose columns are nonnegative basis elements of
the original images which can then be interpreted as images as well. More-
over, since each original face is reconstructed through a weighted sum of these
basis elements, the latter are common parts extracted from the original faces,
such as eyes, noses and lips. Figure 1.2 illustrates this property of the NMF
decomposition.

Figure 1.2: NMF applied to the CBCL Face Database #1, MIT Center For
Biological and Computation Learning. It consists of the approximation of 2429
gray-level images of faces represented with 19×19 pixels (columns of M) using
r = 49 basis elements (columns of U).

NMF was introduced in 1994 by Paatero and Tapper [124] and started to be
extensively studied after the publication of an article by Lee and Seung [105]
in 1999. It has been widely used in machine learning, e.g., for air emission con-
trol, music analysis, graph clustering, food quality and safety analysis, micro-
array data analysis, collaborative filtering; see [10,50,52,89] and the references
therein. In this thesis, we will be particularly interested in the following three
applications

1. Image processing. NMF enables the extraction of the different constitutive
parts of a set of images, e.g., the shared features of a set of faces as shown

3



CHAPTER 1. INTRODUCTION

on Figure 1.2. The decomposition by parts is useful for classification tasks
such as face recognition, because it makes the dimensionality reduction
more robust to some unfavorable conditions, such as occlusion [84] (e.g., if
a person is wearing sunglasses, the other parts of the face are still visible,
hence can be well represented with the part-based basis).

2. Text mining. NMF can be interpreted as a biclustering model: each
rank-one factor of the decomposition will be sparse (because of the non-
negativity constraints, and because M is) and will typically correspond
to a dense rectangular submatrix of M (a bicluster), enabling NMF to ex-
tract highly connected rows and columns of the matrix M . In text mining
applications, NMF extracts closely related sets of texts and words [55].

3. Hyperspectral data analysis. Given a hyperspectral image (which is con-
stituted of several images taken at different wavelengths), NMF is able to
automatically detect the constitutive materials present in the scene being
imaged, and classify the pixels accordingly [126].

An important feature of NMF is that its nonnegativity constraints typically
induce sparse factors, i.e., factors with relatively many zero entries. Intuitively,
decomposition into parts requires the basis elements to be sparse, cf. Figure 1.2.
More formally, the reason for this behavior is that stationary points (U, V ) of
NMF will typically be located at the boundary of the feasible domain Rm×r

+ ×
Rr×n

+ , hence will feature zero components. This can be explained with the first-
order optimality conditions: because the set of stationary points of a problem
of the type

min
x∈Rn

f(x) such that x ≥ 0,

is given by the following expression

Sf = {x ∈ Rn | x ≥ 0,∇f(x) ≥ 0 and xi[∇f(x)]i = 0 1 ≤ i ≤ n},
some components of the solution can be expected to be equal to zero.

Sparsity of the factors is an important consideration in practice: in ad-
dition to reducing memory requirements to store the basis elements and their
weights, sparsity improves interpretation of the factors, especially when dealing
with classification/clustering problems, e.g., in text mining [137] and compu-
tational biology [66, 97]. By contrast, unconstrained low-rank approximations
such as PCA do not naturally generate sparse factors (for that reason, low-
rank approximations techniques with additional sparsity constraints have been
recently introduced; this is referred to as sparse PCA or SPCA, see, e.g., [46]
and the references therein).

Unfortunately the advantages of NMF (part-based representation and spar-
sity) over PCA come at a certain price. First, because of the additional non-
negativity constraints, the approximation error of the input data for a given

4



factorization rank r will always be higher for NMF than in the unconstrained
case. Second, optimization problem (NMF) is more difficult to solve than its
unconstrained counterpart: while PCA problems can be solved in polynomial
time (e.g., using a singular value decomposition technique [80]), NMF problems
belong to the class of NP-hard problems, as recently shown by Vavasis [148].
However, it should also be pointed out that these drawbacks (higher error,NP-
hardness) are also present for competing techniques emphasizing sparsity, such
as sparse PCA.

Thesis outline and related publications

The aim of this thesis is twofold:

(1) study theoretical issues related to NMF and try to improve understanding
of some of its aspects; in particular, try to make connections with other
problems, e.g., in graph theory and combinatorial optimization,

and

(2) develop new tools for the analysis of nonnegative data, or improve them;
in particular, develop improved and new algorithms for NMF, and use
them for applications.

The thesis is structured as follows.

Chapter 2. Preliminary

Some theoretical background needed throughout this thesis is briefly presented.

Chapter 3. Nonnegative Rank

The nonnegative rank of a nonnegative matrix is the minimum number of non-
negative rank-one factors needed to reconstruct it exactly. It is directly related
to NMF, with the additional requirement that the factorization must be exact.
In this chapter, we first review some of its complexity aspects, and link them
with NMF. We then introduce and study a slightly different quantity called
the restricted nonnegative rank. We prove its computation is equivalent to a
problem in polyhedral combinatorics, which allows us to fully characterize the
algorithmic complexity of its computation. This in turn sheds new light on the
nonnegative rank problem, and in particular on its computational complexity.
It also allows us to provide new improved lower bounds based on its geometric
interpretation. We illustrate these results on slack matrices (arising from the

5



CHAPTER 1. INTRODUCTION

study of extended formulations in linear programming) and on linear Euclidean
distance matrices.

[74] N. Gillis and F. Glineur, On the Geometric Interpretation of the
Nonnegative Rank, CORE Discussion paper 2010/51, 2010.

Chapter 4. Algorithms for NMF

In this chapter, three well-known and widely used NMF algorithms are first pre-
sented, namely the multiplicative updates (MU), the hierarchical alternating
least squares (HALS) and the alternating nonnegative least squares (ANLS).
We then propose accelerated versions of MU and HALS, based on the analysis
of the computational cost needed at each iteration. This approach can poten-
tially be used for any first-order NMF algorithm, and is applied successfully
on a projected gradient method. Our numerical experiments show that HALS
and its accelerated version perform remarkably well, which is theoretically sup-
ported by an argument based on the properties of NMF and its solutions. We
also embed NMF algorithms into the framework of multilevel methods, speed-
ing up significant their convergence in situations where data admits a good
approximate representation in a lower dimensional space through linear trans-
formations preserving nonnegativity.

[71] N. Gillis and F. Glineur, A Multilevel Approach for Nonnegative
Matrix Factorization, CORE Discussion paper 2010/47, 2010.

[72] N. Gillis and F. Glineur, Accelerated Multiplicative Updates and
Hierarchical ALS Algorithms for Nonnegative Matrix Factorization,
preprint, 2010.

Chapter 5. Nonnegative Factorization

Rank-one subproblems arising in NMF consists in approximating a not neces-
sarily nonnegative matrix with a nonnegative rank-one matrix; this is referred
to as rank-one nonnegative factorization (R1NF). R1NF is shown to be NP-
hard using a reduction from the maximum-edge biclique problem. Stationary
points of R1NF are then linked to feasible solutions of the biclique problem,
which allows us to design a new type of biclique finding algorithm based on
the application of a block-coordinate descent scheme to R1NF. Also, the multi-
plicative updates for NMF are generalized to nonnegative factorization (NF) of
any rank, which provides an explanation of the better performances of HALS
over MU.

6



[69] N. Gillis and F. Glineur, Nonnegative Factorization and The Max-
imum Edge Biclique Problem, CORE Discussion paper 2008/64, 2008.

Chapter 6. Nonnegative Matrix Underapproximation

A novel approach for obtaining sparse solutions to NMF problems is introduced.
It is based on a recursive approach and the use of additional underapproxima-
tion constraints. Our algorithm is based on the Lagrangian relaxation of the
corresponding optimization problem, and its effectiveness to obtain sparse solu-
tions is experimentally demonstrated. We also consider some convex formula-
tions in the rank-one case, and give some theoretical evidences explaining why
there might not exist ‘good’ convex reformulations of NMU and NMF when
the factorization rank is larger than one.

[11] M.W. Berry, N. Gillis and F. Glineur, Document Classification Using
Nonnegative Matrix Factorization and Underapproximation, Proc. of
the IEEE Int. Symp. on Circuits and Systems (ISCAS), p. 2782–2785, 2009.

[75] N. Gillis and F. Glineur, Using Underapproximations for Sparse
Nonnegative Matrix Factorization, Pattern Recognition, 43(4), 1676-1687,
2010.

Chapter 7. Hyperspectral Data Analysis using Underap-
proximation

The recursive approach described in Chapter 6 is used for the analysis of hy-
perspectral images. In particular, we focus on rank-one underapproximations
which enables us to extract features in a recursive way, like PCA, but preserving
nonnegativity. It allows recovering of the constitutive elements in hyperspectral
data. Both ℓ2-norm and ℓ1-norm based minimization of the energy functional
are considered. We experimentally show the efficiency of this new strategy on
hyperspectral images associated with space object material identification, and
on HYDICE and related remote sensing images.

[76] N. Gillis and R.J. Plemmons, Dimensionality reduction, classifica-
tion, and spectral mixture analysis using nonnegative underapprox-
imation, SPIE conference Volume 7695, paper 46, Orlando, 2010.

[77] N. Gillis and R.J. Plemmons, Dimensionality reduction, classifica-
tion, and spectral mixture analysis using nonnegative underapprox-
imation, Optical Engineering, 2011, in press.

7



CHAPTER 1. INTRODUCTION

Chapter 8. Weights and Missing Data

In some cases, it might be necessary to attach to each entry of the data matrix
a weight corresponding to its relative importance. This problem is referred to
as weighted low-rank approximation (WLRA). We prove that computing an
optimal weighted low-rank approximation is NP-hard, already when a rank-
one approximation is sought. In fact, we show that it is hard to compute
approximate solutions to the WLRA problem with some prescribed accuracy.
Our proof is based on a reduction from the maximum-edge biclique problem,
and applies to strictly positive weights as well as binary weights; the latter
corresponding to low-rank matrix approximation with missing data.

Because the reduction uses nonnegative input matrices, these results also
apply to NMF implying that weighted NMF and NMF with missing data are
both NP-hard to approximate in the rank-one case (while rank-one NMF can
be solved in polynomial time).

[73] N. Gillis and F. Glineur, Low-Rank Matrix Approximation with
Weights or Missing Data is NP-hard, CORE Discussion paper 2010/75,
2010.

Finally, a conclusion will summarize the contributions of the thesis, attempt
to put them into perspective, and give some directions for further research.
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Chapter 2

Preliminaries

This thesis revolves around three main topics: optimization, low-rank matrix
approximation and computational complexity. In this chapter, we summarize
some well-known theoretical results which will be the groundwork of this thesis.

2.1 Optimization

Optimization, also referred to as mathematical programming, is an important
field of applied mathematics. Given a set of feasible solutions and an objective
function (i.e., a quality measure), it looks for (one of) the best possible solution
in the feasible domain. In general, optimization problems can be described as
follows

min
x∈X⊆Rn

f(x), (P)

where f : X → R : x → f(x) is the objective function, and X is the (feasible)
domain with

X = {x ∈ Rn | gi(x) = 0 ∀ i ∈ E and gi(x) ≥ 0 ∀ i ∈ I},

where gi : X → R : x → gi(x) define an equality constraint for i ∈ E or an
inequality constraint for i ∈ I.

2.1.1 First-Order Optimality Conditions

Assuming functions f and gi’s are continuously differentiable (i.e., ∇f and∇gi’s
are well-defined and continuous on X), one can use this first-order information
in order to derive necessary conditions for feasible solutions of (P) to be optimal.
In fact, it is clear that if a solution x is globally optimal, it must also be locally

9



CHAPTER 2. PRELIMINARIES

optimal. Intuitively, it means that the first-order approximation of the function
around x

f(x + δx) ≈ f(x) +∇f(x)T δx,

must be larger than f(x) in the domain, i.e., ∇f(x)T δx ≥ 0 for any feasible
direction δx, i.e., for any δx pointing inside the domain (including δx → 0
which might be tangent to the domain). For example, if there is no constraint,
i.e., X = Rn, all directions are feasible and it reduces to ∇f(x) = 0. In
the general constrained case, these conditions are referred to as Karush-Khun-
Tucker (KKT) optimality conditions. Defining the set of active constraints at
point x as A(x) = {j | gj(x) = 0}, they can be described as follows. Assuming
that the gradients ∇gi(x) i ∈ A(x) of the active constraint at x are linearly
independent, the first-order necessary conditions for a solution x to be locally
optimal are given by

∇f(x) =
∑

i∈I∪E

µi∇gi(x),

gi(x) = 0, i ∈ E, (KKT)

gi(x) ≥ 0, µi ≥ 0, µigi(x) = 0, i ∈ I,

where each µi is the Lagrangian multiplier (dual variable) associated with the
constraint gi. A point satisfying the KKT conditions will be referred to as a
first-order stationary point, or a stationary point for short.

2.1.2 Convexity

If the function f is convex and if the functions gi are affine for i ∈ E and
concave for i ∈ I (more generally, X is convex), problem (P) is convex. This
notably implies that

⋄ The set of optimal solutions is convex ;

⋄ Any local minimum is also global ;

⋄ The (KKT) conditions are sufficient to guarantee global optimality ;

⋄ If there exists a strictly feasible solution (an interior point), i.e., a point xs

such that gi(xs) = 0 ∀ i ∈ E and gi(xs) > 0 ∀ i ∈ I, the (KKT) conditions
are necessary and sufficient (without assuming the linear independence
of the gradients). This condition is referred to as Slater’s condition and
xs is also called a Slater point.

In addition to (and in part because of) these nice properties, this class of
problems can in general be solved efficiently, e.g., polynomial-time algorithms
are available for linear programming (LP), quadratic programming (QP) re-
cently extended to second-order cone programming (SOCP), semidefinite pro-
gramming (SDP), geometric programming (GP), etc. However, it is important

10
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to keep in mind that there are convex problems for which no polynomial-time
algorithm are known, e.g., copositive programming which deals with the fol-
lowing feasible set of matrices

C = {A ∈ Sn | xT Ax ≥ 0 for all x ∈ Rn
+},

called the copositive cone, can be used to model NP-hard problems, see [60]
and the references therein; it is therefore NP-hard to solve copositive programs
in general. In this case, it is even NP-complete to check whether a point
does not belong to the feasible set. In contrast, some non-convex problems
are easy to solve. Many problems can be reformulated as efficiently solvable
convex programs, or can be solved with dedicated algorithms; possibly after
reformulation. In fact, it is well-known that

Formulation is crucial in mathematical programming.

We refer to [147] and references therein for a survey on these issues.

2.1.3 Block-Coordinate Descent Methods

There exist many techniques to locally improve a current solution x of an
optimization problem (P), e.g., gradient descent, conjugate gradient, Newton
and Quasi-Newton methods. Under some (often mild) additional conditions,
they can guarantee convergence to a first-order stationary point.

Block-coordinate descent is another class of methods (also referred to as
alternating variables) which work as follows:

1. Define k disjoint subset sets Fi ⊂ N 1 ≤ i ≤ k whose union is equal to
N = {1, 2, . . . , n}, i.e.,

∪1≤i≤k Fi = N = {1, 2, . . . , n} and Fi ∩ Fj = ∅ ∀i 6= j.

2. Repeat until some stopping criterion is met

For i = 1, 2, . . . , k, fix variables xj j ∈ N\Fi and minimize (P)
in the remaining variables xj j ∈ Fi.

In many cases, block-coordinate descent methods fail to converge rapidly
when they get close to stationary points of (P), typically because of their
zigzagging behavior (similar to what is frequently observed for gradient de-
scent approaches, see, e.g., [12]). However, when the blocks of coordinates are
rather large and can be optimized efficiently (possibly up to global optimality),
they can be proved to be a powerful technique. At least, they often exhibit a
relatively fast initial convergence to the neighborhood of a stationary point. If
one requires a solution with high accuracy, one can then switch to a more so-
phisticated second-order scheme, such as Newton’s method. Block-coordinate

11
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descent methods have recently attracted much interest, notably because in gen-
eral (1) they converge initially quite fast, (2) they are easy to implement, (3)
they can deal with huge scale problems, and (4) in practice, it does not always
make much sense to look for very accurate solutions (i.e., stationary points) be-
cause the underlying mathematical model is often approximate and built with
noisy data.

It is sometimes possible to perform an exact block-coordinate descent, i.e.,
find a global minimum for (P) for each block of variables. In that particular
case, we can ensure the following

Theorem 2.1. [128], [12, p.268] The limit points of the iterates of an ex-
act block-coordinate descent algorithm are stationary points provided that the
following two conditions hold:

1. each block of variables is required to belong to a closed convex set,

2. the minimum computed at each iteration for a given block of variables is
uniquely attained.

Theorem 2.2. [82] The limit points of the iterates of an exact two-block
coordinate descent algorithm are stationary points provided that the following
two conditions hold:

1. each block of variables is required to belong to a closed convex set,

2. the objective function is continuously differentiable.

Hence exact two-block coordinate descent does not require the minimum of
the subproblems to be uniquely attained to guarantee convergence to a station-
ary point.

2.2 Low-Rank Matrix Approximation

Given a real matrix A ∈ Rm×n, we would like to find its best approximation
B ≈ A such that rank(B) ≤ r (possibly with additional constraints on B).
Using the Frobenius norm of the difference between A and B as an objective
function, this problem can be formulated as

min
B
||A−B||2F , such that rank(B) ≤ r. (LRA)

Since rank(B) ≤ r, B can be decomposed as the product of two matrices
U ∈ Rm×r and V ∈ Rn×r with B = UV T , and (LRA) can be equivalently
written as

min
U,V
||A− UV T ||2F . (LRA)

12
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The following two theorems provide a way to compute an optimal solution
of (LRA).

Theorem 2.3 (Singular value decomposition (SVD), [80]). If A is a real m-
by-n matrix, then there exist orthogonal matrices

U = [u1 u2 . . . um] ∈ Rm×m and V = [v1 v2 . . . vn] ∈ Rn×n,

such that

UT AV = Σ = diag(σ1, σ2, . . . , σp) ∈ Rm×n, p = min(m, n),

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 are the singular values of A. This also implies
A = UΣV T , AV = UΣ, AT U = V ΣT ,

Avi = σiui and AT ui = σivi for all 1 ≤ i ≤ p,

and A =
∑p

i=1 σiuiv
T
i (sum of p rank-one terms).

Any (σ, u, v) satisfying Av = σu, AT u = σv, ||u||2 = ||v||2 = 1, σ ≥ 0 will
be called a singular triplet of A (notice that σ = uT Av).

Theorem 2.4 (Eckart-Young [62]). Given (U, Σ, V ) a singular value decom-
position of A, and introducing the truncated sum of rank-one terms Ar =
∑r

i=1 σiuiv
T
i , we have that Ar solves (LRA) and

min
rank(B)≤r

||A−B||2F = ||A−Ar||2F =

min(m,n)
∑

i=r+1

σ2
i .

2.2.1 Rank-One Approximation

In this thesis, we will be particularly interested by rank-one approximations,
i.e., the case where approximation B can be written as an outer product σuvT ,

min
σ∈R,u∈Rm,v∈Rn

||A− σuvT ||2F , such that σ ≥ 0, ||u||2 = 1, ||v||2 = 1,

(LRA-1)
and, by Theorems 2.3 and 2.4, an optimal solution is given by any singular
triplet (σ, u, v) of A associated with the largest singular value σ = σ1(A). In
the following, we derive some alternative formulations for (LRA-1). Let A 6= 0
(otherwise the problem is trivial) and let (σ, u, v) be an optimal solution of
(LRA-1). Observing that

||A− σuvT ||2F =
〈
A− σuvT , A− σuvT

〉

= 〈A, A〉 − 2σ
〈
A, uvT

〉
+ σ2

〈
uvT , uvT

〉

= ||A||2F − 2σ
〈
A, uvT

〉
+ σ2,

13
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the optimal solution for variable σ is given by σ = max(0, uT Av). In fact,
either

〈
A, uvT

〉
= uT Av is nonnegative and σ = uT Av, or it is negative and

σ = 0. Since A 6= 0, uT Av is strictly positive hence σ > 0 and σ = uT Av.
Therefore at optimality we must have

||A− σuvT ||2F = ||A||2F − (uT Av)2,

and minimizing ||A − σuvT ||2F is equivalent to maximizing (uT Av)2. Since
uT Av ≥ 0, (LRA-1) is then equivalent to

max
u,v

uT Av, such that ||u||2 = 1, ||v||2 = 1. (PSV)

Optimal solutions (u, v) of (PSV) are pairs of principal singular vectors asso-
ciated with the maximum singular value σ1 of A. Given u, we have that the
optimal v in (PSV) is given by

v =
AT u

||AT u||2
.

One can then equivalently reformulate (PSV) as1

max
u

uT AAT u

||AT u||2
= ||AT u||2, such that ||u||2 ≤ 1, (PC)

with optimal value ||AT ||2 = ||A||2 (by definition). We have then that, for
A 6= 0,

(σ, u, v) is an optimal solution of (LRA-1)

⇐⇒
(u, v) is an optimal solution of (PSV) and σ = uT Av

⇐⇒

u is optimal for (PC), v =
AT u

||AT u||2
and σ = uT Av = ||A||2 = σ1(A).

Stationary Points

One can derive the stationarity conditions for (LRA-1) and obtain

Av = σu, AT u = σv, σ = uT Av ≥ 0, ||u||2 = ||v||2 = 1, (2.1)

implying that (σ, u, v) is a singular triplet of A if and only if it is a stationary
point of (LRA-1).

1The equality constraints ||u||2 = 1 has been relaxed without loss of generality to ||u||2 ≤ 1
since the constraint will be active at optimality; otherwise it is trivial to construct a better
solution multiplying u by ||u||−1

2 .
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Theorem 2.5. The set of stationary points of (LRA-1) is given by the set of
singular triplets of A. The set of optimal solutions is the set of singular triplets
associated with the largest singular value(s). The other stationary points are
saddle points.

Proof. The first part of the proof is direct since singular triplets are defined as
in Equation (2.1).

For the second part of the proof, assume A 6= 0 otherwise the result is
trivial. Let (σ, u, v) be any stationary point of (LRA-1) with σ < σ1 = σ1(A)
and note (σ1, u1, v1) an optimal solution of (LRA-1). Since σ < σ1, u (resp.
v) is orthogonal to u1 (resp. v1). In fact, they are associated with different
eigenvalues of the symmetric matrix AAT (AAT u = σ2u and AT Av = σ2v, see
Equation (2.1)). Then, for

u′ =
√

1− ǫ2u + ǫu1 and v′ =
√

1− ǫ2v + ǫv1,

where −1 ≤ ǫ ≤ 1, we have ||u′||2 = ||v′||2 = 1, and

u′T Av′ = (1− ǫ2)σ + ǫ2σ1 = σ + ǫ2(σ1 − σ) = σ′ > σ.

Hence (σ, u, v) is a saddle point (because it is not locally optimal).

The Power Method

A possible way to find singular triplets associated with a maximum singular
value is to solve (LRA-1) or, equivalently, (PSV). Applying an exact two-block
coordinate descent scheme (cf. Section 2.1.3) to (PSV) leads to the following
updates

v ← AT u

||AT u||2
, u← Av

||Av||2
,

which amounts to performing

u← AAT u, u← u

||u||2
.

This is the power method applied to AAT which is used to compute the eigen-
vector associated with the largest eigenvalue (in module). This algorithm is
guaranteed to converge given that the initial vector u is not perpendicular to
the principal eigenspace of AAT (or equivalently, to the principal singular sub-
space of the columns of A).

2.2.2 Nonnegative Matrices

It is clear that if A is nonnegative, any solution (σ, u, v) of (LRA-1) can be
improved by taking its absolute value (σ, |u|, |v|) since (Aij − σuivj)

2 ≥ (Aij −
σ|ui||vj |)2 because Aij ≥ 0. This is also a consequence of the Perron-Frobenius
Theorem.
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Theorem 2.6. For any nonnegative real matrix A, there exists an optimal
nonnegative solution u ≥ 0 and v ≥ 0 to (LRA-1).

Remark that there might exist optimal solutions with negative entries, if
the matrix M is reducible [9] and σ1(M) = σ2(M). The simplest example is

the 2-by-2 identity matrix I2 =

(
1 0
0 1

)

. Two singular triplets of I2 asso-

ciated with the unique singular value (=1) are given by
(

1,

(
1
0

)

,

(
1
0

))

and
(

1,

(
0
1

)

,

(
0
1

))

. Using the same construction as in the proof of The-

orem 2.5, the following are optimal rank-one approximations
(

λ2
1 λ1λ2

λ1λ2 λ2
2

)

, for any λ2
1 + λ2

2 = 1.

For example, with λ1 = −λ2 =
√

2
2 , we obtain an optimal solution

(
1/2 −1/2
−1/2 1/2

)

,

with negative entries.

2.3 Computational Complexity

In this section, we define some key concepts of computational complexity and
explain intuitively the computational models we are going to work with. We
refer the reader to [5, 16, 67] and references therein for detailed discussions on
the subject.

2.3.1 The Turing Machine Model

The Turing machine model aims to model any algorithm or computation that
can be carried out on a computer. Given a finite input (whose size is the num-
ber of bits needed to represent it), the machine can perform a finite number of
operations in order to generate a finite output. The main purpose of computa-
tional complexity is to classify problems that are formulated on these machines
in different categories. The aim is to predict whether it is possible to solve
(or approximate) these problems efficiently (i.e., in polynomial time) on such a
machine.

Complexity Classes: NP, P, NP-Complete and NP-Hard

NP refers to the class of decision problems, i.e., with a yes/no answer, for
which there exists a certificate for the yes-answer that can be verified by a
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polynomial-time algorithm2 on a Turing machine.
The class P ⊂ NP is the class of decision problems that can be decided

by a polynomial-time algorithm (it requires the number of operations to be
bounded by a polynomial in the size of the input).

A class of problems A can be reduced to a class B if there exists a function
r (a reduction) that can be computed in polynomial time, and that transforms
any problem of A into a problem of B in a polynomial number of operations in
such a way that for any problem instance a ∈ A: a is a yes-instance of A if and
only if r(A) is a yes-instance of B. This result implies that any algorithm for
B would solve A, i.e., that problems in B are at least as hard than those in A.

The class NP-complete ⊂ NP is the class of the most difficult problems in
NP , i.e., problems such that any problem in NP can be reduced to them.

A well-known open question in computer science is: Is P = NP?, i.e., can
any decision problem which can be verified in polynomial time be solved in
polynomial time? It is in general believed that P 6= NP . Showing that a
problem is NP-complete then implies that it is probably not possible to find a
polynomial-time algorithm to solve it (at least nobody has succeeded so far). In
particular, this justifies the use of polynomial-time algorithms that find ‘good’
but non-optimal solutions (e.g., using heuristic approaches such as local search
or convex relaxations; sometimes with guaranteed approximation properties).

Another class of problem is NP-hard ⊃ NP-complete. It contains any
problem (not necessarily a decision problem, e.g., an optimization problem) to
which any problem in NP can be reduced.

Figure 2.1: Illustration of the complexity classes if P 6= NP .

2NP stands for nondeterministic polynomial, which roots from another equivalent defini-
tion of NP, namely the class of decision problems solvable in polynomial time by a nonde-
terministic machine.

17



CHAPTER 2. PRELIMINARIES

Example 2.1. Let define the following class of problems, referred to as Quadratic
Programming (QP)

Instance: A is an m-by-n rational matrix, b is a rational m-dimensional
vector, H is a rational symmetric n-by-n matrix , c is a rational n-
dimensional vector and K is a rational number.
Question: Is there an n-dimensional vector x such that Ax ≥ b and
xT Hx + cT x ≤ K?

QP has first been shown to be NP-hard: Sahni [133] showed that partition
problems can be reduced to QP, i.e., any instances of Partition can be reduced
to an instance of QP (see also [67, p. 245, MP2]). Pardalos and Vavasis [125]
showed that QP is NP-hard even if only one eigenvalue of H is negative, by
reduction from the clique problem.

However, it is not easy to determine whether QP is in NP or not, because
some instances of QP could potentially have a solution x not polynomially
bounded in the size of the input (e.g., irrational solutions) and, therefore, no
polynomial-time algorithm could verify a certificate of a yes-instance. Vavasis
[146] showed that QP actually belongs to NP : he proved that there always
exists a solution to QP which is rational, and polynomially bounded by the
size of the input. This implies that there exists a polynomial-length certificate
for any yes-instance of QP above and therefore that QP is in NP , hence also
NP-complete.

2.3.2 Real Computations

In many problems one has to deal with real numbers, which cannot be repre-
sented by a finite number of digits (e.g., solutions to x2 = 2 are irrational).
Blum, Cucker, Shub and Smale [16] introduced a model to deal with real com-
putations. It assumes that there exists a computer able to deal with infinite-
precision real numbers. In this model, the size of the input is defined as the
vector length of the input, in opposition with the Turing model which counts
the number of bits needed to represent it. Within this theory, one can solve
NP-complete problems in the Turing machine model in polynomial time (using
intricate constructions). One must then carefully specify the model used.

Example 2.2 ( [15]). Most complexity results in convex optimization assume
infinite-precision arithmetic. For example, let us consider linear programming
(LP) defined as follows

min
x∈Rn,x≥0

cT x such that Ax ≥ b,

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. The size of the input is mn + m + n
and LP can be solved in polynomial time to any given precision in the real
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computation model. However, it is an open question to determine whether
solving LP exactly belongs to the class of polynomially solvable problems in
the real model. In fact, the number of iterations might depend on the size of
the coefficients of matrix A and vectors b and c (which is not part of the input
size). The open question is then: does LP admit a strongly polynomial-time
algorithm?, i.e., an algorithm whose complexity is polynomial in mn, hence
does not depend on the size of the coefficients of the input.

For rational input, LP can be solved in polynomial time in the Turing model
because the optimal solution is rational, and polynomially bounded by the size
of the input.

In this thesis, we will mostly focus on the Turing machine model.
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Chapter 3

Nonnegative Rank

In this chapter, we seek exact nonnegative matrix factorizations of nonnegative
matrices M ∈ Rm×n

+ , i.e., we look for U ∈ Rm×k
+ and V ∈ Rk×n

+ such that

M = UV =
∑k

i=1 U:iVi:, or equivalently such that ||M − UV ||2F = 0. The pair
(U, V ) will be called a rank-k nonnegative factorization1 of M . The minimum
k such that there exists a rank-k nonnegative factorization of M , i.e., the
minimum number of nonnegative rank-one factors needed to reconstruct M
exactly, is called the nonnegative rank of M and denoted rank+(M). Clearly,

rank(M) ≤ rank+(M) ≤ min(m, n).

Determining the nonnegative rank and computing the corresponding nonnega-
tive factorization has been studied relatively recently in linear algebra [8, 37].
In the literature, much more attention has been devoted to the approximate
problem (i.e., NMF), which has been widely used as a data analysis technique,
see Chapter 1. Nevertheless, there are not too many theoretical results about
the nonnegative rank and better characterizations could help practitioners. For
example, efficient computations of exact nonnegative factorizations could help
to design new NMF algorithms using a two-step strategy [148]: first approxi-
mate M with a low-rank nonnegative matrix A (e.g., using the singular value
decomposition2) and then compute a nonnegative factorization of A. Bounds
for the nonnegative rank could also help select the factorization rank of the
NMF, replacing the trial and error approach often used by practitioners. For
example, in hyperspectral image analysis, the nonnegative rank corresponds to
the number of materials present in the image and its computation could lead to

1Notice that matrices U and V in a rank-k nonnegative factorization are not required to
have rank k.

2Even though an optimal low-rank approximation of a nonnegative matrix might not
necessarily be nonnegative, it is often the case in practice [100].
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more efficient algorithms detecting these constitutive elements, see Chapter 7.

The main goals of this chapter are to (1) better understand the compu-
tational complexity of determining the nonnegative rank using a geometric
interpretation, and its implications for NMF, (2) make connections with other
related problems (in particular in computational geometry and combinatorial
optimization) and (3) provide new bounds for the nonnegative rank. It is or-
ganized as follows.

In Section 3.1, we review the complexity results about the nonnegative rank,
and its relationship with NMF. In Section 3.2, we explain how the nonnegative
rank is closely related to other problems; in particular the characterization of
the size of extended formulations in combinatioral optimization. In Section 3.3,
we introduce a new related quantity called restricted nonnegative rank. Gener-
alizing a recent result of Vavasis [148] (see also [114]), we show that computing
this quantity is equivalent to a problem in polyhedral combinatorics, and fully
characterize its computational complexity. In Section 3.4, based on the ge-
ometric interpretation of the nonnegative rank and the relationship with the
restricted nonnegative rank, we derive new improved lower bounds for the non-
negative rank. In Section 3.5, we apply our results to slack matrices and linear
Euclidean distance matrices. We obtain counter-examples to two conjectures
of Beasly and Laffey [6], namely we show that the nonnegative rank of linear
Euclidean distance matrices is not necessarily equal to their dimension, and
that the rank of a matrix is not always greater than the nonnegative rank of
its square. Finally, in Section 3.6, using the relationship between the restricted
nonnegative rank of a matrix and its transpose, we further improve the bounds
provided in Section 3.5.

3.1 Computational Complexity

Vavasis studies in [148] the algorithmic complexity of the NMF optimization
problem, i.e., (NMF), see Section 1. More specifically, he studies the following
problem, which he calls exact nonnegative matrix factorization:

(Exact NMF) Given a nonnegative matrix M ≥ 0 of rank r, find,
if possible, two nonnegative factors U ∈ Rm×r

+ and V ∈ Rr×n
+ such

that M = UV .

Clearly, exact NMF is equivalent to asking whether rank+(M) = rank(M) = r?
and, if yes, to compute a rank-r nonnegative factorization of M . In order to
prove NP-hardness of exact NMF, Vavasis introduces the following problem,
called intermediate simplex

(IS) Given a bounded polyhedron

P = {x ∈ Rr−1 | 0 ≤ f(x) = Cx + d},
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with (C d) ∈ Rm×r of rank r, and a set S of n points in P not
contained in any hyperplane (i.e., conv(S) is full-dimensional), are
there r points in P whose convex hull T contains S, i.e., is there a
polytope T with r vertices such that S ⊆ T ⊆ P?

P is referred to as the outer simplex, conv(S) as the inner simplex, and T as
the intermediate simplex.

Vavasis then proves the following result

Theorem 3.1 ( [148]). There exists a polynomial-time reduction from exact
NMF to IS and vice-versa.

He concludes by showing that IS is NP-hard using a reduction from 3-SAT.
His construction requires the rank r of matrix M to increase to obtain NP-
hardness (and therefore its dimensions m and n have to increase as well), i.e.,
he shows that there is no algorithm running in polynomial time in r solving the
exact NMF problem, unless P = NP. NMF is therefore also NP-hard, since
any optimal solution to NMF can be used to answer the exact NMF problem
(the answer being positive if and only if the optimal objective value of NMF is
equal to zero).

However, if rank r of matrix M is fixed, no complexity results are known,
and the following questions are still open (see also [148])

⋄ What is the complexity of NMF when the rank of the matrix M is fixed?

⋄ What is the complexity of NMF when the factorization rank is fixed?

In contrast, in the special cases when rank of matrix M is equal to 1 or 2,
the exact NMF problem can always be answered in the affirmative:

1. When rank(M) = 1, it is obvious that for any nonnegative rank-one
matrix M ≥ 0 there are nonnegative factors u ≥ 0 and v ≥ 0 such that
M = uvT .

2. When nonnegative matrix M has rank 2, Thomas has shown [143] that
exact NMF is also always possible (see also [37]). The fact that any
rank-two nonnegative matrix can be exactly factorized as the product
of two rank-two nonnegative matrices can be explained geometrically as
follows: viewing columns of M as points in Rm, the fact that M has
rank 2 implies that the set of its columns belongs to a two-dimensional
subspace. Furthermore, because these columns are nonnegative, they be-
long to a two-dimensional pointed cone, see Figure 3.1. Since such a cone
is always spanned by two extreme vectors, this implies that all columns
of M can be represented exactly as nonnegative linear combinations of
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Figure 3.1: Illustration of exact NMF for a rank-two 3-by-10 matrix.

two nonnegative vectors, and therefore the exact NMF is always possi-
ble3. Moreover, these two extreme columns can easily be computed in
polynomial time (using for example the fact that they define an angle of
maximum amplitude among all pairs of columns).

Based on these observations, rank-one4 NMF can be solved in polynomial
time: the Perron-Frobenius theorem implies that the dominant left and right
singular vectors of a nonnegative matrix M are nonnegative, while the Eckart-
Young theorem states that the outer product of these dominant singular vectors
is the best rank-one approximation of M ; and these vectors can be computed
in polynomial time, see Section 2.2. Also, when the optimal rank-two ap-
proximation of matrix M is unique and nonnegative5, rank-two NMF can be
solved in polynomial time. However, this optimal rank-two approximation is
not always nonnegative; typically when M contains many relatively small en-
tries (e.g., zeros, see Section 2.2.2). For example, the unique optimal rank-two

3The reason why this property no longer holds for higher values of the rank r is that a
r-dimensional cone is not necessarily spanned by a set of r vectors when r > 2.

4Rank-one NMF refers to as the NMF optimization problem NMF with r = 1. Notice
that, in this chapter, r is often used to refer to the rank of the nonnegative matrix M , which
will be clear from the context.

5If the optimal rank-two approximations is non-unique (i.e., σ2(M) = σ3(M) = · · · =
σi(M), i ≥ 3), then it is non-trivial to check whether a nonnegative solution exists, see
Corollary 3.5, so that the complexity is also unknown in this case.
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approximation of the following matrix

M =





1 1 1
0 1 1
0 0 1



 ,

is 



0.8924 1.1341 0.9403
0.2417 0.6986 1.1341
−0.1938 0.2417 0.8924



 .

Hence the complexity of rank-two (NMF) is not known (more generally it is
not known for any fixed factorization rank greater than 2, see also Chapter 5).
Furthermore, to the best of our knowledge, the complexity of the exact NMF
problem and NMF of a matrix of any fixed rank greater than 3 are still unknown.

3.2 Extended Formulations

The nonnegative rank is closely related to other areas of optimization, in par-
ticular to linear programming (LP) extended formulations in combinatorial
optimization.

An extended formulation (or lifting) for a polytope P ⊆ Rn is a polyhedron
Q ⊆ Rn+p such that

P = projx(Q) := {x ∈ Rn | ∃y ∈ Rp s.t. (x, y) ∈ Q}.

Extended formulations whose size (number of constraints plus number of vari-
ables defining Q) is polynomial in n are called compact and are of great impor-
tance in integer programming. They allow to reduce significantly the size of
certain linear programs arising in the context of integer programming and com-
binatorial optimization, and therefore provide a way to solve them efficiently,
i.e., in polynomial time (see [39] for a survey). Yannakakis [152, Theorem 3]
showed that the minimum size s of an extended formulation of a polytope6

P = {x ∈ Rn |Cx + d ≥ 0, Ax = b},

is of the same order7 as the sum of its dimension n and the nonnegative rank
of its slack matrix SM ≥ 0, where each column of the slack matrix is defined as

SM (:, i) = Cvi + d ≥ 0, i = 1, 2, . . . , m, (3.1)

6This can be generalized to polyhedra [39].
7One can actually show that the minimum number of facets of an extension of P is equal

to the nonnegative rank of the slack matrix of P , see, e.g., ‘Nonnegative rank of a matrix
and projections onto a polyhedron’ on http://dirkolivertheis.wordpress.com/ .

25

http://dirkolivertheis.wordpress.com/


CHAPTER 3. NONNEGATIVE RANK

and vectors vi are the m vertices of the polytope P . Formally, we then have

s = Θ(n + rank+(SM )).

In particular, any rank-k nonnegative factorization (U, V ) of SM = UV provides
the following extended formulation for P with size Θ(n + k)

Q = {(x, y) ∈ Rn+k |Cx + d = Uy, Ax = b, y ≥ 0}. (3.2)

In fact, projx(Q) ⊆ P since Uy ≥ 0 implies Cx + d ≥ 0 for any x ∈ projx(Q),
and P ⊆ projx(Q) since Cvi + d = UV (:, i) implies that (vi, V (:, i)) ∈ Q for
all i and therefore each vertex vi of P belongs to projx(Q). Notice that the
system Cx + d = Uy contains at most n + k linearly independent equalities.
Intuitively, this extended formulation parametrizes the space of slacks of the
original polytope with the convex cone {Uy | y ≥ 0}.

It is therefore interesting to compute bounds for the nonnegative rank in or-
der to estimate the size of these extended formulations. Recently, Goemans [79]
used this result to show that the size of LP formulations of the permutahe-
dron (polytope whose n! vertices are permutations of [1, 2, . . . , n]) is at least
Ω(n log(n)) variables plus constraints (see Section 3.4).

We will see in Section 3.4.1 that the nonnegative rank is closely related
to a problem in computational geometry consisting in finding a polytope with
minimum number of vertices nested between two given polytopes. Therefore a
better understanding of the properties of the nonnegative rank would presum-
ably also allow to characterize better the solutions of this geometric problem.
The nonnegative rank also has connections with other problems, e.g., in com-
munication complexity theory [107,152], probability [26], and graph theory (cf.
Section 3.4).

3.3 Restricted Nonnegative Rank

In this section, we analyze the following quantity

Definition 3.1. The restricted nonnegative rank of a nonnegative matrix M
is the minimum value of k such that there exists U ∈ Rm×k

+ and V ∈ Rk×n
+

with M = UV and rank(U) = rank(M), i.e., col(U) = col(M). It is denoted
rank∗+(M).

In particular, given a nonnegative matrix M , we are interested in computing
its restricted nonnegative rank rank∗+(M) and a corresponding nonnegative
factorization, i.e., solve
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(RNR) Given a nonnegative matrix M ∈ Rm×n
+ , find k = rank∗+(M)

and compute U ∈ Rm×k
+ and V ∈ Rk×n

+ such that M = UV and
rank(U) = rank(M) = r.

Without the rank constraint on the matrix U , this problem reduces to the stan-
dard nonnegative rank problem. Motivation to study this restriction includes
the following

1. The restricted nonnegative rank provides a new upper bound for the
nonnegative rank, since rank+(M) ≤ rank∗+(M).

2. The restricted nonnegative rank can be characterized much more eas-
ily. In particular, its geometrical interpretation (Section 3.3.1) will lead
to new improved lower bounds for the nonnegative rank (Sections 3.4
and 3.5).

RNR is a generalization of exact NMF. Noting r = rank(M), recall that
exact NMF asks whether rank+(M) = r and, if the answer is positive, to
compute a rank-r nonnegative factorization of M . If rank+(M) = r then it is
clear that rank∗+(M) = rank+(M) since the rank of U in any rank-r nonnegative
factorization (U, V ) of M must be equal to r.

The NP-hardness result of Vavasis therefore also implies NP-hardness of
RNR when the rank of matrix M is not fixed. However, in the case where the
rank r of matrix M is fixed, no complexity results are known (except in the
trivial cases r ≤ 2, see Section 3.1). The situation for RNR is quite different:
we are going to show that RNR can be solved in polynomial time when r = 3
and that it is NP-hard for any fixed r ≥ 4. In particular, this result implies
that exact NMF can be solved in polynomial time for rank-three nonnegative
matrices, see Corollary 3.4.

In order to do so, we first show equivalence of RNR with another prob-
lem in polyhedral combinatorics, closely related to intermediate simplex (Sec-
tion 3.3.1), and then apply results from the computational geometry literature
to conclude about its computational complexity for fixed rank (Section 3.3.2).

3.3.1 Equivalence with the Nested Polytopes Problem

Let consider the following problem called nested polytopes problem (NPP):

(NPP) Given a bounded polyhedron

P = {x ∈ Rr−1 | 0 ≤ f(x) = Cx + d},

with (C d) ∈ Rm×r of rank r, and a set S of n points in P not
contained in any hyperplane (i.e., conv(S) is full-dimensional), find
the minimum number k of points in P whose convex hull T contains
S such that S ⊆ T ⊆ P .
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Polytope P is referred to as the outer polytope, and conv(S) as the inner
polytope; note that they are given by two distinct types of representations:
facets for P , extreme points for conv(S).

The intermediate simplex problem mentioned earlier is a particular case of
NPP in which one asks whether k is equal to r (which is the minimum possible
value), i.e., if there exists a simplex T (defined by r vertices in a r − 1 dimen-
sional space) contained in P and containing S.

We now prove equivalence between RNR and NPP. It is a generalization
of Theorem 3.1. The reductions are valid in both Turing machine and real
computations models (see Section 2.3).

Theorem 3.2. There is a polynomial-time reduction from RNR to NPP and
vice-versa.

Proof. Let us construct a reduction of RNR to NPP. First we (1) delete the zero
rows and columns of M and (2) normalize its columns such that M becomes
column stochastic (columns are nonnegative and sum to one). One can easily
check that it gives a polynomially equivalent RNR instance [31]. We then
decompose M as the product of two rank-r matrices (using, e.g., reduction to
row-echelon form)

M = AB ⇐⇒ M:i =

r∑

l=1

A:lBli ∀i,

where r = rank(M), A ∈ Rm×r and B ∈ Rr×n. We observe that one can
assume without loss of generality that the columns of A and B sum to one.
Indeed, since M is column stochastic, at least one column of A does not sum
to zero (otherwise all columns of AB = M would sum to zero). One can then
update A and B in the following way so that their columns sum to one:

⋄ For each column of A which sums to zero, add a column of A which does
not sum to zero, and update B accordingly;

⋄ Normalize the columns of A such that each of them sums to one, and
update B accordingly;

⋄ Observe that since the columns of A sum to one, M is column stochastic
and M = AB, the columns of B must also sum to one.

In order to find a solution of RNR, we have to find U ∈ Rm×k
+ and V ∈ Rk×n

+

such that M = UV and rank(U) = r. For the same reasons as for A and B,
U and V can be assumed to be column stochastic without loss of generality.
Moreover, since

M = UV = AB,

28



3.3. RESTRICTED NONNEGATIVE RANK

and rank(M) = rank(A) = rank(U) = r, the column spaces of M , A and U
coincide; implying that the columns of U must be a linear combination of the
columns of A. The columns of U must then belong to the following set

Q = {u ∈ Rm | u ∈ col(A), u ≥ 0 and
m∑

i=1

ui = 1}.

One can then reduce the search space to the (r−1)-dimensional polyhedron cor-
responding to the coefficients of all possible linear combinations of the columns
of A generating stochastic columns. Defining

C(:, i) = A(:, i)−A(:, r) 1 ≤ i ≤ r − 1, and d = A(:, r),

and introducing affine function f : Rr−1 → Rm : x→ f(x) = Cx + d, which is
injective since C is full rank (because A is full rank), this polyhedron can be
defined as

P = {x ∈ Rr−1 | A(:, 1:r−1)x +
(

1−
r−1∑

i=1

xi

)

A(:, r) ≥ 0}

= {x ∈ Rr−1 | f(x) ≥ 0}.

Note that B(1:r−1, j) ∈ P ∀j since M(:, j) = AB(:, j) = f(B(1:r−1, j)) ≥ 0
∀j.

Let us show that P is bounded: suppose P is unbounded, then

∃x ∈ P, ∃ y 6= 0 ∈ Rr−1, ∀α ≥ 0 : x + αy ∈ P,

C(x + αy) + d = (Cx + d) + αCy ≥ 0.

Since Cx + d ≥ 0, this implies that Cy ≥ 0. Observe that columns of C sum
to zero (since the columns of A sum to one) so that Cy sums to zero as well;
moreover, C is full rank and y is nonzero implying that Cy is nonzero and
therefore that Cy must contain at least one negative entry, a contradiction.

Notice that the set Q can be equivalently written as

Q = {u ∈ Rm | u = f(x), x ∈ P}.

Noting X = [x1 x2 . . . xk] ∈ Rr−1×k, f(X) = [f(x1) f(x2) . . . f(xk)] = CX +
[d d . . . d], we finally have that the following statements are equivalent

(i) ∃U ∈ Rm×k, V ∈ Rk×n column stochastic with rank(U) = rank(M), and
M = UV ,

(ii) ∃x1, x2, . . . xk ∈ P and V ∈ Rk×n column stochastic such that

M = f(B(1:r−1, :)) = f(X)V = f(XV ),
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(iii) ∃x1, x2, . . . xk ∈ P and V ∈ Rk×n column stochastic such that

B(1:r−1, :) = XV.

The equivalence between (i) and (ii) follows from the above derivations (i.e.,
U = f(X) for some x1, x2, . . . xk ∈ P ); f(X)V = f(XV ) because V is column
stochastic (so that [d d . . . d]V = [d d . . . d]), and the second equivalence be-
tween (ii) and (iii) is a consequence from the fact that f is an injection.

We have then reduced RNR to NPP: find the minimum number k of points
xi in P such that n given points (the columns of B(1:r−1, :) constructed from
the columns of M , which define the set S in the NPP instance) are contained
in the convex hull of these points (since V is column stochastic). Because all
steps in the above derivation are equivalences, we have actually also defined a
reduction from NPP to RNR; to map a NPP instance to a RNR instance, we
take

M(:, i) = f(si) = Csi + d ≥ 0, si ∈ S 1 ≤ i ≤ n,

and rank(M) = r because the n points si are not all contained in any hyperplane
(they affinely span P).

It is worth noting that M would be the slack matrix of P if S was the set
of vertices of P (cf. Section 3.2). This will be useful later in Section 3.5.1.

Remark 3.1 (Uniqueness). The reduction from RNR to NPP is not unique.
In fact, two different factorizations of M correspond to different NPP instances.
However, these instances are simply affine transformations of each other, hence
equivalent.

Let us show this formally. Let M = AB and M = CD be two factorizations
of M , with the columns of A, B, C and D summing to one. We then have two
different NPP instances corresponding to M :

SB = {B(1:r − 1, j), 1 ≤ j ≤ n} ⊆ PA = { x ∈ Rr−1 | A
(

x

1− Σ(x)

)

≥ 0 },
(NPP1)

where Σ(y) =
∑n

i=1 yi, y ∈ Rn, and

SD = {D(1:r − 1, j), 1 ≤ j ≤ n} ⊆ PC = { x ∈ Rr−1 | C
(

x

1− Σ(x)

)

≥ 0 }.
(NPP2)

Since AB = CD and A, B, C, D are full rank, there exists an invertible matrix
Q such that A = CQ and B = Q−1D where the columns of Q and Q−1 must
sum to one (because the columns of A, B, C, D do). Let us note

Q =

(
q1 q2 . . . qr

1− Σ(q1) 1− Σ(q2) . . . 1− Σ(qr)

)

.
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Then

A

(
x

1− Σ(x)

)

= AQ−1Q

(
x

1− Σ(x)

)

= C

( ∑

i xi(qi − qr) + qr

1− Σ(
∑

i xi(qi − qr) + qr)

)

.

Hence
x ∈ PA ⇐⇒ y =

∑

i

xi(qi − qr) + qr = Q′x + qr ∈ PC ,

where Q′(:, i) = qi − qr 1 ≤ i ≤ r − 1. Finally, f(x) = Q′x + qr is an affine
transformation from (NPP1) to (NPP2).

3.3.2 Computational Complexity

Rank-Three Matrices

Using Theorem 3.2, RNR of a rank-three matrix can be reduced to a two-
dimensional nested polytopes problem. Therefore, one has to find a convex
polygon T with minimum number of vertices nested in between two given con-
vex polygons S ⊆ P . This problem has been studied by Aggarwal et al. in [1],
who proposed an algorithm running in O(p log(k)) operations8, where p is the
total number of vertices of the given polygons S and P , and k is the number
of vertices of the minimal nested polygon T . If M is a m-by-n matrix then
p ≤ m + n since S has n vertices, and the polygon P is defined by m inequal-
ities so that it has at most m vertices. Moreover k = rank∗+(M) ≤ min(m, n)
follows from the trivial solutions T = S and T = P . Finally, we conclude that
one can compute the restricted nonnegative rank of a rank-three m-by-n matrix
in O

(
(m + n) log(min(m, n))

)
operations.

Theorem 3.3. For rank(M) ≤ 3, RNR can be solved in polynomial time.

Proof. Cases r = 1, 2 are trivial since any rank-1 (resp. 2) nonnegative matrix
can always be expressed as the sum of 1 (resp. 2) nonnegative factors, see
Section 3.1.

Case r = 3 follows from Theorem 3.2 and the polynomial-time algorithm of
Aggarwal et al. [1].

For the sake of completeness, we sketch the main ideas of the algorithm
of Aggarwal et al. They first make the following observations: (1) any vertex
of a solution T can be assumed to belong to the boundary of the polygon P
(otherwise it can be projected back on P in order to generate a new solution
containing the previous one), (2) any segment whose ends are on the boundary
of P and tangent to S (i.e., S is on one side of the segment, and the segment
touches S) defines a polygon with the boundary of P which must contain at

8Wang generalized the result for non-convex polygons [149]. Bhadury and Chandrasekaran
propose an algorithm to compute all possible solutions [13].
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least one vertex of any feasible solution T (otherwise the tangent point on S
could not be contained in T ), see, e.g., set Q on Figure 3.2 delimited by the
segment [p1, p2] and the boundary of P , and such that T∩Q 6= ∅ for any feasible
solution T .

Figure 3.2: Illustration of the algorithm of Aggarwal et al. [1].

Starting from any point p1 of the boundary of P , one can trace the tangent
to S and hence obtain the next intersection p2 with P . Point p2 is chosen as the
next vertex of a solution T , and the same procedure is applied (say k times)
until the algorithm can reach the initial point without going through S, see
Figure 3.2. This generates a feasible solution T (p1) = conv({p1, p2, . . . , pk}).
Because of (1) and (2), this solution has at most one vertex more than an
optimal one, i.e., k ≤ rank∗+(M) + 1 (since T determines with the boundary
of P k − 1 disjoint polygons tangent to S). Moreover, because of (1) and (2),
there must exist a vertex of an optimal solution on the boundary of P between
p1 and p2.

The point p1 is then replaced by the so called ‘contact change points’ located
on this part of the boundary of P while the corresponding solution T (p1) is
updated using the procedure described above. The contact change points are:
(a) the vertices of P between p1 and p2, and (b) the points for which one tan-
gent point of T (p1) on S is changed when p1 is replaced by them. This (finite)
set of points provides a list of candidates where the number of vertices of the
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solution T could potentially be reduced (i.e., where p1 and pk could coincide)
by replacing p1 by one of these points. It is then possible to check whether
the current solution can be improved or not, and guarantee global optimality.
In the example of Figure 3.2, moving p1 on the (only) vertex of P between p1

and p2 generates an optimal solution of this RNR instance (since it reduces the
original solution from 5 to 4 vertices).

Finally, Theorem 3.3 also allows to shed some light on the nonnegative rank
and the nonnegative matrix factorization problems.

Corollary 3.4. Exact NMF can be solved in polynomial time for nonnegative
matrices of rank r smaller than 3.

Proof. If rank+(M) = r, then clearly rank∗+(M) = r since in any rank-r non-
negative factorization (U, V ) of M , rank(U) = r. Therefore rank+(M) > r if
and only if rank∗+(M) > r, so that it suffices to compute rank∗+(M) to solve
exact NMF (as mentioned in the introduction of this section).

Corollary 3.5. The optimal solution of (NMF) with r = 3 can be computed
in polynomial time, given that

(1) the best rank-three approximation A of M is unique and nonnegative, and

(2) its nonnegative rank rank+(A) is smaller than three.

Proof. The unique best rank-three approximation A of M can be computed in
polynomial time, e.g., using the SVD, see Section 2.2.

If A is nonnegative and rank+(A) ≤ 3, a rank-3 nonnegative factorization
of A can be computed with the algorithm of Aggarwal et al. (see Corollary 3.4).

This result is similar as in the rank-two case, except that the nonnegative
rank of a rank-two nonnegative matrix is always equal to two (cf. Section 3.1).
Notice that if rank(M) = 3, then the assumptions of Theorem 3.5 reduce to
having rank+(M) = 3. In fact, if rank+(M) = 4, we do not know how to solve
the rank-three NMF problem in polynomial-time.

Remark 3.2. If the nonnegative rank of the best rank-three approximation
A of M is larger than 3, then knowing A is useless for obtaining a rank-three
NMF solution for M . In fact, even if we were able to compute an optimal
rank-three NMF of A, it will most likely not be optimal for M .

Remark 3.3. If the best rank-three approximation of M is non-unique (i.e.,
σi(M) = σi−1(M) = · · · = σ4(M) = σ3(M), i ≥ 4), the set of optimal solutions
can be described from the singular triplets of M which can be computed in
polynomial time (see Section 2.2). However, checking whether there exists an
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optimal solution which is nonnegative and has nonnegative rank three seems
to be non-trivial, and we do not know how to do it in general. This is why we
need the uniqueness assumption.

Notice that, in the special case σ2(M) > σ3(M) = σ4(M) > σ5(M),

A(λ) = σ1u1v
T
1 + σ2u2v

T
2 + σ3u(λ)v(λ)T ,

where (σi, ui, vi) are the singular triplets associated with M , u(λ) = λu3 +√
1− λ2u4, v(λ) = λv3 +

√
1− λ2v4, and −1 ≤ λ ≤ 1, is the set of optimal

rank-three approximations of M (see Theorem 2.5). The aim is to find λ such
that A(λ) ≥ 0 and rank+(A(λ)) = 3. Using the change of variable λ = cos(θ),
θ ∈ [0, 2π], checking whether there exists λ such that A(λ) ≥ 0 is equivalent to
checking if there exists θ such that

cos2(θ)u3v
T
3 + cos(θ) sin(θ)(u3v

T
4 + u4v

T
3 ) + sin2(θ)u4v

T
4 ≥

σ1u1v
T
1 + σ2u2v

T
2

−σ3
.

We then have mn inequalities of the type

f(θ) = a cos2(θ) + b cos(θ) sin(θ) + c sin2(θ) + d ≥ 0.

Multiplying d by cos2(θ)+sin2(θ)(= 1), and dividing the inequalities by cos2(θ)

(for cos(θ) 6= 0), we observe that f(θ)
cos2(θ) is a quadratic function in tan(θ). We

can then easily compute its roots, hence an union of intervals for the admissible
values of θ. We finally have to find θ in the intersection of these intervals
satisfying rank+(A(θ)) = 3. For a given θ, checking whether rank+(A(θ)) = 3
can be done in polynomial time (cf. Theorem 3.4). However, we do not know
how to compute a solution θ in polynomial time (we actually don’t even know
if there always exists a solution that is polynomially bounded in the size of the
input matrix M , see also [148]).

Higher Rank Matrices

For a rank-four matrix, RNR reduces to a three-dimensional problem of finding
a polytope T with the minimum number of vertices nested between two other
polytopes S ⊆ P . This problem has been studied by Das et al. [42, 44] and
has been shown to be NP-hard when minimizing the number of facets of T
(the reduction is from planar-3SAT ). From this result, one can deduce using a
duality argument9 that minimizing the number of vertices of T is NP-hard as
well [36, 43].

Theorem 3.6. For rank(M) ≥ 4, RNR is NP-hard.

9Taking the polar of the three nested polytopes exchanges the roles of the inner and outer
polytopes, and transforms facet descriptions into vertex descriptions, so that the description
of the inner and outer polytopes is unchanged but the intermediate polytope is now described
by its facets. This will be proved in Section 3.6.2.
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Proof. This is a consequence of Theorem 3.2 and the NP-hardness results of
Das et al. [42–44].

Note however that several approximation algorithms have been proposed in
the literature. For example, Mitchell and Suri [121] approximate rank∗+(M) in
case rank(M) = 4 within a O(log(p)) factor, where p is the total number of
vertices of the given polygons S and P . Clarkson [36] proposes a randomized
algorithm finding a polytope T with at most r∗+O(5d ln(r∗+)) vertices and run-

ning in O(r∗+
2p1+δ) expected time (with r∗+ = rank∗+(M), d = rank(M)−1 and

δ is any fixed value > 0).

3.3.3 Some Properties

In this section, we derive some useful properties of the restricted nonnegative
rank.

Example 3.1. Construct M using the following NPP instance: P is the three
dimensional cube P = {x ∈ R3 | 0 ≤ xi ≤ 1, 1 ≤ i ≤ 3}, with 6 facets and S is
the set of its 8 vertices S = {x ∈ R3 | xi ∈ {0, 1}, 1 ≤ i ≤ 3}. By construction,
the convex hull of S is equal to P and the unique and optimal solution to
this NPP instance is T = P = conv(S) with 8 vertices. By Theorem 3.2, the
corresponding matrix M of the RNR instance

M =











1 0 1 1 0 0 1 0
0 1 0 0 1 1 0 1
1 1 0 1 0 1 0 0
0 0 1 0 1 0 1 1
1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1











has restricted nonnegative rank equal to 8 (note that its rank is 4 and its
nonnegative rank is 6, see Section 3.4).

It is well-known that for a matrix M ∈ Rm×n
+ , we have rank+(M) ≤

min(m, n); surprisingly, this does not hold for the restricted nonnegative rank.

Lemma 3.7. For M ∈ Rm×n
+ ,

rank∗+(M) ≤ n but rank∗+(M) � m.

Proof. The first inequality is trivial since M = MI (I being the identity ma-
trix). Example 3.1 provides an example when rank∗+(M) = 8 for a 6-by-8
matrix M .
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Lemma 3.7 implies that in general rank∗+(M) 6= rank∗+(MT ), unlike the
rank and nonnegative rank [37]. Note however that when rank(M) ≤ 3, the
corresponding NPP instance is two-dimensional or lower, and we have

rank∗+(M) ≤ min(m, n).

In fact, the number of vertices of the outer polygon P in the NPP instance is
smaller or equal to its number of facets m in the two-dimensional case or lower,
and that the solution T = P is always feasible.

Lemma 3.8. Let A ∈ Rm×n
+ and B ∈ Rm×r

+ , then

rank∗+([AB]) ≤ rank∗+(A) + rank∗+(B).

Proof. Let (Ua, Va) and (Ub, Vb) be solutions of RNR for A and B respectively,
then

[AB] = [Ua Ub]

[
Va 0
0 Vb

]

,

and rank([Ua Ub]) = rank([AB]) since col(Ua) = col(A) and col(Ub) = col(B)
by definition.

Lemma 3.9. Let M ∈ Rm×n
+ with rank(M) = r and rank+(M) = r+, U ∈

Rm×r+

+ and V ∈ Rr+×n
+ with M = UV . Then

r+ < rank∗+(M) ⇒ r − 1 ≤ rank(U) ≤ r+ and r ≤ rank(V ) ≤ r+ − 1.

Moreover, if M is symmetric,

r+ < rank∗+(M) ⇒ r−1 ≤ rank(U) ≤ r+−1 and r−1 ≤ rank(V ) ≤ r+−1.

Proof. Clearly,

r ≤ rank(U) ≤ r+ and r ≤ rank(V ) ≤ r+.

If rank(U) = r, we would have rank∗+(M) = r+ which is a contradiction, and
rank(V ) = r+ would imply that V has a right pseudo-inverse V †, so that
we could write U = MV † and then r ≤ rank(U) ≤ min(r, rank(V †)) ≤ r, a
contradiction for the same reason.

In case M is symmetric, to show that rank(U) < r+ and rank(V ) > r, we
use symmetry and observe that UV = M = MT = V T UT .

Corollary 3.10. Given a nonnegative matrix M ,

rank∗+(M) ≤ rank(M) + 1 ⇒ rank+(M) = rank∗+(M).

If M is symmetric,

rank∗+(M) ≤ rank(M) + 2 ⇒ rank+(M) = rank∗+(M).

36



3.3. RESTRICTED NONNEGATIVE RANK

Proof. Let r = rank(M), r+ = rank+(M), and U ∈ Rm×r+

+ and V ∈ Rr+×n
+

such that M = UV . If r+ < rank∗+(M), by Lemma 3.9, we have

r < rank(U) ≤ r+ < rank∗+(M),

which is a contradiction if rank∗+(M) ≤ r + 1. If M is symmetric, we have
rank(U) < r+ and the above equation is a contradiction if rank∗+(M) ≤ r +
2.

For example, this implies that to find a symmetric rank-three nonnegative
matrix with rank+(M) < rank∗+(M), we need rank∗+(M) > rank(M) + 2 = 5
and therefore have to consider matrices of size at least 6-by-6 with rank∗+(M) =
6.

Example 3.2. Let us consider the following matrix M and the rank-5 non-
negative factorization (U, V ),

M =











0 1 4 9 16 25
1 0 1 4 9 16
4 1 0 1 4 9
9 4 1 0 1 4
16 9 4 1 0 1
25 16 9 4 1 0











= UV,

with

U =











5 0 4 0 1
3 0 1 1 0
1 0 0 4 1
0 1 0 4 1
0 3 1 1 0
0 5 4 0 1











, and V =









0 0 0 1 3 5
5 3 1 0 0 0
0 0 1 1 0 0
1 0 0 0 0 1
0 1 0 0 1 0









.

One can check that rank(M) = 3, and, using the algorithm of Aggarwal et
al. [1], the restricted nonnegative rank can be computed10 and is equal to 6.
Using the above decomposition, it is clear that rank+(M) ≤ 5 < rank∗+(M) = 6.
By Lemma 3.9, for any rank+(M)-nonnegative factorization (U, V ) of M , we
then must have 3 < rank(U) = 4 < rank+(M) implying that rank+(M) = 5.

As we have already seen with Lemma 3.7, the restricted nonnegative rank
does not share all the nice properties of the rank and the nonnegative rank
functions [37]. The next two lemmas exploit Example 3.2 further to show
different behavior between nonnegative rank and restricted nonnegative rank.

10The problem is actually trivial because each vertex of the inner polygon S is located
on a different edge of the polygon P , so that they define with the boundary of P 6 disjoint
polygons tangent to S. This implies that rank∗

+(M) = 6, cf. Section 3.3.2. This matrix is
actually a linear Euclidean distance matrix which will be analyzed later in Section 3.5.2.
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Lemma 3.11. Let A ∈ Rm×n
+ and B ∈ Rm×r

+ , then

rank∗+(A + B) � rank∗+(A) + rank∗+(B).

Proof. Take M , U and V from Example 3.2 and construct A = U(:, 1:3)V (1:3, :)
with rank∗+(A) = 3 (since rank(A) = 3), B = U(:, 4:5)V (4:5, :) with rank∗+(B) =
2 (trivial) and rank∗+(A + B) = 6 since A + B = M .

Lemma 3.12. Let A ∈ Rm×n
+ and B ∈ Rm×r

+ , then

rank∗+([AB]) � rank∗+(A).

where [AB] ∈ Rm×(n+r)
+ denotes the concatenation of the columns of A and B.

Proof. Let us take M , U and V from Example 3.2, and construct A = M and
B = U(:, 1) with rank∗+([AB]) ≤ 5 since rank([AB]) = 4 (this can be checked
easily) and [AB] = U [V e1] with rank(U) = 4 (where ei denotes the ith column
of the identity matrix of appropriate dimension).

Lemma 3.13. Let B ∈ Rm×r
+ and C ∈ Rr×n

+ , then

rank∗+(BC) � min(rank∗
+(B), rank∗+(C)).

Proof. See Example 3.2 where rank∗+(U) ≤ 5 by Lemma 3.7 and rank∗+(M) =
6.

3.4 Lower Bounds for the Nonnegative Rank

In this section, we provide new lower bounds for the nonnegative rank based
on the restricted nonnegative rank. Recall that the restricted nonnegative rank
already provides an upper bound for the nonnegative rank since for an m-by-n
nonnegative matrix M ,

0 ≤ rank(M) ≤ rank+(M) ≤ rank∗+(M) ≤ n.

Notice that this bound can in general only be computed in polynomial time in
the case rank(M) = 3 (unless P = NP , see Theorems 3.3 and 3.6).

As mentioned in the introduction, it might also be interesting to compute
lower bounds on the nonnegative rank. Some work has already been done in
this direction, including the following

1. Let M ∈ Rm×n
+ be any weighted biadjacency matrix of a bipartite graph

G = (V1 ∪ V2, E ⊆ V1 × V2) with M(i, j) > 0 ⇐⇒ (V1(i), V2(j)) ∈ E. A
biclique of G is a complete bipartite subgraph (it corresponds to a positive
rectangular submatrix of M). One can easily check that each rank-one
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factor (U:k, Vk:) of any rank-k nonnegative factorization (U, V ) of M can
be interpreted as a biclique of M (i.e., as a positive rectangular subma-

trix) since M =
∑k

i=1 U:iVi:. Moreover, these bicliques (U:k, Vk:) must
cover G completely since M = UV . The minimum number of bicliques
needed to cover G is then a lower bound for the nonnegative rank. It is
called the biclique partition number and denoted b(G), see [150] and the
references therein. Its computation is NP-complete [123] and is directly
related to the minimum biclique cover problem (MBC).
Consider for example the matrix M from Example 3.1. The largest bi-
clique of the graph G generated by M has 4 edges11. Since G has 24 edges,
we have b(G) ≥ 24

4 = 6 and therefore 6 ≤ rank+(M) ≤ min(m, n) = 6.

A crown graph G is a bipartite graph with |V1| = |V2| = n and E =
{(V1(i), V2(j)) | i 6= j} (it can be viewed as a biclique where the horizontal
edges have been removed). de Caen, Gregory and Pullman [49] showed
that

b(G) = min
k

{

k | n ≤
(

k

⌊k/2⌋

)}

= Θ(log n).

Beasley and Laffey [6] studied linear Euclidean distance matrices defined
as M(i, j) = (ai − aj)

2 for 1 ≤ i, j ≤ n, ai ∈ R, ai 6= aj i 6= j. They
proved that such matrices have rank three and that

min
k

{

k | n ≤
(

k

⌊k/2⌋

)}

≤ r+ which means n ≤
(

r+

⌊r+/2⌋

)

, (3.3)

where r+ = rank+(M). In fact, such matrices are biadjacency matrices
of crown graphs (only the diagonal entries are equal to zero).

2. Goemans makes [79] the following observation: the product UV of two
nonnegative matrices U ∈ Rm×k

+ and V ∈ Rk×n
+ generates a matrix M

with at most 2k columns (resp. 2k rows) with different sparsity patterns.
In fact, the columns (resp. rows) of M are additive linear combinations
of the k columns of U (resp. rows of V ) and therefore no more than
2k sparsity patterns can be generated from these columns (resp. rows).
Letting sp be the maximum between the number of columns and rows of
M ∈ Rm×n

+ having a different sparsity pattern, we then have

rank+(M) ≥ log2(sp).

In particular, if all the columns and rows of M have a different sparsity
pattern, then

rank+(M) ≥ log2(max(m, n)). (3.4)

11This can be computed explicitly, e.g., with a brute force approach. Note however that
finding the biclique with the maximum number of edges is a combinatorial NP-hard opti-
mization problem [127]. It is closely related to a variant of the approximate nonnegative
factorization problem, see Chapter 5.
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Goemans then uses this result to show that any extended formulation of
the permutahedron in dimension n must have Ω(n log(n)) variables and
constraints. In fact,

⋄ The minimal size s is of the order of the nonnnegative rank of its
slack matrix plus n (cf. Section 3.2).

⋄ The slack matrix has n! columns (corresponding to each vertex of
the polytope) with different sparsity patterns (cf. Equation (3.1)).

This implies that

s = Θ(rank+(SM ) + n) ≥ Θ(log(n!)) = Θ(n log(n)).

In this section, we provide some theoretical results linking the restricted
nonnegative rank with the nonnegative rank, which allow us to improve and
generalize the above results in Section 3.5 for both slack and linear Euclidean
distance matrices.

3.4.1 Geometric Interpretation of a Nonnegative Factor-
ization as a Nested Polytopes Problem

In the following, we lay the groundwork for the main results of this chapter,
introducing essential notations and observations that will be extensively used in
this section. We rely on the geometric interpretation of the nonnegative rank,
see also [31,59,148] where related results are presented. The main observation
is that any rank-k nonnegative factorization (U, V ) of a nonnegative matrix M
can be interpreted as the solution with k vertices of a nested polytopes problem
in which the inner polytope has dimension rank(M)−1 and the outer polytope
has dimension rank(U)− 1.

Without loss of generality, let M ∈ Rm×n
+ , U ∈ Rm×k

+ and V ∈ Rk×n
+ be

column stochastic with M = UV (cf. proof of Theorem 3.2, the columns of M
are convex combination of the columns of U). If the column space of U does
not coincide with the column space of M , i.e., ru = rank(U) > rank(M) = r,
it means that the columns of U belong to a higher dimensional affine subspace
containing the columns of M (otherwise, see Theorem 3.2).

Let us factorize U = AB where A ∈ Rm×ru and B ∈ Rru×r+ are full
rank and their columns sum to one. As in Theorem 3.2, we can construct the
polytope of the coefficients of the linear combinations of the columns of A that
generate stochastic vectors. It is defined as

Pu = {x ∈ Rru−1 | fu(x) = A(:, 1:ru−1)x +
(

1−
ru−1∑

i=1

xi

)

A(:, ru) ≥ 0}.
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Since col(M) ⊆ col(U), there exists B′ ∈ Rru×n whose columns must sum
to one such that M = AB′. Since rank(M) = r and A is full rank, we must
have rank(B′) = r. By construction, the columns of Bu = B(1:ru−1, :) (corre-
sponding to the columns of U) and Bm = B′(1:ru−1, :) (corresponding to the
columns of M) belong to Pu. Note that since rank(B′) = r, the columns of Bm

live in a lower (r − 1)-dimensional polytope

Pm = {x ∈ Rru−1 | fu(x) ≥ 0, fu(x) ∈ col(M)} ⊆ Pu.

Polytope Pm contains the points in Pu generating vectors in the column space
of M .

Moreover

M = AB′ = UV = ABV,

implying that (since A is full rank)

B′ = BV and Bm = BuV.

Finally, the columns of Bm are contained in the convex hull of the columns of
Bu, inside Pu, i.e.,

conv(Bm) ⊆ conv(Bu) ⊆ Pu.

Defining the polytope T as the convex hull of the columns of Bu, and the
set of points S as the columns of Bm, we can then interpret the nonnegative
factorization (U, V ) of M as follows. The (ru − 1)-dimensional polytope T
with k vertices (corresponding to the columns of U) is nested between an inner
(r − 1)-dimensional polytope conv(S) (where each point in S corresponds to a
column of M) and a outer (ru − 1)-dimensional polytope Pu.

Let us use the matrix M and its nonnegative factorization (U, V ) of Ex-
ample 3.2 as an illustration: rank(M) = 3 so that Pm is a two-dimensional
polytope and contains the set of points S, while rank(U) = 4 and defines a
three-dimensional polytope T containing S, see Figure 3.3.

3.4.2 Upper Bound for the Restricted Nonnegative Rank

From the geometric interpretation introduced in the previous paragraph, we
can now give the main result of this section. The idea is the following: using
notations of Section 3.4.1, we know that

⋄ The polytope T (whose vertices correspond to the columns of U) contains
the (lower dimensional) set of points S (corresponding to the columns of
M), and that

⋄ The polytope S is contained in Pm (which corresponds to the set of
stochastic vectors in the column space of M).
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Figure 3.3: Illustration of the solution from Example 3.2 as a nested polytopes
problem, with rank(M) = 3 < rank(U) = 4 < rank+(M) = 5 < rank∗+(M) =
6 = n.

Therefore, the intersection between T and Pm must also contain S, i.e., the
intersection T ∩ Pm defines a polytope which is contained in the column space
of M , and contains S. Hence its vertices provide a feasible solution to the RNR
problem, and an upper bound for the restricted nonnegative rank can then be
computed.

In other words, any nonnegative factorization (U, V ) of a nonnegative matrix
M can be used to construct a feasible solution to the restricted nonnegative
rank problem. One has ‘simply’ to compute the intersection of the polytope
generated by the (normalized) columns of U with the column space of M (which
can obviously increase the number of vertices).

Theorem 3.14. Using notations of Section 3.4.1, we have

rank∗+(M) ≤ #vertices(T ∩ Pm), (3.5)

where #vertices(Q) denotes the number of vertices of Q.

Proof. Let x1, x2, . . . , xv be the v vertices of T ∩Pm and note X = [x1 x2 . . . xv]
which has rank at most r (since it is contained in the (r − 1)-dimensional
polyhedron Pm). By construction,

Bm(:, j) ∈ T ∩ Pm = conv(X) 1 ≤ j ≤ n.
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Therefore, there must exist a matrix V ∗ ∈ Rv×n column stochastic such that

Bm = XV ∗,

implying that

M = fu(Bm) = fu(XV ∗) = fu(X)V ∗ = U∗V ∗,

where U∗ = fu(X) ∈ Rm×v is nonnegative since xi ∈ Pm ⊆ Pu ∀i, and U∗ has
rank r since M = U∗V ∗ implies that its rank is at least r and U∗ = fu(X) that
it is at most r. The pair (U∗, V ∗) is then a feasible solution of the corresponding
RNR problem for M and therefore rank∗+(M) ≤ v = #vertices(T ∩ Pm).

3.4.3 Lower Bound for the Nonnegative Rank based on
the Restricted Nonnegative Rank

We can now obtain a lower bound for the nonnegative rank based on the
restricted nonnegative rank. Indeed, if we consider an upper bound on the
quantity #vertices(T ∩ Pm) that increases with the nonnegative rank (i.e.,
the number of vertices of T ), we can reinterpret Theorem 3.14 as providing a
lower bound on the nonnegative rank. For that purpose, define the quantity
faces(n, d, k) to be the maximal number of k-faces of a polytope with n vertices
in dimension d.

Theorem 3.15. The restricted nonnegative rank of a nonnegative matrix M
with r = rank(M) and r+ = rank+(M) can be bounded above by

rank∗+(M) ≤ max
r≤ru≤r+

faces(r+, ru − 1, ru − r). (3.6)

Proof. Let (U, V ) be a rank-r+ nonnegative factorization of M with rank(U) =
ru. Using notations of Section 3.4.1 and the result of Theorem 3.14, rank∗+(M)
is bounded above by the the number of vertices of T ∩ Pm. Defining Qm =
{x ∈ Rru−1 | fu(x) ∈ col(M)}, we have Pm = Qm ∩ Pu and since T ⊆ Pu,

Pm ∩ T = Qm ∩ Pu ∩ T = Qm ∩ T.

Since Qm is (r − 1)-dimensional, the number of vertices of T ∩Qm is bounded
above by the number of (ru − r)-faces of T (in a (ru − 1)-dimensional space,
(ru − r)-faces are defined by r − 1 equalities), we then have

rank∗+(M) ≤ #vertices(T∩Pm) = #vertices(T∩Qm) ≤ faces(r+, ru−1, ru−r).

Notice that for ru = r, faces(r+, r − 1, 0) = r+ which gives r+ = rank∗+(M) as
expected. Finally, taking the maximum over all possible values of r ≤ ru ≤ r+

gives the above bound (3.6).
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We introduce for easier reference a function φ corresponding to the upper
bound in Theorem 3.15, i.e.,

φ(r, r+) = max
r≤ru≤r+

faces(r+, ru − 1, ru − r).

Clearly, when r is fixed, φ is an increasing function of its second argument r+,
since faces(n, d, k) increases with n. Therefore inequality rank∗+(M) ≤ φ(r, r+)
from Theorem 3.15 implicitly provides a lower bound on the nonnegative rank
r+ that depends on both rank r and restricted nonnegative rank rank∗+(M).

Explicit values for function φ can be computed using a tight bound for
faces(n, d, k) attained by cyclic polytopes [157, p.257, Corollary 8.28]

faces(n, d, k − 1) =

d
2∑

i=0

∗
((

d− i

k − i

)

+

(
i

k − d + i

))(
n− d− 1 + i

i

)

,

where
∑ ∗ denotes a sum where only half of the last term is taken for i = d

2

if d is even, and the whole last term is taken for i = ⌊d
2⌋ = d−1

2 if d is odd.
Alternatively, simpler versions of the bound can be worked out in the following
way:

Theorem 3.16. The upper bound φ(r, r+) on the restricted nonnegative rank
of a nonnegative matrix M with r = rank(M) and r+ = rank+(M) satisfies

φ(r, r+) = max
r≤ru≤r+

faces(r+, ru − 1, ru − r)

≤ max
r≤ru≤r+

(
r+

ru − r + 1

)

≤
(

r+

⌊r+/2⌋

)

≤ 2r+

√

2

πr+
≤ 2r+ .

Proof. The first inequality follows from the fact that faces(n, d, k − 1) ≤
(
n
k

)
,

since any set of k distinct vertices defines at most one (k− 1)-face. The second
follows from the maximality of central binomial coefficients. The third is a
standard upper bound on central binomial coefficients, and the fourth is an
even cruder upper bound.

We will see in Section 4 that some of these weaker bounds correspond to
existing results from the literature.

When matrix M is symmetric, the bound can be slightly strengthened,
leading to a different function φ′:

Corollary 3.17. Given a symmetric matrix M with r+ = rank+(M), r =
rank(M) and r+ ≥ r + 1, we have

rank∗+(M) ≤ max
r≤ru≤r+−1

faces(r+, ru − 1, ru − r) = φ′(r, r+) ≤ φ(r, r+).

Proof. We have seen in Lemma 3.9 that for symmetric matrices ru = r+ implies
rank∗+(M) = r+. Therefore, in case r+ ≥ r + 1, one can strengthen the result
of Theorem 3.15 and only consider the range r ≤ ru ≤ r+ − 1.
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Improvements in the rank-three case

It is possible to improve the above bound by finding better upper bounds
for #vertices(T ∩ Pm) in Equation (3.5). For example, since two-dimensional
polytopes (i.e., polygons) have the same number of vertices (0-faces) and edges
(1-faces), we have for rank(M) = 3 that

#vertices(T ∩ Pm) = #edges(T ∩ Pm).

Using the same argument as in Theorem 3.15, the number of edges of T ∩ Pm

is bounded above by the number of (ru − r + 1)-faces of T (defined by r − 2
equalities) leading to

Corollary 3.18. The restricted nonnegative rank of a rank-three nonnegative
matrix M with r+ = rank+(M) can be bounded above with

rank∗+(M) ≤ max
3≤ru≤r+

min
i=0,1

faces(r+, ru − 1, ru − 3 + i) ≤ φ(3, r+). (3.7)

The minimum taken between 0 and 1 simply accounts for the two possible
cases, i.e., the bound based on #vertices(T∩Pm) with i = 0 as in Theorem 3.15,
or based on #edges(T∩Pm) with i = 1. A similar bound holds in the symmetric
case.

3.5 Applications: Slack and Linear Euclidean Dis-

tance Matrices

So far, we have not provided explicit lower bounds for the nonnegative rank. As
we have seen, inequalities (3.6) and (3.7) can be interpreted as implicit lower
bounds on the nonnegative rank r+, but have the drawback of depending on
the restricted nonnegative rank, which cannot be computed in polynomial time
unless the rank of the matrix is smaller than 3 or P = NP , see Theorems 3.3
and 3.6.

Nevertheless, we provide in this Section explicit lower bounds for the non-
negative rank of slack matrices (Section 3.5.1) and linear Euclidean distance
matrices (Section 3.5.2), cf. introduction of Section 3.4. These bounds are
derived by showing that the restricted nonnegative rank of such matrices is
maximum, i.e., it is equal to the number of columns of these matrices (cf.
Lemma 3.7).

3.5.1 Slack Matrices

Let us start with a simple observation: it is easy to construct a m× n matrix
of rank r < min(m, n) with maximum restricted nonnegative rank n:
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1. Take any (r − 1)-dimensional polytope P with n ≥ r + 1 vertices.

2. Construct a NPP instance with S = vertices(P ).

3. Compute the corresponding matrix M in the equivalent RNR instance.

Clearly, the unique solution for NPP is T = P = conv(S) and therefore
the matrix M in the corresponding RNR instance must satisfy: rank∗+(M) =
#vertices(T ) = n; see Example 3.1 for an illustration with the three-dimensional
cube.

Remark 3.4. The matrices constructed as described above also satisfy

rank(M) < rank+(M).

Otherwise rank∗+(M) = rank+(M) = rank(M) < min(m, n) which is a con-
tradiction. This is interesting because it is nontrivial to construct matrices
with rank(M) < rank+(M) [114]. In fact, it is easy to check that generating
randomly two nonnegative matrices U and V of dimensions m × r and r × n
respectively, and constructing M = UV will generate a matrix M of rank r
with probability one.

In the context of compact formulations, the aim is to express a polytope
Q with fewer constraints by using some additional variables, i.e., find a lifting
of polynomial size. A possible way to do that is to compute a nonnegative
factorization of the slack matrix SM of Q [152] (see Equation (3.1)). The
next theorem states that the restricted nonnegative rank of any slack matrix
SM ∈ Rf×v

+ is maximum (f is the number of facets of Q, v its number of
vertices), i.e., rank∗+(SM ) = v. This is directly related to the above observation:
the slack matrix of a polytope Q corresponds to a NPP instance where Q is
the outer polytope and its vertices are the points defining the inner polytope.
Notice that the restricted nonnegative rank used as an upper bound for the
nonnegative rank is useless in this case.

Theorem 3.19. Let Q = {x ∈ Rq |Fx ≥ h, Ex = g} be a p-dimensional
polytope with v vertices, v > 1, and let SM (Q) be its slack matrix, then
rank∗+(SM (Q)) = v.

Proof. In order to prove this result, we first construct a bijective transformation
L between Q and a full-dimensional polytope P ⊆ Rp. The vertices of P can
then be easily constructed from the vertices of Q, which allows to show that P
and Q share the same slack matrix. Finally, using the result of Theorem 3.2,
we show that the slack matrix of P has maximum restricted nonnegative rank.

Since Q is a p-dimensional polytope, there exists a polytope P ⊆ Rp and a
bijective affine transformation

L : Q→ P : x→ L(x) = Ax + b
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with
L−1 : P → Q : y → L−1(y) = A†y −A†b,

such that P = L(Q) and Q = L−1(P ) (where A ∈ Rp×q has full rank, A† ∈
Rq×p is its right inverse and b ∈ Rp).
By construction,

P = {y ∈ Rp | y = L(x), x ∈ Q} = {y ∈ Rp |L−1(y) ∈ Q},
= {y ∈ Rp |FL−1(y) ≥ h, EL−1(y) = g},
= {y ∈ Rp |FA†y ≥ h + FA†b},

since the equalities EL−1(y) = g must be satisfied for all y ∈ Rp since P is
full-dimensional.

Noting C = FA† and d = h + FA†b, we have P = {y ∈ Rq |Cy ≥ d}.
Finally, we observe that

1. Noting vi’s the v vertices of Q, we have that L(vi)’s define the v vertices
of P . This can easily be checked since L is bijective (∀y ∈ P, ∃!x ∈
Q s.t. y = L(x) and vice versa).

2. P can be taken as the outer polytope of a NPP instance, i.e., P is bounded
and (C d) is full rank. P is bounded since Q is. C is full rank because P
has at least one vertex (v > 1). If (C d) was not full rank, then ∃z ∈ Rp

such that d = Cz, implying that z ∈ P . Since P has at least two vertices
(v > 1), ∃y ∈ P with y 6= z, and one can check that y + α(y − z) ∈ P
∀α ≥ 0. This is a contradiction because P is bounded.

3. The slack matrix of P is equal to the slack matrix of Q:

SM (P ) = CL(V )− [d . . . d] = FA†L(V )− [h + FA†b . . . h + FA†b]

= F (A†L(V )− [A†b . . . A†b])− [h . . . h]

= FL−1(L(V ))− [h . . . h] = FV − [h . . . h]

= SM (Q),

where V = [v1 v2 . . . vv] is the matrix whose columns are the vertices of
Q, and L(V ) = [L(v1)L(v2) . . . L(vv)] is the matrix whose columns are
the vertices of P .

4. The NPP instance with P as the outer polytope and its v vertices L(vi)’s
as the set of points S defining the inner polytope has a unique and optimal
solution T = P = conv(S) with v vertices. The matrix M in the RNR
instance corresponding to this NPP instance is given by the slack matrix
SM (P ) of P implying that its restricted nonnegative rank is equal to v
(cf. Theorem 3.2).
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We can conclude that rank∗+(SM (Q)) = v.

We can now derive a lower bound on the nonnegative rank of a slack matrix
and on the size of an extended formulation, by combining Theorem 3.15 (cf.
Equation (3.6)), Theorem 3.16, Theorem 3.19 and the result of Yannakakis
[152].

Corollary 3.20. Let P be a polytope with v vertices and let SM ∈ Rf×v
+ be its

slack matrix of rank r (i.e., P has dimension r − 1), then

v ≤ φ(r, r+) = φr(r+) ≤ max
r≤ru≤r+

(
r+

ru − r + 1

)

≤
(

r+

⌊r+/2⌋

)

≤ 2r+ , (3.8)

where r+ = rank+(SM ). Therefore, the minimum size s of any extended for-
mulation of P follows

s = Θ(r+ + n) ≥ Θ(φ−1
r (v)) ≥ Θ(log2(v)),

where φ−1
r (·) is the inverse of the nondecreasing function φr(·) = φ(r, ·).

The last bound 2r+ from Equation (3.8) is the one of Goemans [79, Theorem
1] (see introduction of Section 3.4), and therefore Corollary 3.20 provides us
with an improved lower bound, even though it is still in Ω(log2(v)). It is
actually not possible to provide a bound with a faster growth (i.e., without
making additional hypothesis on the polytope P ) since Goemans showed that
the size of any LP formulation of the permutahedron (with v = n! vertices) must
be in O(n log(n)), this implies that the nonnegative rank of its slack matrix is
in Θ(n log(n)). This result also implies that the gap between the nonnegative
rank and the restricted nonnegative rank can be arbitrarily large.

3.5.2 Linear Euclidean Distance Matrices

Linear Euclidean distance matrices (linear EDM’s) are defined by

M(i, j) = (ai − aj)
2, 1 ≤ i, j ≤ n, for some a ∈ Rn. (3.9)

In this section we assume ai 6= aj i 6= j, so that these matrices have rank
three. Linear EDM’s were used in [6] to show that the nonnegative rank of a
matrix with fixed rank (rank 3 in this case) can be made as large as desired
(while increasing the size of the matrix), implying that an upper bound for the
nonnegative rank of a matrix based only on the rank cannot exist.

We refer the reader to [102] and the references therein for detailed discus-
sions about Euclidean distance matrices, and related applications.
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Restricted Nonnegative Rank of Linear Euclidean Distance Matrices

We first show that the restricted nonnegative rank of linear EDM’s is maximum,
i.e., it is equal to their dimension n.

Definition 3.2. The columns of a matrix M have disjoint12 sparsity patterns
if and only if

supp(M:i) * supp(M:j), ∀i 6= j,

where supp(M:i) = {k|M(k, i) = 0} is the sparsity pattern of the ith column of
M (i.e., the complement of its support).

Theorem 3.21. Let M be a rank-three nonnegative square matrix of dimension
n whose columns have disjoint sparsity patterns, then

rank∗+(M) = n.

In particular, linear EDM’s have this property.

Proof. Let P , S and T be the polygons defined in the two-dimensional NPP
instance corresponding to the RNR instance of M (cf. Theorem 3.2). Aggarwal
et al. [1] observe that if two points in S are on different edges of P , they define
a polygon with the boundary of P (see each dark regions in Figure 3.4) which

Figure 3.4: Illustration of the restricted nonnegative rank of a linear EDM of
dimension 5. The solution T must contain a point in each dark region.

must contain a point of the solution T . Otherwise these two points could not
be contained in T (see also Section 3.3.2). Therefore if each point of S is on a
different edge of the boundary of P , any solution T to NPP must have at least
|S| = n vertices since S defines n disjoint polygons with the boundary of P .

12This definition is a little abusive since disjoint should refer to sets with an empty inter-
section.
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Finally, two points x1 and x2 in S are on different edges of the boundary of the
polytope P = { x ∈ R2 |Cx+d ≥ 0} if and only if (Cx1 +d) and (Cx2 +d) have
disjoint sparsity patterns or, equivalently, if and only if the two corresponding
columns of M (which are precisely equal to Cx1 + d and Cx2 + d) in the RNR
instance have disjoint sparsity patterns. Indeed, for two vertices a and b to
be located on different edges, one needs one inequality that is active at a and
inactive at b and another inequality that is active at b and inactive at a. This
is equivalent to requiring the sparsity patterns of the corresponding columns of
the matrix M to be disjoint.

Remark 3.5. This result does not hold for higher rank matrices. For example,
the matrix

M =











0 1 4 9 16 25
2 0 1 4 9 16
8 1 0 1 4 9
13 4 1 0 1 4
17 9 4 1 0 1
25 16 9 4 1 0











= UV,

with

U =











0 0 4 5 1
1 0 1 3 0
4 0 0 1 1
4 1 0 0 1
1 3 1 0 0
0 5 4 0 1











, V =









2 0 0 0 0 1
5 3 1 0 0 0
0 0 1 1 0 0
0 0 0 1 3 5
0 1 0 0 1 0









,

has rank(M) = 4 and rank∗+(M) ≤ 5 since rank(U) = 4. Therefore we cannot
conclude that higher dimensional Euclidean distance matrices have maximal
restricted nonnegative rank.

Nonnegative Rank of Linear Euclidean Distance Matrices

Since linear EDM’s are rank-three symmetric matrices, one can combine the
results of Theorem 3.21 with Corollary 3.18 (cf. Equation (3.7)) and Corol-
lary 3.17 in order to obtain lower bounds for the nonnegative rank of linear
EDM’s.

Corollary 3.22. For any linear Euclidean distance matrix M , we have

rank∗+(M) = n ≤ max
3≤ru≤r+−1

min
i=0,1

faces(r+, ru − 1, ru − r + i)

≤ max
3≤ru≤r+−1

faces(r+, ru − 1, ru − r) = φ′(r, r+)

≤
(

r+

⌊r+/2⌋

)

≤ 2r+ .
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We observe that our results (first two inequalities above, from Theorem 3.15
and Corollary 3.18) strengthen the bounds from Equations (3.3) (Beasley and
Laffey [6]) and (3.4) (Goemans [79]). Figure 3.5 displays the growth of the
different bounds, and Table 3.1 compares the lower bounds on the nonnegative
rank for small values of n. For example, for a linear EDM to be guaran-

Figure 3.5: Comparison of the different bounds for symmetric n-by-n matrices,
with rank∗+(M) = n.

dimension n 4 5 6 7 8 9 10
Equation (3.7) 4 5 5 6 6 6 7
Equation (3.6) 4 5 5 5 5 5 6

Beasly and Laffey (3.3) 4 4 4 5 5 5 5
Goemans (3.4) 3 3 3 3 4 4 4

Table 3.1: Comparison of the lower bounds for the nonnegative rank of linear
EDM’s.

teed to have nonnegative rank 10, the bounds requires respectively n = 50
(3.7), n = 150 (3.6), n = 252 (3.3) and n = 1024 (3.4). This is a signifi-
cant improvement, even though all the bounds are still of the same order with
r+ = Ω(log(n)).
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Is it possible to further improve these bounds? Beasley and Laffey [6] con-
jectured that the nonnegative rank of linear EDM’s is maximum, i.e., it is
equal to their dimension. Lin and Chu [114, Theorem 3.1] first claimed to
have proved that this equality always holds. However, Chu [30] has recently
reported an error in the proof13, and showed instead that the nonnegative rank
of linear EDM’s of dimension n is generically n (i.e., using a randomly gen-
erated vector a to construct the linear EDM M , we have that rank(M) = 3
and rank+(M) = n with probability one). Indeed, not all linear EDM’s have
maximum nonnegative rank because of the following example.

Example 3.3. Taking M ∈ R6×6
+ with

M(i, j) = (i− j)2, 1 ≤ i, j ≤ 6,

gives rank+(M) = 5. In fact,

M =











0 1 4 9 16 25
1 0 1 4 9 16
4 1 0 1 4 9
9 4 1 0 1 4
16 9 4 1 0 1
25 16 9 4 1 0











=











5 0 4 0 1
3 0 1 1 0
1 0 0 4 1
0 1 0 4 1
0 3 1 1 0
0 5 4 0 1



















0 0 0 1 3 5
5 3 1 0 0 0
0 0 1 1 0 0
1 0 0 0 0 1
0 1 0 0 1 0









,

=











5 0 1 0 0
3 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 3 0 1 0
0 5 1 0 0



















0 0 0 1 3 5
5 3 1 0 0 0
0 1 4 4 1 0
1 0 1 1 0 1
4 1 0 0 1 4









, (3.10)

so that rank+(M) ≤ 5, and rank+(M) ≥ 5 is guaranteed by Equation (3.7),
see Table 3.1 with rank∗+(M) = n = 6 (or by Lemma 3.9, see Example 3.2).

Example 3.3 proves that linear EDM’s do not necessarily have a nonnegative
rank equal to their dimension. In fact, we can even show that

13In their proof, they actually show that the restricted nonnegative rank is maximum (not
the nonnegative rank), see Theorem 3.21. In fact, they only consider the case when the
vertices of the solution T (corresponding to the columns of U) belong to the low-dimensional
affine subspace defined by S (corresponding to the column of M) in the NPP instance.
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Theorem 3.23. Linear EDM’s of the following form

Mn(i, j) = (i− j)2 1 ≤ i, j ≤ n,

satisfy

rank+(Mn) ≤ 2 +
⌈n

2

⌉

,

where ⌈x⌉ is the smallest integer greater or equal to x.

Proof. Let first assume that n is even and define

U =





















n− 1 0
n− 3 0

...
... In/2

3 0
1 0
0 1
0 3
...

... Pn/2

0 n− 3
0 n− 1





















, V =





















0 n− 1
0 n− 3
...

... Mn/2

0 3
0 1
1 0
3 0
...

... Pn/2Mn/2

n− 3 0
n− 1 0





















T

,

where Im is the identity matrix of dimension m and Pm is the permutation
matrix with Pm(i, j) = Im(i, m−j+1) ∀i, j; see Equation (3.10) for an example
when n = 6. One can check that

Mn = UV =

(
Mn/2 A + Pn/2Mn/2

AT + Pn/2Mn/2 Mn/2

)

,

with

A =










n− 1
n− 3

...
3
1



















1
3
...

n− 3
n− 1










T

.

If n is odd, we simply observe that rank+(Mn) ≤ rank+(Mn+1) ≤ 2 + n+1
2 =

2 + ⌈n
2 ⌉, since Mn is a submatrix of Mn+1 [37].

Remark 3.6. In the construction of Theorem 3.23, we have rank(V ) = 4 and
the factorization can then be interpreted as a nested polytopes problem (corre-
sponding to MT = V T UT ) in which the outer polytope has (only) dimension 3.
Therefore, there is still some room for improvement and rank+(Mn) is probably
(much?) smaller.
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This example also demonstrates that, in some cases, the structure of small
size nonnegative factorizations (in this case, the one from Example 3.3) can be
generalized to larger size nonnegative factorization problems. This might open
new ways to computing large nonnegative factorizations.

In Example 3.3, the nonnegative rank is smaller than the restricted non-
negative rank because there exists a higher dimensional polytope with only 5
vertices whose convex hull encloses the 6 vertices defined by the columns of M .
Nested polytopes instance corresponding to the RNR instance with M given by
Example 3.3 and the two above solutions are illustrated on Figures 3.3 and 3.6
respectively (note that they are transposed to each other, but correspond to
different solutions of the NPP instance), see Section 3.4.1. Notice that the sec-
ond solution (Figure 3.6) completely includes the outer polytope P ; therefore,
the nonnegative rank of any nonnegative matrix with the same column space
as the matrix M will be at most 5.

Figure 3.6: Illustration of the solution from Equation (3.10) as a nested poly-
topes problem, based on a linear EDM with rank(M) = 3 < rank(U) = 4 <
rank+(M) = 5 < rank∗+(M) = 6 = n.

Remark 3.7. The solutions of the above nonnegative rank problems have been
computed with a standard nonnegative matrix factorization algorithm, namely
the hierarchical alternating least squares algorithm (HALS), see Chapter 4. In
general, an optimal solution (with ||M − UV ||F close to machine accuracy) is
found after 10 to 100 restarts of this algorithm on these small problems.
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3.5.3 The Nonnegative Rank of a Product

Beasley and Laffey [6] proved that for A = BC with A, B and C ≥ 0

rank+(A) ≤ rank(B) rank(C).

In particular, rank+(A2) ≤ rank(A)2. They also conjectured that for a non-
negative n× n matrix A,

rank+(A2) ≤ rank(A),

which we prove to be false with the following counterexample (based on a
circulant matrix)

A =















0 1 a 1 + a 1 + a a 1 0
0 0 1 a 1 + a 1 + a a 1
1 0 0 1 a 1 + a 1 + a a
a 1 0 0 1 a 1 + a 1 + a

1 + a a 1 0 0 1 a 1 + a
1 + a 1 + a a 1 0 0 1 a

a 1 + a 1 + a a 1 0 0 1
1 a 1 + a 1 + a a 1 0 0















, (3.11)

where a = 1+
√

2. In fact, one can check that rank(A) = 3 and rank+(A2) = 4:
indeed, rank∗+(A2) = 4 can be computed with the algorithm of Aggarwal et
al. [1] (see Figure 3.7 for an illustration) and, by Corollary 3.10, rank+(A2) =
rank∗+(A2) since rank∗+(A2) ≤ rank(A2) + 1 = 4.

Remark 3.8. The matrix A from Equation (3.11) is the slack matrix of a reg-
ular octagon with sides of length

√
2. By Theorem 3.19, we have rank∗+(A) = 8.

Notice also that A has rank 3 and its columns have disjoint sparsity patterns so
that rank∗+(A) = 8 is implied by Theorem 3.21 as well. What is the nonnegative
rank of A? Defining

R =















1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1















,

we have that B = AR is symmetric, has rank 3 and only has zeros on its diago-
nal. By Theorem 3.21, rank∗+(B) = 8. Using Table 3.1, we have rank+(B) ≥ 6.
Moreover

rank+(AR) ≤ min(rank+(A), rank+(R)),
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Figure 3.7: Illustration of a NPP instance corresponding to A2 and an optimal
solution T , cf. Equation (3.11).

implying that 6 ≤ rank+(B) ≤ rank+(A). Finally, rank+(A) = 6 because

A =















1 0 0 1 0 a
a 0 0 0 1 a + 1
1 1 0 0 0 a
0 a− 1 1 0 0 1
0 1 a 0 1 0
1 0 a + 1 0 a 0
0 0 a 1 1 0
0 0 1 a− 1 0 1

























0 0 0 1 0 0 1 0
1 0 0 0 0 1 a a
1 1 0 0 0 0 0 0
0 1 a a 1 0 0 0
0 0 1 0 0 0 0 1
0 0 0 0 1 1 0 0











,

(3.12)

with rank(U) = 4 and rank(V ) = 5 (U is the 8-by-6 matrices above, V the
6-by-8). Figure 3.8 displays the corresponding nested polytopes problem, see
Section 3.4.1.

It is interesting to observe that, from this nonnegative factorization, one can
obtain an extended formulation (lifting) Q of the regular octagon P = {x ∈
R2 | Cx ≤ d}, defined as Q = {(x, y) ∈ R2 × R6 | Cx + Uy = d, y ≥ 0}, with

C =

(
1
√

2/2 0 −
√

2/2 −1 −
√

2/2 0
√

2/2

0
√

2/2 1
√

2/2 0 −
√

2/2 −1 −
√

2/2

)T

,

and d(i) = 1 +
√

2
2 ∀i, see Equation (3.2). Since the system of equalities Cx +

Uy = d only defines 4 linearly independent equalities (rank([C U ]) = 4), the
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Figure 3.8: Illustration of a nested polytopes instance corresponding to A and
an optimal solution, cf. Equations (3.11) and (3.12).

description of Q can then be simplified and expressed with 4 variables and 6
inequality constraints.

This extended formulation is actually a particular case of a construction
proposed by Ben-Tal and Nemirovski [7] (see also Glineur [78], and [96]) to find
an extended formulation of size O(k) for the regular 2k-gon in two dimensions.

3.6 Improvements using the Matrix Transpose

In the previous sections, we have only considered the restricted nonnegative
rank of M ∈ Rm×n

+ . However, since rank+(M) = rank+(MT ), the restricted
nonnegative rank of MT can also be used to generate lower and upper bounds
for the nonnegative rank, exactly as for rank∗+(M) with

rank+(M) ≤ rank∗+(MT ) ≤ m,

and
rank∗+(MT ) ≤ #vertices(conv(V T ) ∩ col(MT )),

for any nonnegative factorization14 (V T , UT ) of MT = V T UT . In particular,
since conv(V T ) has the same number of vertices as conv(U), we have

max
(
rank∗+(M), rank∗+(MT )) ≤ φ(r, r+).

In this section, we show how to go further in this direction in order to gen-
erate improved lower bounds for the nonnegative rank, using the relationship

14Without loss of generality, M , U and V are assumed to be column stochastic.
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between the NPP instances corresponding to M and MT . The main ingredient
is the polar transformation.

3.6.1 Polar Transformation

The polar transformation of a set C ∈ Rn is defined as

C0 = { y ∈ Rn | yT x ≤ 1 ∀x ∈ C}.

Based on this definition, the polar transformation of a bounded polytope P
containing the origin in its interior with

P = { x ∈ Rn | Ax ≤ 1m }, (3.13)

where A ∈ Rm×n, is the set

P 0 = conv(AT ) = conv
(

{ A(i, :)T ∈ Rn, 1 ≤ i ≤ m }
)

,

i.e., it is the convex hull of the m rows of A, see Figure 3.9 for an illustration.

Figure 3.9: Example of the polar transformation: (left) polytopes P (continu-
ous) and S ⊆ P (dashed), and (right) polytopes P 0 (continuous) and S0 ⊇ P 0

(dashed).

We now recall two well-known results, see, e.g., [157].

Lemma 3.24. Let P be a bounded polytope containing the origin in its interior,
then P 0 is a polytope containing the origin in its interior. Moreover, P has m
facets if and only if P 0 has m vertices, and (P 0)0 = P .

Lemma 3.25. Let P and S be two bounded polytopes containing the origin in
their interior with S ⊆ P , then P 0 ⊆ S0.
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3.6.2 Relationship between NPP instances of M and MT

We now analyze the relationship between the NPP instances corresponding to
M and MT . Let us define the following problem,

(NPPf ) Given a bounded polyhedron

P = {x ∈ Rr−1 | 0 ≤ f(x) = Cx + d},

with (C d) ∈ Rm×r of rank r, and a set S of n points in P not
contained in any hyperplane (i.e., conv(S) is full-dimensional), find
the minimum number k of facets defining a polytope T contained
in P and containing S, i.e., S ⊆ T ⊆ P .

This is exactly the same problem as NPP where the number of facets of T is
minimized instead of its number of vertices, as in [42,44], see Section 3.3.2. Let
us introduce the following notation

⋄ NPP(M) is the NPP instance corresponding to the RNR instance of M ,
see Theorem 3.2.

⋄ NPPf (M) is the NPPf instance where the polytope P and the set of
points S are the ones from NPP(M).

We are going to show that computing the restricted nonnegative rank of
MT is polynomially equivalent to NPPf (M), i.e., NPP(MT ) is polynomially
equivalent to NPPf (M). In other words, minimizing the number of facets
instead of the number of vertices in the NPP instance corresponding to M
amounts to computing the restricted nonnegative rank of MT .

Theorem 3.26. NPP(MT ) is polynomially equivalent to NPPf (M).

Proof. For rank(M) ≤ 1, the problem is trivial: we have a zero-dimensional
problem, and the solution of NPP(MT ) (resp. NPPf (M)) has only one vertex
(resp. facet).

Let us then assume r = rank(M) ≥ 2, and note P (resp. S) the outer
(resp. inner) simplex of NPPf (M) (same as in NPP(M)). The interior of P
is non-empty since P contains the full-dimensional set S with n ≥ r points
in Rr−1. Without loss of generality, we may then assume that 0 ∈ int(P )
(otherwise perform a translation, e.g., using the center of gravity of the set S,
and generate an equivalent NPP instance, cf. Remark 3.1), and P is bounded
(cf. Theorem 3.2). Therefore, P can be equivalently written as

P = { x ∈ Rr−1 | Cx ≤ 1m },

where C ∈ Rm×r−1 is full-rank. By construction, M(:, i) = 1m − Cvi where
the vi are the n points in S, hence

S = {vi = C†(1m −M(:, i)) ∈ Rr−1 1 ≤ i ≤ n },
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where C† is the left inverse of C. Notice that this implies that M(:, i) =
1m − Cvi = 1m − CC†(1m −M(:, i)), 1 ≤ i ≤ n or equivalently

M(i, :) = 1T
n − C(i, :)C†(1m×n −M), 1 ≤ i ≤ m.

Let T be a solution for NPPf (M). By Lemma 3.25, S ⊆ T ⊆ P if and only
if P 0 ⊆ T 0 ⊆ (conv(S))0. By Lemma 3.24, minimizing the number of facets of
T in NPPf (M) is then equivalent to minimizing the number of vertices of T 0

in an NPP instance with (conv(S))0 as the outer simplex, and P 0 as the inner
simplex. By definition, the vertices of P 0 are given by

{ C(i, :)T , i = 1, . . . , m }, and

(conv(S))0 = { x ∈ Rr−1 | (C†(1m×n −M))T x ≤ 1n }.
Therefore the matrix N corresponding to this NPP instance is given by

N(:, i) = 1n − (C†(1m×n −M))T C(i, :)T

=
(
1T

n − C(i, :)C†(1m×n −M)
)T

= M(i, :)T ,

implying N = MT , which completes the proof.

Corollary 3.27. Using notations of Section 3.4.1, we have

rank∗+(MT ) ≤ #facets(T ∩ Pm), (3.14)

where #facets(Q) denotes the number of facets of Q.

Proof. By Theorem 3.14, T ∩ Pm is a feasible solution for NPP(M). Clearly,
it also defines a feasible solution for NPPf (M). Finally, NPPf (M) is equiva-
lent to NPP(MT ) (Theorem 3.14) which is equivalent to solving RNR of MT

(Theorem 3.2).

3.6.3 Improved Lower Bound for the Nonnegative Rank

Corollary 3.27 together with Theorem 3.2 implies that for any nonnegative
factorization (U, V ) of M , we have

1 ≤ min
(#vertices(T ∩ Pm)

rank∗+(M)
,
#facets(T ∩ Pm)

rank∗+(MT )

)

,

where T represents the convex hull of the columns of U and Pm the column
space of M , see Section 3.4.1.

Corollary 3.28. Let M be a nonnegative matrix with r = rank(M) and r+ =
rank+(M), then

1 ≤ max
r≤ru≤r+

min
( faces(r+, ru − 1, ru − r)

rank∗+(M)
,
faces(r+, ru − 1, ru − 2)

rank∗+(MT )

)

.
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Proof. For any rank-r+ nonnegative factorization (U, V ) of M , T ∩ Pm is a
feasible solution for both NPP(M) and NPPf (M). Its number of vertices (resp.
facets) is then a lower bound for rank∗+(M) (resp. rank∗+(MT )). Since T is a
polytope with r+ vertices in dimension (ru−1), the number of vertices of T∩Pm

can be bounded with faces(r+, ru−1, ru−r) (see Theorem 3.15), and its number
of facets by faces(r+, ru− 1, ru− 2) because any facet of T intersected with Pm

can potentially generate a facet of T ∩ Pm, and the facets of a polytope in
dimension (ru − 1) are (ru − 2)-faces.

Corollary 3.29. If M is symmetric or rank-three, then

rank∗+(M) = rank∗+(MT )

≤ max
r≤ru≤r+

min
(

faces(r+, ru − 1, ru − r), faces(r+, ru − 1, ru − 2)
)

.

Proof. We have that rank∗+(M) = rank∗+(MT ) for rank-three (cf. Section 3.3.3)
and symmetric matrices (trivial), while Corollary 3.28 gives the result.

This is a generalization of Equation (3.7) from Corollary 3.18, which only
considered rank-three matrices (see Figure 3.5 and Table 3.1 for a comparison
of the different bounds).

Concluding Remarks

In this chapter, we have first reviewed the known complexity results for the
nonnegative rank computation, and linked them with NMF. We have then
introduced a new quantity called the restricted nonnegative rank, whose com-
putation amounts to solving a problem in computational geometry consisting
of finding a polytope nested between two given polytopes. This allowed us to
fully characterize its computational complexity (see Table 3.2). This geometric
interpretation and the relationship between the nonnegative rank and the re-
stricted nonnegative rank also let us derive new improved lower bounds for the
nonnegative rank, in particular for slack matrices and linear Euclidean distance
matrices. This also allowed us to provide counterexamples to two conjectures
concerning the nonnegative rank.

We conclude the chapter with the following conjecture:

Conjecture 3.1. Computing the nonnegative rank and the corresponding non-
negative factorization of a nonnegative matrix is NP-hard when the rank of
the matrix is fixed and greater or equal to 4 (or even possibly 3).

In fact, we have shown that computing a nonnegative factorization amounts
to solving a nested polytopes problem in which the outer polytope might live
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in a higher dimensional space. Moreover, this space is not known a priori
(we just know that it contains the columns of the matrix to be factorized, cf.
Section 3.4.1). Therefore, it seems plausible to assume that this problem is
at least as difficult than the restricted nonnegative rank computation problem
in which the outer polytope lives in the same low-dimensional space and is
known. Moreover, even in the rank-three case, even though the inner polytope
has dimension two, the outer polytope might have any dimension (up to the
dimensions of the matrix; see, e.g., Figures 3.3 and 3.6); therefore, it seems
that the nonnegative rank computation might also be NP-hard if the rank of
the matrix is three. Notice that, when rank∗+(M) ≤ 5, Equation (3.6) implies
rank+(M) = rank∗+(M) so that the nonnegative rank can be computed in
polynomial time in this particular case.

Table 3.2 recapitulates the complexity results for computing the restricted
nonnegative rank and the nonnegative rank of a nonnegative matrix M .

r = rank(M) r∗+ = rank∗+(M) r+ = rank+(M)
r not fixed NP-hard NP-hard [148]
r ≥ 4 fixed NP-hard (Theorem 3.6) NP-hard?

r = 3 polynomial (Theorem 3.3) polynomial if r∗+ ≤ 5
otherwise NP-hard?

r ≤ 2 trivial (= r) trivial (= r) [143]

Table 3.2: Complexity of restricted nonnegative rank and nonnegative rank
computations.
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Chapter 4

Algorithms for Nonnegative

Matrix Factorization

NMF is typically formulated as a nonlinear optimization problem with an ob-
jective function measuring the quality of the low-rank approximation. In this
thesis, we consider the sum of squared errors, i.e., the (squared) Frobenius norm
of the difference between the nonnegative matrix M and the approximation UV :

min
U ∈ Rm×r

V ∈ Rr×n

||M − UV ||2F such that U ≥ 0, V ≥ 0. (NMF)

One of the main challenges of NMF is to design fast and efficient algorithms
generating nonnegative factors (U, V ) that minimize the objective function. In
fact, on the one hand, practitioners need to compute rapidly good factorizations
for large-scale problems (e.g., in text mining or image processing); on the other
hand, as explained in Chapter 3, NMF is a NP-hard problem and we cannot
expect to find a globally optimal solution in a reasonable computational time.
Hence practical algorithms aim instead at finding locally optimal solutions.
More precisely, only convergence to stationary points of NMF is in general
guaranteed. Recall that stationary points are points satisfying the necessary
first-order optimality conditions, also called Karush-Kuhn-Tucker optimality
conditions, see Section 2.1. For NMF, they reduce to

U ≥ 0, ∇U ||M − UV ||2F ≥ 0, U ◦ ∇U ||M − UV ||2F = 0,
V ≥ 0, ∇V ||M − UV ||2F ≥ 0, V ◦ ∇V ||M − UV ||2F = 0.

(KKT-NMF)

where

∇U ||M − UV ||2F = −2(M − UV )V T , ∇V ||M − UV ||2F = −2UT (M − UV ).
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Most NMF algorithms are iterative and use the fact that NMF reduces to
a convex nonnegative least squares problem (NNLS) when U or V is fixed (see
Section 4.1.2). Actually, it seems that nearly all algorithms proposed for NMF
adhere to the following general framework

(0) Select initial matrices (U, V ). Then repeat the following two steps:

(a) Fix V : find a new U ≥ 0 such that ||M − UV ||2F is reduced.

(b) Fix U : find a new V ≥ 0 such that ||M − UV ||2F is reduced.

More precisely, at each iteration, one of the two factors is fixed and the other is
updated in such a way that the objective function is reduced, which amounts
to a two-block coordinate descent method. Notice that the role of matrices
U and V is perfectly symmetric: if one transposes input matrix M , the new
matrix MT has to be approximated by a product V T UT , so that any for-
mula designed to update for the first factor in this product directly translates
into an update for the second factor in the original problem. Formally, if the
update performed in step (a) is described by U ← update(M, U, V ), then an
algorithm preserving symmetry will update the factor in step (b) according to
V ← update(MT , V T , UT )T .

This update can be carried out in many different ways: the most nat-
ural possibility is to compute an optimal solution for the NNLS subproblem,
which leads to a class of algorithms called alternating nonnegative least squares
(ANLS), see Section 4.1.2. However, because this computation is relatively
costly, and since an optimal solution for the NNLS problem corresponding to
one factor is not strictly necessary before the other factor is updated, several
algorithms compute only an approximate solution of the NNLS subproblem,
sometimes very roughly, but with a cheaper computational cost, leading to
an inexact two-block coordinate descent scheme. Any nonlinear optimization
method can be used for this purpose, such as the multiplicative updates (cf. Sec-
tion 4.1.1), projected gradient methods [113], Newton-like methods [34,51], and
block-coordinate descent with various number of blocks including hierarchical
alternating least squares with r blocks (cf. Section 4.1.3); see also [10,32,52,89]
and the references therein. Notice that it can also be profitable to combine dif-
ferent algorithms, and come up with a hybrid approach. For example, the ALS
algorithm updates alternatively matrices U and V by solving the correspond-
ing unconstrained least squares problems and then projecting the solutions onto
the nonnegative orthant. Even though ALS is not guaranteed to converge and
typically fail to obtain good solutions for NMF problems (especially if M is
a dense matrix), it is relatively cheap and leads to a fast initial decrease of
the error so that it can be successfully used as a preprocessing step for other
techniques, see, e.g., [32, 68] and the references therein.
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In this chapter, we present in Section 4.1 three well-known and widely used
algorithms for NMF, namely the alternating nonnegative least squares (ANLS),
the multiplicative updates (MU), and the hierarchical alternating least squares
(HALS). We then propose in Section 4.2 a simple modification of MU and
HALS speeding up significantly their convergence, based on the analysis of
their computational cost. This approach can potentially be used for any first-
order NMF algorithm, and is applied successfully to the projected gradient
method of Lin [113]. An explanation for the good performances of HALS is
also given. In Section 4.3, NMF algorithms are embedded into the framework
of multilevel methods in order to accelerate their convergence in some specific
situations.

4.1 Three Existing Algorithms: MU, ANLS and

HALS

4.1.1 Multiplicative Updates (MU)

In their seminal paper [105], Lee and Seung propose multiplicative update rules
that aim at minimizing the Frobenius norm between a nonnegative matrix M
and its approximation UV :

U ← U ◦ [MV T ]

[UV V T ]
, V ← V ◦ [UT M ]

[UT UV ]
. (MU)

Theorem 4.1 ( [47,106]). For M, U, V ≥ 0, the Frobenius norm ||M −UV ||F
is nonincreasing under each of the multiplicative update rules (MU).

This technique was actually originally proposed by Daube-Witherspoon and
Muehllehner [47] to solve nonnegative least squares problems. The popularity
of this algorithm came along with the popularity of NMF.

MU can be interpreted as a rescaled gradient descent scheme [106] (i.e,
Quasi-Newton or variable metric method with an approximate diagonal Hessian
matrix)1. In fact, one can observe that MU is equivalent to

U ← U − SU ◦ ∇U ||M − UV ||2F , and V ← V − SV ◦ ∇V ||M − UV ||2F ,

where SU = [U ]
[2UV V T ] and SV = [V ]

[2UT UV ] .

The algorithm based on the alternated application of these rules (see Algo-
rithm 1) is not guaranteed to converge to a first-order stationary point (see,
e.g., [89, Section 3.1] and references therein), but a slight modification proposed

1In standard notation, we have that minx f(x) is solved iteratively using x← x−Dx∇f(x),
where Dx is a diagonal matrix approximating the inverse of the Hessian matrix ∇2f(x).
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Algorithm 1 Multiplicative Updates

Require: Data matrix M ∈ Rm×n
+ and initial iterates (U, V ) ∈ Rm×r

+ ×Rr×n
+ .

1: while stopping criterion not satisfied do

2: U ← U ◦ [MV T ]
[U(V V T )] ;

3: V ← V ◦ [UT M ]
[(UT U)V ]

;

4: end while

in [112] achieves this property (roughly speaking, MU is recast as a rescaled
gradient descent method as above and the step length is modified accordingly).

We propose another simple approach to overcome this problem by replacing
the above updates by the following:

Theorem 4.2. For any constant ǫ > 0, M ≥ 0 and any2 (U, V ) ≥ ǫ, ||M −
UV ||F is nonincreasing under

U ← max
(

ǫ, U ◦ [MV T ]

[UV V T ]

)

, V ← max
(

ǫ, V ◦ [UT M ]

[UT UV ]

)

, (4.1)

where the max is taken component-wise. Moreover, every limit point of the
corresponding (alternated) algorithm is a stationary point of the following op-
timization problem

min
U≥ǫ,V ≥ǫ

||M − UV ||2F . (4.2)

Proof. See Section 5.4 where the more general Theorem 5.11 is proved.

We might wonder how this modification of the feasible domain influences
the objective function value, i.e., what is the increase in the objective function
value of (4.2) with respect to (NMF)? Let (U, V ) ≥ 0 be any feasible point of
(NMF) and define (Uǫ, Vǫ) ≥ ǫ as follows

Uǫ(i, j) =

{
Uij if Uij ≥ ǫ
ǫ if Uij < ǫ

, 1 ≤ i ≤ m, 1 ≤ j ≤ r,

and similarly for Vǫ. We then have

||M − UǫVǫ||F = ||M − UǫVǫ − UV + UV ||F
≤ ||M − UV ||F + ||UǫVǫ − UV ||F .

2(U, V ) ≥ ǫ means that U and V are component-wise larger than ǫ.
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By construction 0 ≤ UV ≤ UǫVǫ ≤ (U + ǫ)(V + ǫ) so that

||UǫVǫ − UV ||F ≤ ||(U + ǫ)(V + ǫ)− UV ||F
≤ ||ǫU1r×n + ǫ1m×rV + ǫ21m×r1r×m||F
≤ ǫ||U ||F ||1r×n||F + ǫ||1m×r||F ||V ||F + ǫ2||1m×r||F ||1r×n||F
= ǫ

√
rn||U ||F + ǫ

√
rm||V ||F + ǫ2r

√
mn. (4.3)

Hence ||M − UǫVǫ||F ≤ ||M − UV ||F +O(ǫ).
If (U, V ) ≥ 0 is a stationary point of NMF, then ||UV ||F ≤ ||M ||F , see

Theorem 4.4. Let us assume without loss of generality ||U:k||2 = ||Vk:||2. By
nonnegativity,

||U:k||22 = ||U:k||2||Vk:||2 = ||U:kVk:||F ≤ ||UV ||F ≤ ||M ||F ,

implying ||U ||F ≤
√

r maxp ||U:p||2 ≤
√

r||M ||1/2
F , which also holds for V by

symmetry. Plugging it in Equation (4.3), we obtain

||M − UǫVǫ||F ≤ ||M − UV ||F + ǫr(
√

n +
√

m)||M ||1/2
F + ǫ2r

√
mn.

Therefore, in terms of relative error ||M−UV ||F
||M|F , to have an increase of the

optimal relative objective function value of (4.2) compared to the one of (NMF)
to be at most δ, one has to choose ǫ such that

ǫr(
√

n +
√

m)

||M ||1/2
F

+
ǫ2r
√

mn

||M ||F
≤ δ.

For example, for the cbcl database with M ∈ [0, 1]m×n, m = 361, n = 2429
and r = 49, we need ǫ ≤ 7 10−6 to obtain an increase of the relative error of
at most 0.1% (i.e., δ = 10−3); and taking ǫ = 10−16 gives an increase in the
relative error of at most 1.5 10−12% (i.e., δ = 1.5 10−14), which is negligeable.

We might also wonder how a stationary point of (4.2) (which can be ob-
tained as a limit point of the updates from Equation (4.1), see Theorem 4.2)
can be used to approximate a stationary point of (NMF). Let us then now
denote (Uǫ, Vǫ) a stationary point of (4.2) and let us focus on Uǫ (the same
reasoning applies for Vǫ by symmetry). Noting f(Uǫ, Vǫ) = ||M − UǫVǫ||2F and
∇Uf(Uǫ, Vǫ) = −2(M − UǫVǫ)V

T
ǫ , we then have, for all i, j, either

⋄ Uǫ(i, j) = ǫ and (∇Uf(Uǫ, Vǫ))ij ≥ 0, or

⋄ Uǫ(i, j) > ǫ and (∇Uf(Uǫ, Vǫ))ij = 0.

Defining

U(i, j) =

{
0 if Uǫ(i, j) = ǫ
Uǫ(i, j) if Uij > ǫ

, 1 ≤ i ≤ m, 1 ≤ j ≤ r,
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and V similarly using Vǫ, we would like to see how close (U, V ) is from station-
arity. A natural question is then: how do ∇Uf(Uǫ, Vǫ) and ∇Uf(U, V ) differ?
Using the same trick as for the objective function value, we obtain

e =
1

2
max

ij
|∇Uf(Uǫ, Vǫ)−∇Uf(U, V )|ij

= max
ij
|((M − UǫVǫ)V

T
ǫ )− ((M − UV )V T )|ij

≤ max
ij
|MV T

ǫ −MV T |ij + max
ij
|UǫVǫV

T
ǫ − UV V T |ij

≤ max
ij
|M(V + ǫ1r×n)T −MV T |ij

+ max
ij
|(U + ǫ1m×r)(V + ǫ1r×n)(V + ǫ1r×n)T − UV V T |ij

= O(ǫ).

Hence, for all i, j, we have either

⋄ Uij = 0 and (∇Uf(U, V ))ij ≥ −O(ǫ), or

⋄ Uij > 0 and |∇Uf(U, V )|ij ≤ O(ǫ).

Therefore, even though (U, V ) is not a stationary point of (NMF), it is close
to satisfying the required conditions (KKT-NMF) for ǫ is sufficiently small.

Stopping Criterion

There are many different approaches for the stopping criterion of NMF algo-
rithms using different indicators of the convergence of the iterates, including
the evolution of the objective function, the norm of the projected gradient [113]
(directly related to the stationarity conditions), and the norm of the difference
between two consecutive iterates (see Section 4.2). These criteria are typically
combined with either a maximum number of iterations or a time limit to ensure
termination.

4.1.2 Alternating Nonnegative Least Squares (ANLS)

As mentioned in the introduction, although NMF is a nonconvex and difficult
problem, it is convex separately in each of the two factors U and V , i.e., finding
the optimal factor U corresponding to a fixed factor V reduces to a convex
optimization problem, and vice-versa. More precisely, this convex problem
corresponds to a nonnegative least squares (NNLS) problem, i.e., a least squares
problem with nonnegativity constraints. Notice that the NNLS subproblem
minU≥0 ||M − UV ||2F (and symmetrically for V ) can be decomposed into m
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independent NNLS subproblems in r variables corresponding to each row of U
since

||M − UV ||2F =
m∑

i=1

||Mi: − Ui:V ||2F ,

which makes this problem easier to solve. The so-called alternating nonnegative
least squares (ANLS) algorithm for NMF minimizes the cost function alterna-
tively over factors U and V so that a stationary point of NMF is obtained
in the limit, see Theorem 2.2 in Section 2.1.3. A frequent strategy to solve

Algorithm 2 Alternating Nonnegative Least Squares

Require: Data matrix M ∈ Rm×n
+ and initial iterate V ∈ Rr×n

+ .

1: while stopping criterion not satisfied do
2: U ← argminU ≥0||M − UV ||F ;
3: V ← argminV ≥0||M − UV ||F .
4: end while

the NNLS subproblems is to use active set methods [104] (see Appendix A)
for which efficient implementations3 are described in [98, 99, 145], and shown
to typically outperform other tested variants of NNLS methods on synthetic,
image and text datasets. We refer the reader to [27] for a survey about NNLS
methods.

Remark 4.1. There actually exists other partitions of the variables that pre-
serve convexity of the alternating minimization subproblems: since the cost
function can be rewritten as ||M −∑r

i=1 U:iVi:||F , it is clearly convex as long
as variables do not include simultaneously an element of a column of U and
an element of the corresponding row of V (i.e., Uki and Vil for the same index
i). Therefore, given a subset of indices K ⊆ R = {1, 2, . . . , r}, NMF is clearly
convex for both the following subset of variables

PK =
{

U:i

∣
∣
∣ i ∈ K

}

∪
{

Vj:

∣
∣
∣ j ∈ R \K

}

and its complement

QK =
{

U:i

∣
∣
∣ i ∈ R \K

}

∪
{

Vj:

∣
∣
∣ j ∈ K

}

.

Convexity is lost as soon as one column of U (U:i) and the corresponding row of
V (Vi:) are optimized simultaneously, so that the corresponding minimization
subproblem can no longer be solved up to global optimality. In fact, such
subproblems will be studied in Chapter 5, and shown to be NP-hard.

3Available at http://www.cc.gatech.edu/~hpark/ .
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4.1.3 Hierarchical Alternating Least Squares (HALS)

In ANLS, variables are partitioned at each iteration such that each subproblem
is convex. However, the resolution of these convex NNLS subproblems is non-
trivial and relatively expensive (see Appendix A). If we optimize instead one
single variable at a time, we get a simple univariate quadratic problem which
admits a closed-form solution

U∗
ik = argminUik≥0 ||M − UV ||2F = max

(

0,
Mi:V

T
k: −

∑

l 6=k UilVl:V
T
k:

Vk:V T
k:

)

.

Moreover, since the optimal value for a given entry of U (resp. V ) does not
depend of the other entries of the same column (resp. row), one can optimize
alternatively whole columns of U (resp. rows of V ), with

U∗
:k = argminU:k≥0 ||M − UV ||2F

= argminU:k≥0 ||Rk − U:kVk:||2F = max

(

0,
RkV T

k:

||Vk:||22

)

, (4.4)

and

V ∗
k: = argminVk:≥0 ||M − UV ||2F

= argminVk:≥0 ||Rk − U:kVk:||2F = max

(

0,
UT

:kRk

||U:k||22

)

, (4.5)

where Rk
.
= M−∑i6=k U:iVi: is the kth residual matrix. Notice that, in practice,

one should not compute explicitly the residual matrices Rk, but instead observe
that

RkV T
k: = MV T

k: −
∑

i6=k

U:i(Vi:V
T
k: ) and UT

:kRk = UT
:kM −

∑

i6=k

(UT
:kU:i)Vi:,

see Algorithm 3. In fact, computing the residual matrices would be more ex-
pensive, especially for sparse matrices since Rk can in principle be dense.

This method was first proposed by Cichocki et al. [33, 35] and later inde-
pendently by several other authors [70, 89, 110], and is herein referred to as
hierarchical alternating least squares (HALS)4. It amounts to solving each
NNLS subproblem with a single round of an exact-coordinate descent method
with r blocks (for which any cyclic order on the columns of U and the rows of
V is admissible).

4In [89], HALS is referred to as rank-one residue iteration (RRI), and in [110] as FastNMF.

70



4.1. THREE EXISTING ALGORITHMS: MU, ANLS AND HALS

Algorithm 3 Hierarchical Alternating Least Squares

Require: Data matrix M ∈ Rm×n
+ and initial iterates (U, V ) ∈ Rm×r

+ ×Rr×n
+ .

1: α∗ = argminα ||M − αUV ||F = 〈M,UV 〉
〈UV,UV 〉 =

〈MV T ,U〉
〈UT U,V T V 〉 ; U ← α∗U ;

2: while stopping criterion not satisfied do
3: Compute A = MV T and B = V V T .
4: for k = 1 : r do

5: U:k ← max
(

0,
A:k−

∑r
l=1,l 6=k U:lBlk

Bkk

)

;

6: end for
7: Compute C = UT M and D = UT U .
8: for k = 1 : r do

9: Vk: ← max
(

0,
Ck:−

∑ r
l=1,l 6=k DklVl:

Dkk

)

;

10: end for
11: end while

Convergence of HALS

A potential issue with HALS is that, in the course of the optimization process,
one of the vectors U:k (or Vk:) and the corresponding rank-one factor U:kVk:

may become equal to zero (this happens for example if one of the residuals
Rk = M−∑i6=k U:iVi: is nonpositive). This then leads to numerical instabilities
(the next update is not well-defined) and a rank-deficient approximation (i.e.,
with a rank lower than r). A possible way to overcome this problem is to replace
the zero lower bounds on U:k and Vk: by a small positive constant ǫ ≪ 1 (as
for the MU), and consider the following subproblems

U∗
:k = argminU:k≥ǫ||Rk − U:kVk:||2F and V ∗

k: = argminVk:≥ǫ||Rk − U:kVk:||2F ,

which lead to the modified closed-form update rules:

U∗
:k = max

(

ǫ,
RkV T

||Vk:||22

)

and V ∗
k: = max

(

ǫ,
UT Rk

||U:k||22

)

. (4.6)

This idea was already suggested in [35] in order to avoid numerical instabilities.
In fact, this variant of the algorithm is now well-defined in all situations because
it guarantees U:k > 0 and Vk: > 0 at each iteration. Furthermore, one can now
easily prove that it converges to a stationary point of (4.2).

Theorem 4.3. For every constant ǫ > 0, the limit points of the block-coordinate
descent algorithm (4.6) initialized with positive matrices and applied to the op-
timization problem (4.2) are stationary points.

Proof. Following Theorem 2.1, we need the following two conditions to hold:
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⋄ each block of variables is required to belong to a closed convex set,

⋄ the minimum computed at each iteration for a given block of variables is
uniquely attained.

The first condition is clearly satisfied here, since U:k and Vk: belong respec-
tively to ([ǫ, +∞[)m and ([ǫ, +∞[)n, which are closed convex sets. The sec-
ond condition holds because subproblems can be shown to be strictly convex,
so that their optimal value is uniquely attained by the solutions provided by
rules (4.6). Strict convexity is due to the fact that the objective function of
these problems are sums of quadratic terms, each involving a single variable
and having a strictly positive coefficient (given by the corresponding diagonal
element of matrix V V T > 0).

Scaling of Initial Iterates

Another practical issue is related to the choice of the initial matrices (U, V ). In
particular, HALS is sensitive to the scaling of the initial matrices (unlike MU
and ANLS). For example, if the initial matrices U and V are chosen such that
UV ≫ M , optimal columns of U and optimal rows of V computed by formulas
(4.4) and (4.5) at the first step will most likely be equal to zero. If the initial
matrices (U, V ) are properly scaled [89, p.85], i.e., by ensuring that

1 = argminα ||M − αUV ||F =
〈M, UV 〉
〈UV, UV 〉 , (4.7)

this behavior is in general avoided (see step 1 of Algorithm 3). Notice that
since

〈M, UV 〉
〈UV, UV 〉 =

〈
MV T , U

〉

〈UT U, V V T 〉 ,

and the matrices MV T and V V T have to be computed anyway (see step 3
of Algorithm 3), the additional cost for the initial scaling is rather low with
O(mr2) operations for the computation of UT U .

Obviously, any stationary point is scaled ; the next Theorem is an extension
of a result of Ho et al. [89].

Theorem 4.4. The following statements are equivalent

(1) (U, V ) is scaled;

(2) UV is on the boundary of B
(

M
2 , 1

2 ||M ||F
)

, the ball centered at M
2 of

radius 1
2 ||M ||F ;

(3) ||M − UV ||2F = ||M ||2F − ||UV ||2F (implying ||M ||2F ≥ ||UV ||2F ).
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Proof. A solution (U, V ) is scaled if and only if 〈M, UV 〉 = 〈UV, UV 〉, see
Equation (4.7), which is equivalent to

〈UV −M, UV 〉 = 0

〈UV −M, UV 〉+
〈

M

2
,
M

2

〉

=

〈
M

2
,
M

2

〉

〈
M

2
− UV,

M

2
− UV

〉

=

〈
M

2
,
M

2

〉

,

so that (1) and (2) are equivalent. For the equivalence of (1) and (3), we have

〈M − UV, M − UV 〉 = ||M ||2F − 2 〈M, UV 〉+ ||UV ||2F
= ||M ||2F − ||UV ||2F − 2

(

〈M, UV 〉 − 〈UV, UV 〉
)

.

= ||M ||2F − ||UV ||2F

if and only if 〈M, UV 〉 = 〈UV, UV 〉.

Theorem 4.4 can be used as follows: when one computes the error of the current
solution, one can scale it without further computational cost. In fact,

||M − UV ||2F = 〈M − UV, M − UV 〉
= ||M ||2F − 2 〈M, UV 〉+ ||UV ||2F . (4.8)

Note that the third term of (4.8) can be computed in O(max(m, n)r2) opera-
tions since

||UV ||2F =
∑

ij

(∑

k

U2
ikV 2

kj

)

+ 2
∑

ij

(∑

k 6=l

UikVkjUilVlj

)

=
∑

k

(∑

i

U2
ik

)(∑

j

V 2
kj

)

+ 2
∑

k 6=l

(∑

i

UikUil

)(∑

j

VkjVlj

)

=
∑

ij

|(UT U) ◦ (V V T )|ij .

This is especially interesting for sparse matrices since 〈M, UV 〉 =
〈
MV T , U

〉
=

〈
UT M, V

〉
, hence UV (which could be dense) does not need to be computed

explicitly.

4.2 Accelerated MU and HALS Algorithms

In this section, we first analyze the computational cost needed to update the
factors U in MU and HALS (since the V factor update is perfectly symmetric
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with MT = V T UT ), then make several simple observations leading to the design
of more efficient versions of these algorithms. This improvement can potentially
be applied to any first-order NMF iterative algorithm, which is illustrated on
a projected gradient method [113], but we focus here on MU (because it is by
far the most popular NMF algorithm) and HALS (because it is very efficient in
practice). Finally we experimentally demonstrate the improvements in speed
of convergence on several image and text datasets, with a comparison with
the state-of-the-art ANLS algorithm of Kim and Park [99]. We also give an
explanation of the remarkable performances of HALS in Section 4.2.2.

4.2.1 Computational Cost

In order to make the analysis valid for both dense and sparse matrices, let us
introduce the parameter K denoting the number of nonzero entries in M if M is
sparse, K = mn otherwise. We assume that NMF achieves compression, which
is often a requirement in practice. This means that storing U and V must be
cheaper than storing M : roughly speaking, the number of nonzero entries in
M must be larger than the number of entries in U and V , i.e., K ≥ r(m + n).

Algorithms 4 and 5 give an estimate of the number of floating point oper-
ations (flops) of each matrix product computation needed to update U in MU
and HALS respectively5. One can check that the proposed organization of the
different matrix computations (and, in particular, the ordering of the matrix
products) minimizes to the total computational cost (for example, starting the
computation of the MU denominator UV V T with the product UV is clearly
worse than with V V T ).

Algorithm 4 MU update for U

1: A = MV T ; → 2Kr flops
2: B = V V T ; → 2nr2 flops
3: C = UB; → 2mr2 flops

4: U ← U ◦ [A]
[C] ; → 2mr flops

% Total: r(2K + 2nr + 2mr + 2m) flops

MU and HALS have almost exactly the same computational cost (the dif-
ference being mr flops). It is particularly interesting to observe that

1. The first two steps 1. and 2. in both algorithms are identical and do not
depend on the matrix U ;

2. The first step (i.e., computing MV T ) is the most expensive one, using
the assumption K ≥ r(m + n).

5The product of a m-by-n matrix with a n-by-r matrix requires 2mnr flops.
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Algorithm 5 HALS update for U

1: A = MV T ; → 2Kr flops
2: B = V V T ; → 2nr2 flops
3: for i = 1, 2, . . . , r do
4: C:k =

∑p−1
l=1 U:lBlk +

∑r
l=p+1 U:lBlk; → 2m(r − 1) flops, r times

5: U:k ← max
(

0, A:k−C:k

Bkk

)

; → 3m flops, r times

6: end for

% Total: r(2K + 2nr + 2mr + m) flops

This time consuming step should be performed sparingly, i.e., we should take
full advantage of having computed the relatively expensive MV T and V V T

matrix products. This can be done by updating U several times before the
next update of V , i.e., perform steps 3. and 4. in MU (resp. steps 3. to 6. in
HALS) several times.

The original MU and HALS algorithms do not take advantage of this fact,
and update alternatively matrices U and V only once at each iteration. The
question is: how many times should we update U?, i.e., how many inner it-
erations of MU and HALS should we perform? This is the topic of the next
section.

4.2.2 Stopping Criterion for the Inner Iterations

Let us first focus on the MU algorithm. Based on the flops count, it is possible
to estimate how much more expensive the first update of U is with respect
to the next ones (for V fixed), which is given by the following factor ρU (the
corresponding value for V will be denoted by ρV )

ρU =
2Kr + 2nr2 + 2mr2 + 2mr

2mr2 + 2mr
= 1 +

K + nr

mr + m
.
(

ρV = 1 +
K + mr

nr + n

)

.

Values of ρU and ρV for several datasets are given in Section 4.2.3, see Tables 4.1
and 4.2.

Notice that for K ≥ r(m + n), we have ρU ≥ 2 so that the first update of
U is at least twice as expensive as the next ones. For a dense matrix, K is

equal to mn and we actually have that ρU = 1 + n(m+r)
m(r+1) ≥ 1 + n

r+1 , which is

typically quite large since n is often much larger than r. For example, U could

be updated about 1 + ρU =
(

2 + n
r+1

)

times for the same computational cost

as two independent updates of U in the original MU.
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Fixed Number of Inner Iterations

A natural and simple choice is then to update U and V a fixed number of times,
depending on the values of ρU and ρV . Let us introduce a parameter α ≥ 0
such that U is updated (1 + αρU ) times before the next update of V , and V
is updated (1 + αρV ) times before the next update of U . Let us also denote
the corresponding algorithm MUα (MU0 reduces to the original MU). We then
have that performing the (1 + αρU ) updates of U in MUα has approximately
the same computational cost as updating (1 + α) times U in MU0.

Note however that when the number of rows m and columns n of matrix
M are not of the same order of magnitude, for example when n≫ m, we have
ρU ≫ ρV . Hence, on the one hand, matrix U has significantly less entries
than V (mr ≪ nr), and the corresponding NNLS subproblem features a much
smaller number of variables ; on the other hand, ρU ≫ ρV and many more up-
dates of U are performed. In other words, many more iterations are performed
on the simpler problem, which does not seem to be reasonable. For example,
for the CBCL face database (cf. Section 4.2.3) with m = 361, n = 2429 and
r = 20, we have ρV ≈ 18 and ρU ≈ 123, and these hundred updates of U are not
necessary to obtain an iterate close to an optimal solution of the corresponding
NNLS subproblem. Therefore, we propose to add the following stopping crite-
rion. Noting U (l) the iterate after l updates of U (while V is being kept fixed),
we stop iterations as soon as

||U (l+1) − U (l)||F ≤ δ||U (1) − U (0)||F , (4.9)

i.e., as soon as the improvement compared to the first update is negligible.
Based on numerical experiments (cf. Section 4.2.3), it seems that δ = 0.01
gives good results, and this value will be used for all the tests of this section.

Algorithm 6 displays the pseudocode for the accelerated MU and HALS
algorithms.

In order to find an appropriate parameter α, we have performed some pre-
liminary tests on image and text datasets. First, let us denote e(t) the Frobenius
norm of the error ||M − UV ||F achieved by an algorithm within time t, and
define

E(t) =
e(t)− emin

e(0)− emin
, (4.10)

where e(0) is the error of the initial iterate, and emin is the smallest error
achieved among all algorithms across all initializations. The quantity E(t)
therefore is a normalized measure of the improvement of the objective function
as a function of the initial gap with respect to time; and we have 0 ≤ E(t) ≤ 1
for monotonically decreasing algorithms (such as MU and HALS). The advan-
tage of E(t) over e(t) is that one can meaningfully take the average over several
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Algorithm 6 Accelerated MU and HALS

Require: Data matrix M ∈ Rm×n
+ and initial iterates (U, V ) ∈ Rm×r

+ ×Rr×n
+ .

1: while stopping criterion not satisfied do

2: Compute A = MV T and B = V V T ; U (0) = U ;
3: for l = 1 : 1 + αρU do
4: Compute U (l) using either MU or HALS (cf. Algorithms 4 and 5);
5: if ||U (l) − U (l−1)||F ≤ 0.01||U (1) − U (0)||F then
6: break;
7: end if
8: end for
9: U ← U (l);

10: Update V from U and M using a symmetrically adapted version of
steps 2-9;

11: end while

runs involving different initializations and datasets, and display the average be-
havior of a given algorithm.

Figure 4.1 displays the average of this function E(t) for dense (on the left)
and sparse (on the right) matrices using the datasets described in Section 4.2.3
for five values of α (0, 0.5, 1, 2 and 4). We observe that the original MU
algorithm (α = 0) converges significantly less rapidly than all the other tested
variants (especially in the dense case). The best value for the parameter α is
around one.

Figure 4.2 displays the same computational experiments for HALS6. As for
MU, HALS with α around one performs better than the original HALS. For
sparse matrices, the improvement is harder to discern (but still present); an
explanation for that observation will be given in Section 4.2.4.

Dynamical Choice of Number of Inner Iterations

Another possibility to decide when to switch from updating U to V and vice
versa would be to use an appropriate criterion. For example, it is possible to
use the norm of the projected gradient as proposed by Lin [113], or the norm of
the difference between two iterates ||U (l+1) −U (l)||F as presented in the above
section but without any a priori fixed maximal number of inner iterations.
However, when trying several variants based solely on these criteria, it turned
out that none would consistently give better results than the simple approach

6Because HALS involves a loop over the columns of U and rows of V , we observed that an
update of HALS is noticeably slower than an update of MU when using MATLAB®(especially
for r ≫ 1) despite the quasi-equivalent theoretical computational cost. Therefore, to obtain
fair results, we adjusted ρU and ρV measuring directly the ratio between the time spent for
the first update and the next one using cputime function of MATLAB®.
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outlined in the previous section.
To illustrate this, we have modified Lin’s projected gradient algorithm (PG)

[113] by fixing the number of inner iterations along with the stopping criterion
defined in Equation (4.9) as for MU and HALS, using7 different values for the
parameter α. Figure 4.3 displays the computational results, and demonstrates
that this variant works significantly better than the original PG algorithm (as
available from [113]). A value of α around 0.5 gives the best results.

4.2.3 Numerical Experiments

In this section, we compare the following algorithms

1. (MU) The multiplicative updates algorithm of Lee and Seung (Sec-
tion 4.1.1).

2. (A-MU) The accelerated MU with fixed number of inner iterations
using α = 1 (Section 4.2.2).

3. (HALS) The HALS algorithm of Cichocki et al. (Section 4.1.3).

4. (A-HALS) The accelerated HALS with fixed number of inner iterations
using α = 1 (Section 4.2.2).

5. (PG) The projected gradient method of Lin [113].

6. (A-PG) The modified projected gradient method of Lin [113] using
α = 0.5 (Section 4.2.2).

7. (ANLS) The alternating nonnegative least squares algorithm of Kim
and Park [99] (Section 4.1.3).

All tests were run with MATLAB® 7.1 (R14), on a 3GHz Intel® Core™2
Dual CPU PC. We present numerical results on images datasets (dense matri-
ces, Section 4.2.3) and on text datasets (sparse matrices, Section 4.2.3). The
code of the algorithms is available on

http://www.core.ucl.ac.be/~ngillis/papers/Acc_MU_HALS_PG.zip

(run file RunME.m for a nice example with the CBCL face dataset).

7Lin’s algorithm [113] also requires the computation of V V T and MV T since the gradient
is given by ∇W ||M−UV ||2

F
= 2UV V T−2MV T , so that our approach can be easily extended.
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Figure 4.1: Average of functions E(t) for MU using different values of α:
(top) dense matrices, (bottom) sparse matrices. It is the average over 4 image
datasets and 6 text datasets, using two different values for the rank for each
dataset and 10 random initializations, see Section 4.2.3.
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Figure 4.2: Average of functions E(t) for HALS using different values of α:
(top) dense matrices, (bottom) sparse matrices. Same settings as Figure 4.1.
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Figure 4.3: Average of functions E(t) for the projected gradient algorithm of
Lin [113], and its modification using a fixed number of inner iterations. Same
settings as Figure 4.1.

81



CHAPTER 4. ALGORITHMS FOR NMF

Dense Matrices - Images Datasets

Table 4.1 summarizes characteristics for the different datasets.

Table 4.1: Image datasets.
Data # pixels m n ⌊ρU⌋ ⌊ρV ⌋
ORL1 112× 92 10304 400 13, 7 358, 195
Umist2 112× 92 10304 575 19, 10 351, 188
CBCL3 19× 19 361 2429 85, 47 12, 7
Frey2 28× 20 560 1965 67, 36 19, 10

⌊x⌋ denotes the largest integer smaller than x.
1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2 http://www.cs.toronto.edu/~roweis/data.html
3 http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html

For each dataset, we use two different values for the rank (r = 30, 60) and
initialize the algorithms with the same 10 random factors (U, V ) (using i.i.d.
uniform random variables on [0, 1])8. In order to assess the performance of the
different algorithms, we display individually for each dataset the average over
all runs of the function E(t) defined in Equation (4.10), see Figures 4.4 and
4.5.

First, these results confirm what was already observed by previous work: PG
performs better than MU [113], ANLS performs better than MU and PG [99]
and HALS perform the best [89]. Second, they confirm that the accelerated
algorithms indeed are more efficient: A-MU (resp. A-PG) clearly outperforms
MU (resp. PG) in all cases, while A-HALS is much more efficient for the first
two databases (ORL and Umist), and behaves slightly better as HALS for the
other two (CBCL and Frey). It is interesting to notice that A-MU performs
better than A-PG, and only slightly worse than ANLS, often converging as fast
during the first iterations. Finally, A-HALS is, and sometimes by far, the best
algorithm for all tested databases.

Sparse Matrices - Text Datasets

Table 4.2 summarizes characteristics for the different datasets.

8Generating initial matrices (U, V ) randomly typically leads to a very large initial error
e(0). This implies that E(t) will get very small after one step of any algorithm. To avoid this
large initial decrease, we have applied one step of MU on (U, V ) to obtain reasonable initial
estimates.
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Table 4.2: Text mining datasets [156] (sparsity is given in %: 100 ∗
#zeros/(mn)).

Data m n #nonzero sparsity r ⌊ρU⌋ ⌊ρV ⌋
classic 7094 41681 223839 99.92 4, 8 12, 9 2, 1
sports 8580 14870 1091723 99.14 7, 14 18, 11 10, 6
reviews 4069 18483 758635 98.99 5, 10 35, 22 8, 4
hitech 2301 10080 331373 98.57 6, 12 25, 16 5, 4
ohscal 11162 11465 674365 99.47 10, 20 7, 4 7, 4

la1 3204 31472 484024 99.52 6, 12 31, 21 3, 2

We used exactly the same settings as for the image datasets (cf. Section 4.2.3);
except for the factorization rank r which was set to to the value proposed
in [156] (first entry in the sixth column of Table 4.2) and twice this value
(second entry). For the comparison, we used the same settings as for the dense
matrices. Figures 4.6, 4.7 and 4.8 display for each dataset the evolution of the
average of functions E(t) over all runs.

Again the accelerated algorithms are much more efficient. In particular,
A-MU and A-PG now converge initially faster than ANLS, and often obtain
better or similar final solutions. A-MU, HALS and A-HALS have the fastest
initial convergence rate, and HALS and A-HALS generate the best solutions in
most cases. Notice that A-HALS does not always perform significantly better
than HALS (it does for the classic, sports and la1 datasets), the reason being
that HALS already performs remarkably well. An explanation for that behavior
is given in the next section.

4.2.4 Why does HALS perform (so) well?

It is well-known that (block) coordinate-descent methods typically fail to con-
verge rapidly because of their zig-zagging behavior, similar to what is frequently
observed for gradient descent approaches, see, e.g., [12]. However, for the NNLS
subproblems arising in NMF, we have observed in the previous section that this
approach (i.e., HALS) is quite efficient (see also [33,69,89,110]). In this section,
we offer a theoretical explanation for that fact. This is based on two simple
observations.

First, it is well-known that NMF solutions are typically part-based: this is
the main reason why NMF has become so popular as a data analysis technique
[105], see Chapter 1 and Figure 1.2 for an illustration (the reason being the
nonnegativity constraints on both the basis elements and the weights leading
to an additive reconstruction of the input data). Therefore the supports (the
set of nonzero entries) of the columns of U (resp. rows of V ) typically share few
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elements. In other words, these supports are almost disjoint implying that the
matrix product UT U (resp. V V T ) has large entries on its diagonal, and zeros
or small entries nearly everywhere else.

Second, the NNLS problem minU≥0 ||M − UV ||2F can be decomposed into
m independent NNLS subproblems corresponding to each row of U since

||M − UV ||2F =

m∑

i=1

||Mi: − Ui:V ||2F .

Each of these NNLS subproblems for a given row Ui: has the following form

min
Ui:≥0

||Mi:−Ui:V ||2F = Ui:(V V T )UT
i: −2Ui:V MT

i: +Mi:M
T
i: , 1 ≤ i ≤ m. (4.11)

The quadratic term Ui:(V V T )UT
i: coupling the variables Ui: together depends

on the (Hessian) matrix V V T . In particular, if V V T is diagonal, Problem (4.11)
can be decoupled in r NNLS problems in one variable minUik≥0 ||Mi:−UikVk:||2F
for which an exact-coordinate descent method would generate an optimal solu-
tion in one step (i.e., after the update of each variable). We therefore have the
following result.

Theorem 4.5. Let M ∈ Rm×n
+ and V ∈ Rm×r

+ . If the supports of the rows of
V are disjoint, i.e., if V V T is a diagonal matrix, then an optimal solution U∗

to the NNLS problem
min
U≥0
||M − UV ||2F , (NNLS)

can be obtained by performing one iteration of the exact-coordinate descent
method from any initial matrix, i.e., by a single HALS update.

More generally, if matrix V V T is close to being diagonal, Problem (4.11)
typically features large coefficients for the quadratic terms (i.e., U2

ik) in com-
parison to the bilinear terms (i.e., UikUip k 6= p). Intuitively, this implies that
the interaction between variables is low and therefore optimizing one variable
at a time is still a relatively efficient procedure.

Combining the above two observations, we conclude that performing few
iterations of HALS on the NNLS subproblems arising in NMF allows the algo-
rithm to get close to an optimum solution. This is especially true for sparse
matrices M since the factors (U, V ) will be even sparser, which gives an expla-
nation for the similar performances of HALS and A-HALS for sparse matrices.
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Figure 4.4: Average of functions E(t) for different image datasets: ORL (top)
and Frey (bottom).
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Figure 4.5: Average of functions E(t) for different image datasets: Umist (top)
and CBCL (bottom).
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Figure 4.6: Average of functions E(t) for text datasets: classic (top), reviews
(bottom).
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Figure 4.7: Average of functions E(t) for text datasets: ohscal (top), sports
(bottom).
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Figure 4.8: Average of functions E(t) for text datasets: hitech (top) and la1
(bottom).
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4.3 A Multilevel Approach

This section presents a general framework based on a multilevel strategy leading
to faster convergence of NMF algorithms when dealing with data admitting
some kind of simple approximate low-dimensional representations (based on
linear transformations preserving nonnegativity), such as images. In fact, in
these situations, a hierarchy of lower-dimensional problems can be constructed
and used to compute efficiently approximate solutions of the original problem.
Similar techniques have previously been used for other dimensionality reduction
tasks such as PCA [134].

4.3.1 Multigrid Methods

Let us briefly introduce multigrid methods. The aim is to give the reader some
insight on these techniques in order to comprehend their applications for NMF.
We refer the reader to [21–23, 144] and references therein for detailed discus-
sions on the subject.

Multigrid methods were initially used to develop fast numerical solvers for
boundary value problems. Given a (partial) differential equation on a contin-
uous domain with boundary conditions, the aim is to find an approximation
of a smooth function f satisfying the constraints. In general, the first step is
to discretize the continuous domain, i.e., choose a set of points (a grid) where
the function values will be computed. Then, a numerical method (e.g., finite
differences, finite elements) translates the continuous problem into a specific
(square) system of linear equations:

find x ∈ Rn s.t. Ax = b, with A ∈ Rn×n, b ∈ Rn, (4.12)

where the vector x will contain the approximate values of f on the grid points.
Linear system (4.12) can be solved either by direct methods (e.g., Gaussian
elimination) or iterative methods (e.g., Jacobi and Gauss-Seidel iterations). Of
course, the computational cost of these methods depends on the number of
points in the grid, which leads to a trade-off between precision (number of
points used for the discretization) and computational cost.

Iterative methods update the solution at each step and hopefully converge
to a solution of (4.12). Here comes the utility of multigrid: instead of work-
ing on a fine grid during all iterations, the solution is initially restricted to a
coarser grid on which the iterations are cheaper. Moreover, the smoothness
of function f allows to recover its low-frequency components faster on coarser
grids. Solutions of the coarse grid are then prolongated to the finer grid and
iterations can continue (higher frequency components of the error are reduced
faster). Because the initial guess generated on the coarser grid is (hopefully)
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a good approximation of the final solution, less iterations are needed on the
fine (expensive) grid to converge. Essentially, multigrid methods make itera-
tive methods more efficient, i.e., accurate solutions are obtained faster.

More recently, these same ideas have been applied to a broader class of
problems, e.g., multiscale optimization with trust-region methods [81] and mul-
tiresolution techniques in image processing [142].

4.3.2 Description of a Multilevel Approach for NMF

The three algorithms presented in Section 4.1 (MU, ANLS and HALS) are it-
eratively trying to find a stationary point of NMF. Actually, most practical
NMF algorithms are iterative methods (cf. the introduction of this chapter). In
order to embed these algorithms into a multilevel strategy, one has to define
the different levels and describe how the variables and the data is transferred
between them.

Let each column of the matrix M be a element of the dataset (e.g., a vector-
ized image) belonging to Rm

+ . Given m′ < m, we define a restriction operator
R as a linear operator

R : Rm
+ → Rm′

+ : x→R(x) = Rx,

with R ∈ Rm′×m
+ , and a prolongation P as a linear operator

P : Rm′

+ → Rm
+ : y → P(y) = Py,

with P ∈ Rm×m′

+ . Nonnegativity of matrices R and P is a sufficient condition
to preserve nonnegativity of the solutions when they are transfered from one
level to another. In fact, in order to generate nonnegative solutions, one only
need to require

R(x) ≥ 0, ∀x ≥ 0 and P(y) ≥ 0, ∀y ≥ 0.

We also define the corresponding transfer operators on matrices, operating
columnwise:

R([x1 x2 . . . xn]) = [R(x1)R(x2) . . .R(xn)], and

P([y1 y2 . . . yn]) = [P(y1)P(y2) . . .P(yn)],

for xi ∈ Rm
+ , yi ∈ Rm′

+ , 1 ≤ i ≤ n.

In order for the multilevel strategy to work, the information lost when trans-
ferring from one level to another must be limited, i.e., the data matrix M has
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to be well represented by R(M) in the lower dimensional space, which means
that the reconstruction P(R(M)) must be close to M . From now on, we say
that M is smooth with respect to R and P if and only if

sM =
||M − P(R(M))||F

||M ||F
is small .

The quantity sM measures how well M can be mapped by R into a lower-
dimensional space and then brought back by P , and still be a fairly good
approximation of itself.

Based on these definitions, elaborating a multilevel approach for NMF is
straightforward:

1. We are given M ∈ Rm×n
+ and (U0, V0) ∈ Rm×r

+ × Rr×n
+ ;

2. Compute M ′ = R(M) = RM ∈ Rm′×n
+ and U ′

0 = R(U0) = RU0 ∈ Rm′×r
+ ,

i.e., restrict the elements of your dataset and the basis elements of the
current solution to a lower-dimensional space;

3. Compute a rank-r NMF (U ′, V ) of M ′ using (U ′
0, V0) as initial matrices,

i.e.,
U ′V ≈M ′ = R(M).

This can be done using any NMF iterative algorithm or, even better,
using the multilevel strategy recursively (cf. Section 4.3.5).

4. Since

M
(1)≈ P(R(M)) = P(M ′)

(2)≈ P(U ′V ) = PU ′V = P(U ′)V = UV,

where U is computed as the prolongation of U ′, (U, V ) is a good initial
estimate for a rank-r NMF of M , provided that (1) M is smooth with
respect toR and P (i.e., sM is small) and (2) U ′V is a good approximation
of M ′ = R(M) (i.e., ||M ′ − U ′V ||F is small); in fact,

||M − P(U ′)V ||F ≤ ||M − P(R(M))||F + ||P(R(M))− P(U ′V )||F
≤ sM ||M ||F + ||P(R(M)− U ′V )||F
≤ sM ||M ||F

︸ ︷︷ ︸

(1)

+||P ||F ||R(M)− U ′V ||F
︸ ︷︷ ︸

(2)

.

5. Further improve the solution (U, V ) using any NMF iterative algorithm.
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Because computations needed at step 3 are relatively cheap (since m′ < m),
and in addition the low-frequency components of the error9 are reduced faster
on coarse levels (cf. Section 4.3.6), this strategy will accelerate the convergence
of NMF algorithms.

4.3.3 Limitation of our Multilevel Approach

In classical multigrid methods, when solving a linear system of equations Ax =
b, the current approximate solution xc is not transferred from a fine level to a
coarser one, because it would imply the loss of its high-frequency components;
instead, the residual is transferred, which we briefly explain here. Defining the
current residual rc = b−Axc and the error e = x− xc, we have the equivalent
defect equation Ae = rc and we would like to approximate e with a correction
ec in order to improve the current solution with xc ← xc + ec. Hence the
defect equation is solved approximately on the the coarser grid by restricting
the residual rc, the correction obtained on the coarser grid is interpolated and
the new approximation xc + ec is computed, see, e.g., [144, p.37]. If instead
the solution is transferred directly from one level to another (as we do in this
section), the corresponding scheme is in general not convergent, see [144, p.156].
In fact, even an exact solution of the system Ax = b is not a fixed point, because
the restriction of x is not an exact solution anymore at the coarser level (while,
in that case, the residual r is equal to zero and the correction e will also be
equal to zero).

Therefore, the method presented in this section should only be used as a
pre-processing/initialization step before another (convergent) NMF algorithm.
In fact, if one already has a good approximate solution (U, V ) for NMF (e.g.,
a solution close to a stationary point), then transferring it to a coarser grid
will most likely increase the approximation error because the high frequency
components (such as edges in images) will be lost. Try to fix this drawback,
which seems to be non-trivial, is a topic for further research. For example, it
would be possible to use a ‘local linearization’ approach, consisting in linearizing
the equation

R = M − (U + dU)(V + dV ) ≈M − UV − UdV − dUV,

where dU and dV are the corrections to be computed on the coarser grids.
However, several problems arise: how to take care of nonnegativity? or how to
do this efficiently (in fact, computing the residual R is as expensive as comput-
ing directly a gradient direction on the fine grid with O(mnr) operations, see
Section 4.2)?

Finally, it seems that, despite these theoretical reservations, our technique
is still quite efficient (see Section 5.3.3). One intuitive reason for that good

9The low-frequency components refers to the parts of the data which are well-represented
on coarse levels.
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behavior is that NMF solutions are typically part-based and sparse (see Chap-
ter 1 and Figure 1.2). Therefore, columns of matrix U contains relatively large
‘constant components’, made of their zero entries, which are perfectly trans-

ferred from one level to another, i.e., sU = ||U−P(R(U))||F
||U||F will typically be very

small (in general much smaller than sM ).

We now illustrate this technique on image datasets, more precisely, on two-
dimensional gray-level images. In general, images are composed of several
smooth components, i.e., regions where pixel values are similar and change
continuously with respect to their location (e.g., skin on a face or, the pupil or
sclera10 of an eye), that is, a pixel value can often be approximated using the
pixel values of its neighbors. This observation can be used to define the transfer
operators (Section 4.3.4). For the computation of a NMF solution needed at
step 3, the multilevel approach can be used recursively; three strategies (called
multigrid cycles) are described in Section 4.3.5. Finally, numerical results are
reported in Section 4.3.7.

4.3.4 Coarse Grid and Transfer Operators

A crucial step of multilevel methods is to define the different levels and the
transformations (operators) between them. Figure 4.9 is an illustration of a
standard coarse grid definition: we note I1 the matrix of dimension (2a +
1) × (2b + 1) representing the initial image and I l the matrix of dimension
(2a−l+1+1)×(2b−l+1+1) representing the image at level l obtained by keeping,
in each direction, only one out of every two points of the grid at the preceding
level, i.e., I l−1.

The transfer operators describe how to transform the images when going
from finer to coarser levels, and vice versa, i.e., how to compute the values
(pixel intensities) of the image I l using values from image I l−1 at the finer
level (restriction) or from image I l+1 at the coarser level (prolongation). For
the restriction, the full-weighting operator is a standard choice: values of the
coarse grid points are the weighted average of the values of their neighbors on
the fine grid (see Figure 4.10 for an illustration). Noting I l

i,j the intensity of

the pixel (i, j) of image I l, it is defined as follows:

I l+1
i,j =

1

16

[

I l
2i−1,2j−1 + I l

2i−1,2j+1 + I l
2i+1,2j−1 + I l

2i+1,2j+1

+ 2(I l
2i,2j−1 + I l

2i−1,2j + I l
2i+1,2j + I l

2i,2j+1) (4.13)

+ 4I l
2i,2j

]

,

10The white part of the eye.
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Figure 4.9: Multigrid Hierarchy. Schematic view of a grid definition for image
processing (image from ORL face database, cf. Section 4.3.7).

Figure 4.10: Restriction and Prolongation.

except on the boundaries of the image (when i = 0, j = 0, i = 2a−l+1 and/or
j = 2b−l+1) where the weights are adapted correspondingly. For example, to
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restrict a 3× 3 image to a 2× 2, R is defined with

R =
1

9







4 2 0 2 1 0 0 0 0
0 2 4 0 1 2 0 0 0
0 0 0 2 1 0 4 2 0
0 0 0 0 1 2 0 2 4







,

(3× 3 images needing first to be vectorized to vectors in R9, by concatenation
of either columns or rows).

For the prolongation, we set the values on the fine grid points as the average
of the values of their neighbors on the coarse grid:

I l
i,j = meani′∈rd(i/2)

j′∈rd(j/2)

(

I l+1
i′,j′

)

, (4.14)

where

rd(k/2) =

{
{k/2} k even,
{(k − 1)/2, (k + 1)/2} k odd.

For example, to prolongate a 2× 2 image to a 3× 3, P is defined with

PT =
1

4







4 2 0 2 1 0 0 0 0
0 2 4 0 1 2 0 0 0
0 0 0 2 1 0 4 2 0
0 0 0 0 1 2 0 2 4







.

Note that these transformations clearly preserve nonnegativity.

4.3.5 Multigrid Cycle

Now that grids and transfer operators are defined, we need to choose the pro-
cedure that is applied at each grid level as it moves through the grid hierarchy.
In this section, we present three different approaches: nested iteration, V-cycle
and full multigrid cycle.

In our setting, the transfer operators only change the number of rows m of
the input matrix M , i.e., the number of pixels in the images of the database:
the size of the images is approximatively four times smaller between each level:
m′ ≈ 1

4m. Since the computational complexity per iteration of the three algo-
rithms (ANLS, MU and HALS) is almost proportional to m (cf. Section 4.2.1
and Appendix A), the iterations will be approximately four times cheaper.
Therefore spending three quarter of the total time at the current level, and one
quarter at the coarser levels leads to perform approximately the same number
of iterations at each level (except at the coarsest one), which seems to give
good results in practice. Table 4.3 shows the time spent and the corresponding
number of iterations performed at each level.
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Level 1 Level 2 . . . Level Level L Total

(finer) . . . L− 1 (coarser)

# iterations 3k 3k . . . 3k 4k (3L + 1)k

time 3
4T 3

16T . . . 3
4L-1 T 1

4L-1 T T

Table 4.3: Number of iterations performed and time spent at each level when
allocating among L levels a total computational budget T corresponding to 4k
iterations at the finest level.

Note that the transfer operators require O(mn) operations and since they
are only performed once between each level, their computational cost can be
neglected (at least for r ≫ 1 and/or when a sizeable amount of iterations are
performed).

Nested Iteration (NI)

To initialize NMF algorithms, we propose to factorize the image at the coarsest
resolution and then use the solution as a initial guess for the next (finer) resolu-
tion. This is referred to as nested iteration, see Figure 4.11 for an illustration of
the repartition of the iterations with three levels, Figure 4.12 for an illustration
of the time spent at each level, and Algorithm 7 for the implementation. The
idea is to start off the final iterations at the finer level with a better initial
estimate, thus reducing the computational time required for the convergence
of the iterative methods on the fine grid. The number of iterations and time
spent at each level is chosen according to Table 4.3, i.e., one quarter of the time
is alloted for iterations at the coarser levels followed by three quarters at the
current level.

Figure 4.11: Nested Iteration. Transition between different levels for nested
iteration.

Remark 4.2. When the ANLS algorithm is used, the prolongation of U ′ does
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Figure 4.12: Nested Iteration. Time spent at current level.

Algorithm 7 Nested Iteration

Require: Number of levels L ∈ N, data matrix M ∈ Rm×n
+ , initial matrices

(U0, V0) ∈ Rm×r
+ ×Rr×n

+ , and total time allocated to the algorithm T ≥ 0.

1: if L = 1 then
2: [U, V ] = NMF algorithm(M, U0, V0, T );
3: else
4: M ′ = R(M); U ′

0 = R(U0);
5: [U ′, V ] = Nested Iteration(L− 1, M ′, U ′

0, V0, T/4);
6: U = P(U ′);

7: [U, V ] = NMF algorithm(M, U, V, 3T/4);
8: end if

not need to be computed since that algorithm only needs an initial value for
one iterate. Note that this can be used in principle to avoid computing any
prolongation, by setting U directly as the optimal solution of the NNLS problem
minU≥0 ||M − UV ||F .

V–Cycle (VC)

A drawback of nested iteration is that it does not take advantage of the smooth-
ing properties of iterations on fine grids (high-frequency components of the error
are reduced faster). It is therefore often more efficient to perform a few iter-
ations at the fine level before going to coarser levels. The simplest choice is
referred to as V-cycle and is illustrated on Figure 4.13 (with three levels) and
Figure 4.14; see Algorithm 8 for the implementation. Time allocation is as
follows: one quarter of the alloted time is devoted to iterations at the current
level, followed by one quarter of the time for the recursive call to the imme-
diately coarser level, and finally one half of the time again for iterations at
the current level (we have therefore three quarters of the total time spent for
iterations at current level, as for nested iteration).

Full Multigrid (FMG)

Combining ideas of nested iteration and V-cycle leads to a full multigrid cycle
defined recursively as follows: at each level, a V-cycle is initialized with the
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Figure 4.13: V-cycle. Transition between different levels for V-cycle.

Figure 4.14: V-cycle. Time spent at current level.

Algorithm 8 V-cycle

Require: Number of levels L ∈ N, data matrix M ∈ Rm×n
+ , initial matrices

(U0, V0) ∈ Rm×r
+ ×Rr×n

+ , and total time allocated to the algorithm T ≥ 0.

1: if L = 1 then
2: [U, V ] = NMF algorithm(M, U0, V0, T );
3: else
4: [U, V ] = NMF algorithm(M, U0, V0, T/4);
5: M ′ = R(M); U ′ = R(U);
6: [U ′, V ] = V-cycle(L− 1, M ′, U ′, V, T/4);
7: U = P(U ′);

8: [U, V ] = NMF algorithm(M, U, V, T/2);
9: end if

solution obtained at the underlying level using a full-multigrid cycle. This is
typically the most efficient multigrid strategy [144]. In this case, we propose
to partition the time as follows (T is the total time): T

4 for the initialization

(call of the full multigrid on the underlying level) and 3T
4 for the V-cycle at the

current level (see Figure 4.15 and Algorithm 9).

4.3.6 Smoothing Properties

We explained why the multilevel strategy was potentially able to accelerate
iterative algorithms for NMF: cheaper computations and smoothing of the error
on coarse levels. Before giving extensive numerical results in Section 4.3.7, we
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Figure 4.15: Full multigrid. Time spent at current level.

Algorithm 9 Full Multigrid

Require: Number of levels L ∈ N, data matrix M ∈ Rm×n
+ , initial matrices

(U0, V0) ∈ Rm×r
+ ×Rr×n

+ , and total time allocated to the algorithm T ≥ 0.

1: if L = 1 then
2: [U, V ] = NMF algorithm(M, U0, V0, T );
3: else
4: U ′ = R(U0); M ′ = R(M); *
5: [U ′, V ] = Full Multigrid(L− 1, M ′, U ′, V0, T/4);
6: U = prolongation(U ′);
7: [U, V ] = V-cycle(L, M, U, V, 3T/4);
8: end if

*Note that the restrictions of M should be computed only once for each level.

illustrate this crucial feature of multilevel methods on the ORL face database.
Comparing three levels, Figure 4.16 displays the error (after prolongation

to the fine level) for two faces and for different number of iterations (10, 50
and 100) using MU. Comparing the first row and the last row of Figure 4.16,
it is clear that, in this example, the multilevel approach allows a significant
smoothing of the error. Already after 10 iterations, the error obtained with the
prolongated solution of the coarse level is smoother and smaller (see Figure 4.17)
while it is computed much faster.

Figure 4.17 gives the evolution of the error with respect to the number of
iterations performed (left) and with respect to computational time (right). In
this example, the initial convergence after a given number of iteration on the
three levels is comparable, while the computational cost to achieve a given
accuracy is much cheaper on coarse levels. In fact, compared to the fine level,
the middle (resp. coarse) level is approximately 4 (resp. 16) times cheaper.

4.3.7 Computational Results

To evaluate the performances of our multilevel approach, we present some nu-
merical results for several standard image databases, see Table 4.3.7.

For each database, the multilevel strategy is tested using 100 runs initial-
ized with the same random matrices for the three algorithms (ANLS, MU and
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Figure 4.16: Smoothing on Coarse Levels. Example of the smoothing properties
of the multilevel approach on the ORL face database. Each image represents
the absolute value of the approximation error (black tones indicate a high error)
of one of two faces from the ORL face database. These approximations are the
prolongations (to the fine level) of the solutions obtained using the multiplica-
tive updates on a single level, with r = 40 and the same initial matrices. From
top to bottom: level 1 (fine), level 2 (middle) and level 3 (coarse); from left to
right: 10 iterations, 50 iterations and 100 iterations.

Data # pixels m n r

ORL face1 112× 92 10304 400 40
Umist face2 112× 92 10304 575 40

Iris3 960× 1280 1228800 8 4
Hubble Telescope [126] 128× 128 16384 100 8

Table 4.4: Image datasets.

1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2 http://www.cs.toronto.edu/∼roweis/data.html
3 http://www.bath.ac.uk/elec-eng/research/sipg

HALS) and the three multigrid cycles (NI, VC and FMG), with a time limit of
10 seconds. All algorithms have been implemented in MATLAB® 7.1 (R14)
and tested on a 3GHz Intel® Core™2 Dual CPU PC.
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Figure 4.17: Evolution of the error on each level, after prolongation on the fine
level, with respect to (left) the number of iterations performed and (right) the
computational time. Same setting as in Figure 4.16.

Results

Tables 4.5, 4.6 and 4.7 give the mean error attained within 10 seconds using
the different approaches.

# lvl ORL Umist Iris Hubble
NMF 1 14960 26013 28934 24.35
NI 2 14683 25060 27834 15.94

3 14591 24887 27572 16.93
4 14580 24923 27453 17.20

VC 2 14696 25195 27957 16.00
3 14610 24848 27620 16.12
4 14599 24962 27490 16.10

FMG 2 14683 25060 27821 16.10
3 14516 24672 27500 16.56
4 14460 24393 27359 16.70

Table 4.5: Comparison of the mean error on the 100 runs with ANLS.

In all the cases, the multilevel approaches generate much better solutions than
the original NMF algorithms; indicating that it is able to accelerate their con-
vergence. The full multigrid cycle is, as expected, the best strategy while nested
iteration and V-cycle give inferior performances (except for the Hubble images
where NI with ANLS and VC for MU are better than FMG). We also observe
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# lvl ORL Umist Iris Hubble
NMF 1 34733 131087 64046 21.68
NI 2 23422 87966 37604 22.80

3 20502 67131 33114 18.49
4 19507 59879 31146 16.19

VC 2 23490 90064 36545 10.62
3 20678 69208 32086 9.77
4 19804 62420 30415 9.36

FMG 2 23422 87966 37504 22.91
3 19170 58469 32120 15.06
4 17635 46570 29659 11.71

Table 4.6: Comparison of the mean error on the 100 runs with MU.

# lvl ORL Umist Iris Hubble
NMF 1 15096 27544 31571 17.97
NI 2 14517 25153 29032 17.37

3 14310 24427 28131 16.91
4 14280 24256 27744 16.92

VC 2 14523 25123 28732 17.37
3 14339 24459 28001 17.02
4 14327 24364 27670 17.04

FMG 2 14518 25153 29120 17.39
3 14204 23950 27933 16.69
4 14107 23533 27538 16.89

Table 4.7: Comparison of the mean error on the 100 runs with HALS.

that the additional speed up of the convergence when the number of levels is
increased from 3 to 4 is less significant; the final error achieved is even increased
in some cases. In general, the ‘optimal’ number of levels will depend on the
size and the smoothness of the data.

HALS combined with the full multigrid cycle is one of the best strategies.
Figure 4.18 displays the distribution of the errors for the different databases in
this particular case. For the ORL and Umist databases, the multilevel strategy
is extremely efficient: all the solutions generated with 2 and 3 levels are better
than the original NMF algorithm. For the Iris and Hubble databases, the dif-
ference is not as clear. The reason is that the corresponding NMF problems are
‘easier’ because the rank r is smaller. Hence the algorithms converge faster to
stationary points, and the distribution of the final errors is more concentrated.

In order to visualize the evolution of the error through the iterations, Fig-
ure 4.19 displays the evolution of the objective function with respect to the
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Figure 4.18: Distribution of the error among the 100 random initializations
using the HALS algorithm with a full multigrid cycle: (top left) ORL, (top
right) Umist, (bottom left) Iris, and (bottom right) Hubble.

number of iterations independently for each algorithm and each database using
nested iteration as the multigrid cycle (which is the easiest to represent). In
all the cases, the prolongations of the solutions from the lower levels generate
much better solutions that the one obtained on the fine level.

These test results are very encouraging: the multilevel approach for NMF
seems very efficient and allows to speed up convergence of algorithms signifi-
cantly.

4.3.8 Extensions of the Multilevel Approach

Generalization

We have only used our multilevel approach for a specific objective function
(sum of squared errors) to speed up three NMF algorithms (ANLS, MU and
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Figure 4.19: Evolution of the objective function. From left to right : MU, ANLS
and HALS. From top to bottom: ORL, Umist, Iris and Hubble databases. 1
level stands for the standard NMF algorithms. The initial points for the curves
2 levels and 3 levels are the prolongated solutions obtained on the coarser levels
using nested iteration, cf. Section 4.3.5. All algorithms were initialized with the
same random matrices.

HALS) and to factorize 2D images. However, this can be easily generalized
to other objective functions, other iterative algorithms and applied to other
kind of smooth data. Moreover, other types of coarse grid definition, transfer
operators and grid cycle can be used and could potentially improve efficiency.
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A limitation of the proposed approach is that the multigrid strategy is
only applied to one dimension of the matrix (because we did not assume that
the different images are related to each other in any way). However, in some
applications, rows of matrix M might also be restricted to lower dimensional
spaces. For example, in hyperspectral data analysis, each column of matrix
M represents an image at a given wavelength, while each row represents the
spectral signature of a pixel, see Chapter 7. Since spectral signatures feature
smooth components as well, the multilevel strategy can be used to reduce both
dimensions of the data matrix.

This idea can also be extended to nonnegative tensor factorization (NTF)
(see, e.g., [153] and references therein where it is used to analyze the hyper-
spectral Hubble telescope images) by using multilevel techniques for higher
dimensional spaces.

Initialization

Several judicious initializations for NMF algorithms have been proposed in the
literature and allow to speed up convergence and improve, in general, the final
solution [18, 41]. The computational cost of these good initial guesses depends
on the matrix dimensions and will then be cheaper to compute on the coarsest
grid. Therefore, it would be interesting to combine classical NMF initializations
techniques with our multilevel approach for further speedups.

Unstructured data

A priori, applying a multilevel method to data for which we do not have any
information about the matrix to factorize (and a fortiori about the solution)
seems out of reach. In fact, in these circumstances, there is no sensible way to
define the transfer operators.

However, it is not hopeless to extend the multilevel idea to other type of
data. For example, in text mining applications, the term-by-document matrix
could be restricted by stacking synonyms or similar texts together (similarly as
in [134]). Of course, this implies some a priori knowledge or preprocessing of
the data (which should be cheap enough to be profitable).

Conclusion

In this chapter, we have described three of the most used NMF algorithms:
MU, ANLS and HALS. We have then proposed a modification of MU and
HALS, motivated by the analysis of the computations needed at each iteration
of these algorithms. It was experimentally shown that these modified versions
outperform the original ones, and compare favorably with a state-of-the-art
algorithm, namely the ANLS method of Kim and Park [99]. HALS and its
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accelerated version are the most efficient variants for solving NMF problems,
sometimes from afar. Besides the extensive numerical experiments, we have
given a theoretical explanation for that fact, see Section 4.2.4. The reason is
that NMF solutions are expected to be parts-based, i.e., in a decomposition
M ≈ UV the supports of the columns of U (resp. rows of V ) will be ‘almost’
disjoint, and an exact-coordinate descent method such as HALS allows to solve
the nearly separable NNLS subproblems efficiently.

We have also proposed a multilevel approach to speed up NMF algorithms
whose efficiency was experimentally demonstrated.
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Chapter 5

Nonnegative Factorization

In the special case where we seek a rank-one factorization (i.e., when r = 1),
NMF is known to be polynomially solvable, cf. Section 2.2.2 and Chapter 3.
The central problem studied in this chapter, called rank-one nonnegative fac-
torization (R1NF), is an extension of rank-one NMF where the matrix to be
approximated by the outer product of two nonnegative vectors is now allowed
to contain negative elements.

R1NF is introduced in Section 5.1, where it is shown that allowing negative
elements in the matrix transforms the polynomially solvable rank-one NMF
problem into a NP-hard problem. The reduction used in the proof is based on
the problem of finding a maximum-edge biclique in a bipartite graph. Because
any algorithm designed to solve NMF must at least implicitly solve R1NF prob-
lems, this hardness result sheds new light on the limitations of NMF algorithms
and the complexity of NMF when the factorization rank r is fixed.

In Section 5.2, stationary points of the R1NF problem used in the above-
mentioned reduction are shown to coincide with bicliques of the corresponding
graph. Building on that fact, Section 5.3 introduces a new type of biclique
finding algorithm that relies on the application of a simple nonlinear optimiza-
tion scheme (exact block-coordinate descent, similar as HALS) to the equiva-
lent R1NF problem considered earlier, which only requires for each iteration a
number of operations proportional to the number of edges of the graph. This
method is then compared to a greedy heuristic and an existing algorithm on
some synthetic and text mining datasets, and is shown to perform competi-
tively.

Finally, in Section 5.4, the multiplicative updates for NMF are generalized
for matrices M with negative entries. This allows us to comprehend the differ-
ences between the MU and HALS algorithms for NMF, and give an explanation
for the better performance of HALS.
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5.1 Rank-one Nonnegative Factorization (R1NF)

Solving NMF amounts to finding r nonnegative rank-one factors U:kVk:, each
having to satisfy the following equality as well as possible

U:kVk: ≈M −
∑

i6=k

U:iVi:
.
= Rk � 0 ∀k,

i.e., each of them should be the best possible nonnegative rank-one approxima-
tion of the corresponding residual matrix, denoted Rk. It is important to notice
here that, unlike input matrix M , matrices Rk can contain negative elements.
Therefore, any NMF algorithm has to solve, at least implicitly, the following
subproblems

min
U:k∈Rm,Vk:∈Rn

||M − UV ||2F = ||Rk − U:kVk:||2F such that U:k ≥ 0, Vk: ≥ 0,

(5.1)
for each k. We may wonder whether these subproblems can be solved efficiently,
i.e., ask ourselves

Is it possible to compute in polynomial time the best rank-one non-
negative approximation of a matrix which is not necessarily non-
negative?

A first observation is that computing the globally optimal value of U:k for a
given value of Vk: can be done in closed-form (and similarly for computing the
optimal value of Vk: for a fixed U:k), and this constitutes an efficient strategy
to solve NMF; this is the basis for the HALS algorithm, see Chapter 4.

5.1.1 Definition of R1NF and Implications for NMF

In order to shed some light on the above question, we define the problem of
rank-one nonnegative factorization1 (R1NF) to be the variant of rank-one NMF
where the matrix to be factorized can be any real matrix, i.e., is not necessarily
nonnegative. Formally, given an m×n real matrix R ∈ Rm×n

+ , one has to find a
pair of nonnegative vectors u ∈ Rm and v ∈ Rn such that the nonnegative rank-
one product uvT is the best possible approximation (in the Frobenius norm) of
matrix R:

min
u∈Rm,v∈Rn

||R − uvT ||2F such that u ≥ 0, v ≥ 0. (R1NF)

The next subsection shows that, in contrast with standard rank-one NMF, this
problem is NP-hard, which provides the following new insights about the NMF
problem:

1This terminology has already been used for the problem of finding a symmetric non-
negative factorization, i.e., one where U=V, see, e.g., [87]. Also, in Chapter 3, a rank-k
nonnegative factorization referred to an exact approximation of the factorized matrix. In
this chapter, we assign it a different meaning.
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⋄ We cannot expect to be able to solve subproblems (5.1) in polynomial
time up to global optimality, and the HALS algorithm most probably
cannot be improved with a better scheme for successively computing rank-
one factors U:kVk: arising in (5.1). More generally, any algorithm for
NMF cannot expect to solve at each iteration a subproblem where a
given column of U:k and its corresponding row Vk: are to be optimized
simultaneously. This shows that, in that sense, the partition of variables
for block-coordinate schemes such as alternative nonnegative least squares
(ANLS, optimizing U and V alternatively) and (implicitly) HALS is best
possible.

⋄ Recall that the NP-hardness result characterizing NMF requires both the
dimensions of matrix M and the factorization rank r of M to increase,
and that the complexity of NMF for a fixed rank r is currently not known
(except in the polynomially solvable rank-one case), see Chapter 3. Our
hardness result on (R1NF) therefore suggests that NMF is also a difficult
problem for any fixed rank r ≥ 2. Indeed, even if one was given the
optimal solution of a NMF problem except for a single rank-one factor, it
is not guaranteed that one would be able to find this last factor in poly-
nomial time, since the corresponding residual matrix is not necessarily
nonnegative.

5.1.2 Complexity of R1NF and the Biclique Problem

In this section, we show how the optimization version of the maximum-edge
biclique problem (MB) can be formulated as a specific rank-one nonnegative
factorization problem (R1NF-MB). Since the decision version of (MB) is NP-
complete [127], this implies that rank-one nonnegative factorization (R1NF) is
in general NP-hard.

The Maximum-Edge Biclique Problem in Bipartite Graphs

A bipartite graph Gb is a graph whose vertices can be divided into two disjoint
sets V1 and V2 such that there is no edge between two vertices in the same set

Gb = (V, E) =
(

V1 ∪ V2, E ⊆ (V1 × V2)
)

.

A biclique Kb is a complete bipartite graph, i.e., a bipartite graph where all
the vertices are connected

Kb = (V ′, E′) =
(

V ′
1 ∪ V ′

2 , E′ = (V ′
1 × V ′

2)
)

.

The so-called maximum-edge biclique problem in a bipartite graph Gb = (V, E)
is the problem of finding a biclique Kb = (V ′, E′) in Gb (i.e., V ′ ⊆ V and
E′ ⊆ E) maximizing the number of edges |E′| = |V ′

1 ||V ′
2 |. The decision problem:
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Given B, does Gb contain a biclique with at least B edges?

has been shown to be NP-complete [127], and the corresponding optimization
problem is at least NP-hard.

Let Mb ∈ {0, 1}m×n be the biadjacency matrix of the unweighted bipartite
graph Gb = (V1 ∪ V2, E) with V1 = {s1, . . . sm} and V2 = {t1, . . . tn}, i.e.,
Mb(i, j) = 1 if and only if (si, tj) ∈ E. We denote by |E| the cardinality of E,
i.e., the number of edges in Gb; note that |E| = ||Mb||2F . The set of indices of
zero values in Mb will be denoted Z = {(i, j) |Mb(i, j) = 0}, and its cardinality
|Z|, with |E|+ |Z| = mn. With this notation, the maximum biclique problem
in Gb can be formulated as

min
u,v

||Mb − uvT ||2F
uvT ≤M, (MB)

u ∈ {0, 1}m, v ∈ {0, 1}n,

where ui = 1 (resp. vj = 1) means that node si (resp. tj) belongs to the
solution, ui = 0 (resp. vj = 0) otherwise. The constraint uvT ≤M guarantees
feasible solutions of (MB) to be bicliques of Gb. In fact,

Mij = 0 ⇒ ui = 0 or vj = 0,

i.e., if there is no edge between si and tj , they cannot belong to the same bi-
clique. One can also check easily that the objective is equivalent to max

∑

ij uivj

since Mb, u and v are binary: instead of maximizing the number of edges inside
the biclique, one minimizes the number of edges outside.
Feasible solutions of (MB) correspond to bicliques of Gb. We will be partic-
ularly interested in maximal bicliques, which are bicliques not contained in a
larger biclique.

Complexity of R1NF

Let us define the following rank-one nonnegative factorization problem

min
u∈Rm,v∈Rn

||Md − uvT ||2F such that u ≥ 0, v ≥ 0 (R1NF-MB)

where Md is the matrix Mb where the zero values have been replaced by −d,
i.e.,

(Md)ij =

{
1 if (Mb)ij = 1
−d if (Mb)ij = 0

, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where d ≥ 1 is a parameter. Although (R1NF-MB) is a continuous optimization
problem, we are going to show that, for a sufficiently large value of d, any of
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its optimal solutions has to coincide with a binary optimal solution of the
corresponding (discrete) biclique problem (MB), which will then imply NP-
hardness of (R1NF).
Intuitively, if a −d entry of Md is approximated by a positive value, say p, the
corresponding term in the squared Frobenius norm of the error is d2+2pd+p2.
As d increases, it becomes more and more costly to approximate −d by a
positive number and we will show that, for d is sufficiently large, negative
values of Md have to be approximated by zeros. Since the remaining values
(not approximated by zeros) are all ones, the optimal rank-one solution will be
binary.

From now on, we say that a solution (u, v) coincides with another solution
(u′, v′) if and only if uvT = u′v′T , i.e., if and only if u′ = λu and v′ = λ−1v for
some λ > 0.

We note M+ the positive part of matrix M , with (M+)ij = max(0, Mij)
and M− the negative part of matrix M , with (M−)ij = max(0,−Mij) so that
M = M+ −M−. We also note min(M) the minimum element of matrix M ,
min(M) = minij(Mij).

Lemma 5.1. Any optimal rank-one approximation with respect to the Frobe-
nius norm (see Problem (LRA-1) in Section 2.2) of a matrix M for which
min(M) ≤ −||M+||F contains at least one nonpositive entry.

Proof. If M = 0, the result is trivial. If not, we have min(M) < 0 since
min(M) ≤ −||M+||F . Suppose now (u, v) > 0 is a best rank-one approximation
of M . Therefore, since the negative values of M are approximated by positive
ones and since M has at least one negative entry, we have

||M − uvT ||2F > ||M−||2F . (5.2)

By the Eckart-Young theorem, the optimal rank-one approximation uvT must
satisfy (see Section 2.2)

||M − uvT ||2F ≥ ||M ||2F − σmax(M)2 = ||M ||2F − ||M ||22 .

Clearly,

||M ||2F = ||M+||2F + ||M−||2F and ||M ||22 ≥ min(M)2,

so that we can write

||M − uvT ||2F ≤ ||M+||2F + ||M−||2F −min(M)2 ≤ ||M−||F ,

which is in contradiction with (5.2).

Before stating the main result of this Chapter, about the equivalence of
(R1NF-MB) and (MB), let us recall that the local minima of the best rank-one
approximation problem with respect to the Frobenius norm are global minima
(see Theorem 2.5).
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Theorem 5.2. For d ≥
√

|E|, any optimal solution (u,v) of (R1NF-MB)
coincides with an optimal solution of (MB), i.e., uvT is binary and uvT ≤Mb.

Proof. We focus on the entries of uvT which are positive and define their sup-
port as

K =
{

i ∈ {1, 2, . . . , m}
∣
∣
∣ ui > 0

}

and L =
{

j ∈ {1, 2, . . . , n}
∣
∣
∣ vj > 0

}

.

(5.3)
We also define u′ = v(K), v′ = w(L) and M ′

d = Md(K, L) to be the subvectors
and submatrix with indexes in K, L and K×L. Since (u, v) is optimal for Md,
(u′, v′) must be optimal for M ′

d. Suppose there is a −d entry in M ′
d, then

min(M ′
d) = −d ≤ −

√

|E| = −||(Md)+||F ≤ −||(M ′
d)+||F ,

so that Lemma 5.1 holds for M ′
d. Since (u′, v′) is positive (i.e., it is located

inside the feasible domain) and is an optimal solution of (R1NF-MB) for M ′
d,

it is a local minimum of problem without the nonnegativity constraints, i.e.,
the problem (LRA-1) of best rank-one approximation. By Theorem 2.5, this
must be a global minimum. This is a contradiction with Lemma 5.1: (u′, v′)
should contain at least one nonpositive entry. Therefore M ′

d does not contain
any −d entry, and we have M ′

d = 1|K|×|L| which implies than u′v′T = M ′
d by

optimality (it is the unique rank-one solution u′v′T with objective value equals
to zero) and finally allows to conclude that uvT is binary and uvT ≤Mb.

We have just proven the following theorem:

Theorem 5.3. Rank-one nonnegative factorization (R1NF) is NP-hard.

5.2 Stationary Points

We have shown that optimal solutions of (R1NF-MB) coincide with optimal
solutions of (MB) for d ≥

√

|E|, whose computation is NP-hard. In this
section, we focus on stationary points of (R1NF-MB) instead: we show how
they are related to the feasible solutions of (MB). This result will be used in
Section 5.3 to design a new type of biclique finding algorithm.

5.2.1 Definitions and Notations

The pair (u, v) is a stationary point for problem (R1NF-MB) if and only if it
satisfies its first-order optimality conditions (cf. Section 2.1), i.e., if and only if

u ≥ 0, µ = (uvT −Md)v ≥ 0 and u ◦ µ = 0, (5.4)

v ≥ 0, λ = (uvT −Md)
T u ≥ 0 and v ◦ λ = 0. (5.5)
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Of course, we are only interested in nonzero solutions and, assuming that u 6= 0
and v 6= 0, one can check that conditions (5.4)-(5.5) are equivalent to

u = max
(

0,
Mdv

||v||22

)

and v = max
(

0,
MT

d u

||u||22

)

. (5.6)

We define three sets of rank-one matrices:

1. Given a positive real number d, Sd is the set of nonzero stationary points
of (R1NF-MB), i.e.,

Sd = {uvT ∈ Rm×n | (u, v) satisfies (5.4) and (5.5)} ;

2. F is the set of feasible solutions of (MB), i.e.,

F = {uvT ∈ Rm×n | (u, v) is a feasible for (MB)},

3. B is the set of maximal bicliques of (MB), i.e., uvT ∈ B if and only if
uvT ∈ F and uvT coincides with a maximal biclique.

5.2.2 Stationarity of Maximal Bicliques

The next theorem states that, for d sufficiently large, the only nonzero feasible
solutions of (MB) that are stationary points of (R1NF-MB) are the maximal
bicliques.

Theorem 5.4. For d > max(m, n)− 1, F ∩ Sd = B.

Proof. If M = 0 the result is trivial. Otherwise, let us show that uvT ∈ B if
and only if uvT ∈ F and uvT ∈ Sd. By definition, uvT belongs to B if and only
if uvT belongs to F and is maximal, i.e.,

(*) ∄i such that ui = 0 and Md(i, j) = 1, ∀j s.t. vj 6= 0,

(**) ∄j such that vj = 0 and Md(i, j) = 1, ∀i s.t. ui 6= 0.

Since uvT is binary and u 6= 0, the nonzero entries of v must be equal to each
other. Noting L the support of v (see Equation (5.3)), we then have

vj =
||v||1
|L| = C, ∀ j ∈ L,

for some C ∈ R+. Moreover, d > max(m, n)− 1 so that (*) is equivalent to

∄ i such that ui = 0 and Md(i, :)v > 0
⇐⇒

ui = 0⇒Md(i, :)v ≤ 0 and ui 6= 0⇒ ui = 1
C = ||Md(i,:)||1

||v||1 = Md(i,:)v
||v||2

2

.
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These are exactly the stationarity conditions for v 6= 0, cf. Equation (5.6). By
symmetry, (**) is equivalent to the stationarity conditions for v, so that we can
conclude that uvT ∈ B if and only if uvT ∈ F and uvT ∈ Sd.

5.2.3 Limit Points of Sd

Theorem 5.4 implies that, for d sufficiently large, B ⊂ Sd. It would be in-
teresting to have the converse affirmation, i.e., to show that for d sufficiently
large, any stationary point of (R1NF-MB) corresponds to a maximal biclique
of (MB). As we will see later, this property unfortunately does not hold. How-
ever, the following slightly weaker result can be proved: as d goes to infinity, the
points in Sd get closer and closer to feasible solutions of (MB), i.e., to bicliques
of the graph Gb. As a consequence, rounding stationary points of (R1NF-MB)
for d sufficiently large will generate bicliques of Gb.

Lemma 5.5. The set Sd is bounded, i.e., ∀d > 0, ∀uvT ∈ Sd:

||uvT ||2 = ||u||2||v||2 ≤
√

|E|.

Proof. If u = 0 or v = 0, this is trivial; otherwise for any uvT ∈ Sd, we have by
(5.6)

||u||2 =
∣
∣
∣

∣
∣
∣max

(

0,
Mdv

||v||22

)∣
∣
∣

∣
∣
∣
2
≤ ||max(0, Md)v||2

||v||22
≤ ||max(0, Md)||F

||v||2
=

√

|E|
||v||2

.

Lemma 5.6. For uvT ∈ Sd, if Md(i, j) = −d and (uvT )ij > 0, then

0 < ui <
||u||1
d + 1

and 0 < vj <
||v||1
d + 1

.

Proof. By (5.6), we have

0 < vj ||u||22 = Md(:, j)
T u ≤ ||u||1 − (d + 1)ui ⇒ 0 < ui <

||u||1
d + 1

.

The corresponding result for v is obtained similarly.

Theorem 5.7. As d goes to infinity, stationary points of (R1NF-MB) get
arbitrarily close to feasible solutions of (MB), i.e., ∀ǫ > 0, ∃D s.t. ∀d > D:

max
uvT ∈Sd

min
ubvb∈F

||uvT − ubv
T
b ||F < ǫ. (5.7)
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Proof. Let uvT ∈ Sd. We can assume w.l.o.g. that uvT > 0 ; otherwise, we
consider the subproblem with the vectors u(K) and v(L) where K (resp. L)
is the support of u (resp. v) and the matrix M(K, L), see Equation (5.3). In
fact, it is clear that if (u(K), v(L)) is close to a feasible solution of (MB) for
Mb(K, L), then (u, v) is for Mb. We also assume w.l.o.g. that ||v||2 = 1; in fact,

if uvT ∈ Sd,
(

λu 1
λv
)

∈ Sd, ∀λ > 0. Note that Lemma 5.5 implies ||u||2 ≤
√

|E|.
By (5.6),

u = Mdv and v =
MT

d u

||v||22
. (5.8)

Therefore, (u/||u||2, v) > 0 is a pair of singular vectors of Md associated with
the singular value ||u||2 > 0. If Md = 1m×n, the only pair of positive singular

vectors of Md is
(

1√
m

1m, 1√
n
1n

)

so that uvT = Mb coincides with a feasible

solution of (MB).
Otherwise, when Md 6= 1m×n, we define

A =
{

i
∣
∣
∣Md(i, j) = 1, ∀j

}

and B =
{

j
∣
∣
∣ Md(i, j) = 1, ∀i

}

, (5.9)

and their complements Ā = {1, 2, . . . , m}\A, B̄ = {1, 2, . . . , n}\B; hence,

Md(A, :) = 1|A|×n and Md(:, B) = 1m×|B|.

These two sets clearly define the biclique A×B in graph Gb, or, equivalently, a
(binary) feasible solution (ūA, v̄B) for problem (MB), where ūA is equal to one
for indices in A and to zero otherwise (similarly for v̄B and B). We are now
going to show that, for d sufficiently large, uvT is arbitrarily close to ūAv̄B,
which will prove our claim.

Using Lemma 5.6 and the fact that ||x||1 ≤
√

n||x||2, ∀x ∈ Rn, we get

0 < u(Ā) <

√

m|E|
d + 1

1|Ā| and 0 < v(B̄) <

√
n

d + 1
1|B̄|. (5.10)

Therefore, since ||v||2 = 1 and ||u||2 ≤
√

|E|, we obtain

||u(Ā)v − 0||F = ||u(Ā)||2||v||2 <
1

d + 1

(

m
√

|E|
)

, and (5.11)

||uvT (B̄)− 0||F = ||u||2||v(B̄)||2 <
1

d + 1

(

n
√

|E|
)

. (5.12)

It remains to show that u(A)v(B) coincides with a biclique of the (complete)
graph generated by Mb(A, B) = 1|A|×|B| since u(Ā)v and uvT (B̄) tend to zero
as d goes to infinity.
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Noting kv = ||u||1
||u||2

2

and using (5.8), we get v(B) = kv 1|B|. Combining this

with (5.10) gives

1− |B̄|
√

n

d + 1
< ||v||22 − ||v(B̄)||22 = ||v(B)||22 = |B|k2

v ≤ ||v||22 = 1. (5.13)

Moreover, (5.8) implies u(A) = 1|A|×mvT = ||v||11|A| so that

|B|kv ≤ u(A) = (||u(B)||1 + ||u(B̄)||1)1|A| < |B|kv + |B̄|
√

n

d + 1
. (5.14)

Finally, multiplying (5.14) by kv, combining it with (5.13) and noting that,
since ||v||2 = 1, we have kv ≤ 1, we obtain

(

1− |B̄|
√

n

d + 1

)

1|A|×|B| < u(A)v(B) <
(

1 +
|B̄|√n

d + 1

)

1|A|×|B|. (5.15)

We can conclude that, for d sufficiently large, uvT is arbitrarily close to a
feasible solution ūAv̄B of (MB) which corresponds to the biclique (A, B).

Example 5.1. Let

Mb =

(
0 1
1 1

)

and Md =

(
−d 1
1 1

)

.

Clearly,

(
0 1
0 1

)

belongs to the set B, i.e., it corresponds to a maximal bi-

clique of the graph generated by Mb. By Theorem 5.4, for d > 1, it belongs to
Sd, i.e., (u, v) = ((1 1)T , (0 1)T ) is a stationary point of (R1NF-MB).
For d > 1, one can also check that the singular values of Md are different
and that the second pair of singular vectors is positive. Since it is a positive
stationary point of the unconstrained problem, it is also a stationary point of
(R1NF-MB). As d goes to infinity, it must get closer to a biclique of (MB) (The-
orem 5.7). Moreover, Md is symmetric, so that the right and left singular vec-
tors are equal to each other. Figure 5.1 shows the evolution2 with respect to d
of this positive singular vector (v1, v2), which is such that (v1 v2)

T (v1 v2) ∈ Sd.
It converges to (0 1), which means that the outer product of the left and right

singular vectors converges to

(
0 0
0 1

)

, which is a biclique, i.e., a member

of F . We also note that this biclique is not maximal, which shows that the
converse to Theorem 5.4 is false, even asymptotically as d goes to infinity.

Corollary 5.8. For
d ≥ 2max(m, n)

√

|E|, (5.16)

any stationary point uvT ∈ Sd of (R1NF-MB) can be rounded3 to generate a

2By Wedin’s theorem (cf. matrix perturbation theory [141]), singular subspaces of Md

associated with a positive singular value depend continuously on d.
3Values smaller than 0.5 are set to 0, other values are set to 1.
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Figure 5.1: Evolution of (v1, v2).

biclique of the graph Gb generated by Mb.

Proof. Clearly, the condition

max
uvT ∈Sd

min
ubvb∈F

max
ij

(uvT − ubvb)ij <
1

2
,

is sufficient to guarantee that rounding any stationary point of (R1NF-MB)
will generate a biclique of Gb. Looking back at Theorem 5.7, one can check
that this is satisfied (cf. Equations (5.11), (5.12) and (5.15)) for d given by
(5.16) (note that w.l.o.g. |E| ≥ max(m, n), i.e., that each row and each column
of Mb has at least one nonzero entry, otherwise they can be removed).

5.3 Biclique Finding Algorithm

Many real world applications rely on the discovery of maximal biclique sub-
graphs, e.g., web community discovery, biological data analysis and text min-
ing [115]. Some algorithms aim at detecting all the maximal bicliques, which is
computationally challenging (this is closely related to formal concept analysis,
see [65]). In fact, there might be an exponential number of such bicliques and
the problem is at least NP-hard since it would solve (MB), see [2] and the
references therein. For large datasets, it is in general hopeless to extract all the
maximal bicliques in a reasonable computational time. Therefore, one can be
interested in finding only large maximal bicliques, which is what we focus on
in this section.

119



CHAPTER 5. NONNEGATIVE FACTORIZATION

For example, a recent data analysis technique called binary matrix factor-
ization (BMF) aims at expressing a binary matrix M as the product of two
binary matrices [120,154,155]. Each rank-one factor of the decomposition cor-
responds to a bicluster in the bipartite graph Gb generated by M . Finding
bicliques in G allows to solve BMF recursively, since bicliques of G correspond
to binary rank-one underapproximations of M (see also Chapter 6).

In this section, we present a heuristic scheme designed to find large bicliques
in a given graph, whose main iteration requires a number of operations propor-
tional to the number of edges |E| in the graph. It is based on the reduction
from the maximum-edge biclique problem to (R1NF-MB) (Theorems 5.2, 5.4
and 5.7). We compare its performance on random graphs and text mining
datasets with two other algorithms requiring O(|E|) operations per iteration.

5.3.1 Description

For d sufficiently large, stationary points of (R1NF-MB) are close to bicliques
of (MB) (Corollary 5.8). Since (R1NF-MB) is a continuous optimization prob-
lem, any standard nonlinear optimization technique can in principle be used to
compute such a stationary point. One can therefore think of applying an algo-
rithm that finds a stationary point of (R1NF-MB) in order to localize a large
biclique of the graph generated by Mb. Moreover, since the two problems have
the same objective function, stationary points with larger objective functions
will correspond to larger bicliques.

Of course, solving (R1NF-MB) up to global optimality, i.e., finding the best
stationary point, is as hard as solving (MB). However, one can hope that the
nonlinear optimization scheme used will converge to a relatively large biclique
of Gb (i.e., with an objective function close to the global optimum) ; this hope
will be confirmed empirically later in this section.

We choose to use the coordinate descent method presented earlier, i.e., solve
alternatively the problem in the variable u for v fixed, then in the variable v
for u fixed, since the optimal solutions for each of these steps can be written in
closed form, cf. Equation (5.6). We also propose, instead of fixing the value of
parameter d to the value recommended by Corollary 5.8, to start with a lower
initial value d0 and gradually increase it (with a multiplicative factor γ > 1) un-
til it reaches the upper bound D equal to the recommended value. Convergence
of the resulting scheme, Algorithm 10, is proved in the next Theorem.

Theorem 5.9. The rounding of every limit point of Algorithm 10 generates a
biclique of Gb, the bipartite graph generated by Mb.

Proof. When an exact two-block coordinate descent is applied to an optimiza-
tion problem with a continuously differentiable objective function and a feasible
domain equal to the Cartesian product of two closed convex sets (the two blocks
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correspond to Rm
+ and Rn

+ in this case), every limit point of the iterates is a
stationary point (Theorem 2.2).

After a finite number of steps of Algorithm 10, parameter d attains the
upper bound D = 2max(m, n)|E| and no longer changes, so that we can invoke
this result and, using Corollary 5.8, guarantee that the resulting limit points
can be rounded to generate a feasible solution of (MB), i.e., a biclique of Gb.

Algorithm 10 Biclique Finding Algorithm based on Nonnegative Factorization

Require: Bipartite graph Gb = (V, E) described by biadjacency matrix
Mb ∈ {0, 1}m×n, initial values v0 ∈ Rn

++ and d0 > 0, parameter γ > 1.

1: Set parameter D = 2max(m, n)|E| and initialize variables d← d0, v ← v0

2: for k = 1, 2, . . . do
3:

u ← max
(
0, (1 + d)Mbv − d||v||1

)
; (5.17)

u ← u/ max(u) ;

v ← max
(

0,
(1 + d)Mbu

T − d||u||1
||u||22

)

; (5.18)

d ← min(γd, D) ;

4: end for

Note that the normalization of u (u ← u/ max(u)) performed by Algo-
rithm 10 only changes the scaling of the solution uvT and allows (u, v) to
converge to binary vectors. Finally, one can easily check that Algorithm 10
requires only O(|E|) operations per iteration, the main cost being the compu-
tation of the matrix-vector products Mbv and MT

b u (the rest of an iteration
requiring only O(max(m, n)) operations).

Parameters

It is not clear a priori how the initial value d0 should be selected. We observed
that it should not be chosen too large: otherwise, the algorithm often converges
to the trivial solution: the empty biclique. In fact, in that case, the negative
terms (d||v||1 and d||u||1) in (5.17) and (5.18) will dominate, even during the
initial steps of the algorithm, and the solution will be set to zero4.

On the other hand, the algorithm with d = 0 is equivalent to the power
method applied to Mb, and then converges (under some mild assumptions) to

4In practice, we used a safety procedure which reduces the value of d whenever u (resp.
v) is set to zero and reinitializes u (resp. v) to its previous value.
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the best rank-one approximation of Mb [68]. Hence we observed that when d0

is chosen too small, the iterates will in general converge to the same solution.
In order to balance positive and negative entries in Md, we found appropri-

ate to choose an initial value of d such that ||(Md)+||F ≈ ||(Md)−||F , i.e.,

d0 ≈
||Mb||F
√

|Z|
=

√

|E|
|Z| , (5.19)

(recall |Z| is the number of zero entries in Mb). For our tests we chose d0 =

2
√

|E|
|Z| , which appears to work well in practice.

Finally, the algorithm does not seem to be very sensitive to multiplicative
factor γ and selecting values around 1.1 gives good results; this value will be
used for the computational tests below.

5.3.2 Other Algorithms in O(|E|) Operations

We briefly present here two other algorithms designed to find large bicliques
using O(|E|) operations per iteration.

Greedy Heuristic

The simplest heuristic one can imagine is to add, at each step, the vertex which
is connected to the most vertices in the other side of the bipartite graph. Once a
vertex is selected, the vertices which are not connected to the chosen vertex are
deleted. The procedure is repeated on the remaining graph until one obtains a
biclique, which is then necessarily maximal.

Motzkin-Strauss Formalism

In [56], Ding and co-authors extend the generalized Motzkin-Strauss formalism,
defined for cliques, to bicliques by defining the optimization problem

max
x∈F α

x ,y∈F β
y

xT Mb y

where Fα
x = {x ∈ Rn

+|
∑n

i=1 xα
i = 1}, F β

y = {y ∈ Rn
+|
∑n

i=1 yβ
i = 1} and

1 < α, β ≪ 2.
Multiplicative updates for this problem are then provided:

x←
(

x ◦ Mb y

xT Mb y

) 1
α

, y←
(

y ◦ MT
b x

xT Mb y

) 1
β

. (MS)

This algorithm does not necessarily converge to a biclique: if α and β are
not sufficiently small, it may only converge to a dense bipartite subgraph (a
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bicluster). In particular, for α = β = 2, it converges to an optimal rank-one
solution of the unconstrained problem, as Algorithm 10 does for d = 0. For our
tests, we chose α = β = 1.05 as recommended in [56].

In order to evaluate the quality of the solutions provided by this algorithm
when it did not converge to a biclique, we used the following two post-processing
procedures to convert a bicluster into a biclique:

1. Greedy (MS): extract from the generated bicluster a biclique using the
greedy heuristic presented above.

2. Recursive (MS): use the algorithm recursively on the extracted bicluster,
i.e., rerun it on the positive submatrix while decreasing the values of
parameters α and β with α← 1 + α−1

2 and β ← 1 + β−1
2 .

5.3.3 Results

Synthetic Data

We first present numerical experiments with random graphs: for each density
(0.1, 0.3, 0.5, 0.7 and 0.9), 100 bipartite graphs with 200 vertices (100 on each
side, i.e., m = n = 100) were randomly generated (the probability that an
edge belongs to the graph is equal to the density). We then performed, for
each graph, 100 runs with the same random initializations and each algorithm
was allotted 100 iterations, except for the greedy heuristic which was always
run until completion and only once for each graph (since it does not require a
random initialization). Actual amounts of CPU time spent by Algorithms MS
and 10 were comparable, as expected from their similar iteration complexity,
while the greedy heuristic was faster.

Figure 5.2 displays the performance profile for these experiments [57], where
the performance function at ρ ≤ 1 is defined as the percentage, among all graphs
and all runs, of bicliques whose sizes (i.e., number of edges) is larger than ρ
times the size the largest biclique found by any algortihm in the corresponding
graph, i.e.,

performance(ρ) =
#{bicliques | size ≥ ρ× size of best biclique found}

#runs
.

On such a performance profile, the higher the curve, the better ; more specif-
ically, the left part of the graph measures efficiency, i.e., how often a given
algorithm produces the best biclique among its peers, while the right part esti-
mates robustness, i.e., how far from the best non-optimal solutions are. These
two aspects are also reported more quantitatively in Table 5.1, which displays
the value of the performance function at ρ = 1 (Efficicency, i.e., how often
a given algorithm finds a biclique with largest size) and the smallest value of
ρ such that the performance function is equal to 100% (Robustness, i.e., the
relative size of the worst biclique found).
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Figure 5.2: Performance profile for random graphs (densities from 0.1 to 0.9).

We observe on the performance profile that both Algorithm 10 and (MS)
perform better than the greedy heuristic. The variant of (MS) using recursive
post-processing performs slightly better than the one based on the use of the
greedy heuristic. Nevertheless, Algorithm 10 generates in general better solu-
tions: it is more efficient (9% of its solutions are ‘optimal’, twice better than
the greedy (MS)) and more robust (all solutions are at most a factor 0.56 away
from the best solution, better than 0.42 and 0.30 of other algorithms).

Greedy Algo. 10 Greedy M.-S. Rec. M.-S.
Both (Fig. 5.2) 1% | 0.42 9% | 0.56 4% | 0.30 2% | 0.30

Sparse (Fig. 5.3) 0% | 0.33 24% | 0.39 14% | 0.28 14% | 0.28
Dense (Fig. 5.3) 2% | 0.76 16% | 0.80 6% | 0.68 2% | 0.70

Table 5.1: Efficiency | Robustness.

It is worth noting that the algorithms behave quite differently on sparse
and dense graphs. Using the same setting as before, Figure 5.3 displays perfor-
mance profiles for sparse graphs (on the left, with densities 0.05, 0.1, 0.15 and
0.2) and dense graphs (on the right, with densities 0.8, 0.85, 0.9 and 0.95). For
sparse graphs, both versions of (MS) seem to coincide and the greedy heuristic
performs significantly worse. For dense graphs, the greedy heuristic coincides
with the greedy (MS) and performs almost as well as the recursive (MS). How-
ever, in all cases, Algorithm 10 performs better. It is more efficient: it finds
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Figure 5.3: Performance profiles for random graphs: sparse (left, from 0.05 to
0.2) and dense (right, from 0.8 to 0.95).

the best solution in 24% (resp. 16%) of the runs for sparse (resp. dense) graphs
while (MS) only achieves 14% (resp. 6%) and the greedy heuristic 0% (resp.
2%). It is also more robust: all solutions are at most a factor 0.39 (resp. 0.80)
away from the best solution for sparse (resp. dense) graphs, bigger than the
best factor 0.33 (resp. 0.76) of the other algorithms.

Text Datasets

If parameter D in Algorithm 10 is chosen smaller than the value recommended
by Corollary 5.8, the algorithm is no longer guaranteed to converge to a bi-
clique. However, the negative entries in Md will force the corresponding entries
of the solutions of (R1NF-MB) to be small (cf. Theorem 5.7). Therefore, in-
stead of a biclique, one gets a dense submatrix of Mb, i.e., a bicluster. Algo-
rithm 10 can then be used as a biclustering algorithm and the density of the
corresponding submatrix will depend on the choice of parameter D between
0 and 2 max(m, n)|E|. We test this approach on the six text mining datasets
(with sparse matrices) described in Table 5.2.

Figure 5.4 compares Algorithms 10 and MS for varying values of their parame-
ters: for the Motzkin-Strauss formalism, we tested α = β ∈ [1.3, 1.9] with step
size 0.025 and, for Algorithm 10, D ∈ d010[3, 9] with step size 0.25 (d0 given by
Equation (5.19)). For each value, we performed 10 runs (same initializations
for both algorithms and 500 iterations) and plotted all the non-dominated solu-
tions (i.e., for which no other solution has both larger size and higher density)
for each dataset. We observe that our approach consistently generates better
results since its curves dominate the ones of the Motzkin-Strauss formalism,
i.e., the biclusters it finds are denser for the same size or larger for the same
density.
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Data m n |E| sparsity

classic 7094 41681 223839 99.92
sports 8580 14870 1091723 99.14
reviews 4069 18483 758635 98.99
hitech 2301 10080 331373 98.57
ohscal 11162 11465 674365 99.47

la1 3204 31472 484024 99.52

Table 5.2: Text mining datasets [156] (sparsity is given in %: 100 ∗ |Z|/(mn)).

Finally, we mention that Algorithm 10 can be further enhanced in the fol-
lowing ways:

⋄ It is applicable to non-binary matrices, i.e., weighted graphs. Theorem 5.2
can easily be adapted using d ≥ ||M+||F (Lemma 5.1), and one can
show that the resulting algorithm will converge to the optimal rank-one
approximation of a positive submatrix of M .

⋄ It is possible to give more weight to a given side of the biclique by adding
regularization terms to the cost functions. For example, on can consider
the following objective function

min
u,v≥0

||Md − uvT ||2F + α||u||22 + β||v||22

which our algorithm can handle after some straightforward modifications
(namely, the optimal solution for u when v is fixed can still be written in
closed-form, and vice versa).

⋄ If Mb ∈ {0, 1}n×n is the adjacency matrix of a (non bipartite) graph
G = (V, E) with V = {v1, . . . , vn}, i.e., Mb(i, j) = 1 ⇔ (vi, vj) ∈ E, one
can check that formulation (MB) corresponds to the maximum-edge bi-
clique problem in any graph. This only requires that the diagonal entries
of Mb are set to zero (no self loop in the graph) since a vertex cannot si-
multaneously belong to both sides of a biclique. Therefore, all the results
of this chapter are actually valid for not necessarily bipartite graphs.

5.4 Multiplicative Updates for Nonnegative Fac-

torization

In this section, the multiplicative updates (MU) of Lee and Seung presented
in Section 4.1.1 to find approximate solutions of NMF are generalized to not
necessarily nonnegative matrices: given a matrix M ∈ Rm×n and a factorization
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Figure 5.4: Normalized size vs. density for the Motzkin-Strauss formalism
(dashed line) and Algorithm 10 based on (R1NF-MB) (solid line). The x-
axis indicates the normalized sizes of the extracted clusters (i.e., number of
entries in the extracted submatrix divided by the number of entries in the orig-
inal matrix) while the y-axis indicates the density of these clusters (number of
nonzero entries divided by the total number of entries) for the text datasets of
Table 5.2.

rank r, nonnegative factorization (NF) is defined as

min
U∈Rm×r,V ∈Rr×n

||M − UV ||2F such that U ≥ 0, V ≥ 0. (NF)
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Other than providing a way of computing approximate solutions of (NF), this
result will also help us to understand why the updates of Lee and Seung are
not very efficient in practice, see Section 5.4.1.

Of course, any real matrix M can be written as the difference of two non-
negative matrices: M = P − N with P, N ≥ 0. Using the same idea as in
Section 4.1.1, we get the following multiplicative update rules :

Theorem 5.10. For U, V ≥ 0 and M = P−N with P, N ≥ 0, the cost function
||M − UV ||F is nonincreasing under the following update rules:

U ← U ◦ [PV T ]

[UV V T + NV T ]
, V ← V ◦ [UT P ]

[UT UV + UT N ]
. (5.20)

Proof. We only treat the proof for U since the problem is perfectly symmetric.
The cost function can be split into m independent components related to each
row of the error matrix, each depending on a specific row of P , N and U , which
we call respectively p, n and u. Hence, we can treat each row of U separately,
and we only have to show that the function

F (u) =
1

2
||p− n− uV ||2F .

is nonincreasing under the following update

u0 ← u0 ◦
[pV T ]

[u0V V T + nV T ]
, ∀u0 > 0. (5.21)

F is a quadratic function so that

F (u) = F (u0) + (u− u0)∇F (u0) +
1

2
(u − u0)∇2F (u0)(u − u0)

T , ∀u0,

with ∇F (u0) = (−p+n+u0V )V T and ∇2F (u0) = V V T . Let G be a quadratic
model of F around u0:

G(u) = F (u0) + (u− u0)∇F (u0) +
1

2
(u− u0)K(u0)(u− u0)

T

with K(u0) = diag
(

[u0V V T +nV T ]
[u0]

)

. G has the following nice properties (see

below):

(1) G is an upper approximation of F , i.e., G(u) ≥ F (u), ∀u;

(2) The global minimum of G(u) is nonnegative and given by (5.21).
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Therefore, the global minimum of G, given by (5.21), provides a new iterate
which guarantee the monotonicity of F . In fact,

F (u0) = G(u0) ≥ min
v

G(u) = G(u∗) ≥ F (u∗).

It remains to show that (1) and (2) hold.
(1) G(u) ≥ F (u) ∀u. This is equivalent to K(u0)− V V T positive semidefinite

(PSD). Lee and Seung have proved [106] that A = diag
(

[u0V V T ]
[u0]

)

− V V T is

PSD (see also [89]). Since B = diag
(

[nV T ]
[u0]

)

is a diagonal nonnegative matrix

for u0 > 0 and nV T ≥ 0, A + B = K(u0)− V V T is also PSD.

(2) The global minimum of G is given by (5.21):

u∗ = argminuG(u) = u0 −K−1(u0)∇F (u0)

= u0 − u0 ◦
[−pV T + (u0V V T + nV T )]

[u0V V T + nV T ]

= u0 ◦
[pV T ]

[u0V V T + nV T ]
.

As with standard multiplicative updates (cf. Theorem 4.2), convergence can
be guaranteed with a simple modification:

Theorem 5.11. For every constant ǫ > 0 and for M = P −N with P, N ≥ 0,
||M − UV ||F is nonincreasing under

U ← max
(

ǫ, U ◦ [PV T ]

[UV V T + NV T ]

)

, V ← max
(

ǫ, V ◦ [UT P ]

[UT UV + UT N ]

)

,

(5.22)

for any (U, V ) ≥ ǫ. Moreover, every limit point of a sequence of points obtained
by using update (5.22) is a stationary point of the optimization problem (4.2).

Proof. We use exactly the same notation as in the proof of Theorem 5.20, so
that

F (u0) = G(u0) ≥ min
u≥ǫ

G(u) = G(u∗) ≥ F (u∗), u0 ≥ ǫ

remains valid. By definition, K(u0) is a diagonal matrix implying that G(u) is
the sum of r independent quadratic terms, each depending on a single entry of
v. Therefore,

argminu≥ǫG(u) = max
(

ǫ, u0 ◦
[pV T ]

[u0V V T + nV T ]

)

,
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and the monotonicity is proved.
Let (Ū , V̄ ) be a limit point of a sequence {(Uk, V k)} generated by (5.22). The
monotonicity implies that {||M − UkV k||F } converges to ||M − Ū V̄ ||F since
the cost function is bounded from below. Moreover,

Ūik = max
(

ǫ, αik Ūik

)

, ∀i, k (5.23)

where

αik =
Pi:V̄

T
k:

Ūi:V̄ V̄ T
k: + Ni:V̄ T

k:

,

which is well-defined since Ūi:V̄ V̄ T
k: > 0. One can easily check that the station-

arity conditions of (4.2) for Ū are

Ūik ≥ ǫ, αik ≤ 1 and (Ūik − ǫ) (αik − 1) = 0, ∀i, k.

Finally, by (5.23), we have either Ūik = ǫ and αik ≤ 1, or Ūik > ǫ and αik =
1,∀i, k. The same can be done for V̄ by symmetry.

In order to implement the updates (5.20), one has to choose the matrices P
and N . It is clear that ∀P, N ≥ 0 such that M = P −N , there exists a matrix
C ≥ 0 such that the two components P and N can be written P = M+ + C
and N = M− + C. When C goes to infinity, the above updates do not change
the matrices U and V , which seems to indicate that smaller values of C are
preferable. Indeed, in the case r = 1, one can prove that C = 0 is an optimal
choice:

Theorem 5.12. For any P, N ≥ 0 such that M = P−N , and ∀u ∈ Rn
+, v ∈ Rm

+

||M − u1v
T ||F ≤ ||M − u2v

T ||F ≤ ||M − uvT ||F , (5.24)

for

u1 = v ◦ [M+v]

[uvT v + M−v]
and u2 = v ◦ [Pv]

[uvT v + Nv]
.

Proof. The second inequality of (5.24) is a consequence of Theorem 5.20. For
the first one, we treat the inequality separately for each entry of u, i.e., we
prove that

||Mi: − u1iv
T ||F ≤ ||Mi: − u2iv

T ||F , ∀i.
Let define u∗

i as the optimal solution of the unconstrained problem, i.e.,

u∗
i = argminui

||Mi: − uiv
T ||F =

Mi:v

vT v
,

and a, b, d ≥ 0, e > 0, as

a = (M+)i:v, b = (M−)i:v, d = (P −M+)i:v and e = uiv
T v.

130



5.4. MU FOR NONNEGATIVE FACTORIZATION

Noting that P −M+ = N −M−, we have

u∗
i = ui

(a− b

e

)

, u1i = ui

( a

e + b

)

and u2i = ui

( a + d

e + b + d

)

.

Suppose u∗
i ≥ ui: then we have

a− b

e
≥ 1 ⇒ a− b− e ≥ 0 ⇒ a− b

e
≥ a

e + b
.

Moreover, we have1 ≤ a+d
e+b+d since u2i is a better solution than ui (Theo-

rem 5.20). Finally,

1 ≤ a + d

e + b + d
≤ a

e + b
≤ a− b

e
⇒ ui ≤ u2i ≤ u1i ≤ u∗

i .

The case u∗
i ≤ ui is similar.

Unfortunately, this result does not hold for r > 1. Surprisingly, this is even
true for nonnegative matrices, i.e., one can improve the effect of a standard Lee
and Seung multiplicative update by using a well-chosen matrix C.

Example 5.2. With the following matrices

M =





0 0 1
0 1 1
1 1 0



 , U =





1 1
1 0
1 1



 , V =

(
1 0 0
1 0 1

)

, C =





0 0 1
0 0 0
1 0 0



 ,

we have ||M−U ′V ||F < ||M−U ′′V ||F where U ′ (resp. U ′′) is updated following
(5.20) using P = M + C and N = C (resp. P = M and N = 0).

However, in practice, it seems that the choice of a proper matrix C is non-
trivial and we were not able to use this modification to accelerate the speed of
convergence.

5.4.1 How good are the Multiplicative Updates?

In this section, we use Theorem 5.10 to interpret the multiplicative updates
and show why the HALS algorithm performs much better in practice.

An Improved Version of the MU

The aim of the MU is to improve a current solution (U, V ) ≥ 0 by optimizing
alternatively U (V fixed), and vice-versa. In order to prove the monotonicity
of the MU, ||M − UV ||F was shown to be nonincreasing under an update of a
single row of U (resp. column of V ) since the objective function can be split
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into m (resp. n) independent quadratic terms, each depending on the entries
of a row of U (resp. column of V ); cf. proof of Theorem 5.10.

However, there is no guarantee, a priori, that the algorithm is also nonin-
creasing with respect to an individual update of a column of U (resp. row of
U). In fact, each entry of a column of U (resp. row of V ) depends on the other
entries of the same row (resp. column) in the cost function. The next theorem
states that this property actually holds.

Corollary 5.13. For U, V ≥ 0, ||M − UV ||F is nonincreasing under5

U:k ← U:k ◦
[MV T

k: ]

[UV V T
k: ]

, Vk: ← Vk: ◦
[UT

:kM ]

[UT
:kUV ]

, ∀k, (5.25)

i.e., under the single update of any column of U or any row of V using the MU.

Proof. This is a consequence of Theorem 5.10 using P = M and N =
∑

i6=k U:iVi:.
In fact, ||M − UV ||F = ||(M −∑i6=k U:iVi:)− U:kVk:||F .

Corollary 5.13 sheds light on a very interesting fact: the multiplicative
updates are also trying to optimize alternatively the columns of U and the
rows of V using a specific cyclic order: first, the columns of U and then the
rows of V . We can now point out two ways of improving the MU:

1. When updating a column of U (resp. a row of V ), the columns (resp.
rows) already updated are not taken into account: the algorithm uses
their old values;

2. The multiplicative updates are not optimal for the column and row sub-
problems: P 6= M+ and N 6= M− (cf. Theorem 5.12). Moreover, there
is actually a closed-form solution for these subproblems (cf. HALS algo-
rithm, Section 4.1.3).

Therefore, using Theorem 5.12, we have the following new improved updates

Corollary 5.14. For U, V ≥ 0, ||M − UV ||F is nonincreasing under

U:k ← U:k ◦
[(Rk)+V T

k: ]

[U:kVk:V T
k: + (Rk)−V T

k: ]
, Vk: ← Vk: ◦

[UT
:k(Rk)+]

[UT
:kU:kVk: + UT

:k(Rk)−]
, ∀k,

(5.26)
with Rk = M −∑i6=k U:iVi:. Moreover, the updates (5.26) perform better than
the updates (5.25), but worse than HALS which is optimal.

5The proof of convergence of the MU (see Theorem 5.10) can also be used to derive
this result. In fact, the quadratic upper approximation (called auxiliary function) used in
the proof is a sum of r independent quadratic terms. Therefore, minimizing only one term
minimizes the sum of all terms which implies this result.
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Proof. This is a consequence of Theorem 5.10 and 5.12 using P = (Rk)+ and
N = (Rk)−. In fact, ||M − UV ||F = ||Rk − U:kVk:||F .

Figure 5.5 shows an example of the behavior of the different algorithms:
the original MU (Section 4.1.1), the improved version6 (Corollary 5.14) and
the optimal HALS method (Section 4.1.3). The test was carried out on a
commonly used data set for NMF: the cbcl face database (cf. Section 4.2.3
and Figure 1.2) for which we set r = 40 and we used the same scaled (see
Equation (4.7)) random initialization and the same cyclic order (same as the
MU, i.e., first the columns of U then the rows of V ) for the three algorithms.
We observe that the MU converges significantly less rapidly than the two other

Figure 5.5: Comparison of the MU, the improved MU (5.26) and HALS on the
cbcl face database.

algorithms. There do not seem to be good reasons to use either the MU or the
method of Corollary 5.14 since there is a closed-form solution (HALS) for the
corresponding subproblems.

Finally, the HALS algorithm has the same computational complexity (see
Section 4.2) and performs provably much better than the popular multiplicative
updates of Lee and Seung. Of course, because of the NP-hardness of NMF and
the existence of numerous locally optimal solutions, it is not possible to give
a theoretical guarantee that HALS will converge to a better solution than the
MU: although its iterations are locally more efficient, they could still ultimately
converge to a worse local optimum.

6The improved MU are actually computationally more expensive since the residual matri-
ces Rk have to be computed explicitly (even though still in O(mnr) operations). However,
we only use it as an illustration of the poor performances of the original MU.
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Conclusion

We have introduced nonnegative factorization (NF), a generalization of nonneg-
ative matrix factorization (NMF), and proved it is NP-hard in the rank-one
case by reduction from the maximum-edge biclique problem. Since finding
each rank-one factor in any NMF decomposition implicitly amounts to solv-
ing a rank-one NF problem, this suggests that NMF is a NP-hard problem
for any fixed factorization rank and that no polynomial time algorithm based
on the successive optimization of the rank-one factors can be designed, giving
more credence to algorithms based on alternating optimization (e.g., HALS or
ANLS).

We also presented a heuristic algorithm for detecting large bicliques whose
iterations require O(|E|) operations. It is based on results linking stationary
points of a specific rank-one nonnegative factorization problem (R1NF-MB)
and the maximum-edge biclique problem. We experimentally demonstrated its
efficiency and robustness on random graphs and text mining datasets.

Finally, we generalized the NMF multiplicative updates to NF, and proved
their convergence. This allowed us to give an explanation of the better per-
formances of algorithm HALS over MU commonly observed in practice (cf.
Chapter 4).
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Chapter 6

Nonnegative Matrix

Underapproximation

Finding a rank-one nonnegative matrix factorization, i.e., solving NMF with
r = 1, is notably easier than for higher factorization ranks: while the general
problem isNP-hard, computing a globally optimal rank-one approximation can
be done in polynomial time, see Section 2.2. In principle, we might try exploit
this result to find factorizations of higher ranks by applying it recursively: after
identification of an optimal rank-one NMF solution (u, v), one could subtract
the uvT factor from M and apply the same technique to M − uvT to recover
the next rank-one factor. Unfortunately, this idea cannot work: the difference
between M and its rank-one approximation may contain negative values (typi-
cally roughly half of them), so that the next SVD factor will no longer provide
a nonnegative solution. Moreover, there is no hope of replacing SVD by an-
other efficient technique for this step since we showed that it is NP-hard to
find the optimal nonnegative rank-one approximation to a matrix which is not
nonnegative, cf. Chapter 5 (Theorem 5.3).

If we wish to keep the principle of a recursive algorithm finding one rank-
one factor at a time, we have to add a constraint ensuring that the uvT factor,
when subtracted from M , gives a nonnegative remainder, i.e., we need to have
uvT ≤ M . Therefore we introduce a similar upper bound constraint UV ≤ M
to the general (NMF) problem and obtain a new problem we call nonnegative
matrix underapproximation (NMU): given M ∈ Rm×n

+ and 1 ≤ r < min(m, n),
the NMU optimization problem is defined as

min
U∈Rm×r ,V ∈Rr×n

||M − UV ||2F such that U ≥ 0, V ≥ 0 and UV ≤M. (NMU)

Assuming we are able to solve it for r = 1, an underapproximation of any rank
can then be built by following the recursive procedure outlined above. More
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precisely, if (U:1, V1:) is a rank-one underapproximation for M , i.e., U:1V1: ≈
M(= R1) and U:1V1: ≤ M , we have that R2 = M − U:1V1: is nonnegative. R2

can then be underapproximated by U:2V2: ≤ R2, leading to R3 = R2 − U:2V2:,
and so on. After r steps, we get an underapproximation of rank r

M ≥ U:1V1: + U:2V2: + · · ·+ U:rVr:

= [U:1 U:2 . . . U:r][V1:; V2:; . . . ; Vr:]

= UV.

Besides enabling this recursive procedure, we notice that NMU leads to a
more localized part-based decomposition, in the sense that different basis ele-
ments tend to describe disjoint parts of the input data (i.e., involving different
nonzero entries). This is a consequence of the underapproximation constraints
which impose the extracted parts (the basis elements U:k) to really be common
features of the columns of M since

M:j '
∑

k

U:kVkj , ∀j .

Basis elements can only be combined to approximate a column of M if each
of them represents a part of this column, i.e., none of the parts selected with
a positive weight can involve a nonzero entry corresponding to a zero entry in
the input column M:j. The following example demonstrates this behavior.

Example 6.1 (Swimmer Database). The swimmer image dataset consists of
256 binary images of a body with 4 limbs which can be each in 4 different
positions. NMF is expected to find a part-based decomposition of these images,
i.e., isolate different constitutive parts of the images (the body and the limbs)
in each of its basis elements.

Figure 6.1 displays a sample of such images along with the basis elements
obtained with NMF and NMU. While NMF elements are rather sparse, they are
mixtures of several limbs. By contrast, NMU returns a even sparser solution
and is able to extract a single body part for each of its elements.

The chapter is organized as follows. Section 6.1 studies the sparsity of the
solutions generated by NMU, Section 6.2 reviews some earlier related work,
Section 6.3 proves that it is NP-hard and Section 6.4 present some convex
approaches to tackle the problem. In Section 6.5, we describe an algorithm to
solve NMU using a technique based on Lagrangian relaxation. We test this
approach on several standard image datasets, and show both qualitatively and
quantitatively that it provides part-based and sparse representations that are
comparable and sometimes superior to those obtained with standard sparse
nonnegative matrix factorization techniques (sparse NMF), see Section 6.6.
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Figure 6.1: Basis elements generated for the swimmer image dataset with r = 8:
(a) Sample images from the dataset, (b) NMF and (c) NMU; see Section 6.6
for the algorithms used to compute the factorizations.

6.1 Sparsity

The fact that NMU decompositions naturally generate sparser solutions than
NMF can be explained as follows: since the zero entries of M can only be
underapproximated by zeros, we have

Mij = 0 ⇒ (UV )ij = 0 ⇒ Uik = 0 or Vkj = 0, ∀k

which shows that when the input matrix is sparse, many components of the
NMU factors will have to be equal to zero. This observation can be made more
formal: defining the sparsity s(M) of a m-by-n matrix M as the proportion of
its zero entries, i.e.,

s(M) =
#zeros(M)

mn
∈ [0, 1],

we have the following theorem relating sparsity of M and its NMU factors.

Theorem 6.1. For any nonnegative rank-one underapproximation (u, v) ∈
Rm

+ × Rn
+ of M ∈ Rm×n

+ we have

s(u) + s(v) ≥ s(M).

Proof. For a rank-one matrix uvT , the number of nonzeros is exactly equal to
the product of the number of nonzeros in vectors u and v. Therefore we have
that (1− s(uvT )) = (1− s(u))(1 − s(v)) which implies s(uvT ) = s(u) + s(v)−
s(u)s(v) ≤ s(u) + s(v). Since underapproximation uvT satisfies 0 ≤ uvT ≤M ,
it must have more zeros than M and we have

s(M) ≤ s(uvT ) ≤ s(u) + s(v),
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proving our claim.

Recall the recursive definition of the residuals Rk+1 = Rk − U:kVk: and
R1 = M . The following corollary relates their sparsity and the sparsity of the
whole rank-r approximation with that of the NMU factors.

Corollary 6.2. For any nonnegative underapproximation (U, V ) ∈ Rm×r
+ ×

Rr×n
+ of M ∈ Rm×n

+ we have for each factor

s(U:k) + s(Vk:) ≥ s(Rk) ≥ s(M), 1 ≤ k ≤ r,

and s(U) + s(V ) ≥ s(M).

Proof. We have 0 ≤ U:kVk: ≤ Rk ≤M , which implies by the previous theorem
the first set of inequalities. Observing that S(U) = 1

r

∑

k s(U:k) and S(V ) =
1
r

∑

k s(Vk:) is sufficient to prove the second inequality.

Sparsity of the residuals Rk is monotonically nondecreasing at each step,
since M = R1 ≥ R2 ≥ · · · ≥ 0. Moreover, the following theorem can guarantee
an increase in sparsity at each step.

Theorem 6.3. For any locally optimal nonnegative rank-one underapproxima-
tion (u, v) ∈ Rm

+ × Rn
+ of M ∈ Rm×n

+ , define sets I and J (supports of vectors
u and v) by

I = {i | ui > 0}, J = {j | vj > 0},
and define matrix R(I, J) to be the submatrix of residual R = M − uvT whose
row and column indices belong respectively to I and J (corresponding to the
submatrix of M that is not approximated by zeros). Then there is at least one
zero in each row and each column of submatrix R(I, J).

Proof. Simply observe that if R(i, J) > 0 (resp. R(I, j) > 0) for some i ∈ I
(resp. j ∈ J), ui (resp. vj) can be increased to obtain a strictly better solution,
which contradicts the local optimality assumption.

This ability of NMU to generate sparse part-based decomposition will be
experimentally confirmed in Section 6.6, and Chapter 7.

6.2 Related Work

The problem of rank-one underapproximation has been first introduced by
Levin in [108] in the case of positive stochastic matrices. He introduced a
specific objective function different from the Frobenius norm and used a loga-
rithmic change of variables in order to design an iterative method based on the
corresponding optimality conditions.
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In [68], the rank-one underapproximation problem is cast as a convex prob-
lem using again different objective functions which will be summarized in Sec-
tion 6.4. Solutions are then used to initialize standard NMF algorithms in
order to accelerate their convergence and, in general, find better final solutions
as compared to those obtained with random initializations. Similar behavior
was observed for other judicious initializations in [18, 41].

More recently, Dong et al. [58] studied the same problem with the additional
constraint that the rank of the residual must be strictly smaller than the rank
of the factorized matrix. Using the Wedderburn rank reduction formula, they
proposed a numerical procedure which is able to compute the maximum rank
splitting of a nonnegative matrix. However, the underlying optimization prob-
lem is NP-hard [148] and their algorithm is not guaranteed to find a solution
in all cases.

Biggs et al. [14] also introduced a recursive procedure to solve NMF prob-
lems: their idea is to locate and then approximate nearly rank-one submatrices
of M . However, the problem of locating maximum rank-one submatrices is also
shown to be NP-hard, and their algorithm is not guaranteed to find globally
optimal solutions.

6.3 Computational Complexity

We now prove that NMU isNP-hard, even in the rank-one case, unlike NMF. In
order to do this, the rank-one version of the problem is proved to be equivalent
to the maximum-edge biclique problem, which is NP-hard (cf. Section 5.1.2).
The result is then generalized to NMU with arbitrary factorization rank r using
a simple construction.

Recall that the maximum-edge biclique problem (MB) in a bipartite graph
can be formulated as follows

min
u,v

∑

i,j

(Mij − uivj)
2

uivj ≤Mij , ∀i, j , (MB)

u ∈ {0, 1}m, v ∈ {0, 1}n,

and is NP-hard. For r = 1, (NMU) can be written as

min
u∈Rm,v∈Rn

∑

i,j

(Mij − uivj)
2

uivj ≤Mij , ∀i, j , (NMU-1)

u ≥ 0, v ≥ 0,
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which is very close to (MB): the difference is that vectors u and v are required
to be binary for (MB) and nonnegative for (NMU-1). The next lemma proves
that the two problems are actually equivalent.

Lemma 6.4. For M ∈ {0, 1}m×n, every optimal solution (u, v) of (NMU-1)
is such that uvT is binary, i.e., uvT ∈ {0, 1}m×n, and can then be trivially
transformed into a binary optimal solution (u′, u′) ∈ {0, 1}m×{0, 1}n of (MB).

Proof. For M = 0, this is trivial. Otherwise, suppose (u, v) is an optimal
solution of (NMU-1). Let define (u′, v′) as

u′
i =

{
1 if ui 6= 0
0 otherwise

and v′j =

{
1 if vj 6= 0
0 otherwise

,

and analyze the different possibilities: as uivj ≤Mij , we have either

⋄ Mij = 1 and 0 < uivj ≤ 1⇒ u′
iv

′
j = 1;

⋄ Mij = 1 and uivj = 0⇒ u′
iv

′
j = 0;

⋄ Mij = 0⇒ uivj = 0⇒ u′
iv

′
j = 0.

Therefore, uivj ≤ u′
iv

′
j ≤Mij which implies

||M − u′v′T ||F ≤ ||M − uvT ||F .

By optimality of (u, v), we must have uvT = u′v′T ∈ {0, 1}m×n. Therefore,
(u′, v′) = (u/ max(u), v/ max(v)) is an optimal binary solution of (NMU-1)
which is then also an optimal solution of (MB) (note that we must have
max(u) = max(v)−1).

Corollary 6.5. (NMU-1) is NP-hard.

We now generalize Corollary 6.5 to the more general case of (NMU) with
r > 1.

Theorem 6.6. (NMU) is NP-hard.

Proof. Let M ∈ {0, 1}m×n be the adjacency matrix of a bipartite graph Gb.
We define the matrix A as

A = diag(M, r) =








M 0 . . . 0
0 M 0
...

. . .
...

0 . . . M








,

which is the adjacency matrix of another bipartite graph Gr
b which is the graph

Gb repeated r times. Let (U, V ) be an optimal solution of (NMU). Since
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UV =
∑r

k=1 U:kVk:, we have UV ≤ A ⇒ U:kVk: ≤ A. Therefore (U:k, Vk:) is a
feasible solution of (NMU-1) for the matrix A, i.e., for the graph Gr

b . Hence,
each (U:k, Vk:) corresponds to a biclique Bk

G = (V k
1 ∪ V k

2 , Ek) of Gr
b with

Uik 6= 0⇔ si ∈ V k
1 and Vkj 6= 0⇔ tj ∈ V k

2 .

By optimality of (U, V ) and since there are at least r independent maximum
biclique in Gr

b , each (U:k, Vk:) must coincide with a maximum biclique of Gr
b

which corresponds to a maximum biclique of Gb. This is due to the fact that,
because Gr

b is the graph Gb repeated r times, a biclique clearly cannot span two
disjoint subgraphs of Gr

b . Therefore, (NMU) is NP-hard since any instance of
(MB) can be polynomially reduced to an instance of (NMU).

6.4 Convex Formulations

In [68], the rank-one NMU problem is analyzed in order to build a recursive
algorithm. In particular, the aim is to find alternative cost functions such that
the corresponding problem is convex, hence solvable in polynomial time.

A first possibility is to use the following formulation

min
u,v≥0

{

max
i,j
|Mij − uivj |

}

, uvT ≤M, (6.1)

which can be solved with a sequence of linear systems of inequalities. This is
done in two stages:

1. Reduce the problem to the case M > 0. Since

Mkl = 0⇒ uk = 0 or vl = 0,

Mkl = 0 implies that either the kth row or the lth column of M is ap-
proximated by 0. Hence

min
(

max
j

(Mkj), max
i

(Mil)
)

≤ max
i,j

(Mij − uivj),

for any feasible solution (u, v) of (6.1). Therefore, if the maximum entry
of the kth row (resp. lth column) of M is greater that the maximum entry
of the lth column (resp. kth row) of M , one can then set vl = 0 (resp.
uk = 0). Indeed, if any optimal solution features one uk set to zero
(resp. vl), vl (resp. uk) could also be set to zero without deteriorating the
solution.
We then successively remove columns or rows corresponding to the zero
entries of M and we end up with a reduced problem with strictly positive
matrix M .
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2. For M > 0, one can check that there always exists a positive optimal
solution (u, v) > 0 (if an entry of u or of v is equal to zero in an optimal
solution, it can be replaced by a sufficiently small positive constant such
that uvT remains smaller than M). We then introduce the variables
v′j = u−1

j ∀j and w.l.o.g. we impose ui ≥ 1 ∀i; if the following linear
system of inequalities

ui ≤ v′jMij , ∀i, j,
v′jMij − ui ≤ Bv′j , ∀i, j,

ui ≥ 1, ∀i,

is solvable, it means that the optimal value of (6.1) is lower than B (and
a solution of this system is a feasible solution of (6.1) with optimal value
lower than B), greater than B otherwise. Hence (6.1) can be solved using
a sequence of such linear systems of inequalities, e.g., with a bisection
algorithm for values of B starting in [0, maxij(Mij)].

Unfortunately, this formulation is not really interesting for practical applica-
tions since it focuses only on approximating the large entries of M .

For the specific case of positive matrices (M > 0), (NMU) has also been
shown to be NP-hard for any factorization rank [68]. However, it is possible to
design other cost functions for which the problem is not as hard. Consider for
example a cost function based on the ratio between M and its approximation

min
u,v>0

∑

i,j

∣
∣
∣
∣
log
(Mij

uivj

)
∣
∣
∣
∣
.

By the following logarithmic change of variables:

cij = log(Mij), xi = log(ui) and yj = log(vj), ∀i, j

one can compute the optimal rank-one positive matrix factorization with the
above cost function with the following linear program :

min
x,y

∑

i,j

|cij − xi − yj |.

Observing that the additional underapproximation constraints can be written
xi + yj ≤ cij ∀i, j, we get a linear program

max
x,y

n
∑

i

xi + m
∑

j

yj

xi + yj ≤ cij , ∀i, j. (Flow)
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Note that this is the dual of a flow problem, namely, the Hitchcock problem [88]
so that it can be solved efficiently with dedicated algorithms [63].
Another possible formulation for the rank-one positive matrix factorization is

min
u,v>0

∑

i,j

max

(
Mij

uivj
,
uivj

Mij

)

which can be cast as a Geometric Program [61]. Recall that a geometric pro-
gram has the following form

min
x

f0(x)

fi(x) ≤ 1,

x > 0,

where fi are posynomials, i.e.,

fi(x) =
∑

k

cikxaik1

1 xaik2

2 ...xaikn
n with cik ≥ 0, ∀i, k.

and that it can be convexified through a logarithmic change of variables (see,
e.g., [20]). Hence, the rank-one underapproximation problem can be formulated
as the following instance

min
u,v>0

∑

i,j

Mij

uivj

uivj

Mij
≤ 1. (6.2)

Unfortunately, (Flow) and (6.2) can only be applied to positive matrices.
Some additional work has to be done if one wants to deal with nonnegative ma-
trices. For example, one could think of extracting, from the nonnegative matrix,
a rectangular positive submatrix (cf. Example 6.2) on which those methods can
be applied. Of course, we would like to extract the largest submatrix possi-
ble: this amounts exactly to finding a biclique with maximum weight1, which
is NP-hard [48]. However, there exists heuristic algorithms for this problem
and good approximate solutions can be computed (see, e.g., [3,68,90] and Sec-
tion 5.3). Combining these ideas, a recursive NMU algorithm can be designed,
see Algorithm 11.

1Since matrix M is not necessarily binary, it is the biadjacency matrix of a weighted
bipartite graph Gb (i.e., to each edge (si, tj) in Gb we assign a weight corresponding to the
(i, j) entry of M) and we look for the biclique whith maximum weight.
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Algorithm 11 Combinatorial Recursive NMU [68]

Require: R1 = M , r > 0.
Ensure: (U, V ) s.t. UV ≤M with UV ≈M .

1: for k = 1 : r do
2: Extract a positive submatrix R̃k from Rk;
3: Perform a rank-one underapproximation (Ũ:k, Ṽk:) of R̃k using (Flow)

or (6.2);
4: Extend (Ũ:k, Ṽk:) to (U:k, Vk:) by adding zeros at the entries corre-

sponding to the ones of Rk not in R̃k;
5: Compute Rk+1 = Rk − U:kVk: ≥ 0.
6: end for

Example 6.2. One iteration of Algorithm 11 with (Flow) :

M =







1 3 0 7 0
0 8 2 0 0
9 6 4 0 1
8 0 5 0 3







≥







0
0

0.8
1







(

8 0 5 0 1.25
)

=







0 0 0 0 0
0 0 0 0 0

6.4
8

0
0

4
5

0
0

1
1.25







.

In [68], Algorithm 11 is used as an initialization technique for standard NMF
algorithms to accelerate convergence and, in general, is observed to improve the
final solution compared to random initializations. The same kind of behavior
was already observed for other judicious initializations [18, 41].

An attempt is also made in [68] to compute higher rank factorizations using
convex formulations. For example, using geometric programming, one could
try to maximize (U, V ) while imposing the underapproximation constraint :

min
U>0,V >0

f(U, V )

(UV )ij ≤Mij , ∀i, j (6.3)

where f(U, V ) is any posynomial nonincreasing in U and V , e.g.,
∑

ik U−1
ik +

∑

kj V −1
kj .
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A first disadvantage of this formulation is that it can only deal with positive
matrices and is not able to set variables to zero. Moreover, we observed that if
f(U, V ) is symmetric with respect to each rank-one factor of UV , i.e., that for
any permutation σ of [1, 2, . . . r]

Ũ:kṼk: = U:σ(k)Vσ(k): ∀k ⇒ f(Ũ , Ṽ ) = f(U, V ), (6.4)

then the optimal solution obtained (U∗, V ∗) had all the columns of U∗ equal
to each other, and similarly all the rows of V ∗ equal to each other.

Theorem 6.7. For any formulation (6.3) with a symmetric f(U, V ) (cf. Equa-
tion (6.4)), there exists an optimal solution (U∗, V ∗) with the columns of U∗

and the rows of V ∗ equal to each other.

Proof. Consider the case r = 2, the proof for r > 2 is similar. Let

(U, V ) = ([U:1 U:2], [V1:; V2:])

be an optimal solution of (6.3) with U:1 6= U:2 or V1: 6= V2:. In the convex
reformulation of the Geometric Program (6.3), the change of variables is given
by

X:1 = log(U:1), X:2 = log(U:2),

Y1: = log(V1:) and Y2: = log(V2:)

where the logarithm is taken componentwise. The symmetry assumptions im-
plies that the permutation of the columns of U and simultaneously of the cor-
responding rows of V generates another optimal solution. Therefore, in the
convex reformulation, the mean (a convex combination) of these permuted so-
lutions ([X:1 + X:2

2
,
X:1 + X:2

2

]

,
[Y1: + Y2:

2
,
Y1: + Y2:

2

])

is also an optimal solution. Hence

U∗
:1 = U∗

:2 = exp
( log U:1 + log U:2

2

)

=
√

U:1 ◦ U:2,

V ∗
1: = V ∗

2: = exp
( log V1: + log V2:

2

)

=
√

V1: ◦ V2:

with component-wise square root, must be an optimal solution of (6.3).

Moreover, a similar reasoning shows that any other reasonable convex re-
formulation with a symmetric objective function, approximate or exact, will
suffer from the same drawback and lead to rank-one solutions.

Nevertheless, it is possible to design asymmetric cost functions. For ex-
ample, we tried to give different weights to each rank-one factor in the cost
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function (e.g., f(U, V ) =
∑

ik U−k
ik +

∑

kj V −k
kj ). Unfortunately, we observe

experimentally that the optimal solutions are such that the columns of U and
the rows of V are multiple of each other although we have no theoretical proof
for this fact. We also tried to introduce random weights but it does not give
satisfactory results in practice.

It therefore seems hopeless to extend those convex formulations for higher
ranks. We suspect that it would be quite difficult, if not impossible, to find an
appropriate convex formulation for NMU (and a fortiori for NMF) for r > 1
mostly because of the symmetry of the problem. The same observation was
also made by d’Aspremont and co-authors in [45]. To conclude, we give another
example of such failure for NMF, based on semidefinite programming.

6.4.1 Tentative of SDP formulation for NMF

Let us note N = r + m + n,

Y =





Ir

U
V T



 ∈ RN×r,

for U ∈ Rm×r and V ∈ Rr×n, and

Y = Y Y T =





Ir UT V
U UUT UV
V T V T UT V T V



 =





Y11 Y12 Y13

Y T
12 Y22 Y23

Y T
13 Y T

23 Y33



 ∈ SN
+ ,

where SN
+ is the set of N -by-N real symmetric positive semidefinite matrices.

Using the correspondence with the variables (U, V ) in (NMF), we would like
to minimize ||M − UV ||F = ||M − Y23||F while requiring U = Y T

12 ≥ 0 and
V = Y13 ≥ 0. Let us then write the following optimization problem

min
Y∈SN

||M − Y23||F

such that Y < 0, Y ≥ 0,

Y11 = Ir, (NMFSDP )

rankY = r.

Theorem 6.8. From any optimal solution of (NMFSDP ), one can construct
an optimal solution of (NMF), and vice-versa.

Proof. Let (U∗, V ∗) be an optimal solution of (NMF). It is clear that

Y =





Ir

U∗

V ∗T









Ir

U∗

V ∗T





T
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is a feasible solution of (NMFSDP ), implying that for any optimal solution Y∗

of (NMFSDP ) we have ||M − Y ∗
23||F ≤ ||M − U∗V ∗||F .

Let Y∗ be an optimal solution of (NMFSDP ). Since Y∗ ∈ SN and rankY =
r, there exists a matrix Y ∈ RN×r with Y∗ = Y Y T (Y could be computed
using the SVD, but it is not necessarily unique). Noting

Y =





A
B
C



 ∈ RN×r, with A ∈ Rr×r, B ∈ Rm×r and C ∈ Rn×r,

we have

Y∗ = Y Y T =





AAT ABT ACT

BAT BBT BCT

CAT CBT CCT



 ∈ SN
+ ,

with

⋄ AAT = Ir, i.e, A orthogonal.

⋄ BAT ≥ 0 and ACT ≥ 0.

⋄ ||M −BCT ||F = ||M −B(AT A)CT ||F = ||M − (BAT )(ACT )||F is mini-
mized.

Hence we have (BAT , ACT ) is a feasible solution for (NMF) and

||M − (BAT )(ACT )||F ≥ ||M − U∗V ∗||F ,

for any optimal solution (U∗, V ∗) of (NMF).

Combining the above two inequalities, ||M − U∗V ∗||F = ||M − Y ∗
23||F =

||M − (BAT )(ACT )||F for any optimal solution Y∗ of (NMFSDP ) and any
optimal solution (U∗, V ∗) of (NMF), the proof is complete.

Notice that the formulation of (NMFSDP ) allows to remove degrees of free-
dom of (NMF). In fact, for any feasible solution (U, V ) of (NMF), any equiv-
alent solution (UA, AT V ) with A orthogonal, UA ≥ 0 and AT V ≥ 0, will
correspond to the same solution Y in (NMFSDP ).

One could now relax the above NP-hard problem, e.g., by removing the
rank constraint as it is usually done. However, for the reasons explained in
Theorem 6.7, any optimal solution for the relaxation will correspond to rank-
one matrices U = Y T

12 and V = Y13 because the formulation is symmetric.
Another idea is to use the nuclear norm minimization heuristic [3,129]. Since

minimizing the trace of Y is equivalent to minimizing its nuclear norm, we get
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the following SDP heuristic approach to approximate solutions of (NMFSDP ):

min
Y∈SN

trace(Y)

such that Y < 0, Y ≥ 0,

Y11 = Ir, (Heuristic for NMFSDP )

||M − Y23||F ≤ ǫ,

where ǫ is a desired approximation accuracy (e.g., for 5% relative accuracy, one
could use ǫ = 0.05||M ||F ). Notice that, in the rank-one case, this formulation
is closely related to the SDP formulation of the biclique problem proposed by
Ames and Vavasis [3].

Unfortunately, again, any solution of this Heuristic for NMFSDP generates
rank-one matrices U = Y T

12 and V = Y13. We were not able to break this
symmetry.

6.5 An algorithm for NMU based on Lagrangian

relaxation

Since (NMU), like (NMF), is a NP-hard problem, we can not expect to solve
it up to guaranteed global optimality in a reasonable (e.g., polynomial) com-
putational time (unless P = NP ). In this section, we propose a nonlinear
optimization scheme based on Lagrangian relaxation in order to compute ap-
proximate solutions of (NMU).

Drop the m× n underapproximation constraints UV ≤M of (NMU) and add
them into the objective function with the corresponding Lagrange multipliers
(dual variables, forming a matrix) Λ ∈ Rm×n

+ , to obtain the Lagrangian function
L(U, V, Λ)

L(U, V, Λ) =
1

2
||M − UV ||2F +

m∑

i=1

n∑

j=1

Λij(UV −M)ij ,

where a factor of 1
2 was introduced to make the presentation nicer. The La-

grangian relaxation subproblem (LRΛ) consists in minimizing L for a fixed
value of the Λ multipliers, leading to the corresponding Lagrangian dual func-
tion f(Λ)

f(Λ) = min
U,V ≥0

L(U, V, Λ) (LRΛ)

where f(Λ) is well-defined because the minimum of L(U, V, Λ) is always at-
tained, due to the fact that f is bounded below and the search space can be
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restricted to a compact set. Indeed, considering each rank-one factor individ-
ually (U:k, Vk:) and imposing w.l.o.g. ||U:k||2F = ||Vk:||2F = ||U:k||F ||Vk:||F =
||U:kVk:||F , we have

||U:k||2F = ||Vk:||2F ≤ ||UV ||F
≤ ||M − Λ||F + ||M − Λ− UV ||F ,

≤ 2||M − Λ||F ∀k,

where we have used the trivial solution (U, V ) = (0, 0) to bound ||M−Λ−UV ||F
(cf. derivations of Section 6.5.1).

Standard application of Lagrangian duality tells us that

(NMU) ≡ min
U,V ≥0

sup
Λ≥0

L(U, V, Λ) ≥ sup
Λ≥0

min
U,V ≥0

L(U, V, Λ) = sup
Λ≥0

f(Λ),

where the problem on the left of the inequality is equivalent to our original NMU
formulation and the problem on the right is its Lagrangian dual, whose solution
will provide a (hopefully tight) lower bound on the optimal (NMU). This new
problem is a nondifferentiable optimization problem with the nice property that
its objective f(Λ) = minU,V ≥0 L(U, V, Λ) is concave and its maximization (over
a convex set) is then a convex problem (see [4] and the references therein).

We describe in the next section a general solution technique, which consists
in repeatedly applying the following two steps:

1. Given multipliers Λ, compute (U, V ) to (approximately) minimize L(U, V, Λ),
i.e., solve (LRΛ); this is discussed in Section 6.5.1;

2. Given solution (U, V ), update multipliers Λ; this is described in Section 6.5.2.

6.5.1 Solving the Lagrangian Relaxation

The following derivations

L(U, V, Λ) =
∑

i,j

1

2
(M − UV )2ij +

∑

i,j

Λij(UV −M)ij

=
1

2

∑

i,j

M2
ij −

∑

i,j

Mij(UV )ij +
1

2

∑

i,j

(UV )2ij

+
∑

i,j

Λij(UV )ij −
∑

i,j

ΛijMij

=
1

2
||(M − Λ)− UV ||2F −

1

2
||Λ||2F ,

show that minimizing L(U, V, Λ) for a fixed Λ is equivalent to minimizing ||(M−
Λ)−UV ||2F . Matrix R = M−Λ is not necessarily nonnegative, therefore finding
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U ≥ 0 and V ≥ 0 such that R ≈ UV is a more general problem than NMF. It
is actually the problem of nonnegative factorization (NF) studied in Chapter 5
where it was formulated as

min
U∈Rm×r ,V ∈Rr×n

||R− UV ||2F such that U ≥ 0 and V ≥ 0, (NF)

with R ∈ Rm×n and 1 ≤ r < min(m, n), was shown to be NP-hard even for
r = 1, see Theorem 5.3.

Standard algorithms for NMF can easily be adapted to handle an input ma-
trix that is not nonnegative, i.e., solve a NF problem (see, e.g., the generalized
multiplicative updates in Chapter 5). We decide to use hierarchical alternating
least squares (HALS) since it is one of the most efficient NMF algorithm, see
Chapter 4. HALS alternatively updates each column of U and each row of V
with the following optimal closed-form solutions:

U∗
:k = argminU:k≥0 ||(M − Λ)− UV ||2F

= max
(

0,
A:k −

∑r
l=1,l 6=k U:lBlk

Bkk

)

, (6.5)

with A = (M − Λ)V T and B = V V T , and

V ∗
k: = argminVk:≥0 ||(M − Λ)− UV ||2F

= max
(

0,
Ck: −

∑r
l=1,l 6=k DklVl:

Dkk

)

, (6.6)

with C = UT (M − Λ) and D = UT U . The main computational cost of one
HALS iteration is the evaluation of A and C: they each require 2mnr (floating
point) operations. One can check that the resulting total number of operations
is 4mnr +O((m + n)r2).

6.5.2 Update of the multipliers Λ

The second step of our algorithm consists in updating Λ in order to find better
(i.e., higher) solutions to the Lagrangian dual problem. Using the knowledge
that any optimal solution (Λ∗, V ∗, W ∗) of the Lagrangian dual must satisfy the
following complementarity slackness conditions

Λ∗
ij(M − U∗V ∗)ij = 0 ∀i, j,

as well as feasibility conditions

Λ∗
ij ≥ 0 and (M − U∗V ∗)ij ≥ 0,

we see that the update rule for the multipliers Λ should satisfy the following:
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⋄ if (M − UV )ij > 0, Λij should be decreased and eventually reach zero if
(M − U∗V ∗)ij > 0,

⋄ if (M − UV )ij < 0, Λij should be increased to give more importance
to (M − UV )ij in the cost function, hopefully in order to get a feasible
solution such that (M − U∗V ∗)ij ≥ 0.

In the sequel, we use the following rule to update Λ, which satisfies the above
requirements:

Λ← max(0, Λ− µk(M − UV )), µk → 0,

where µk is a predefined sequence of step lengths decreasing to zero; Λ can
be initialized to zero. This update is inspired from the concept of subgradient
methods [138]; in fact, one can easily check that the quantity (UV −M) is a
subgradient of

f(Λ) = min
U,V ≥0

L(U, V, Λ)

with respect to Λ, i.e., if (Ū , V̄ ) = argminU,V ≥0 L(U, V, Λ̄), we have

f(Λ) ≤ f(Λ̄) +
〈
Ū V̄ −M, Λ− Λ̄

〉
, ∀Λ.

Two questions now arise

⋄ Since an iterative algorithm is used to solve (approximately) the La-
grangian relaxation problem (cf. section 6.5.1), after how many of these
HALS iterations do we stop and proceed to update the multipliers Λ?

⋄ How do we choose the sequence of step lengths µk?

Subgradient methods usually assume that the Lagrangian relaxation prob-
lem (LRΛ) can be solved exactly and can guarantee their convergence to an
optimal solution provided an appropriate sequence of step sizes is selected (see,
e.g., [4]), for example {µk} satisfying the conditions

0 ≤ µk → 0 such that
∞∑

k=0

µ2
k < +∞ while

∞∑

k=0

µk = +∞.

In the sequel, we choose to use µk = 1
k , which is such a suitable sequence.

However, in our case, we cannot expect to solve (LRΛ) in a reasonable amount
of time since the problem is NP-hard. It would even probably be too expensive
to wait for the stabilization of (U, V ) (e.g., getting close to a stationary but
not necessarily optimal point). We therefore suggest to update (U, V ) only a
constant number of times T between each update of Λ, which leads to Algorithm
L-NMU. Note that because we do not solve (LRΛ) exactly, Algorithm L-NMU
is not guaranteed to converge to an optimal solution of the Lagrangian dual
but, as we will see, it produces satisfactory solutions in practice.
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Algorithm 12 L-NMU Lagrangian NMU

Require: M ∈ Rm×n
+ , r > 0, U ∈ Rm×r

+ , V ∈ Rr×n
+ , maxiter, T .

Ensure: (U, V ) s.t. UV . M .

1: Λ = 0;
2: for k = 1 : maxiter do
3: Update (U, V ) using T iterations of HALS (6.5)-(6.6);
4: Update Λ← max(0, Λ− 1

k (M − UV ));
5: end for

The additional computational cost of one iteration of algorithm L-NMU
when compared with one iteration of HALS for NMF consists in the computa-
tion of M −Λ (needed in step 3) and the update of Λ (at step 4), which require
2mnr +O(mn) operations (and, in the special case r = 1, 5mn operations).

Remark 6.1. Because convergence is not theoretically guaranteed, Algorithm
L-NMU may end up with solutions that do not completely satisfy the under-
approximation constraint. Although our numerical experiments show that this
has no detrimental influence on the quality of the obtained sparse part-based
representations (see Section 6.6), we give here a simple technique to transform
such a solution into a feasible underapproximation. Indeed, it is enough to
consider the following QP problem (convex quadratic objective function, linear
inequality constraints) which only involves the U factor

U∗ = argminU≥0,UV ≤M ||M − UV ||2F . (6.7)

Because of its convexity, this problem can be solved up to global optimality
in a very efficient manner, and replacing the original U factor by the optimal
solution U∗ leads to a feasible solution (U∗, V ) to (NMU).

Remark 6.2. Because update rule (6.7) is exact and computable in practice,
it would be natural to consider a simpler algorithm based on its alternative
application to the U and V factors, without using the Lagrangian relaxation
technique, hoping to converge to a solution of (NMU). Unfortunately, we
observed that this is quite inefficient in practice. In fact,

⋄ it is relatively computationally expensive to solve these linearly con-
strained quadratic programs (with mn + mr and mn + nr inequalities),
at least compared to the HALS closed-form update rules (6.5)-(6.6);

⋄ since the underapproximation constraint is imposed at each step, this
algorithm has much less freedom to converge to good solutions: iterates
rapidly get stuck on the boundary of the feasible domain, typically with
(too) many zeros and a lower rank. For example, assuming M has one zero
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in each column, we have that for any positive matrix U the corresponding
optimal V is equal to 0:

∀j, ∃i s.t. Mij = 0⇒ ∀j, ∃i s.t.
∑

k

UikVkj = 0⇒ Vkj = 0, ∀k, j.

Therefore, such an algorithm can only work if we decide a priori which
values in U and V should be equal to zero, i.e., if we find a good sparsity
pattern for the solution, which is precisely where the difficulty of the
problem lies. Note that the same behavior is observed if a HALS-type
algorithm is used instead of (6.7) (i.e., updating columns of U and rows
of V alternatively): after the update of one column of U , the residual will
have one zero in each row (cf. Theorem 6.3) which will prevent the other
columns of U to be nonzero (except if the sparsity pattern is chosen a
priori).

Remark 6.3. The L-NMU algorithm described above is not particularly well-
suited to deal with very sparse input matrices. In fact, one has to store a
potentially dense m × n matrix with the Lagrangian variables Λ. Neverthe-
less, we have obtained [11] encouraging results when applying NMU to sparse
anomaly detection problems in text mining. Moreover, it is possible to take
advantage of the input sparsity pattern and design a computationally cheaper
method. First note that the Lagrangian variables associated with a zero of M
will be nondecreasing in the course of the algorithm, since

0 ≤ (U (k)V (k))ij and Mij = 0 ⇒ Λ
(k)
ij ≤ Λ

(k+1)
ij ,

where superscript (k) denotes the solution at step k. Therefore one can signifi-
cantly reduce the computational cost by defining

Λ
(k)
ij = −g(k) for all i, j s.t. Mij = 0,

where g(k) is an arbitrary positive nondecreasing function, e.g., g(k) = γk with
γ > 1. This is actually what was done in Algorithm 10 in Section 5.3 where
g(k) corresponds to the parameter d and at each step we used d← min(γd, D).
This leads to an algorithm in O(|E|) operations, where |E| is the number of
nonzero entries in M .

6.6 NMU vs sparse NMF

We have argued in Section 6.1 that NMU is potentially able to extract a better
part-based representation of the data and that its factors should be sparser than
those of the standard NMF, at the detriment of the approximation error. In this
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section, we support these claims by reporting results of computational experi-
ments involving two variants of Algorithm L-NMU on several image datasets.

A direct comparison between NMU and NMF is not very informative in it-
self: while the former will provide a sparser part-based representation, the latter
will feature a lower approximation error. This does not really tell us whether
the improvements in the part-based representation and sparsity are worth the
increase in approximation error. For that reason, we chose to compare NMU
with two other sparse nonnegative matrix factorizations techniques, described
below, in order to better assess whether the increase in sparsity achieved by
NMU is worth the loss in reconstruction accuracy.

6.6.1 Sparse NMF

We selected and tested the following two sparse nonnegative matrix factoriza-
tion techniques that are frequently used in the literature.

1. Hoyer describes in [91] an algorithm relying on additional explicit spar-
sity constraints on the factors, enforced at each iteration by means of
a projection. The approximation error is reduced via a combination of
projected gradient and multiplicative updates. For our experiments, we
use the MATLAB® code provided by the author2.

It should be pointed out that Hoyer is using a different definition of
sparsity: for any nonzero n dimensional vector x, his measure of sparsity
sh(x) is defined as

sh(x) =

√
n− ||x||1/||x||2√

n− 1
∈ [0, 1]. (6.8)

Hence, a vector with a single nonzero entry is perfectly sparse

sh([0 . . . 0 k 0 . . . 0]) = 1, ∀k 6= 0,

while a vector with all entries equal to each other is completely dense

sh([k . . . k]) = 0, ∀k 6= 0.

In our experiments, we report sparsity using both the standard s(·) indi-
cator and Hoyer’s sh(·) measure.

2. Instead of enforcing sparsity at every iteration, a sparsity-inducing penalty
term can be introduced in the objective function [111]. In particular, it
is well-known that adding l1-norm penalty terms induce sparser solutions
(see, e.g., [33, 97, 98]), and we therefore solve the following problem:

min
U,V ≥0

||M − UV ||2F + µU ||U ||1 + µV ||V ||1, (sNMF)

2This code was downloaded from http://www.cs.helsinki.fi/u/phoyer/software.html .
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where ||A||1 =
∑

ik |Aik| and µU and µV are two positive parameters
controlling the sparsity of U and V . In order to solve (sNMF), we use the
HALS algorithm which can easily be adapted to handle the additional
l1-norm penalty terms (see, e.g., [33,89]). This algorithm will be referred
to as sNMF.

Technical details for the first technique are more complicated, but it allows
the sparsity of the factors to be chosen a priori. The second technique is
conceptually simpler but requires the determination of appropriate penalizing
parameters by other means.

6.6.2 Tested algorithms

Algorithm L-NMU proposed in Section 6.5 can be used to compute underap-
proximations for any given factorization rank r. This opens the possibility of
building a rank-r underapproximation in several different ways: one simple op-
tion consists in applying algorithm L-NMU directly to the rank-r problem –
we call this method global NMU (G-NMU). Another option consists in apply-
ing the recursive technique outlined in the introduction, used to motivate the
introduction of underapproximations. More specifically, this means running
algorithm L-NMU successively r times to compute r rank-one approximations,
subtracting each approximation from the input matrix before computing the
next one – we call this method recursive NMU (R-NMU). Note that many
other variants are possible (e.g., computing two rank- r

2 approximations, com-
puting r

2 successive rank-two approximations, etc.) but we only tested the two
above-mentioned variants, which represent two extreme cases (no recursion and
maximum recursion). In practice, it is not clear how to determine in advance
which variants is the most appropriate; it will highly depend on the data and
the application of interest.

In both cases, our implementation of algorithm L-NMU computes two HALS
steps between each update of the multipliers Λ (i.e., we fixed T = 2). Most of
the computational work done in one iteration of L-NMU consists in computing
M −Λ, performing the two HALS steps and updating Λ; more specifically, one
can estimate the computational cost of one iteration of G-NMU to 10mnr +
O((m+n)r2) operations, while an R-NMU iteration takes 13mn+O((m+n)r)
operations (repeated r times in the recursive procedure).

For each dataset, we test five nonnegative factorization algorithms: NMF
based on HALS updates (NMF), global NMU (G-NMU), recursive NMU (R-
NMU), sparse NMF with l1-penalty terms (sNMF) and the algorithm of Hoyer.
We also report the results of Principal Component Analysis (PCA) to serve as
a reference (recall that the approximation error of the resulting unconstrained
low-rank approximation, computed here with a singular value decomposition, is
globally minimal for the given rank, but that its factors are neither nonnegative,
nor sparse).
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6.6.3 Iteration limits and CPU time

Each of the five iterative algorithms described above requires a limit on the
number of its iterations; these limits were chosen in order to roughly allocate
the same CPU time to each algorithm. More specifically, the standard NMF was
given a 600-iterations limit, which corresponds to the computation of 600 HALS
updates. The sparse sNMF, based on a slightly modified HALS update, was also
allowed 600 iterations. Because a HALS update involves 4mnr +O((m+n)r2)
operations, we can deduce the following iteration budgets for G-NMU and
R-NMU from the leading terms in their corresponding operation counts: G-
NMU is allowed 600 × 4

10 = 240 L-NMU iterations while R-NMU can take
600× 4

13 ≈ 180 iterations.
An exception to the equal CPU time rule was made for the algorithm of

Hoyer. Results obtained after an amount of CPU time similar to that of the
other algorithms were too poor to be compared in a meaningful way. Indeed,
because this method is based on a projected gradient method and multiplicative
updates (both O(mnr) operations per iteration), which are known to converge
at a typically much slower rate (see Chapter 4), a relatively high limit of 1000
iterations had to be fixed, although the resulting CPU time is then much larger
than for the other methods (for example, on the CBCL dataset, 600 iterations
of HALS took ∼ 80s. while 1000 iterations of the algorithm of Hoyer needed
∼ 260s.).

6.6.4 Testing methodology

Recall we decided to test algorithms sNMF and Hoyer to assess the quality
of the sparsity-accuracy compromise proposed by our NMU approaches. To
achieve this, we decided to associate with each NMU variant a solution of
sNMF/Hoyer featuring the same level sparsity, and compare the resulting ap-
proximation errors. We therefore report results for eight algorithms on each
dataset: PCA, NMF, G-NMU, sNMF with the same sparsity as G-NMU, which
we denote by sNMF{G-NMU}, Hoyer{G-NMU}, R-NMU, sNMF{R-NMU} and
Hoyer{R-NMU}.

In order to enforce a sparsity similar to the NMU solution in Hoyer’s code,
we compute the sh measure of the NMU factors and input it as a parameter of
the method (see description in subsection 6.6.1); note however that we could
only enforce this for the sparsest of the two NMU factors3. In the case of sNMF,
sparsity cannot be directly controlled, and penalty parameters are found using
the following adaptive procedure, which proved to work well in practice: µU

and µV are initialized to 0.1 and, after each iteration, µU (resp. µV ) is increased
by 5 percent if S(U) (resp. S(V )) is below the target sparsity, and is decreased

3Ideally, we would have imposed sparsity for both factors, but the implementation we used
seemed to return poor results in that situation.

156



6.6. NMU VS SPARSE NMF

by 5 percent otherwise.
All algorithms were run 10 times with the same initial random matrices

and only the best solution with respect to the Frobenius norm of the error is
reported. When testing with gray-level images, the input matrices M where
normalized to have their entries varying between 0 and 1, with 0 representing
white and 1 representing black (when trying to decompose M as a sum of parts,
this make more sense than the opposite convention, since the dark regions are
the constitutive parts of the objects in the image datasets we analyze). Finally,
before computing reported sparsity measures of the factors, any sufficiently
small4 entry is rounded to zero (indeed, because algorithms are stopped by the
iteration limit before convergence, true zeros are typically not all reached). All
tests were run within the MATLAB® 7.1 (R14) version, on a 3GHz Intel®

Core™2 Dual CPU PC.

6.6.5 CBCL Face Database

The CBCL face image dataset was used for the illustrative example of Figure 1.2
and is made of 2429 gray-level images of faces represented with 19× 19 pixels.
We look for an approximation of rank r = 49.

Figure 6.2 displays the basis elements for NMF, G-NMU, R-NMU and
sNMF{G-NMU} (which was the best solution obtained in term of sparsity
vs. error among all four sNMF and Hoyer variants). Both G-NMU, R-NMU
and sNMF achieve a better part-based representation than NMF, generating
sparser solutions. An interesting feature of R-NMU is that it extracts parts
successively in order of “importance”: the first basis element is a ’mean’ face
(which is dense) while the next ones describe different complementary parts
(which become sparser as the recursion moves on, cf. Corollary 6.2 and Theo-
rem 6.3).

A more quantitative assessment is provided in Table 6.1, reporting for the
eight algorithms tested the relative error (in percent) of their solutions

relative error =
||M − UV ||F
||M ||F

in the second column (“Plain”) and the corresponding sparsity measures (in
percent) of factors U and V in the last four columns.

As expected, PCA returns the smallest error, albeit with very dense factors.
NMF already features much sparser factors (slightly half of the entries in U are
equal to zero), at the cost of a relatively modest increase in the approximation
error (7.43→ 8.12). G-NMU provides an even sparser solution (three quarters
of zero entries), increasing again the approximation error (8.12→ 12.45). The

4We declare an entry of a factor to be sufficiently small if it is less than 0.1% of the largest
entry in its column.
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Figure 6.2: Basis elements (U:k) generated for the CBCL image dataset:
(a) NMF, (b) G-NMU, (c) R-NMU and (d) sNMF with sparsity of G-NMU.

factors recursively computed by R-NMU are in comparison not as sparse: as
explained above, this is because R-NMU focuses on obtained representative
parts, including relatively dense ones for the first few steps of the recursion.
However, it features a much sparser weight vectors, giving again more credit
to the hypothesis that better parts are extracted. The corresponding approxi-
mation error is higher than for other methods, because the intrinsically greedy
approach taken by R-NMU cannot be globally better than a method that op-
timizes all the factors simultaneously.

Is the increased sparsity provided by G-NMU worth the increase in approx-
imation error? Looking at the corresponding results for sNMU{G-NMU} and
Hoyer{G-NMU}, i.e., for sparse NMF and Hoyer’s algorithms with a similar
target sparsity, it might seem at first that the answer is negative: the other
methods return solutions with similar number of nonzeros (slightly higher for
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Plain Improved s(U) S(V ) sh(U) sh(V )
PCA 7.43 7.43 0 0 22 22
NMF 8.12 8.11 56 11 66 22

G-NMU 12.45 8.76 74 14 74 21
sNMF{G-NMU} 8.68 8.44 74 14 74 30
Hoyer{G-NMU} 9.33 8.78 69 6 73 16

R-NMU 16.42 10.89 53 52 63 64
sNMF{R-NMU} 10.23 9.49 50 50 56 57
Hoyer{R-NMU} 8.83 8.56 54 12 64 22

Table 6.1: Comparison of the relative approximation error and sparsity for the
CBCL image dataset.

Hoyer) and a lower approximation error (8.68 and 9.33 instead of 12.45). Ac-
tually, this was expected: because it tries to return an underapproximation,
i.e., factors such that UV . M , the entries in the error term M − UV are
mostly nonnegative, while the other techniques, with no underapproximation
constraint, obtain a smaller norm of the error by choosing the entries of M−UV
to be roughly half negative, half positive. It is therefore not completely fair to
compare directly the error of the NMU approach to the other techniques.

In order to compensate for this, a simple rescaling could be used, i.e., mul-
tiplying UV by a scalar since UV . M (cf. Equation (4.7)). However, we
chose a different procedure that has the advantage of benefiting all algorithms,
including those whose error was not suffering from the underapproximation
constraint. Once a solution is computed by one of the eight algorithms, we
fix the zero entries of U and V and optimize the approximation error, i.e.,
minU,V ≥0 ||M − UV ||2F , on the remaining (nonzero) entries (again, HALS can
easily be adapted to handle this situation). In essence, this allows us to com-
pare the sparsity patterns of the different solutions. We perform 100 additional
HALS steps on each solution, and report the new relative approximation error
in the third column of Table 6.1 (“Improved”). Note that sNMF and Hoyer’s er-
rors are also improved by this procedure; this can be explained by the fact that
they were also not directly trying to minimize the approximation error (Hoyer
had to take into account its sparsity constraint, and sNMF was influenced by
the penalty terms added to the approximation error).

Looking now at the NMU solutions in a fairer comparison, we observe that
their approximation error becomes very close to that of sNMF and Hoyer,
in particular for G-NMU, and not very far from the denser NMF, so that
we can conclude that the sparsity-approximation error compromise it offers is
worthwhile.
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6.6.6 Swimmer Database

For the swimmer image dataset described in Example 6.1 (256 images with
20× 11 pixels), the eight basis elements obtained with the different algorithms
are displayed on Figure 6.3 and the corresponding approximation errors and
sparsity measures are reported in Table 6.2.

Figure 6.3: Basis elements for the swimmer image dataset: (a) NMF, (b) G-
NMU, (c) R-NMU and (d) sNMF with sparsity of R-NMU.

As mentioned earlier, our two NMU algorithms are the only methods able to
extract truly independent parts, while NMF and sNMF generate combinations
of multiple parts. Note however that the solution generated by sNMF bears
some similarity to the one of G-NMU.

6.6.7 Hubble Space Telescope Spectral Images

The next image dataset consists of 100 spectral images (128 × 128 pixels) of
the Hubble telescope at different frequencies [126, 153], see Figure 6.4. With
the choice r = 8, NMF generates a nearly exact factorization (relative error
0.29%), because the spectral reflectance of the Hubble telescope results from
the additive linear combination of the reflectance of eight constitutive materials.
Figure 6.5 and Table 6.3 provide the visual and computational results for this
dataset.

Because NMF is already a nearly exact reconstruction (Table 6.3), the NMU
constraints are somehow redundant: NMF and G-NMU are basically equivalent
and return solutions with very similar sparsity measures (albeit with a slightly
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Error Plain Improved s(U) S(V ) sh(U) sh(V )
PCA 37.98 37.98 77* 0 67 17
NMF 40.41 40.41 84 45 73 67

G-NMU 47.70 46.85 94 75 85 78
sNMF{G-NMU} 50.52 42.04 89 66 84 73
Hoyer{G-NMU} 42.04 41.91 90 45 80 63

R-NMU 50.92 50.71 98 66 93 65
sNMF{R-NMU} 41.66 41.17 85 66 80 79

Hoyer{R-NMU}** / / / / / /

Table 6.2: Comparison of the relative approximation error and sparsity for the
swimmer image dataset. *This value is very close to the percentage of zero rows in the
matrix M (corresponding to pixels that are equal to zero in all images): in general, PCA
factors feature a zero component when all the entries of either one row or one column of the
input matrix are equal to zero. **When imposing the sparsity level of R-NMU (sh(U) = 0.93),
Hoyer’s algorithm was not able to converge, probably because it is not well adapted to handle
high sparsity constraints. Note that sNMF is also sensitive to high sparsity requirements:
high penalty terms sometimes lead to optimal zero factors (U:k = 0 for some k), which had
to be reinitialized.

Figure 6.4: Sample of Hubble space telescope spectral images.

lower error for G-NMU). For that reason, sNMF{G-NMU} and Hoyer{G-NMU}
return results nearly identical to NMF and are omitted from the table.

Recursive R-NMU extracts parts in order of importance: first, a global
picture of the telescope and then its different constitutive parts. This allows
it to generate the sparsest solution, with several basis elements representing
well-delimited constitutive parts of the telescope not identified by the other
methods (see also Chapter 7).
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Figure 6.5: Basis for the Hubble telescope: (a) NMF, (b) G-NMU, (c) R-NMU
and (d) sNMF with sparsity of R-NMU.

Error Plain Improved s(U) s(V ) sh(U) sh(V )
PCA 0.01 0.01 57 0 62 25
NMF 0.29 0.29 64 5 57 35

G-NMU 0.52 0.11 64 4 60 31
R-NMU 3.74 1.37 79 30 71 62

sNMF{R-NMU} 0.48 0.37 73 28 66 64
Hoyer{R-NMU} 0.77 0.68 75 0 71 12

Table 6.3: Comparison of the relative approximation error and sparsity for the
Hubble telescope image dataset.

6.6.8 Kuls Illuminated Faces

A static scene was illuminated from many directions with a moving light source
to produce the Kuls image dataset5. It consists of 20 images (64× 64 pixels) of
a face. Because the images are very similar, most of the information (more than
70 percent) can be expressed with only one factor. The remaining information
resides in the different orientations of the lighting. Computational and visual
results for a rank-5 factorization are given by Table 6.4 and Figure 6.6. We
observe that NMF and G-NMU obtain similar results: even though they are
both able to extract several faces with different lighting orientations, they do

5Available at http://www.robots.ox.ac.uk/~amb/ .
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not extract a sparse and part-based representation.

R-NMU first extracts a face illuminated from all directions, and then com-
plementary parts representing different orientations of the lighting (successively
on the fourth row of Figure 6.6: global then light from the right, left, bottom
and top). This nice recursive extraction of the information is a direct con-
sequence of the underapproximation constraints. Although sNMF (with the
same sparsity requirement as R-NMU) is also able to extract a part-based rep-
resentation with a slightly better approximation error, only two components
are well-identified (left and right lighting mixed with top and bottom lighting).

Error Plain Improved s(U) s(V ) sh(U) sh(V )
PCA 4.36 4.36 0 0 23 15
NMF 4.38 4.38 1 7 9 38

G-NMU 6.27 4.49 3 20 8 48
sNMF{G-NMU} 4.42 4.41 2 20 8 47
Hoyer{G-NMU} 4.60 4.71 2 25 8 53

R-NMU 8.13 5.73 29 31 38 67
sNMF{R-NMU} 5.24 5.01 29 31 32 59
Hoyer{R-NMU} 6.82 6.54 0 71 6 92

Table 6.4: Comparison of the relative approximation error and sparsity for the
Kuls image dataset.

Some properties of R-NMU will be analyzed in the next chapter, and will
provide an explanation for such a nice extraction. In fact, we will see in Chap-
ter 7 that rows of matrix M which share similar information will be extracted
together with the R-NMU approach (see Theorem 7.4). For the Kuls faces,
each row of matrix M corresponds to a pixel, i.e., to a specific location on the
image. Hence the rows corresponding to pixels located close to each other in the
images will have similar ‘shapes’ (because the lighting orientation is similar),
which is the reason why they are extracted together by R-NMU.

Conclusion

In order to solve the NMF problem in a recursive way, we have introduced a
new problem, namely nonnegative matrix underapproximation (NMU), which
was shown to be NP-hard using its equivalence with the biclique problem.
The additional constraints of NMU are shown to induce sparser factors and to
lead naturally to a better part-based representation of the data, while keeping
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Figure 6.6: Basis for the Kuls image dataset, from top to bottom: sample of
images, NMF, G-NMU, R-NMU, sNMF with sparsity of R-NMU.

a fairly good reconstruction. We proposed an algorithm based on Lagrangian
relaxation to find approximate solutions to NMU.

We tested two factorization methods based on this algorithm, one with full
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recursion (R-NMU), the other without recursion (G-NMU), on several stan-
dard image datasets. After suitable post-processing, we observed that the fac-
tors computed by these methods indeed offer a good compromise between their
achieved sparsity and the resulting approximation error, comparable or some-
times superior to that of two standard sparse nonnegative matrix factorization
techniques.

These two variants can be contrasted in the following way: where G-NMU
mainly focuses on finding sparse factors with small reconstruction error, in the
same spirit as sNMF and Hoyer, R-NMU typically computes an even sparser
factorization corresponding to a better part-based representation, albeit with
a moderate increase in the reconstruction error (due to the greedy approach).
Moreover, this second variant is useful in situations where the factorization
rank is not fixed a priori: the fact that it is recursive allows the user to stop
the procedure as soon as the reconstruction error becomes satisfactory, without
having to recompute a completely different solution from scratch every time a
higher-rank factorization needs to be considered.

In the next chapter, we use R-NMU for hyperspectral image analysis, and
provide some further theoretical and experimental evidences that it is indeed
able to efficiently cluster such data automatically.
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Chapter 7

Hyperspectral Data Analysis

using Underapproximation

A hyperspectral image is a set of images of the same object or scene taken
at different wavelengths. Each image is acquired by measuring the reflectance
(i.e., the fraction of incident electromagnetic power reflected) of each individual
pixel at a given wavelength, see the illustration on Figure 7.1. A crucial aspect

Figure 7.1: Illustration of hyperspectral image acquisition: (left) reflectance
measurements, and (right) hyperspectral image.

of hyperspectral image analysis is the identification of materials present in the
object or scene being imaged. This can be for example used to classify the
thousands of objects in orbit around the earth (e.g., military and commercial
satellites, debris).
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Dimensionality reduction techniques such as PCA are widely used as a pre-
processing step for hyperspectral image analysis in order to reduce the compu-
tational cost of classification algorithms (such as k-means or nearest neighbor,
see, e.g., [24]) while keeping the pertinent information. In this context, it is
often preferable to take advantage of the intrinsic properties of hyperspectral
data: the spectral signature of each pixel results from the additive combina-
tion of the nonnegative spectral signatures of its constitutive materials. Taking
these nonnegativity constraints into account enhances interpretability of the
extracted factors. This can be done using nonnegative matrix factorization.

Let the matrix M be constructed as follows: each 2D image corresponding to
a wavelength is vectorized and is a column M:j , while each row Mi: corresponds
to the spectral signature of a pixel, see Figure 7.2. Then a decomposition

Figure 7.2: Construction of matrix M .

(U, V ) ≥ 0 of M can be interpreted as follows

Mi: ≈
∑

k

Uik Vk: ∀i,

and the spectral signature of each pixel (Mi:, a row of M) is approximated with
a nonnegative linear combination (with weights Uik, representing abundances)
of end-members signatures (Vk:, rows of V ) which hopefully correspond to the
signatures of the constituent materials of the hyperspectral image.
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This model1 has been successfully applied for identification of the materials
and the spectral unmixing in hyperspectral images [126, 153]. However, NMF
features some drawbacks. In particular,

1. NMF is a NP-hard nonlinear optimization problem with many local min-
imizers, see Chapter 3. In practice, NMF is solved using iterative schemes
based on nonlinear optimization techniques, see Chapter 4.

2. The optimal solution is in general non-unique2 which makes the prob-
lem ill-posed [103]. Additional constraints are often added to reduce the
degrees of freedom, e.g., smoothness [94, 126], sparsity [94], orthogonal-
ity [54,109], minimum-volume [119], sum-to-one constraint of the rows of
U [118].

3. One needs to recompute a solution from scratch when the rank of the
approximation is modified.

In this chapter, we use recursive NMU from Chapter 6 which overcomes
some of these drawbacks3 (2. and 3. above) as a dimensionality reduction tech-
nique to analyze hyperspectral data. We provide some theoretical evidences
that this technique is in fact able to automatically detect materials in hyper-
spectral images and illustrate this on a simple example. We then propose a
new approach based on ℓ1-norm minimization (instead on the ℓ2-norm consid-
ered in Chapter 6), and explain why it is theoretically more appealing: it is
potentially able to extract the materials in a more efficient and robust way.
An algorithm is proposed with the same computational complexity as the one
presented in Section 6.5. Finally, we experimentally show the efficiency of these
new strategies on hyperspectral images associated with space object material
identification, and on HYDICE and related remote sensing images.

7.1 The Ideal Case

If we assume that each pixel contains only one material, the corresponding
matrix has the following form:

Assumption 7.1. M ∈ Rm×n
+ with M = WH where

1(NMF) is closely related to an older approach based on the geometric interpretation of the
distribution of spectral signatures: they are located inside a low-dimensional simplex whose
vertices are the pure pixel signatures (i.e., the signatures of each individual material) [17,40].
This is also related to the geometric interpretation of the nonnegative rank given in Chapter 3.

2Any invertible matrix D such that UD ≥ 0 and D−1V ≥ 0 generates an equivalent
solution.

3Unless P = NP, drawback 1 can not be ‘resolved’ since the underlying problem of
spectral unmixing is of combinatorial nature [92].
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1. W ∈ {0, 1}m×r is a binary matrix of dimension m by r, with r ≤
min(m, n). W is full column rank, and has one and only one element
equals to one in each row with

Wik = 1 ⇐⇒ pixel i contains material k.

This implies that its columns are orthogonal WT
:i W:j = 0 ∀i 6= j.

2. H ∈ Rr×n
+ is of full row rank r.

Of course, recovering W and H in this setting is trivial and, in practice,
because of blurring and other mixing effects, limited resolution and mixed mate-
rials, the spectral signature of each pixel will be a mixture of spectral signatures
of several materials (in particular, pixels located at the boundary of materials)
plus noise. However, classifying each pixel into a single category amounts to
approximating M with a matrix satisfying Assumption 7.1. This problem is
referred to as orthogonal NMF (oNMF) and is equivalent to k-means cluster-
ing [54].

We now show that, under some mild assumptions, the underapproximation
technique is able to retrieve the underlying structure in the ideal case, when
each pixel corresponds to only one material. This will shed some light on the
behavior of the recursive algorithm based on underapproximations presented in
Chapter 6, and justify its efficiency when dealing with non-ideal hyperspectral
images.

Recall that the rank-one NMU problem is the following

min
u∈Rm

+
, v∈Rn

+

||M − uvT ||2F such that uvT ≤M. (NMU-1)

It is convex in u and v separately, and the corresponding optimal solutions can
actually be trivially computed: for v ≥ 0,

u∗(v) = argminu≥0,uvT ≤M ||M−uvT ||F , u∗
i (v) = min

{j | vj 6=0}

{ Mij

vj

}

∀i, (7.1)

and for u ≥ 0,

v∗(u) = argminv≥0,uvT ≤M ||M −uvT ||F , v∗j (u) = min
{i |ui 6=0}

{ Mij

ui

}

∀j, (7.2)

and they correspond to the stationarity conditions of (NMU-1). One can check
that these first-order stationarity conditions (7.1) and (7.2) are the same for
(many) other norms than ||.||F , such as the ℓ1-norm which will be analyzed
later in Section 7.3.
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7.1.1 First Rank-One Factor

As for PCA, the first rank-one factor of NMU will reduce the error the most
and will already be a fairly good approximation of the hyperspectral data.

Lemma 7.1. Let (u, v) be a nontrivial stationary point of (NMU-1) (i.e., u 6= 0
and v 6= 0), then the residual R = M − uvT has at least one zero by row and
by column.

Proof. This follows directly from Equations (7.1) and (7.2).

Lemma 7.2. Let (u, v) be a nontrivial stationary point of (NMU-1) for M =
WH satisfying Assumption 7.1, then the residual R = M − uvT can be written
as R = WH ′ for some H ′ ≥ 0.

Proof. Because columns of W are binary and orthogonal, each row of M is
equal to a row of H . Therefore, the entries of u corresponding to the rows of
M equal to each other must take the same value, i.e., ∀i ∈ {1, 2, . . . , r}, ∀k, l ∈
supp(W:i) : uk = ul. In fact, one can check that for v 6= 0, the solution of
Equation (7.1) is unique. It follows that u = Wd, for some d ∈ Rr

+, and then
R = WH − (Wd)vT = W [H − dvT ]. The facts that R is nonnegative and that
W is binary and orthogonal implies that H ′ = H − dvT ≥ 0.

Corollary 7.3. Let (u, v) be a nontrivial stationary point of (NMU-1) and
M > 0, then u > 0 and v > 0. Moreover, the residual R = M − uvT can be
written as R = WH ′ for some H ′ ≥ 0 with at least one zero by row and by
column in H ′.

Proof. Positivity of u and v follows directly from Equations (7.1) and (7.2)
while structure of the residual matrix R is a consequence of Lemmas 7.1 and
7.2.

Let us use notation of Corollary 7.3. We observe that it is typically very
unlikely for the sparsity pattern of a row of H ′ to be contained in the sparsity
pattern of another row, i.e., that

I = supp(H ′
i:) ⊂ supp(H ′

j:), for some i 6= j, (7.3)

for some non-empty set I ⊂ {1, 2, . . . , n}. There are two basic reasons for this
fact

1. We know there is at least one zero by row and by column in H ′ (Corol-
lary 7.3). Clearly,

H ′(i, I) = H ′(j, I) = 0 ⇐⇒ H(i, I) = α H(j, I),

for some constant α > 0. In fact, recall that H ′(i, I) = H(i, I) − div(I)
so that H ′(i, I) = H ′(j, I) = 0 if and only if H(i, I)− div(I) = H(j, I)−
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djv(I) = 0, i.e., H(i, I) = di

dj
H(j, I). If |I| ≥ 2 and if we assume that

H is generated randomly, the probability of having H(i, I) = αH(j, I) is
zero (randomly generated vectors in two dimensions or more are multiple
of each other with probability zero). If |I| = 1, it means that at least one
row of H ′ has only one zero element. We know that there are at least n
zeros in H ′ (one by column) and at least one zero in each of the r rows of
H ′. There are still at least (n− r) zeros to be placed in the r rows of H ′.
Assuming there are only (n − r) zeros (typically, there are many more
zeros in the residual) and that they are distributed uniformly among
the rows of H ′, we can compute the probability of having the sparsity
pattern of one row contained in the sparsity pattern of another4 in case
|I| = 1 in Equation (7.3) above. Figure 7.3 displays this probability for
n = 210 (which is the number of spectral bands for HYDICE images, cf.
Section 7.4) with respect to r (number of materials). For example, for
r ≤ 25 (i.e., less than 25 materials present in the image), the probability
for one row of H ′ to have only one zero and for another row of H ′ to have
a zero at the same position is smaller than 10−2.

Figure 7.3: Probability for at least one row of H ′ to have one zero element,
while another row has a zero at the same position for n = 210, assuming that H
is randomly generated, and that H ′ contains (only) n zeros which are uniformly
distributed (with at least one zero by row).

2. In practice, it is observed that the zeros are not distributed uniformly
among the rows of H ′, and, typically, they have approximately the same

4We added up the probabilities to have i rows with only one zero element multiplied by
the probability for at least one of these zeros to be located at the same position of another
one (either in one of these i rows with one zero, or in the remaining r − i).

172



7.1. THE IDEAL CASE

number of zeros O(n
r ), located at different positions.

Using another cost function (the sum of the logarithms of the ratios be-
tween the entries of dvT and H > 0), it can be proved that the problem is
equivalent to a flow problem (using a logarithmic change of variables), see
Problem (Flow) in Section 6.4. In contrast with item 1. above, if H is a
square matrix (r = n) and (d, v) an optimal solution of (Flow), the zeros
of H − dvT will be located on the diagonal of H ′ (up to a permutation)5

and no row will share common zeros. When using the Frobenius norm
as an objective function, it seems that the zeros follow the same sparsity
pattern, even though we do not have a proof for this fact. However, notice
that problem (Flow) shares the same stationarity conditions as (NMU-1)
(see Equations (7.1) and (7.2)), so that optimal solutions of (Flow) are
stationary points of (NMU-1).

Conclusion. After the first NMU recursion, the residual R can be written in
the same form as M = WH (cf. Assumption 7.1) with R = WH ′, and it is
highly probable that

supp(H ′
i:) * supp(H ′

j:) ∀i 6= j,

i.e., that no row of H ′ has its sparsity pattern contained in the sparsity pattern
of another row. If this property holds, we will say that H ′ satisfies the sparsity
pattern assumption.

7.1.2 Next Rank-One Factors

Assuming that M = WH satisfies Assumption 7.1 and that H satisfies the
sparsity pattern assumption, we show that the recursion outlined above will
eventually locate each material individually.

Theorem 7.4. Let (u, v) be a nontrivial stationary point of (NMU-1) for M =
WH satisfying Assumption 7.1 and supp(Hi:) * supp(Hj:)∀i 6= j, i.e., H
satisfies the sparsity pattern assumption. Then R = M − uvT = WH ′, with
u = Wd for some d ∈ Rr

+ so that H ′ = H − dyT ≥ 0. Moreover,

supp(u) = ∪i∈Ω supp(W:i), for some Ω ⊂ {1, 2, . . . , r},

and
Ω = {i} ⇐⇒ H ′

i: = 0 ⇐⇒ di v = HT
i: , (7.4)

for some 1 ≤ i ≤ r. Ω = {i} amounts to extracting the material i.

5This is related to the way assignment problems are solved [63]. One can show that
a solution (d, v) of (Flow) (cf. Section 6.4) is optimal if and only if the matrix D with
dij = log(Hij)− log(di)− log(vj) has, up to a permutation of its rows or columns, zeros on
its diagonal (this is how the Hungarian method used to solve assignment problems has been
designed).
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Proof. The first part is a consequence of Corollary 7.3. It remains to show that
Equation (7.4) holds. The second equivalence is trivial since H ′

i: = Hi: − div
T

is equal to zero for some i if and only if div = HT
i: . For the first equivalence,

observe that div = HT
i: implies that Ω = {i} because of the underapproximation

constraints and the sparsity pattern assumption. In fact, since v has the same
support as Hi:, we have ∀j 6= i, ∃k s.t. Hjk = 0 and vk > 0 implying dj = 0.
Finally, it is clear that for Ω = {i}, the solution obtained with Equation (7.2)
is v = 1

di
HT

i: .

Theorem 7.4 implies that, at each step of the NMU recursion, a set of
materials are extracted together. Moreover, a material is extracted alone if and
only if the corresponding row of H ′ is set to zero. Since the recursive approach
outlined above will eventually end up with a zero matrix (say, after ru steps),
we will have that

M =

ru∑

i=1

uiv
T
i ,

and, under the sparsity pattern assumption (at each step of the recursion),

∀1 ≤ i ≤ r, ∃1 ≤ j ≤ ru s.t. supp(uj) = supp(W:i).

In fact, for the residual R = WH ′ to be equal to zero, all the rows of H ′ must
be identically zero. This feature of the NMU recursion will be experimentally
verified in Section 7.4.

Remark 7.1. The sparsity pattern assumption is a sufficient but not a nec-
essary condition for exact recovery. For example, if two rows with the same
sparsity pattern are extracted together, it is likely that the corresponding opti-
mal solution will not be exactly equal to one of these two rows (because there
are linearly independent) and therefore, at the next step, it is likely that they
will satisfy the sparsity pattern assumption.

7.1.3 Illustration of Basis Recovery with NMU vs NMF

Let us construct the following synthetic data: 4 binary orthogonal images of
5 × 5 pixels (which are the columns of W , W ∈ {0, 1}25×4, see the top image
of Figure 7.5) are randomly mixed (H ∈ R4×25 is randomly generated with
uniform distribution between6 0 and 1) to generate a 25 × 25 matrix M =
WH satisfying Assumption 7.1. Figure 7.4 displays a sample of the 25 images
contained in the columns of M , which then result from the nonnegative linear
combination of the columns of W . Figure 7.5 displays the original images and
the basis elements obtained with NMF and NMU. As was mentioned in Section
7.1.1, the first rank-one factor of NMU will reduce the error the most, and we

6We used the function rand(4,25) of MATLAB®.
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Figure 7.4: Sample of images of the data matrix M : clean (left) and with mixed
pixels (right).

include it and list a total of five for NMU (since each end-member has been
extracted individually after 5 steps, the residual error is equal to zero, i.e., the
approximation is exact, see Theorem 7.4). We observe that NMF is not able

Figure 7.5: From top to bottom: four original images (i.e., columns of W ),
basis elements obtained with NMF and with NMU.

to extract perfectly the four original basis elements (even though the objective
function is equal to zero; the reason is the non-uniqueness of the solution:
NMF retrieves a mixture of the basis elements) while NMU is able to do the
extraction7.

7.2 The Non-Ideal Case

As we have already mentioned, practical problems don’t have the nice structure
mentioned in Assumption 7.1 and the spectral signature of most pixels results
from a combination of several materials. What can we expect of NMU in
that case? Since the data matrix is positive, the first rank-one factor will
still be a mixture of all materials (cf. Lemma 7.1). It seems more difficult
to provide theoretical guarantees for the next factors in more general settings

7Notice that for n = 25 and k = 4, the probability for two rows of H′ to satisfy the
sparsity pattern assumption is larger than 1−10−8, if we assume that the zeros are uniformly
distributed, and that H is randomly generated (which is the case here), see Section 7.1.1.
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and this will be a topic for further research. However, extracting a single
constitutive material would allow one to approximate all the pixels containing
it (removing from their spectral signature this component) and, since NMU
aims at extracting components explaining the data as closely as possible in
order to reduce the error the most, this indicates that NMU is encouraged to
extract constitutive materials in non-ideal cases.

For example, let us add to the matrix W in the illustration of the previous
paragraph a randomly generated matrix, uniformly distributed between 0 and
0.5. This means that each pixel is now a mixture of several materials but
one material is still predominant. Figure 7.6 displays the visual result: NMF
performs even worse, while NMU is still able to extract the original parts fairly
well. It actually provides a soft clustering for each pixel8, as it will also be
shown in Section 7.4.

Figure 7.6: From top to bottom: 4 original images (i.e., columns of W ), basis
elements obtained with NMF and with NMU.

7.3 ℓ0-Pseudo-Norm Minimization and ℓ1-Norm

Relaxation

Ideally, each basis element extracted with the recursive approach outlined pre-
viously should correspond to a different material present in the hyperspectral
image: we would like that each extracted rank-one factor corresponds to only
one material, i.e., that only a submatrix of M (a set of rows of M) corre-
sponding to pixels containing the same material is approximated at each step.

8Soft clustering means that a single element of the dataset can be assigned to different
clusters; a (nonnegative) weight being attached to each cluster (e.g., corresponding to the
probability of the pixel to belong to the cluster). In a hyperspectral image, it makes sense
since the pixels can be composed of different materials (the clusters) with different abundances
(the weights, summing to one).
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Unfortunately, the ℓ2-norm is not appropriate for this purpose: it is very sen-
sitive to ‘outliers’, i.e., it cannot neglect some entries of the matrix M and set
only a subset of the entries of the residual error to zero. It is more likely that
it will try to approximate several materials at the same time in order to avoid
large entries in the residual error. For this reason, we will see that the ℓ2-norm
based algorithm typically first extracts several materials together.

If the ℓ0-‘norm’ is used instead, i.e., if the number of zero entries in the resid-
ual is maximized, one can check that for a matrix satisfying Assumption 7.1,
this will lead to an exact recovery in r steps ; because extracting one material
(i.e., taking v = HT

i: for some i at each step) will lead to the highest number
of zeros in the residual R = M − uvT (rows corresponding to the extracted
material are identically zero; plus one zero by row and by column for the other
ones). Unfortunately, ℓ0-‘norm’ minimization is very difficult to work with
(non-differentiable, non-convex even when one factor is fixed, i.e., ||M −uvT ||0
for u or v fixed). Moreover, in practice, because of noise and blur, the ℓ0-‘norm’
would not be appropriate since rows of M representing the same material can-
not be approximated exactly. However, the ℓ1-norm, often used as a convex
heuristic to approximate ℓ0-‘norm’9, is known to be less sensitive to outliers and
is then disposed to let some entries of the error large, in order to approximate
better other entries. We will experimentally observe in Section 7.4 that using
ℓ1-norm allows us to extract materials individually in a more efficient manner,
i.e., using a smaller number of recursive steps.

7.3.1 Algorithm for ℓ1-Norm Minimization

Using the idea of Lagrangian duality presented in Secton 6.5, we propose to
solve10

min
u∈Rm

+
, v∈Rn

+

||(M − Λ)− uvT ||1 =
∑

ij

|(M − Λ)− uvT |ij , (7.5)

where Λ ∈ Rm×n
+ represents the Lagrangian multipliers associated with the

underapproximation constraints. Let us apply the same procedure as in Sec-
tion 6.5, i.e., alternate optimization over u, v and Λ. Fixing v and Λ and
noting A = M −Λ, u can be optimized by solving the following m independent
problems

min
ui≥0
||Ai: − uiv

T ||1 =
∑

j

|Aij − uivj | =
∑

j ∈ supp(y)

vj

∣
∣
∣
Aij

vj
− ui

∣
∣
∣+

∑

j /∈ supp(v)

|Aij |,

9The convex envelope of ||x||0 on the set S = {x ∈ Rn | ||x||2 ≤ 1} is ||x||1, i.e., ||x||1 is
the largest convex function smaller than ||x||0 on S, see [129] and the references therein.

10Note that Λ does not correspond to the Lagrangian dual variables of
minu≥0,v≥0,uvT ≤M ||M − uvT ||1 =

∑

ij |M − uvT |ij . However, this formulation is
closely related to the Lagrangian relaxation and allows us to use the same derivations as for
Algorithm 12.
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which can be solved by computing the weighted median of z with zj = (Aij/vj)∀j
with weights vj . The same can be done for v by symmetry, and we propose to
update u and v with (steps 6 and 7 of Algorithm 12)

ui = max
(

0, weighted-median
( [(M − Λ)i(J)]

[v(J)]
, v(J)

))

∀i, J = supp(v),

and

vj = max
(

0, weighted-median
( [(M − Λ)j(I)]

[u(I)]
, u(I)

))

∀j, I = supp(u).

The weighted median of an n dimensional vector can be computed in O(n)
operations, cf. [86] and the references therein, so that the algorithm can be
implemented in O(mn) operations per iteration when the data matrix M has
dimension m × n. We will refer to this algorithm as ℓ1-NMU. The ℓ2-norm
version (where u and v are taken as the optimal solution of the ℓ2-norm min-
imization problem, see Algorithm 13) has the same computational complexity
even though in practice ℓ1-NMU will be slower, but only up to a constant fac-
tor11.

The rest of the algorithm is implemented as follows, see Algorithm 13. Ma-
trix Λ is updated with a subgradient type update (step 10, as in Algorithm 12).
If Λ is too large, it might happen that u and/or v are set to zero leading to a
trivial stationary point. We propose to reduce the value of Λ if that happens
and to set u and v to their old values (step 12). Iterates (u, v) are initialized
with the optimal rank-one solution of the ℓ2-norm unconstrained problem (i.e.,
the optimal rank-one approximation of the residual, step 2, corresponding to
Λ = 0); Λ is initialized with the nonnegative part of the residual matrix (step
4). Since the algorithm is not guaranteed to generate a feasible solution12, only
the nonnegative part of the residual is considered (step 15).

Note that the updates of u and v share some similarities with the power
method (applied to M −Λ, with projection on the nonnegative orthant) which
computes the maximum singular value and its corresponding left and right sin-
gular vectors, see Section 2.2.1. It seems that Algorithm 12 behaves similarly as
the power method in the sense that it converges in general relatively fast. Ex-
tensive experiments on a host of data and applications allow us to conclude that
100 iterations at each step of the recursion are sufficient (i.e., maxiter = 100
which will be used for the numerical experiments, see Section 7.4).

11Implementation of both algorithms is available at
http://www.core.ucl.ac.be/~ngillis/ .

12This feature is actually an advantage for practical applications. In fact, this gives the
algorithm some flexibility when dealing with noisy data. However, one can obtain a feasible
stationary point by using updates (7.1) and (7.2) as a post-processing step.
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Algorithm 13 Recursive NMU for ℓ1- and ℓ2-norms

Require: M ∈ Rm×n
+ , r > 0, maxiter, norm = 1 or 2.

Ensure: (U, V ) ∈ Rm×r
+ × Rn×r

+ s.t. UV . M .

1: for k = 1 : r do
2: [u, v] = optimal rank-one approximation(M);
3: U:k ← u; Vk: ← v;
4: Λ← max(0,−(M − uvT ));

5: for p = 1 : maxiter do

6: if norm = 2 then
7: u← max

(

0, (M−Λ)v
||v||2

2

)

;

8: v ← max
(

0, (M−Λ)T u
||u||2

2

)

;

9: else if norm = 1 then
10: ui = max

(

0, w-median
(

[(M−Λ)i(J)]
[v(J)] , v(J)

))

∀i, J = supp(v);

11: vj = max
(

0, w-median
(

[(M−Λ)j(I)]
[u(I)] , u(I)

))

∀j, I = supp(u);

12: end if
13: if u 6= 0 and v 6= 0 then

14: U:k ← u; Vk: ← v;

15: Λ← max(0, Λ− 1
p (M − uvT ));

16: else
17: Λ← Λ

2 ; u← U:k; v ← Vk:;

18: end if
19: end for
20: M = max(0, M − U:kVk:);
21: end for

Since only a rank-one matrix is computed at each step, (NMU-1) is in gen-
eral well-posed in the sense that the optimal solution is unique (up to a scaling
factor)13. In fact, for any rank-one nonnegative matrix A, there exists one
and only one (u, v) ≥ 0 such that ||u||2 = 1 and A = uvT . In our experi-
ments, we observed that NMU is much less sensitive to initialization and that,
in general, when we allow several restarts of the algorithm with different ini-
tializations, it ends up with similar solutions (hopefully, close to the optimum).
This is typically not the case with the standard NMF formulation because of
non-uniqueness [103].

13Note that (NMF) with r = 1 is also well-posed; in fact, the optimal solution is unique
if and only if the maximum singular value of M (σ1(M)) is strictly greater than the second
biggest singular value (σ2(M) < σ1(M)), cf. Section 2.2.
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7.4 Numerical Experiments

In this section, Algorithms for ℓ2- and ℓ1-norm minimization proposed in Sec-
tion 7.3 (ℓ2-NMU and ℓ1-NMU) are used as dimensionality reduction techniques
for hyperspectral data in order to achieve classification (selecting from the ba-
sis elements the different clusters), and spectral unmixing (using nonnegative
least squares).

In the first part, we analyze carefully the Urban HYDICE image (Sec-
tions 7.4.2) and a Hubble space telescope simulated image (Section 7.4.3) devel-
oped in [153]. To serve as a comparison, we also give the classification results
obtained with k-means14; we plan to compare the NMU strategy with more
sophisticated techniques in the future.

In the second part, we provide some visual results for aerial images of a
desert region and of the San Diego airport (Sections 7.4.4 and 7.4.4), and for
an eye image with four bands (Section 7.4.4).

7.4.1 Classification and Spectral Unmixing

NMU can be used as a standard dimensionality reduction technique and any
type of post-processing procedure can be used to extract the constitutive parts
of spectral data, e.g., k-means, nearest neighbor, etc. However, we have shown
why NMU is potentially able to extract these parts automatically. Therefore,
the simplest approach would be to visually select each cluster from the gener-
ated basis elements (i.e., manually selected the basis elements representing a
single material). We stick to this approach and select, from the basis elements,
each individual cluster: from the U matrix obtained with NMU, we only keep
a subset of the columns, each corresponding to an individual material.

The second post-processing step is to normalize U . In fact, as NMF, NMU is
invariant to the scaling of the columns of U (∀k U:kVk: = (αU:k)(α−1Vk:) ∀α >
0). Moreover, in the context of hyperspectral image analysis, rows of U have a
physical interpretation: Uij is the abundance of material j in pixel i. Therefore,
Uij ≤ 1 ∀i, j and the columns of U are normalized with

U:j =
U:j

maxi(Uij)
∀j.

This means that, for each rank-one factor extracted with the NMU procedure,
the maximum abundance of each pixel for the corresponding spectral signature
Vk: is at most 1. Moreover, since rows of U correspond to abundances,

∑

j Uij =
1 ∀i and we can scale the rows of U as follows

Ui: ←
Ui:

||Ui:||1 + ǫ
, ǫ ≪ 1,

14We used the MATLAB® kmeans function, with default parameters.
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so that they sum to one (except if they are identically zeros). This allows us to
equilibrate the relative importance of each pixel in each basis element. With
this procedure, we end up with a soft clustering: each pixel i is composed of
several materials with the corresponding abundances given by Ui:.

Once the pixels have been classified, one might be interested in recovering
the spectral signatures of each individual material (corresponding to the rows of
matrix V in a decomposition M ≈ UV ), called the end-members. A standard
approach is to solve a nonnegative least squares problem of the form

min
V ≥0

||M − UV ||2F , (NNLS)

where U represents the basis vectors, with dedicated algorithms [27].

Remark 7.2. The rows of V in the NMU solution don’t correspond directly
to the spectral signatures of the end-members, because several materials are
sometimes extracted together, in particular at the first steps of the algorithm.
In order to get the spectral signature of an end-member from the NMU solution,
one has to sum up all the rows of V corresponding to a column of U containing
the desired end-member. For example, for M > 0, the first row of V always
has to be used to obtain a spectral signature since all materials are present in
the first basis element with U:1 > 0, see Corollary 7.3. It is therefore more
convenient and more accurate to compute the spectral signatures by solving
(NNLS).

7.4.2 Urban HYDICE Image

We consider first the Urban hyperspectral image15 taken with HYper-spectral
Digital Imagery Collection Experiment (HYDICE) air-borne sensors. We ana-
lyze the data where the noisy bands have been removed (162 bands left, origi-
nally 210), and the data cube has dimension 307× 307× 162. Figures 7.7 and
7.8 give the basis elements of the ℓ2- and ℓ1-NMU decompositions. The Urban
data is mainly composed of 6 types of materials: road, dirt, trees, roofs, grass
and metal, as reported in [85]. Table 7.1 gives the index of the NMU basis
elements corresponding to single materials.

Clusters Road Dirt Trees Roofs Grass Metal
ℓ2 basis # 18 23 3 4 6 8
ℓ1 basis # 16 17 2 5 6 7

Table 7.1: Basis elements obtained: cluster selection.

15Available at http://www.agc.army.mil/hypercube/ .
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Figure 7.9 shows the classification obtained from the basis elements obtained
with NMU (cf. Figures 7.7 and 7.8, and Table 7.1), and with k-means which is
only able to extract two materials correctly.

Figure 7.10 displays the results of the spectral unimxing procedure for both
NMU algorithms (ℓ2 and ℓ1) which are compared to 6 end-members, as listed
as the ‘true’ endmembers for this data in [85].

In this example, NMU performs relatively well and is able to detect all the
materials individually, which can then be used to classify the pixels and finally
recover the end-member signatures. We also note that, as predicted, the ℓ2-
NMU needs more recursion than ℓ1-NMU to extract all materials individually
(23 vs. 17). For example, it is interesting to observe that ℓ1-NMU actually
extracts the grass as two separate basis elements (6 and 10, cf. Figure 7.8). The
reason is that the spectral signatures of the pixels in these two basis elements
differ (especially after the 100th band in the hyperspectral image): there are two
types of grass with similar spectral signatures, and they are different enough
to be assigned to different clusters (see Figure 7.11). Because ℓ1-NMU is able
to extract parts separately in a more efficient way (cf. Section 7.3), it is able to
detect this ‘anomaly’ while ℓ2-NMU is not. It also gives an explanation of the
differences in the spectral signatures of the grass in Figure 7.10.

Number of Spectral Bands

In Section 7.1, a sufficient condition was presented to recover each material
individually: the number of spectral bands (n) should be sufficiently larger
than the number of materials (r). This is clearly satisfied by the Urban data
since for n = 162 and r = 6, the probability to satisfy the sparsity pattern
assumption is larger than 1 − 10−12. However, it was also explained why this
condition is not necessary, see Section 7.1. What happens then if we reduce
the number of bands? For example, suppose we keep only 9 bands from the
162 original clean bands of the urban data16. Figure 7.12 displays the basis
elements for ℓ2-NMU. Surprisingly, the algorithm is still able to separate the
materials: trees are recovered in basis element 2, roofs 3, road 4 (mixed with
dirt), grass 5, metal 7, and dirt 8.

When less than 6 bands are kept, the algorithm cannot detect all the mate-
rials individually. Figure 7.13 displays basis elements using 5 bands. The grass
and the trees are extracted together (basis element 2), because their spectral
signatures are similar; the roads and the dirt also are extracted together (basis
element 4), so are the road and roofs (basis element 7), while the roofs and the
metal (basis elements 3 and 6 respectively) are extracted individually.

16We selected the bands so that they are well distributed in the spectral domain. However,
one could use more sophisticated techniques (e.g., subset selection algorithms such as [100])
or using dimensionality reduction techniques preserving nonnegativity (such as NMF) as a
pre-processing step.
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Finally, it seems that, as long as the spectral signatures of the different
materials can be distinguished, the number of spectral bands does not need to
be significantly larger than the number of materials in order for NMU to be able
to perform classification. However, when this is not the case (e.g., when more
noise and blur are present), more spectral bands are needed to distinguish the
different materials, which seems to be a natural requirement (these observations
will also be illustrated in the next section).

7.4.3 Simulated Hubble Space Telescope Data

Figure 7.14 displays some sample images of the simulated Hubble database
which consists of 100 spectral images of the Hubble telescope, 128× 128 pixels
each, with added blur and noise17 [126]. It is composed of 8 materials18, see
Figure 7.15.

Figure 7.16 shows the basis elements obtained with NMU, Figure 7.17 dis-
plays the classification obtained with k-means (which is able to extract five
constitutive materials), Table 7.2 gives the classification of the basis elements
and Figure 7.18 shows the end-members extraction: original vs. noisy and
blurred.

Clusters Al S. Cell Glue Cu H. Side H. Top Edge Bolts
ℓ2 basis # 2 3 4 6 7 8 13 11
ℓ1 basis # 2 3 4 7 6 9 11 8

Table 7.2: Basis elements obtained: cluster selection for the Hubble telescope
database with noise and blur, see Figure 7.16.

Spectral signatures of black rubber edge and bolts are not recovered very
accurately (or not at all in the case of the ℓ2-norm). The reason is that they
are the smallest and thinest parts: they get mixed with surrounding materials
which make them difficult to extract. Moreover, the spectral signature of the
bolts is very similar to the one of copper stripping and therefore, when noise
and blur are added, they are extracted together (basis elements 11 for ℓ2-norm
and 8 for ℓ1-norm).

As for the Urban dataset, ℓ2-NMU extracts more mixed materials and there-
fore needs more recursions to get all the parts separated than the ℓ1-NMU,
which seems to do a better job (especially for the black rubber edge).

17Point spread function on 5 by 5 pixels and with standard deviation of 1, and white
Gaussian noise σ = 1% of the values of M and Poisson noise σ = 1% of the mean value of
M .

18These are true Hubble satellite material spectral signatures provided to us by the NASA
Johnson Space Center.
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Number of Spectral Bands

Let reduce the number of spectral bands to 12, and compare the basis elements
obtained with ℓ2-NMU on the clean vs. the noisy and blurry images. Figure 7.19
displays the basis elements. Clearly, in the noisy and blurry case, the algorithm
is no longer able to extract all the materials. The reason is that there is not
enough spectral bands left. Because of blur (spectral signatures of materials are
mixed together) and noise (spectral signatures are perturbed), 12 bands is not
enough to distinguish all the materials, as already explained in Section 7.4.2.
Quite naturally, the more the number of bands, the more robust the algorithm
will be with respect to noise and blur.

7.4.4 Visual Experiments

In this section, we first provide some visual results19 for datasets analyzed in a
recent comparative study of dimensionality reduction techniques for hyperspec-
tral images [24], and for which ‘ground truth’ data is not available. However,
it allows to experimentally reinforce our claims about the properties of NMU;
namely that it is indeed able to detect materials, or at least to separate some
of them.

We then display results for an hyperspectral image of an eye with 4 spectral
bands, and propose a way to post-process the basis elements obtained with
NMU in order to achieve clustering.

Aerial Image of a Desert Region

This is a HYDICE terrain data set with 166 clean bands (originally 210), each
containing 500 × 307 pixels. Figure 7.20 displays the first 6 basis elements.
NMU is easily able to extract trees (basis element 2), roads (basis element 3)
and grass (basis element 6).

San Diego Airport

The San Diego airport hyperspectral image contains 158 clean bands, and
400× 400 pixels for each spectral image. Figure 7.21 displays the first 8 basis
elements obtained by the NMU decomposition. In this case, it is less clear
what the different materials are. It should probably be necessary to apply
more sophisticated post-processing techniques to classify the pixels. However,
we observe that

⋄ Basis elements 4, 7 and 8 contain the roofs;

⋄ Basis element 6 mostly contains roads (including the parking lots);

19We will only display basis elements obtained with ℓ2-NMU because the results obtained
with ℓ1-NMU are comparable.
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⋄ Basis element 2 contains the grass and some roofs;

⋄ Basis element 3 is mostly composed of another type of road surface (in-
cluding boarding and landing zones).

Eye Image

We are given (only) 4 spectral images with 1040× 1392 pixels (spectral bands
correspond to IR, red, green and blue channels)20. The data comes from the
West Virginia University multispectral image iris database [132]. Figure 7.22
displays the basis elements obtained with ℓ2-NMU. The first basis element
represents the pupil, a part of the iris and the eyelashes; the second some kind
of substructure in the iris and the skin; and the third the pupil.

Segmentation and clustering multispectral eye images are useful in the anal-
ysis of iris recognition algorithms in biometrics, see, e.g., [19]. A possible way
to post-process the NMU basis elements in order to achieve clustering is to
compare their support. Recall that each basis element should represent a set
of ‘materials’. Therefore, if we want to identify these materials, the following
simple procedure can be used

1. Compare the supports of each pair of basis elements21, i.e., compute
supp(ui) ∩ supp(uj)∀i 6= j.

2. Define non-empty intersections as new basis elements. If no new basis
elements are identified, go to step 3.; otherwise go back to step 1.

3. ∀i 6= j such that supp(ui) ⊂ supp(uj), set supp(uj)← supp(uj)\ supp(ui).
If some basis elements have been modified, go back to step 1., otherwise
go to step 4.

4. Materials are identified as the remaining basis elements, which define
disjoint clusters.

One can check that this procedure will always terminate within a finite number
of steps. Notice that, in practice, some kind of thresholding should be used in
order to define the supports, and the intersections containing a small number
of pixels should be considered as empty.

In the example of Figure 7.22, we have (after thresholding)

supp(u1)∩supp(u2) ≈ ∅, supp(u3) ⊂ supp(u1) and supp(u2)∩supp(u3) = ∅,

so that the above procedure provides us with the clustering displayed in Fig-
ure 7.23.

20The data comes from the West Virginia University multispectral image iris database.
The circle around the pupil and the matrix inside the pupil were embedded in the image.

21There are
(
r

2

)
= r(r−1)

2
= O(r2) such pairs (at the first step), and each comparison

requires O(mn) operations.
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Conclusion

In this chapter, we have used recursive NMU for dimensionality reduction in the
context of hyperspectral data analysis. We gave theoretical and experimental
evidence showing that NMU is able to perform automatically soft-clustering of
hyperspectral images. A main advantage is that no sparsity parameters have
to be tuned and parts-based representation is naturally achieved. It would be
interesting to compare NMU with other dimensionality reduction techniques
such as PCA, NMF, ICA, etc., see [24]. Another direction of research would
be to design automatic classification algorithms, based on the properties of
NMU, to classify the pixels; as we proposed in Section 7.4.4. It would be
particularly interesting to study these properties in more depth and see if it is
possible to obtain stronger theoretical guarantees for the factors generated by
NMU. Finally, NMU can be generalized to higher order tensors, which could
be called nonnegative tensor underapproximation (NTU). For example, for a
third order tensor T of dimension m × n × p, we would use a third vector
w ∈ Rp

+ in order to underapproximate T with a rank-one tensor u ⊗ v ⊗ w,
i.e., Tijk ≈ uivjwk. The optimal solutions for u, v and w separately can still
be written in closed-forms and Algorithm 12 can be easily generalized. Notice
that the hyperspectral images analyzed in this section can also be represented as
third order tensors (two spatial dimensions and the wavelength, see Figure 7.1).
However, abundance maps typically don’t have a rank-one structure because
constitutive elements can be spread anyhow over the scene being imaged. Hence
they cannot be well represented by a rank-one matrix uvT , and using NTU does
not give good results. Nevertheless, it could be useful in other situations. For
example, if we also had images taken at different time steps. This situation can
be encountered for the analysis of a chemical reaction where the concentrations
of the different constitutive elements evolve with time.
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Figure 7.7: Basis elements (columns of matrix U) for the Urban dataset ex-
tracted with ℓ2-NMU; dark tones indicate a high value of an entry (0 is white, 1
black); numbers indicate the position of the factor in the NMU decomposition.
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Figure 7.8: Basis elements of ℓ1-NMU for the Urban dataset extracted, identi-
fied as in Figure 7.7.
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Figure 7.9: Post-processed basis elements of NMU for Urban dataset with ℓ2-
norm (top) and ℓ1-norm (middle), and classification obtained with k-means
able to extract properly the grass, the trees and the dirt (bottom). Light tones
represent high degree of membership.
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Figure 7.10: End-members extraction: ℓ2-NMU (gray solid) and ℓ1-NMU
(dashed) vs. 6 end-members from the image using N-FINDR5 [151] plus manual
adjustment (dark solid) from [85]. The x-axis gives the wavelength bands while
y-axis gives the reflectance values (intensities of reflected light).
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Figure 7.11: Spectral signatures of grass: weighted average of the spectral
signatures of the pixels present in basis elements 6 and 10 of the ℓ1-norm
solution.
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Figure 7.12: Basis elements of ℓ2-NMU for the Urban dataset using only 9
bands (bands 1, 20, 40, . . . , 160).
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Figure 7.13: Basis elements of ℓ2-NMU for the Urban dataset using only 5
bands (1,41,81,121,161).

Figure 7.14: Sample of images in the Hubble tensor with blur and noise.

Figure 7.15: The 8 materials for the Hubble telescope data provided to us
by NASA. From left to right: Aluminum, Solar Cell, Green Glue, Copper
Stripping, Honeycomb Side, Honeycomb Top, Black Rubber Edge and Bolts.

192



7.4. NUMERICAL EXPERIMENTS

Figure 7.16: Basis elements of NMU for Hubble telescope with ℓ2-norm (top)
and ℓ1-norm (bottom) with added blur and noise.
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Figure 7.17: K-means classification for Hubble telescope with added blur and
noise, not able to separate the Honeycomb Top, Black Rubber Edge and Bolts.

Figure 7.18: Endmembers for the Hubble satellite data with noise and blur.
NMU with ℓ2 (gray solid) and NMU with ℓ1 (dashed) vs. 8 true end-members
(black solid).
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Figure 7.19: Basis elements obtained with ℓ2-NMU on the Hubble telescope
hyperspectral image using only 12 spectral bands (1 + 9i, 0 ≤ i ≤ 11): (top)
clean image and (bottom) noisy and blurry image (same settings as before).
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Figure 7.20: Aerial Image of a Desert Region basis elements obtained with
ℓ2-NMU.
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Figure 7.21: San Diego Airport basis elements obtained with ℓ2-NMU.

Figure 7.22: Eye basis elements obtained with ℓ2-NMU.

Figure 7.23: Clustering of the eye, based on the NMU decomposition.
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Chapter 8

Weights and Missing Data

Approximating a matrix with one of lower rank is a key problem in data analysis
and is widely used for linear dimensionality reduction, see the introduction of
the thesis (Chapter 1). In some cases, it might be necessary to attach a weight
to each entry of the data matrix corresponding to its relative importance [64].
This is for example the case in the following situations:

⋄ The matrix to be approximated is obtained via a sampling procedure
and the number of samples and/or the expected variance vary among the
entries, e.g., 2-D digital filter design [116], or microarray data analysis
[117].

⋄ Some data is missing/unknown, which can be taken into account assign-
ing zero weights to the missing/unknown entries of the data matrix. This
is for example the case in collaborative filtering, notably used to de-
sign recommender systems [135] (in particular, the Netflix prize competi-
tion has demonstrated the effectiveness of low-rank matrix factorization
techniques [101]), or in computer vision to recover structure from mo-
tion [93,139], see also [28]. This problem is often referred to as PCA with
missing data (PCAMD) [83, 139], and can be viewed as a low-rank ma-
trix completion problem with noise, i.e., approximate a given noisy data
matrix featuring missing entries with a low-rank matrix1.

⋄ A greater emphasis must be placed on the accuracy of the approximation
on a localized part of the data, a situation encountered for example in
image processing [89, Chapter 6].

Finding a low-rank matrix that is the closest to the input matrix according
to these weights is an optimization problem called weighted low-rank approx-

1In our settings, the rank of the approximation is fixed a priori.
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imation (WLRA). Formally, it can be formulated as follows: first, given an
m-by-n nonnegative weight matrix W ∈ Rm×n

+ , we define the weighted Frobe-

nius norm of an m-by-n matrix A as ||A||W = (
∑

i,j WijA
2
ij)

1
2 . Then, given an

m-by-n real matrix M ∈ Rm×n and a positive integer r ≤ min(m, n), we seek
an m-by-n matrix X with rank at most r that approximates M as closely as
possible, where the quality of the approximation is measured by the weighted
Frobenius norm of the error:

p∗ = inf
X∈Rm×n

||M −X ||2W such that X has rank at most r.

Since any m-by-n matrix with rank at most r can be expressed as the product
of two matrices of dimensions m-by-r and r-by-n, we will use the following
more convenient formulation featuring two unknown matrices U ∈ Rm×r and
V ∈ Rr×n but no explicit rank constraint:

p∗ = inf
U∈Rm×r ,V ∈Rr×n

||M − UV ||2W =
∑

ij

Wij(M − UV )2ij . (WLRA)

Even though (WLRA) is suspected to be NP-hard [93,140], this has never,
to the best of our knowledge, been studied formally.

In this chapter, we focus only on the computational complexity of this
problem in the rank-one case2 (i.e., for r = 1) and prove the following two
results.

Theorem 8.1. When M ∈ {0, 1}m×n, and W ∈ ]0, 1]m×n, it is NP-hard
to find an approximate solution of rank-one (WLRA) with objective function
accuracy less than 2−11(mn)−6.

Theorem 8.2. When M ∈ [0, 1]m×n, and W ∈ {0, 1}m×n, it is NP-hard
to find an approximate solution of rank-one (WLRA) with objective function
accuracy less than 2−12(mn)−7.

It is then NP-hard to find an approximate solution to the following prob-
lems: (1) rank-one (WLRA) with positive weights, and (2) rank-one approxi-
mation of a matrix with missing data.

Even though this chapter does not directly deal with nonnegativity con-
straints, the matrices used in the reductions are nonnegative (see Theorems
8.1 and 8.2). Moreover, when the data matrix M is nonnegative, it is easy to
show that, without loss of generality, any optimal solution to rank-one (WLRA)
can be assumed to be nonnegative (cf. derivations of Example 8.1). Therefore,
all the complexity results of this chapter also apply to NMF; in particular, it

2The obtained results can be easily generalized to any fixed rank r, see Remark 8.2.
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is NP-hard to find an approximate solution to rank-one weighted NMF 3 and
to rank-one NMF with missing data, in contrast with rank-one NMF which is
polynomially solvable (cf. Chapter 3).

Remark 8.1. The following more general problem is sometimes also referred
to as WLRA:

inf
U∈Rm×r ,V ∈Rr×n

||M − UV ||2P ,

where ||A||2P = vec(A)T Pvec(A), with vec(A) a vectorization of matrix A and P
an mn-by-mn positive semidefinite matrix, see [136] and the references therein;
our WLRA formulation hence reduces to having P diagonal and nonnegative.

The chapter is organized as follows. We first review existing results about
the complexity of (WLRA) in Section 8.1. In Section 8.2, we prove Theorem 8.1
and, in Section 8.3, Theorem 8.2 using polynomial-time reductions from the
maximum-edge biclique problem (see Problem (MB) in Section 5.1.2). We
conclude with a discussion and some open questions.

8.1 Previous Results

Weighted low-rank approximation is known to be much more difficult than the
corresponding unweighted problem (i.e., when W is the matrix of all ones),
which is solved using the SVD, see Section 2.2. In fact, it has been previously
observed that the weighted problem might have several local minima which are
not global [140].

Example 8.1. Let

M =





1 0 1
0 1 1
1 1 1



 , and W =





1 100 2
100 1 2
1 1 1



 .

In the case of a rank-one factorization (r = 1) and a nonnegative matrix M ,
one can impose without loss of generality that U ≥ 0 and V ≥ 0. In fact, one
can easily check that any solution UV is improved by taking its component-
wise absolute value |UV | = |U ||V |. Moreover, we can impose without loss of
generality that ||U ||2 = 1, so that only two degrees of freedom remain. Indeed,
for a given

U(x, y) =





x
y

√

1− x2 − y2



 , with

{
x ≥ 0, y ≥ 0
x2 + y2 ≤ 1

,

3Weighted NMF amounts to solving (WLRA) with additional nonnegativity constraints
on U ≥ 0 and V ≥ 0, see, e.g., [89, Chapter 6].
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the corresponding optimal V ∗(x, y) = argminV ||M −U(x, y)V ||2W can be com-
puted easily (it reduces to a weighted least squares problem). Figure 8.1 dis-
plays the surface of the objective function ||M−U(x, y)V ∗(x, y)||W with respect
to parameters x and y; we distinguish 4 local minima, close to ( 1√

2
, 0), (0, 1√

2
),

(0, 0) and ( 1√
2
, 1√

2
). We will see later in Section 8.2 how this example has been

Figure 8.1: Objective function of (WLRA) with respect to the parameters
(x, y).

generated.

However, if the rank of the weight matrix W ∈ Rm×n
+ is equal to one,

i.e., W = stT for some s ∈ Rm
+ and t ∈ Rn

+, (WLRA) can be reduced to an
unweighted low-rank approximation. In fact,

||M − UV ||2W =
∑

i,j

Wij (M − UV )2ij =
∑

i,j

sitj (M − UV )2ij

=
∑

i,j

(√
sitj Mij − (

√
si Ui:)(

√
tj V:j)

)2

.

Therefore, if we define a matrix M ′ such that M ′
ij =

√
sitj Mij ∀i, j, an optimal

weighted low-rank approximation (U, V ) of M can be recovered from a solution
(U ′, V ′) to the unweighted problem for matrix M ′ using Ui: = U ′

i:/
√

si ∀i and

202



8.1. PREVIOUS RESULTS

V:j = V ′
:j/
√

tj ∀j.

When the weight matrix W is binary, WLRA amounts to approximating a
matrix with missing data. This problem is closely related to low-rank matrix
completion (MC), see [25] and references therein, which can be defined as

min
X

rank(X) such that Xij = Mij for (i, j) ∈ Ω ⊂ {1, 2, . . . , m}×{1, 2, . . . , n},
(MC)

where Ω is the set of entries for which the values of M are known. (MC) has
been shown to be NP-hard [29], and it is clear that an optimal solution X∗

of (MC) can be obtained by solving a sequence of (WLRA) problems with the
same matrix M , with

Wij =

{
1 if (i, j) ∈ Ω
0 otherwise

,

and for different values of the target rank ranging from r = 1 to r = min(m, n).
The smallest value of r for which the objective function ||M − UV ||2W of
(WLRA) vanishes provides an optimal solution for (MC). This observation
implies that it is NP-hard to solve (WLRA) for each possible value of r (from
1 to min(m, n)) since it would solve (MC). However, this does not imply that
(WLRA) is NP-hard when r is fixed, and in particular when r = 1. In fact,
checking whether (MC) admits a rank-one solution can be done easily4.

Rank-one (WLRA) can be equivalently reformulated as

inf
A
||M −A||2W such that rank(A) ≤ 1,

and, when W is binary, it is then the problem of finding, if possible, the best
rank-one approximation of a matrix with missing entries. To the best of our
knowledge, the complexity of this problem has never been studied formally; it
will be shown to be NP-hard in the Section 8.3.

Another closely related result is the NP-hardness of the structure from mo-
tion problem (SFM), in the presence of noise and missing data [122]. Several
points of a rigid object are tracked with cameras (we are given the projections
of the 3-D points on the 2-D camera planes; missing data arises because the
points might not always be visible by the camera, e.g., in case of rotation), and
the aim is to recover the structure of the object and the positions of the 3-D
points. SFM can be written as a rank-four (WLRA) problem with a binary
weight matrix5 [93]. However, this result does not imply anything on the com-
plexity analysis of rank-one (WLRA).

4The solution X = uvT can be constructed observing that the vector u must be multiple
of each column of M .

5Except that the last row of V must be all ones, i.e., Vr: = 11×n.
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An important feature of (WLRA) is exposed by the following example.

Example 8.2. Let

M =

(
1 ?
0 1

)

where ? indicates that an entry is missing, i.e., that the weight associated with
this entry is 0 (1 otherwise). Observe that ∀(u, v) ∈ Rm × Rn,

rank(M) = 2 and rank(uvT ) = 1 ⇒ ||M − uvT ||W > 0.

However, we have
inf

(u,v)∈Rm×Rn
||M − uvT ||W = 0.

In fact, one can check that with

u(k) =

(
1

10−k

)

and v(k) =

(
1

10k

)

, we have lim
k→+∞

||M−u(k)v(k)T ||W = 0.

This indicates that when W has zero entries the set of optimal solutions of
(WLRA) might be empty: there might not exist an optimal solution. In other
words, the (bounded) infimum might not be attained. At the other end, the
infimum is always attained for W > 0 since ||.||W is then a norm.

For this reason, these two cases will be analyzed separately: in Section 8.2,
we study the computational complexity of the problem when W > 0, and, in
Section 8.3, when W is binary (the problem with missing data).

8.2 Weighted Low-Rank Approximation

In order to prove NP-hardness of rank-one (WLRA) with positive weights
(W > 0), let us consider the following instance:

p∗ = min
u∈Rm,v∈Rn

||M − uvT ||2W , (W-1d)

with M ∈ {0, 1}m×n the biadjacency of a bipartite graph Gb = (V, E) and the
weight matrix defined as

Wij =

{
1 if Mij = 1
d if Mij = 0

, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

with d ≥ 1 a parameter. We are going to show that as d increases the opti-
mal solutions of (W-1d) gets closer to optimal solutions of the maximum-edge
biclique problem (MB) (cf. Section 5.1.2).

Intuitively, increasing the value of d makes the zero entries of M more
important in the objective function, which leads them to be approximated by
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small values. This observation will be used to show that, for d sufficiently large,
the optimal value p∗ of (W-1d) will be close to the minimum |E|−|E∗| of (MB)
(Lemma 8.5). Recall |E| = ||M ||2F denotes the cardinality of the edge set of Gb

and |E∗| is the cardinality of a maximum-edge biclique of Gb.

In fact, as the value of parameter d increases, the local minima of (W-1d)
get closer to the ‘locally’ optimal solutions of (MB), which are binary vectors
describing the maximal bicliques in Gb, i.e., bicliques not contained in larger
bicliques. Example 8.1 illustrates the situation: the graph Gb corresponding
to matrix M is represented in Figure 8.2 and contains four maximal bicliques

Figure 8.2: Graph corresponding to the matrix M of Example 8.1.

{s1, s3, t1, t3}, {s2, s3, t2, t3}, {s3, t1, t2, t3} and {s1, s2, s3, t3}, and the weight
matrix W that was used is similar to the case d = 100 in problem (W-1d). We
now observe that (W-1d) has four local optimal solutions as well (cf. Figure 8.1)
close to ( 1√

2
, 0), (0, 1√

2
), (0, 0) and ( 1√

2
, 1√

2
). There is a one to one correspon-

dence between these solutions and the four maximal bicliques listed above (in
this order). For example, for (x, y) = ( 1√

2
, 0) we have U(x, y) = ( 1√

2
0 1√

2
)T ,

V ∗(x, y) is approximately equal to (
√

2 0
√

2)T , and this solution corresponds
to the maximal biclique {s1, s3, t1, t3}.

This idea is similar to the one used in Chapter 5 to prove Theorem 5.3,
i.e., to prove NP-hardness of the rank-one nonnegative factorization problem
minu∈Rm

+
,v∈Rn

+
||M − uvT ||F , where the zero entries of M were replaced by suf-

ficiently large negative ones.

Let us now prove this formally. It is first observed that for any (u, v) such
that ||M − uvT ||2W ≤ |E|, the absolute value of the row or the column of uvT

corresponding to a zero entry of M must be smaller than a constant inversely
proportional to 4

√
d.

Lemma 8.3. Let (i, j) be such that Mij = 0, then ∀(u, v) such that ||M −
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uvT ||2W ≤ |E|,

min
(

max
1≤k≤n

|uivk|, max
1≤p≤m

|upvj |
)

≤ 4

√

4|E|2
d

.

Proof. Without loss of generality u and v can be scaled such that ||u||2 = ||v||2
without changing the product uvT . First, observe that since ||.||W is a norm,

||uvT ||W −
√

|E| = ||uvT ||W − ||M ||W ≤ ||M − uvT ||W ≤
√

|E|.

Since all entries of W are larger than 1 (d ≥ 1), we have

||u||2||v||2 = ||uvT ||F ≤ ||uvT ||W ≤
√

4|E|,

and then ||u||2 = ||v||2 ≤ 4
√

4|E|.
Moreover d(0− uivj)

2 ≤ ||M − uvT ||2W ≤ |E|, so that |uivj | ≤
√

|E|
d which

implies that either |ui| ≤ 4

√
|E|
d or |vj | ≤ 4

√
|E|
d . Combining above inequalities

with the fact that (max1≤k≤n |vk|) and (max1≤p≤m |up|) are bounded above by

||u||2 = ||v||2 ≤ 4
√

4|E| completes the proof.

Using Lemma 8.3, we can associate any point (u, v) such that ||M−uvT ||2W ≤
|E| with a biclique of Gb, the graph generated by the biadjacency matrix M .

Corollary 8.4. For any pair (u, v) such that ||M − uvT ||2W ≤ |E|, the set

Ω(u, v) = I×J, with I = { i | ∃j s.t. |uivj | > α }, J = { j | ∃i s.t. |uivj | > α },

where α = 4

√
4|E|2

d , defines a biclique of Gb.

We can now provide lower and upper bounds on the optimal value p∗ of
(W-1d), and show that it is not too different from the optimal value |E| − |E∗|
of (MB).

Lemma 8.5. Let 0 < ǫ ≤ 1. For any value of parameter d such that d ≥ 26|E|6
ǫ4 ,

the optimal value p∗ of (W-1d) satisfies

|E| − |E∗| − ǫ < p∗ ≤ |E| − |E∗|.

Proof. Let (u, v) be an optimal solution of (W-1d) (there always exists at least
one optimal solution, cf. Section 8.1), and let us note p = |E|− |E∗| ≥ 0. Since
any optimal solution of (MB) plugged in (W-1d) also achieves an objective
function equal to p, we must have

p∗ = ||M − uvT ||2W ≤ p = |E| − |E∗|,
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which gives the upper bound.
By Corollary 8.4, the set Ω = Ω(u, v) defines a biclique of (MB) with

|Ω| ≤ |E∗| edges. By construction, the entries in M which are not in Ω are

approximated by values smaller than α. If α = 4

√
4|E|2

d ≤ 1, i.e., d ≥ 4|E|2
which is satisfied for 0 < ǫ ≤ 1, the error corresponding to a one entry of M
not in the biclique Ω is at least (1−α)2. Since there are at least p = |E|− |E∗|
such entries, we have

(1− α)2p ≤ ||M − uvT ||2W . (8.1)

Moreover

(1 − α)2p > (1− 2α)p = p− 2αp ≥ p− 2α|E| ≥ p− ǫ,

since 2α|E| ≤ ǫ ⇐⇒ d ≥ 26|E|6
ǫ4 , which gives the lower bound.

This result implies that for ǫ = 1, i.e., for d ≥ (2|E|)6, we have |E| −
|E∗| − 1 < p∗ ≤ |E| − |E∗|, and therefore computing p∗ exactly would allow to
recover |E∗| (since ⌈p∗⌉ = |E| − |E∗|), which is NP-hard. Since the reduction
from (MB) to (W-1d) is polynomial (it uses the same matrix M and a weight
matrix W whose description has polynomial length), we conclude that solving
(W-1d) exactly is NP-hard. The next result shows that even solving (W-1d)
approximately is NP-hard.

Corollary 8.6. For any d > (2mn)6, M ∈ {0, 1}m×n, and W ∈ {1, d}m×n, it
is NP-hard to find an approximate solution of rank-one (WLRA) with objective

function accuracy less than 1− (2mn)3/2

d1/4 .

Proof. Let d > (2mn)6, 0 < ǫ = (2mn)3/2

d1/4 < 1, and (ū, v̄) be an approximate
solution of (W-1d) with objective function accuracy (1 − ǫ), i.e., p∗ ≤ p̄ =

||M − ūv̄T ||2W ≤ p∗ + 1− ǫ. Since d = (2mn)6

ǫ4 ≥ (2|E|)6
ǫ4 , Lemma 8.5 applies and

we have

|E| − |E∗| − ǫ < p∗ ≤ p̄ ≤ p∗ + 1− ǫ ≤ |E| − |E∗|+ 1− ǫ.

We finally observe that p̄ allows to recover |E∗|, which is NP-hard. In fact,
adding ǫ to the above inequalities gives |E|− |E∗| < p̄+ ǫ ≤ |E|− |E∗|+1, and
therefore

|E∗| = |E| −
⌈

p̄ + ǫ
⌉

+ 1.

We are now in position to prove Theorem 8.1, which deals with the hardness
of rank-one (WLRA) with bounded weights.
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Proof of Theorem 8.1. Let us use Corollary 8.6 with W ∈ {1, d}m×n, and
define W ′ = 1

dW ∈ { 1
d , 1}m×n. Clearly, replacing W by W ′ in (W-1d) simply

amounts to multiplying the objective function by 1
d , with ||M − uvT ||2W ′ =

1
d ||M − uvT ||2W . Taking d1/4 = 2(2mn)3/2 in Corollary 8.6, we obtain that
for M ∈ {0, 1}m×n and W ∈]0, 1]m×n, it is NP-hard to find an approximate

solution of rank-one (WLRA) with objective function accuracy less than 1
d

(

1−
(2mn)3/2

d1/4

)

= 1
2d = 2−11(mn)−6.

Remark 8.2. Using the same construction as in Theorem 6.6 from Chapter 6,
this rank-one NP-hardness result can be generalized to any factorization rank,
i.e., approximate (WLRA) for any fixed rank r is NP-hard.

Remark 8.3. The bounds on d have been quite crudely estimated, and can be
improved. Our goal was only to show existence of a polynomial-time reduction
from (MB) to rank-one (WLRA).

8.3 Low-Rank Approximation with Missing Data

Unfortunately, the aboveNP-hardness proof does not include the case when W
is binary, corresponding to missing data in the matrix to be approximated (or
to low-rank matrix completion with noise). This corresponds to the following
problem

inf
U∈Rm×r ,V ∈Rr×n

||M − UV ||2W =
∑

ij

Wij(M − UV )2ij , W ∈ {0, 1}m×n.

(LRAMD)
In the same spirit as before, we consider the following rank-one version of the
problem

p∗ = inf
u∈Rm,v∈Rn

||M − uvT ||2W , (MD-1d)

with input data matrices M and W defined as follows

M =

(
Mb 0s×Z

0Z×t dIZ

)

and W =

(
1s×t B1

B2 IZ

)

,

where Mb ∈ {0, 1}s×t is the biadjacency matrix of the bipartite graph Gb =
(V, E), d > 1 is a parameter, Z = st− |E| is the number of zero entries in Mb,
m = s + Z and n = t + Z are the dimensions of M and W .

Binary matrices B1 ∈ {0, 1}s×Z and B2 ∈ {0, 1}Z×t are constructed as
follows: assume the Z zero entries of Mb can be enumerated as

{Mb(i1, j1), Mb(i2, j2), . . . , Mb(iZ , jZ)},
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and let kij be the (unique) index k (1 ≤ k ≤ Z) such that (ik, jk) = (i, j)
(therefore kij is only defined for pairs (i, j) such that Mb(i, j) = 0, and estab-
lishes a bijection between these pairs and the set {1, 2, . . . , Z}). We now define
matrices B1 and as follows: for every index 1 ≤ kij ≤ Z, we have

B1(i, kij) = 1, B1(i
′, kij) = 0 ∀i′ 6= i and B2(kij , j) = 1, B2(kij , j

′) = 0 ∀j′ 6= j .

Equivalently, each column of B1 (resp. row of B2) corresponds to a different
zero entry Mb(i, j) = 0, and contains only zeros except for a one in position i
within the column (resp j within the row).

In the case of Example 8.1, we get

M =







1 0 1
0 1 1
1 1 1

03×2

02×3 d I2







and W =









13×3

1 0
0 1
0 0

0 1 0
1 0 0

I2









,

i.e., the matrix to be approximated can be represented as









1 0 1 0 ?
0 1 1 ? 0
1 1 1 ? ?
? 0 ? d ?
0 ? ? ? d









.

For any feasible solution (u, v) of (MD-1d), we also note

u =

(
ub

ud

)

∈ Rm, ub ∈ Rs and ud ∈ RZ ,

v =

(
vb

vd

)

∈ Rn, vb ∈ Rt and vd ∈ RZ .

We will show that this formulation ensures that, as d increases, the zero
entries of the matrix Mb (upper left of matrix M , which is the biadjacency
matrix of Gb) have to be approximated with smaller values. Hence, as for
(W-1d), we will be able to prove that the optimal value p∗ of (MD-1d) will have
to get close to the minimum |E| − |E∗| of (MB), implying its NP-hardness.

Intuitively, when d is large, the lower right matrix dIZ of M will have to be
approximated by a matrix with large diagonal entries since they correspond to
one entries in the weight matrix W . Hence ud(kij)vd(kij) has to be large for all
1 ≤ kij ≤ Z. We then have at least either ud(kij) or vd(kij) large for all kij (re-
call each kij corresponds to a zero entry in M at position (i, j), cf. definition of
B1 and B2 above). By construction, we also have two entries M(s + kij , j) = 0
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and M(i, t+kij) = 0 with nonzero weights corresponding to the nonzero entries
B1(i, kij) and B2(kij , j), which then have to be approximated by small values.
If ud(kij) (resp. vd(kij)) is large, then vb(j) (resp. ub(i)) will have to be small
since ud(kij)vb(j) ≈ 0 (resp. ub(i)vd(kij) ≈ 0). Finally, either ub(i) or vb(j) has
to be small, implying that Mb(i, j) is approximated by a small value, because
(ub, vb) is bounded independently of the value of d.

We now proceed as in Section 8.2. Let us first give an upper bound for the
optimal value p∗ of (MD-1d).

Lemma 8.7. For d > 1, the optimal value p∗ of (MD-1d) is bounded above by
|E| − |E∗|, i.e.,

p∗ = inf
u∈Rm,v∈Rn

||M − uvT ||2W ≤ |E| − |E∗|. (8.2)

Proof. Let us build the following feasible solution (u, v) of (MD-1d) where
(ub, vb) is an optimal solution of (MB) and (ud, vd) is defined as

ud(kij) =

{
dK if ub(i) = 0,

d1−K if ub(i) = 1,
and vd(kij) =

{
dK if vb(j) = 0,

d1−K if vb(j) = 1,

with K ∈ R and kij the index of the column of B1 and the row of B2 corre-
sponding to the zero entry (i, j) of Mb (i.e., (i, j) = (ikij , jkij )).

One can check that

(uvT ) ◦W =

(

ubvb
T d1−KB1

d1−KB2 dIZ

)

,

where ◦ is the component-wise (or Hadamard) product between two matrices,
so that

p∗ ≤ ||M − uvT ||2W = |E| − |E∗|+ 2Z

d2(K−1)
, ∀K. (8.3)

Since d > 1, taking the limit K → +∞ gives the result.

We now prove a property similar to Lemma 8.3 for any solution with ob-
jective value smaller that |E|.

Lemma 8.8. Let d >
√

|E| and (i, j) be such that Mb(i, j) = 0, then the
following holds for any pair (u, v) such that ||M − uvT ||2W ≤ |E|:

min
(

max
1≤k≤n

|uivk|, max
1≤p≤m

|upvj |
)

≤
√

2 |E| 34
(
d−

√

|E|
) 1

2

. (8.4)
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Proof. Without loss of generality we set ||ub||2 = ||vb||2 by scaling u and v
without changing uvT . Observing that

||ub||2||vb||2−
√

|E| = ||ubv
T
b ||F−||Mb||F ≤ ||Mb−ubv

T
b ||F ≤ ||M−uvT ||W ≤

√

|E|,

we have ||ub||2||vb||2 ≤ 2
√

|E|, and ||ub||2 = ||vb||2 ≤
√

2|E| 14 .
Assume Mb(i, j) is zero for some pair (i, j) and let k = kij denote the index
of the corresponding column of B1 and row of B2 (i.e., such that B1(i, k) =
B2(k, j) = 1). By construction, ud(k)vd(k) has to approximate d in the objec-
tive function. This implies (ud(k)vd(k)− d)2 ≤ |E| and then

ud(k)vd(k) ≥ d−
√

|E| > 0.

Suppose |ud(k)| is greater than |vd(k)| (the case |vd(k)| greater than |ud(k)| is
similar), this implies |ud(k)| ≥ (d− |E| 12 )

1
2 . Moreover ud(k)vj has to approxi-

mate zero in the objective function, since B2(k, j) = 1, implying

(ud(k)vj − 0)2 ≤ |E| ⇒ |ud(k)vj | ≤
√

|E|.

Hence

|vj | ≤
√

|E|
|ud(k)| ≤

|E| 12
(
d−

√

|E|
) 1

2

, (8.5)

and since (max1≤p≤m |up|) is bounded by ||ub||2 ≤
√

2|E| 14 , the proof is com-
plete.

One can now associate to any point with objective value smaller than |E| a
biclique of Gb, the graph generated by the biadjacency matrix Mb.

Corollary 8.9. Let d >
√

|E|, then for any pair (u, v) such that ||M −
uvT ||2W ≤ |E|, the set

Ω(u, v) = I×J, with I = { i | ∃j s.t. |uivj | > β }, J = { j | ∃i s.t. |uivj | > β },
(8.6)

where β =
√

2 |E|
3
4

(
d−
√

|E|
) 1

2

, defines a biclique of Gb.

The next lemma gives a lower bound for the value of p∗.

Lemma 8.10. Let 0 < ǫ ≤ 1. For any value of parameter d that satisfies

d > 8|E|
7
2

ǫ2 + |E| 12 , the infimum p∗ of (MD-1d) satisfies

|E| − |E∗| − ǫ < p∗.
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Proof. If |E| = |E∗|, the result is trivial since p∗ = 0. Otherwise, suppose

p∗ ≤ |E|− |E∗|− ǫ and let β =
√

2 |E|
3
4

(
d−
√

|E|
) 1

2

. First observe that d > 8|E|
7
2

ǫ2 + |E| 12

is equivalent to 2|E|β < ǫ. Then, by continuity of (MD-1d), for any δ such
that δ < ǫ, there exists a pair (u, v) such that

||Md − uvT ||2W ≤ |E| − |E∗| − δ.

In particular, let us take δ = 2|E|β < ǫ. We can now proceed as for Lemma 8.5.
By Corollary 8.9, Ω(u, v) corresponds to a biclique of Gb, with at most |E∗|
edges. Then, for β ≤ 1, i.e., for d ≥ 2|E| 32 + |E| 12 satisfied for 0 < ǫ ≤ 1,

(1− β)2(|E| − |E∗|) ≤ ||M − uvT ||2W ≤ |E| − |E∗| − δ.

Dividing the above inequalities by |E| − |E∗| > 0, we obtain

1− 2β < (1 − β)2 ≤ 1− δ

|E| − |E∗| ≤ 1− δ

|E| ⇒ δ < 2|E|β,

a contradiction.

Corollary 8.11. For any d > 8(mn)7/2 +
√

mn, M ∈ {0, 1, d}m×n, and W ∈
{0, 1}m×n, it is NP-hard to find an approximate solution of rank-one (WLRA)

with objective function accuracy 1− 2
√

2(mn)7/4

(d−√
mn)1/2 .

Proof. Let d > 8(mn)7/2 +
√

mn, 0 < ǫ = 2
√

2(mn)7/4

(d−√
mn)1/2 < 1, and (ū, v̄) be an

approximate solution of (W-1d) with absolute error (1 − ǫ), i.e., p∗ ≤ p̄ =

||M − ūv̄T ||2W ≤ p∗ +1− ǫ. Lemma 8.10 applies because d = 8(mn)7/2

ǫ2 +
√

mn ≥
8(st)7/2

ǫ2 +
√

st ≥ 8|E|7/2

ǫ2 + |E|1/2. Using Lemmas 8.7 and 8.10, the rest of the
proof is identical as the one of Theorem 8.1. Since the reduction from (MB)
to (MD-1d) is polynomial (description of matrices W and M has polynomial
length, since the increase in matrix dimensions from Mb to M is polynomial),
we conclude that finding such an approximate solution for (MD-1d) is NP-
hard.

We can now easily derive Theorem 8.2, which deals with the hardness of
rank-one (WLRA) with a bounded matrix M .

Proof of Theorem 8.2. Replacing M by M ′ = 1
dM in (MD-1d) gives an

equivalent problem with objective function multiplied by 1
d2 , since 1

d2 ||M −
uvT ||2W = ||M ′ − uvT

d ||2W . Taking d = 25(mn)7/2 +
√

mn in Corollary 8.11,
we find that it is NP-hard to compute an approximate solution of rank-one
(WLRA) for M ∈ [0, 1]m×n and W ∈ {0, 1}m×n, and with objective function

accuracy less than 1
d2

(

1− 2
√

2(mn)7/4

(d−√
mn)1/2

)

= 1
2d2 ≥ 2−12(mn)−7.
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8.3. LOW-RANK APPROXIMATION WITH MISSING DATA

Concluding Remarks

In this chapter, we have studied the complexity of the weighted low-rank ap-
proximation problem (WLRA), and proved that finding an approximate solu-
tion is NP-hard, already in the rank-one case, both for positive and for binary
weights (the latter also corresponding to low-rank matrix completion with noise,
or PCA with missing data).

Nevertheless, some questions remain open. In particular,

⋄ When W is the matrix of all ones, WLRA can be solved in polynomial-
time. We have shown that, when the ratio between the largest and the
smallest entry in W is large enough, the problem is NP-hard (Theo-
rem 8.1). It would be interesting to investigate the gap between these
two facts, i.e., what is the minimum ratio of the entries of W so that
WLRA is NP-hard?

⋄ When rank(W ) = 1, WLRA can be solved in polynomial-time (cf. Sec-
tion 8.1) while it is NP-hard for general matrix W (with rank up to
min(m, n)). But what is the complexity of (WLRA) if the rank of the
weight matrix W is fixed and greater than one, e.g., if rank(W ) = 2?

⋄ When data is missing, the rank-one matrix approximation problem is
NP-hard in general. Nevertheless, it has been observed [27] that when the
given entries are sufficiently numerous, well-distributed in the matrix, and
affected by a relatively low level of noise, the original uncorrupted low-
rank matrix can be recovered accurately, with a technique based on convex
optimization (minimization of the nuclear norm of the approximation,
which can be cast as a semidefinite program). It would then be especially
interesting to analyze the complexity of the problem given additional
assumptions on the data matrix, for example on the noise distribution,
and deal in particular with situations related to applications.
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Conclusion

In this conclusion, we first summarize our results and give some directions for
further research. We then review again the three main themes of this thesis:
complexity, algorithms and applications, and try to stand back and make some
final general comments.

Summary and Further Research

In this thesis, we have explored a relatively recent problem in linear algebra,
namely nonnegative matrix factorization (NMF). It is a linear dimensionality
reduction technique for nonnegative data, and requires factors of the corre-
sponding low-rank matrix approximation to be nonnegative. These additional
constraints enhance compression (through sparsity) and interpretability (be-
cause basis elements are sparse and can be interpreted in the same way as
the data, e.g., as images or texts, and because they lead to an additive and
part-based representation).

We started this thesis with some theoretical considerations, and studied in
Chapter 3 the problem of determining the smallest value of the rank for which
an exact nonnegative matrix factorization exists (called the nonnegative rank).
Defining a new closely related quantity (the restricted nonnegative rank), and
using a geometric interpretation, we were able to understand better the com-
plexity of the nonnegative rank computation, and to provide some new lower
and upper bounds for the nonnegative rank. The geometric interpretation also
gave new insights on the NMF problem. For example, it allows the reduction
of the dimension of the search space, hence it might be a starting point for new
efficient NMF algorithms (see also [148]). However, there are still many open
questions related to the computational complexity of both NMF and nonneg-
ative rank computation. For example, are these problems difficult when the
rank of the matrix to be factored is fixed (to three, or higher values)? Is NMF
difficult when the factorization rank is fixed (to two, or higher values)? The
nonnegative rank can also be used to characterize the size of extended formu-
lations, and it would be interesting to investigate further in this direction. For
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example, would it be possible to apply nonnegative rank computation algo-
rithms on the slack matrices of integer programs in order to design extended
formulations? Could an approximate nonnegative factorization (i.e., NMF) be
used to find approximate extended formulations? The fact that slack matrices
have exponential size (in the dimension of the polytope) is a drawback that will
have to be overcome.

In Chapter 4, three standard NMF algorithms (MU, ANLS and HALS)
were studied, along with two new approaches to speed up their convergence:
one based on the reorganization of the updates performed at each iteration, and
the other based on a multilevel approach valid for specific classes of datasets.
Using the properties of the NMF optimization problem and the structure of
the solutions (part-based), we gave an explanation for the good performances
of HALS. Further research on this topic includes the design of more effective
algorithms. It also seems non-trivial to come up with good stopping criteria
to be used to decide when to switch between blocks of variables in the general
framework of an inexact coordinate descent scheme. This could potentially
improve the current approaches (see Section 4.2).

In Chapter 5, the rank-one subproblems arising in NMF were studied. They
amount to approximating a not necessarily nonnegative matrix with a rank-one
nonnegative matrix (R1NF), which we proved to be NP-hard using a reduction
from the maximum-edge biclique problem. Using a link between the stationary
points of R1NF and the bicliques of a graph, we proposed a new efficient biclique
finding algorithm. We also generalized the MU algorithm of NMF for matrices
with negative entries, and gave an explanation for the worse performance of
multiplicative updates compared to the HALS algorithm.

In Chapter 6, a new recursive approach to solve NMF was introduced. Based
on the introduction of underapproximation constraints, it enables the extrac-
tion of features in a recursive way, like PCA, but preserving nonnegativity,
and the computation of sparse solutions, enhancing interpretability. It was ex-
plained in Chapter 7 how and why this technique is useful for the analysis of
hyperspectral data. In particular, we showed that a variant based on ℓ1-norm
minimization was able to recursively extract constitutive materials in hyper-
spectral images in a robust and efficient way, as experimentally demonstrated
on images associated with space object material identification and on HYDICE
and related remote sensing images. It would be interesting to generalize some
of these results to tensors. In particular, could the recursive approach based
on underapproximation applied to tensors be useful in some applications?

Finally, in Chapter 8, low-rank matrix approximation with weights or miss-
ing data, but without nonnegativity constraints on the factors, was proved to be
NP-hard, already when computing an approximate rank-one solution. These
results also apply to NMF, i.e., weighted NMF and NMF with missing data are
both NP-hard, even to approximate in the rank-one case.
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Complexity

The standard low-rank matrix approximation problem can be defined as

min
X∈Rm×n

||M −X ||2F such that rank(X) ≤ r. (LRA)

Using the singular value decomposition, one can obtain an optimal solution (see
Theorem 2.3), and also characterize the set of all stationary points. In fact,
letting

S = { (σ, u, v) ∈ R+ × Rm × Rn | ||u||2 = ||v||2 = 1, MT u = σv, Mv = σu }

be the set of singular triplets of M , all stationary points are of the form

Xs =

r∑

i=1

σiuiv
T
i ,

where (σi, ui, vi) ∈ S ∀i and (σi, ui, vi) 6= (σj , uj , vj)∀i 6= j, with at least
(
min(m,n)

r

)
such points if M is full-rank, see, e.g., [89, p.29]. One nice feature

of (LRA) is that any local minimum is also global (as for convex optimization
problems), and all other stationary points are saddle points, see Theorem 2.5.

A recurring theme in this thesis is that, as soon as one perturbs the problem6

by either modifying the domain (i.e., adds constraints on matrix X) or changing
the objective function, the structure of (LRA) is typically lost, and the problem
becomes difficult to solve, often even in the rank-one case r = 1. Intuitively, the
reason is that there are still exponentially many stationary points, including
many local minima, while global optimality can no longer be checked easily,
see, e.g., Figure 8.1 for an illustration when weights are attached to the entries
of matrix M . In this thesis, we have considered several variants of LRA, which
can be equivalently reformulated as

min
U∈Rm×r,V ∈Rr×n

||M − UV ||2F , (LRA)

and all were shown to be NP-hard. Table 8.1 summarizes these computational
complexity results7.

At first sight, these computational complexity results are quite discouraging.
However, it appears in practice that approximate solutions are often satisfac-
tory. In some situations, it is even possible to have a guarantee of optimality.
For example, in case of missing data, a semidefinite programming reformulation

6Perturbed variants of other related polynomially solvable problems, such as solving linear
systems or linear programming, have also been shown to be NP-hard, see the work of Jiri
Rohn and co-authors [130, 131].

7Notice that NP-hardness for r = 1 implies NP-hardness for r fixed (see construction of
Theorem 6.6), and NP-hardness for r fixed implies NP-hardness for r not fixed.
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Variant r = 1 r fixed r not fixed

LRA polynomial polynomial polynomial
SPCA - Sparsity on U NP-hard [46] NP-hard NP-hard

NMF - U, V ≥ 0, M ≥ 0 polynomial open NP-hard [148]
NF - U, V ≥ 0, M � 0 NP-hard (Th. 5.3) NP-hard NP-hard

NMU - U, V ≥ 0, UV ≤ M NP-hard (Th. 6.5) NP-hard NP-hard
WLRA - min ||M − UV ||2W NP-hard (Th. 8.1) NP-hard NP-hard
LRAMD - missing entries NP-hard (Th. 8.2) NP-hard NP-hard [29]

Table 8.1: Computational complexity of several low-rank matrix approximation
problems.

based on the nuclear norm minimization allows to recover the solution of the
original problem in some specific circumstances [25]. Along the same line, the
maximum-edge biclique problem, used in the reductions for our NP-hardness
proofs, can be solved with a convex reformulation when the bipartite graph
contains a planted biclique, i.e., a biclique with significantly more edges than
the other bicliques [3]. Hence there might exist classes of instances for which
these low-rank matrix approximation problems can be solved in polyomial time,
and it would be particularly interesting to characterize them.

Algorithms

In Chapter 4, we have presented several algorithms for solving

min
U∈Rm×r ,V ∈Rr×n

||M − UV ||2F , such that U ≥ 0, V ≥ 0, (NMF)

and used them throughout the thesis. It appears that most NMF algorithms
are two-block coordinate descent schemes, i.e., successively optimizing U for V
fixed and then V for U fixed. There are two reasons for that fact:

1. The corresponding subproblems are convex nonnegative least squares
(NNLS), hence efficiently solvable, potentially up to global optimality.

2. The gradient of these subproblems can be updated efficiently ; in fact, we
have shown that it is at least twice less expensive than reconstructing it
from scratch (and it is in general even less expensive), see Section 4.2.

We are actually not aware of any efficient algorithm updating both matrices U
and V simultaneously.

We have then observed that an exact coordinate descent applied on these
NNLS subproblems, i.e., the hierarchical alternating least squares algorithm
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(HALS), was the best strategy among the ones we have tested, which was
motivated by the following two facts:

1. Structure of NNLS. The problem minU≥0 ||M−UV ||2F (resp. minV ≥0 ||M−
UV ||2F ) can be decoupled into m (resp. n) completely independent NNLS
subproblems in r variables, corresponding to each row (resp. column) of
M , each with Hessian matrix V V T (resp. UT U).

2. Structure of NMF solutions. Because of the nonnegativity constraints,
NMF solutions are typically part-based, i.e., rows of V (resp. columns of
U) shares few nonzero entries. Therefore matrix V V T (resp. UT U) typ-
ically features large diagonal entries, and the coupling between variables
in the NNLS subproblems is rather low, with a beneficial effect on the
efficiency of coordinate descent schemes.

Hence HALS combines cheap (because it only uses first-order information) and
effective (because subproblems are almost separable) updates.

This illustrates the general fact that it is crucial to take into account the
properties of a given problem to select and design efficient algorithms. In
particular, we have proposed two approaches to speed up significantly NMF
algorithms: reorganizing ordering of the updates in Section 4.2, and using a
multilevel approach in Section 4.3. We believe it should be possible to go further
in this direction and take advantage of other properties of NMF. For example,
we typically observe convergence of the sparsity patterns of the factors before
actual convergence. When the positions of the zeros in U and V stop changing
after several updates, one could simply fix all these zero entries and update the
remaining entries using (unconstrained) least squares, as done in active-set like
methods (see Appendix A).

Applications

NMF is a dimensionality reduction technique used as a preprocessing step for
classification tasks, and can be applied in many different situations, e.g., image
processing in (see Chapter 1), text mining (see Chapter 5 and [11]), and hyper-
spectral image analysis (see Chapter 7). The advantage of NMF over standard
low-rank approximation techniques such as PCA is its interpretability (part-
based and sparse representation, see Chapter 1) which makes its post-processing
much easier. However, there are two main pitfalls to using NMF in practice:

1. Complexity of the underlying optimization problem. In fact, Vavasis
showed NP-hardness of NMF [148], and many closely related variants
appears to be NP-hard as well (see Complexity above). In addition to
the theoretical reasons outlined earlier, NMF can be interpreted as a
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clustering technique (such as k-means [53]), closely related to difficult
combinatorial optimization problems [55]. Another closely related prob-
lem is the NMF of symmetric matrices with one factor forced to be equal
to the transpose of the other (M = UUT ), which amounts to finding the
decomposition of completely positive matrices (see Chapter 2).

2. Non-uniqueness. Solutions to NMF are in general non-unique. This can
be shown for example using its geometric interpretation presented in Sec-
tion 3.4.1: there might exist many different solutions to the equivalent
nested polytopes problem (see also [103]), i.e., there might exist optimal
solutions (U, V ) and (U ′, V ′) with ||M − UV ||F = ||M − U ′V ′||F and
UV 6= U ′V ′. In particular, when restarting several times an NMF al-
gorithm, we often obtain quite different solutions with nearby objective
function values, and it is rather difficult to decide which one is the best
for the application of interest.
Moreover, for a solution (U, V ), it is possible that a non-monomial (i.e.,
not a permutation of a diagonal matrix) invertible matrix D exists such
that (UD, D−1V ) is nonnegative, and these ‘equivalent’ solutions could
potentially lead to different interpretations (in particular if the sparsity
patterns of matrices UD and D−1V are different from those of U and V
respectively).

The second pitfall can sometimes be alleviated by incorporating prior infor-
mation into the model. In fact, in many applications, additional information
on the structure of the solutions is available, such as sparsity or smoothness,
cf. introduction of Chapter 7.

For example, we have proposed in Chapters 6 and 7 a new framework based
on nonnegative underapproximations to analyze hyperspectral images which
makes the optimal solution of the underlying optimization problem unique.
Ideally, for each application, one should try to design an appropriate model
in order to reduce the degrees of freedom in NMF, allowing the algorithms to
obtain solutions that fit the situation at hand. Objective functions different
from the Frobenius norm can also be used to improve performances, as shown
in Section 7.3 (ℓ1-norm).
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Appendix A

Active set methods for NNLS

In a nutshell, active set methods for nonnegative least squares work in the
following iterative fashion [104, Algorithm NNLS, p. 161]

0. Choose the set of active (zero) and passive (nonzero) variables.

1. Get rid of the nonnegativity constraints and solve the unconstrained least
squares problem (LS) corresponding to the set of passive (nonzero) vari-
ables (the solution is obtained by solving a linear system, i.e., the normal
equations);

2. Check the optimality conditions, i.e., the nonnegativity of passive vari-
ables, and the nonnegativity of the gradients of the active variables (see
Chapter 1). If they are not satisfied:

3. Exchange variables between the set of active and the set of passive vari-
ables in such a way that the objective function is decreased at each step;
and go to 1.

In (NMF), the problem of computing the optimal U (resp. V ) for a given
fixed V (resp. U) can be decoupled into m (resp. n) independent NNLS sub-
problems in r variables:

min
Ui:∈Rr

+

||Mi: − Ui:V ||2F , 1 ≤ i ≤ m (resp. min
V:j∈Rr

+

||M:j − UV:j ||2F , 1 ≤ j ≤ n).

Each of them amounts to solving a sequence of linear subsystems (with at most
r variables, cf. step 1 above) of

Ui:(V V T ) = Mi:V
T , 1 ≤ i ≤ m (resp. (UT U)V:j = UT M:j , 1 ≤ j ≤ n).

In the worst case, one might have to solve every possible subsystem, which
requires O(g(r)) operations with1 g(r) =

∑r
i=1

(
r
i

)
i3 = Θ(2rr3). Note that

1One can check that (2(r−3) − 1)(r − 2)3 ≤ g(r) ≤ 2rr3.
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V V T and MV T (resp. UT U and UT M) can be computed once for all to avoid
redundant computations. Finally, one ANLS step requires at most O(mnr +
(m + n)s(r)r3) operations per iteration, where s(r) ≤ 2r. In the worst case,
s(r) is in Θ(2r) while in practice it is in general much lower (as is the case for
the simplex method for linear programming).

When m is reduced by a certain factor (e.g., four as in our multilevel ap-
proach presented in Section 4.3), the computational cost is not exactly reduced
by the same factor, because the leading (m + n) factor above also depends on
n. However, in our applications, when m (number of pixels) is much larger
than n (number of images), one can roughly consider the cost per iteration to
be reduced by the same factor since m+n

4 ≈ m
4 .
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