
TOPICS IN CONVEX OPTIMIZATION:
INTERIOR-POINT METHODS,

CONIC DUALITY AND APPROXIMATIONS

François Glineur

Service de Mathématique et de Recherche Opérationnelle,
Faculté Polytechnique de Mons,

Rue de Houdain, 9, B-7000 Mons, Belgium.

Francois.Glineur@fpms.ac.be
http://mathro.fpms.ac.be/~glineur/

January 2001 Co-directed by
Jacques Teghem

Tamás Terlaky

mailto:Francois.Glineur@fpms.ac.be�
http://mathro.fpms.ac.be/~glineur/�

Contents

Table of Contents i

List of figures v

Preface vii

Introduction 1

I INTERIOR-POINT METHODS 5

1 Interior-point methods for linear optimization 7
1.1 Introduction . 8

1.1.1 Linear optimization . 8
1.1.2 The simplex method . 8
1.1.3 A first glimpse on interior-point methods 9
1.1.4 A short historical account . 9

1.2 Building blocks . 11
1.2.1 Duality . 11
1.2.2 Optimality conditions . 12
1.2.3 Newton’s method . 13
1.2.4 Barrier function . 14
1.2.5 The central path . 14
1.2.6 Link between central path and KKT equations 15

1.3 Interior-point algorithms . 15
1.3.1 Path-following algorithms . 16
1.3.2 Affine-scaling algorithms . 22
1.3.3 Potential reduction algorithms . 25

1.4 Enhancements . 26
1.4.1 Infeasible algorithms . 26

i

ii CONTENTS

1.4.2 Homogeneous self-dual embedding . 27
1.4.3 Theory versus implemented algorithms 29
1.4.4 The Mehrotra predictor-corrector algorithm 29

1.5 Implementation . 31
1.5.1 Linear algebra . 31
1.5.2 Preprocessing . 32
1.5.3 Starting point and stopping criteria 33

1.6 Concluding remarks . 33

2 Self-concordant functions 35
2.1 Introduction . 35

2.1.1 Convex optimization . 35
2.1.2 Interior-point methods . 37
2.1.3 Organization of the chapter . 38

2.2 Self-concordancy . 39
2.2.1 Definitions . 39
2.2.2 Short-step method . 41
2.2.3 Optimal complexity . 42

2.3 Proving self-concordancy . 45
2.3.1 Barrier calculus . 46
2.3.2 Fixing a parameter . 47
2.3.3 Two useful lemmas . 49

2.4 Application to structured convex problems . 54
2.4.1 Extended entropy optimization . 54
2.4.2 Dual geometric optimization . 55
2.4.3 lp-norm optimization . 56

2.5 Concluding remarks . 57

II CONIC DUALITY 59

3 Conic optimization 61
3.1 Conic problems . 61
3.2 Duality theory . 64
3.3 Classification of conic optimization problems 67

3.3.1 Feasibility . 67
3.3.2 Attainability . 68
3.3.3 Optimal duality gap . 69

4 lp-norm optimization 73
4.1 Introduction . 73

4.1.1 Problem definition . 74
4.1.2 Organization of the chapter . 75

4.2 Cones for lp-norm optimization . 75
4.2.1 The primal cone . 75
4.2.2 The dual cone . 77

4.3 Duality for lp-norm optimization . 82

CONTENTS iii

4.3.1 Conic formulation . 82
4.3.2 Duality properties . 84
4.3.3 Examples . 89

4.4 Complexity . 90
4.5 Concluding remarks . 92

5 Geometric optimization 95
5.1 Introduction . 95
5.2 Cones for geometric optimization . 96

5.2.1 The geometric cone . 96
5.2.2 The dual geometric cone . 99

5.3 Duality for geometric optimization . 103
5.3.1 Conic formulation . 103
5.3.2 Duality theory . 106
5.3.3 Refined duality . 110
5.3.4 Summary and examples . 113

5.4 Concluding remarks . 115
5.4.1 Original formulation . 115
5.4.2 Conclusions . 117

6 A different cone for geometric optimization 119
6.1 Introduction . 119
6.2 The extended geometric cone . 120
6.3 The dual extended geometric cone . 122
6.4 A conic formulation . 124

6.4.1 Modelling geometric optimization . 125
6.4.2 Deriving the dual problem . 126

6.5 Concluding remarks . 127

7 A general framework for separable convex optimization 129
7.1 Introduction . 129
7.2 The separable cone . 130
7.3 The dual separable cone . 133
7.4 An explicit definition of Kf . 135
7.5 Back to geometric and lp-norm optimization 136
7.6 Separable convex optimization . 138
7.7 Concluding remarks . 141

III APPROXIMATIONS 143

8 Approximating geometric optimization with lp-norm optimization 145
8.1 Introduction . 145
8.2 Approximating geometric optimization . 146

8.2.1 An approximation of the exponential function 146
8.2.2 An approximation using lp-norm optimization 147

8.3 Deriving duality properties . 149

8.3.1 Duality for lp-norm optimization . 149
8.3.2 A dual for the approximate problem 150
8.3.3 Duality for geometric optimization . 152

8.4 Concluding remarks . 153

9 Linear approximation of second-order cone optimization 155
9.1 Introduction . 155
9.2 Approximating second-order cone optimization 157

9.2.1 Principle . 157
9.2.2 Decomposition . 158
9.2.3 A first approximation of L2 . 159
9.2.4 A better approximation of L2 . 160
9.2.5 Reducing the approximation . 164
9.2.6 An approximation of Ln . 166
9.2.7 Optimizing the approximation . 167
9.2.8 An approximation of second-order cones optimization 170
9.2.9 Accuracy of the approximation . 171

9.3 Computational experiments . 173
9.3.1 Implementation . 173
9.3.2 Truss-topology design . 176
9.3.3 Quadratic optimization . 181

9.4 Concluding remarks . 185

IV CONCLUSIONS 187

Concluding remarks and future research directions 189

V APPENDICES 191

A An application to classification 193
A.1 Introduction . 193
A.2 Pattern separation . 194
A.3 Maximizing the separation ratio . 196
A.4 Concluding remarks . 199

B Source code 201

Bibliography 209

Summary 215

About the cover 217

List of Figures

2.1 Graphs of functions r1 and r2 . 50

3.1 Epigraph of the positive branch of the hyperbola x1x2 = 1 68

4.1 The boundary surfaces of L(5) and L(2) (in the case n = 1). 77

4.2 The boundary surfaces of L(5
4
) and L(5) (in the case n = 1). 81

5.1 The boundary surfaces of G2 and (G2)∗. 102

9.1 Approximating B2(1) with a regular octagon. 160

9.2 The sets of points P3, P2, P1 and P0 when k = 3. 162

9.3 Constraint matrices for L15 and its reduced variant. 165

9.4 Linear approximation of a parabola using Lk for k = 1, 2, 3, 4. 172

9.5 Size of the optimal approximation versus accuracy (left) and dimension (right). 176

A.1 A bidimensional separation problem. 195

A.2 A separating ellipsoid. 195

A.3 A simple separation problem. 197

A.4 A pair of ellipsoids with ρ equal to 3
2 . 197

A.5 The optimal pair of separating ellipsoids. 198

A.6 The final separating ellipsoid. 198

v

Preface

This work is dedicated to my wife, my parents and my grandfather,
for the love and support they gave me throughout the writing of this thesis.

First of all, I wish to thank my advisor Jacques Teghem, which understood early that
the field of optimization would provide a stimulating and challenging area for my research.
Both his guidance and support were crucial in the accomplishment of this doctoral degree.
He also provided me with very valuable feedback during the final redaction of this thesis.

A great deal of the ideas presented in this thesis were originally developed during a
research stay at the Delft University of Technology which took place in the first half of 1999.
I am very grateful to Professors Kees Roos and Tamás Terlaky for their kind hospitality.
They welcomed me in their Operations Research department, which provided me with a very
stimulating research environment to work in.

Professor Tamás Terlaky accepted to co-direct this thesis. I wish to express him my
deep gratitude for the numerous and fruitful discussions we had about my research. Many
other researchers contributed directly or indirectly to my current understanding of optimiza-
tion, sharing with me at various occasions their knowledge and insight about this field. Let
me mention Professors Martine Labbé, Michel Goemans, Van Hien Nguyen, Jean-Jacques
Strodiot and Philippe Toint, who made me discover some of the most interesting topics in
optimization during my first year as doctoral student as well as Professor Yurii Nesterov, who
was advisor in my thesis committee.

I also wish to express special thanks to the entire staff of the Mathematics and Operations
Research department at the Faculté Polytechnique de Mons, for their constant kindness,
availability and support.

I conducted this research as a research fellow supported by a grant from the F.N.R.S.
(Belgian National Fund for Scientific Research), which also funded a trip to attend the Inter-
national Mathematical Programming Symposium 2000 in Atlanta. My research stay at the
Delft University of Technology was made possible with the aid of a travel grant awarded by
the Communauté Française de Belgique, which also supported a trip to the INFORMS Spring
2000 conference in Salt Lake City.

Mons, December 2000.

vii

Introduction

The main goal of operations research is to model real-life situations where some decisions
have to be taken and help to identify the best one(s). One may for example want to choose
between several available alternatives, tune numerical parameters in an engineering design or
schedule the use of machines in a factory.

The concept of best decision depends of course on the problem considered and is not easy
to define mathematically. The most common way to do this is to describe a decision as a set of
parameters called decision variables, and try to minimize (or maximize) an objective function
depending on these variables. This function may for example compute the cost associated
to the decision. Moreover, we are most of the time in a situation where some combinations
of parameters are not allowed (e.g. physical dimensions cannot be negative, a system must
satisfy some performance requirements, . . .), which leads us to consider a set of constraints
acting on the decision variables.

Optimization is the field of mathematics whose goal is to minimize or maximize an
objective function depending on several decision variables under a set of constraints. The
main topic of thesis is a special category of optimization problems called convex optimization1.

Why convex optimization ?

A fundamental difficulty in optimization is that it is not possible to solve all problems ef-
ficiently. Indeed, it is shown in [Nes96] that a hypothetical method that would be able to

1This class of problems is sometimes called convex programming in the literature. However, following other
authors [RTV97, Ren00], we prefer to use the more natural word “optimization” since the term “programming”
is nowadays strongly connected to computer science. The same treatment will be applied to the other classes
of problems that will be considered in this thesis, such as linear optimization, geometric optimization, etc.

1

2 Introduction

handle all optimization problems would require at least 1020 operations to solve with 1%
accuracy some problems involving only 10 variables. There are basically two fundamentally
different ways to react to this distressing fact:

a. Ignore it, i.e. design a method that can potentially solve all problems. Because of the
above-mentioned result, it will be slow (or fail) on some problems, but hopefully will
be efficient on most real-world problems we are interested in. This is the approach that
generally prevails in the field of nonlinear optimization.

b. Restrict the set of problems that the method is supposed to solve. The goal is then to
design a provably efficient method that is able to solve this restricted class of problems.
This is for example the approach taken in linear optimization, where one requires the
objective function and the constraints to be linear.

Each of these two approaches has its advantages and drawbacks. The major advantage of the
first approach is its potentially very wide applicability, but this is counterbalanced by a less
efficient analysis of the behaviour of the corresponding algorithms. In more technical terms,
methods in first approach can usually only be proven to converge to an optimum (in some
weak sense), while one can usually estimate the efficiency of methods designed for special
categories of problems, i.e. bound the number of arithmetic operations they need to attain
an optimum with a given accuracy. This is what led us to focus our research for this thesis
on that second approach.

The next relevant question that has to be answered consists in asking ourselves which
classes of problems we are going to study. It is rather clear that there is a tradeoff between
generality and algorithmic efficiency: the more general your problem, the less efficient your
methods. Linear optimization is in this respect an extreme case: it is a very particular (yet
useful) type of problem for which very efficient algorithms are available (see Chapter 1).

However, some problems simply cannot be formulated within the framework of linear
programs, which led us to consider a much broader class of problems called convex optimiza-
tion. Basically, a problem belongs to this category if its objective function is convex and its
constraints define a feasible convex set. As we will see in Chapter 2, very effective methods
are available to solve these problems.

Unfortunately, checking that a given optimization problem is convex is far from straight-
forward (and it might even be more difficult than solving the problem itself). We have
therefore to consider problems that are designed in a way that guarantees them to be convex.
This is done by using specific classes of objective functions and constraints, and is called
structured convex optimization. This is the central topic of this thesis, which is treated in
Chapters 3–8.

To conclude, we mention that although it is not possible to model all problems of interest
with a convex formulation, one can do it in a surprisingly high number of situations, either
directly or using a equivalent reformulation. The reward for the added work of formulating
the problem as a structured convex optimization problem is the great efficiency of the methods
that can be then applied to it.

Introduction 3

Overview of the thesis

We give here a short introduction to the research work presented in this thesis, which consists
in three parts (we however refer the reader to the abstract and the introductory section placed
at the beginning of each chapter for more detailed comments).

a. Interior-point methods. This first part deals with algorithms. We start with the
case of linear optimization, for which an efficient method is known since the end of the
fifties: the simplex method [Dan63]. However, another class of algorithms that could
rival the simplex method was introduced in 1984 [Kar84]: the so-called interior-point
methods, which are surveyed in Chapter 1 (this Chapter was published in [Gli98a], which
is a translated and reworked version of [Gli97]). These methods can be generalized to
handle any type of convex problems, provided a suitable barrier function is known. This
is the topic of Chapter 2 [Gli00d], which gives a self-contained overview of the theory
of self-concordant barriers for structured convex optimization [NN94].

b. Conic duality. The second part of this thesis is devoted to the study of duality issues
for several classes of convex optimization problems. We first present in Chapter 3 conic
optimization, a framework to describe convex optimization problems based on the use
of convex cones. Convex problems expressed in this fashion feature a very symmetric
duality theory, which is also presented in this Chapter. This setting is used in Chapters 4
[GT00] and 5 [Gli99], where we describe and study two classes of structured convex
optimization problems known as lp-norm optimization and geometric optimization.

The approach used in these two chapters is very similar: we first define a suitable convex
cone that allows us to express our problem with a conic formulation. The properties of
this cone are then studied, which allows us to formulate the dual problem. One can then
apply the conic duality theory described in Chapter 3 to give simplified proofs of all the
duality properties that relate these primal and dual problems. Chapter 4 also presents
a polynomial-time algorithm for lp-norm optimization using a suitable self-concordant
barrier and the results of Chapter 2.

Despite some similarities, the convex cones introduced in Chapters 4 and 5 do not share
the same structure. The goal of Chapter 6 [Gli00b] is to provide a different convex cone
for geometric optimization that is more amenable to a common generalization with the
cone for lp-norm optimization presented in Chapter 4. This generalization is the topic
of Chapter 7, which presents a very large class of so-called separable convex cones that
unifies our formulations for geometric and lp-norm optimization, as well as allowing the
modelling of several others classes of convex problems.

c. Approximations. The last part of this thesis deals with various approximations of
convex problems. Chapter 8 [Gli00a] uncovers an additional connection between geo-
metric and lp-norm optimization by showing that the former can be approximated by
the latter. Basically, we are able to associate to a geometric optimization problem a
family of lp-norm optimization problems whose optimum solutions tend to the optimal
solution of the original geometric problem. This also allows us to derive the duality
properties of geometric optimization in a different way. Finally, Chapter 9 [Gli00c]
presents computational experiments conducted with the polyhedral approximation of

4 Introduction

the second-order cone presented in [BTN98]. This leads to a linearizing scheme that
allows any second-order cone problem to be solved up to an arbitrary accuracy using
linear optimization.

Part I

INTERIOR-POINT METHODS

5

CHAPTER 1

Interior-point methods for linear optimization:
a guided tour

The purpose of mathematical optimization is to minimize (or maximize) a function
of several variables under a set of constraints. This is a very important problem
arising in many real-world situations (e.g. cost or duration minimization).

When the function to optimize and its associated set of constraints are linear, we
talk about linear optimization. The simplex algorithm, first developed by Dantzig
in 1947, is a very efficient method to solve this class of problems [Dan63]. It
has been thoroughly studied and improved since its first appearance, and is
now widely used in commercial software to solve a great variety of problems
(production planning, transportation, scheduling, etc.).

However, Karmarkar introduced in 1984 a new class of methods: the so-called
interior-point methods [Kar84]. Most of the ideas underlying these new meth-
ods originate from the nonlinear optimization domain. These methods are both
theoretically and practically efficient, can be used to solve large-scale problems
and can be generalized to other types of convex optimization problems.

The purpose of this chapter is to give an overview of this rather new domain,
providing a clear and understandable description of these methods, both from
a theoretical and a practical point of view. This will provide a basis for the
following chapters, which will present our contributions to the field.

7

8 1. Interior-point methods for linear optimization

1.1 Introduction

In this section, we present the standard formulations of a linear program and give a brief
overview of the main differences between the simplex method, the traditional approach to
solve these problems, and the recently developed class of interior-point methods, as well as a
short historical account.

1.1.1 Linear optimization

The purpose of linear optimization is to optimize a linear objective function f depending on
n decision variables under a set of linear (equality or inequality) constraints, which can be
mathematically stated as (using matrix notation)

min
x∈Rn

f(x) = cT x s.t.
{

Aex = be

Aix ≥ bi
, (1.1)

where vector x contains the n decision variables, vector c defines the objective function and
pairs (Ae, be) and (Ai, bi) define the me equality and mi inequality constraints. Column
vectors x and c have size n, column vectors be and bi have size me and mi and matrices Ae

and Ai have dimensions me × n and mi × n.

Many linear programs have simpler inequality constraints, e.g. nonnegativity constraints
(x ≥ 0) or bound constraints (l ≤ x ≤ u). The linear optimization standard form is a special
case of linear program used for most theoretical developments of interior-point methods:

min
x∈Rn

cT x s.t.
{

Ax = b
x ≥ 0

. (1.2)

The only inequality constraints in this format are nonnegativity constraints for all variables,
i.e. there are no free variables (we have thus that mi is equal to n, Ai is the identity matrix
and bi is the null vector). It is furthermore possible to show that every linear program
in the general form (1.1) admits an equivalent program in the standard form, obtainable
by adding/removing variables/constraints (by equivalent problem, we mean that solving the
transformed problem allows us to find the solution of the original one).

1.1.2 The simplex method

The set of all x satisfying the constraints in (1.2) is a polyhedron in Rn. Since the objective
is linear, parallel hyperplanes orthogonal to c are constant-cost sets and the optimal solution
must be at one of the vertices of the polyhedron (it is also possible that a whole face of
the polyhedron is optimal or that no solution exists, either because the constraints defining
the polyhedron are inconsistent or because it is unbounded in the direction of the objective
function).

The main idea behind the simplex method is to explore these vertices in an iterative way,
moving from the current vertex to an adjacent one that improves the objective function value.

1.1 – Introduction 9

This is done using an algebraic characterization of a vertex called a basis. When such a move
becomes impossible to make, the algorithm stops. Dantzig proved that this always happens
after a finite number of moves, and that the resulting vertex is optimal [Dan63].

1.1.3 A first glimpse on interior-point methods

We are now able to give a first description of interior-point methods. As opposed to the
simplex method which uses vertices, these methods start with a point that lies inside the set
of feasible solutions. Using the standard form notation (1.2), we define the feasible set P to
be the set of vectors x satisfying the constraints, i.e.

P = {x ∈ Rn | Ax = b and x ≥ 0} ,

and the associated set P+ to be the subset of P satisfying strict nonnegativity constraints

P+ = {x ∈ Rn | Ax = b and x > 0} .

P+ is called the strictly feasible set1 and its elements are called strictly feasible points.

Interior-point methods are iterative methods that compute a sequence of iterates be-
longing to P+ and converging to an optimal solution. This is completely different from the
simplex method, where an exact optimal solution is obtained after a finite number of steps.
Interior-point iterates tend to an optimal solution but never attain it (since the optimal so-
lutions do not belong to P+ but to P \ P+). This apparent drawback is not really serious
since

¦ Most of the time, an approximate solution (with e.g. 10−8 relative accuracy) is sufficient
for most purposes.

¦ A rounding procedure can convert a nearly optimal interior point into an exact optimal
vertex solution (see e.g. [RTV97]).

Another significant difference occurs when an entire face of P is optimal: interior-point
methods converge to the interior of that face while the simplex method ends on one of its
vertices.

The last difference we would like to point out at this stage is about algorithmic complexity.
While the simplex method may potentially make a number of moves that grows exponentially
with the problem size [KM72], interior-point methods need a number of iterations that is
polynomially bounded by the problem size to attain a given accuracy. This property is with
no doubt mainly responsible for the huge amount of research that has been carried out on
the topic of interior-point methods for linear optimization.

1.1.4 A short historical account

The purpose of this paragraph is not to be exhaustive but rather to give some important
milestones in the development of interior-point methods.

1P+ is in fact the relative interior of P, see [Roc70a].

10 1. Interior-point methods for linear optimization

First steps of linear optimization.

1930–1940. First appearance of linear optimization formulations.
1939–1945. Second World War: operations research makes its debuts with mili-

tary applications.
1947. Georges B. Dantzig publishes the first article about the simplex

method for linear optimization [Dan63].
1970. V. Klee and G. Minty prove that the simplex method has exponential

worst-case complexity [KM72].

First steps of interior-point methods.

1955. K. R. Frisch proposes a barrier method to solve nonlinear programs [Fri55].
1967. P. Huard introduces the method of centers to solve problems with nonlinear

constraints [Hua67].
1968. A. V. Fiacco and G. P. McCormick develop barrier methods for convex

nonlinear optimization [FM68].
1978. L. G. Khachiyan applies the ellipsoid method (developed by N. Shor in 1970

[Sho70]) to linear optimization and proves that it is polynomial [Kha79].

It is important to note that these barrier methods were developed as methods for nonlinear
optimization. Although they are applicable to linear optimization, their authors do not
consider them as viable competitors to the simplex method. We also point out that the
complexity advantage of the ellipsoid method over the simplex algorithm is only of theoretical
value, since the ellipsoid method turns out to be very slow in practice2.

The interior-point revolution.

1984. N. Karmarkar discovers a polynomial interior-point method that is prac-
tically more efficient than the ellipsoid method. He also claims superior
performance compared to the simplex method [Kar84].

1994. Y. Nesterov and A. Nemirovski publish a monograph on polynomial
interior-point methods for convex optimization [NN94].

2000. Since Karmarkar’s first breakthrough, more than 3000 articles have been
published on the topic of interior point methods. A few textbooks have been
published (see e.g. [Wri97, RTV97, Ye97]). Research is now concentrating
on nonlinear optimization, especially on convex optimization.

Karmarkar’s algorithm was not competitive with the best simplex implementations, especially
on small-scale problems, but his announcement concentrated a stream of research on the topic.

2The simplex method only shows an exponential complexity on some hand-crafted linear programs and
is much faster on real-world problems, while the ellipsoid method always achieves its worst-case polynomial
number of iterations, which turns out to be slower than the simplex method.

1.2 – Building blocks 11

We also point out that Khachiyan’s method is not properly speaking the first polynomial
algorithm for linear optimization, since Fiacco and McCormick’s method has been shown a
posteriori to be polynomial by Anstreicher [Ans90].

1.2 Building blocks

In this section, we are going to review the different concepts needed to get a correct under-
standing of interior-point methods. We start with the very well studied notion of duality for
linear optimization (see e.g. [Sch86]).

1.2.1 Duality

Let us state again the standard form of a linear program

min
x∈Rn

cT x s.t.
{

Ax = b
x ≥ 0

. (LP)

Using the same data (viz. A, b and c) it is possible to describe another linear program

max
y∈Rm

bT y s.t.
{

AT y ≤ c
y is free

. (LD’)

As we will see later, this program is closely related to (LP) and is called the dual of LP (which
will be called primal program). It is readily seen that this program may also be written as

max
y∈Rm,s∈Rn

bT y s.t.
{

AT y + s = c
s ≥ 0 and y free

. (LD)

This extra slack vector s will prove useful in simplifying our notation and we will therefore
mainly use this formulation of the dual. We also define the dual feasible and strictly feasible
sets D and D+ in a similar fashion to the sets P and P+

D =
{
(y, s) | AT y + s = c and s ≥ 0

}
,

D+ =
{
(y, s) | AT y + s = c and s > 0

}
.

From now on, we will assume that matrix A has full row rank, i.e. that its rows are linearly
independent3. Because of the equation AT y + s = c, this implies a one-to-one correspondence
between the y and s variables in the dual feasible set. In the following, we will thus refer to
either (y, s), y or s as the dual variables.

We now state various important facts about duality:

3This is done without loss of generality: if a row of A is linearly dependent on some other rows, we have
that the associated constraint is either redundant (and can be safely ignored) or impossible to satisfy (leading
to an infeasible problem), depending on the value of the right-hand side vector b.

12 1. Interior-point methods for linear optimization

¦ If x is feasible for (LP) and (y, s) for (LD), we have bT y ≤ cT x. This means that
any feasible point of (LD) provides a lower bound for (LP) and that any feasible point
of (LP) provides an upper bound for (LD). This is the weak duality property. The
nonnegative quantity cT x− bT y is called the duality gap and is equal to xT s.

¦ x and (y, s) are optimal for (LP) and (LD) if and only if the duality gap is zero. This
is the strong duality property. This implies that when both problems have optimal
solutions, their objective values are equal. In that case, since xT s = 0 and x ≥ 0, s ≥ 0,
we have that all products xisi must be zero, i.e. at least one of xi and si is zero for each
i (this is known as complementary slackness).

¦ One of the following three situations occurs for problems (LP) and (LD)

a. Both problems have finite optimal solutions.

b. One problem is unbounded (i.e. its optimal value is infinite) and the other one is
infeasible (i.e. its feasible set is empty). In fact, the weak duality property is easily
seen to imply that the dual of an unbounded problem cannot have any feasible
solution.

c. Both problems are infeasible.

This result is known as the fundamental theorem of duality.

Let us point out that it is possible to generalize most of these duality results to the class of
convex optimization problems (see Chapter 3).

1.2.2 Optimality conditions

Karush-Kuhn-Tucker (KKT) conditions are necessary optimality conditions pertaining to
nonlinear constrained optimization with a differentiable objective. Moreover, they are suffi-
cient when the problem is convex, which is the case for linear optimization. For problem (LP)
they lead to the following system

x is optimal for (LP) ⇔ ∃ (z, t) s.t.

Ax = b
AT z + t = c

xiti = 0 ∀i
x and t ≥ 0

. (KKT)

The second equation has exactly the same structure as the equality constraint for the dual
problem (LD). Indeed, if we identify z with y and t with s we find

x is optimal for (LP) ⇔ ∃ (y, s) s.t.

Ax = b
AT y + s = c

xisi = 0 ∀i
x and s ≥ 0

.

Finally, using the definitions of P and D and the fact that when u and v are nonnegative

uivi = 0 ∀i ⇔
∑

i

uivi = 0 ⇔ uT v = 0

1.2 – Building blocks 13

we have

x is optimal for (LP) ⇔ ∃ (y, s) s.t.

x ∈ P
(y, s) ∈ D
xT s = 0

.

This is in fact a confirmation of the strong duality theorem, revealing the deep connections
between a problem and its dual: a necessary and sufficient condition for the optimality of a
feasible primal solution is the existence of a feasible dual solution with zero duality gap (i.e.
the same objective value).

Similarly, applying the KKT conditions to the dual problem would lead exactly to the
same set of conditions, requiring the existence of a feasible primal solution with zero duality
gap.

1.2.3 Newton’s method

The fact that finding the optimal solution of a linear program is completely equivalent to
solving the KKT conditions may suggest the use of a general method designed to solve systems
of nonlinear equations4. The most popular of these methods is the Newton’s method, whose
principle is described in the following paragraph.

Let F : Rn 7→ Rn be a differentiable nonlinear mapping. Newton’s method is an iterative
process aiming to find an x ∈ Rn such that F (x) = 0. For each iterate xk, the method
computes a first-order approximation to F around xk and sets xk+1 to the zero of this linear
approximation. Formally, if J is the Jacobian of F (assumed to be nonsingular), we have

F (xk + ∆xk) ≈ F (xk) + J(xk)∆xk

and the Newton step ∆xk is chosen such that this linear approximation is equal to zero:
we let thus xk+1 = xk + ∆xk where5 ∆xk = −J(xk)−1F (xk). Convergence to a solution is
guaranteed if the initial iterate x0 lies in a suitable neighbourhood of one of the zeros of F .

Newton’s method is also applicable to minimization problems in the following way: let
g : Rn 7→ R be a function to minimize. We form a second-order approximation to g(x) around
xk, namely

g(xk + ∆xk) ≈ g(xk) +∇g(xk)T ∆xk +
1
2
∆xk

T∇2g(xk)∆xk .

If the Hessian ∇2g(xk) is positive definite, which happens when g is strictly convex, this
approximation has a unique minimizer, which we take as next iterate. It is defined by ∆xk =
−∇2g(xk)−1∇g(xk), which leads to a method that is basically equivalent to applying Newton’s
method to the gradient-based optimality condition ∇g(x) = 0.

One problem with the application of Newton’s method to the resolution of the KKT
conditions is the nonnegativity constraints on x and s, which cannot directly be taken into

4Strictly speaking, the first two conditions are linear while only the xisi = 0 equations are nonlinear. The
nonnegativity constraints are not equations and cannot be handled by such a method.

5Computation of ∆xk is usually done with the linear system J(xk)∆xk = −F (xk) rather than computing
explicitly J(xk)’s inverse.

14 1. Interior-point methods for linear optimization

account via the mapping F . One way of incorporating these constraints is to use a barrier
term, as described in the next paragraph.

1.2.4 Barrier function

A barrier function φ : R+ 7→ R is simply a differentiable function such that limx→0+ φ(x) =
+∞. Using such a barrier, it is possible to derive a parameterized family of unconstrained
problems from an inequality-constrained problem in the following way

min
x∈Rn

f(x) s.t. gi(x) ≥ 0 ∀i (G)

→ min
x∈Rn

f(x) + µ
∑

i

φ(gi(x)) , (Gµ)

where µ ∈ R+. The purpose of the added barrier term is to drive the iterates generated by an
unconstrained optimization method away from the infeasible zone (where one or more gi’s are
negative). Of course, we should not expect the optimal solutions to (Gµ) to be equal to those
of (G). In fact each value of µ gives rise to a different problem (Gµ) with its own optimal
solutions.

However, if we solve a sequence of problems (Gµ) with µ decreasing to zero, we might
expect the sequence of optimal solutions we obtain to converge to the optimum of the original
problem (G), since the impact of the barrier term is less and less significant compared to the
real objective function. The advantage of this procedure is that each optimal solution in the
sequence will satisfy the strict inequality constraints gi(x) > 0, leading to a feasible optimal
solution to (G)6.

The application of this technique to linear optimization will lead to a fundamental notion
in interior-point methods: the central path.

1.2.5 The central path

Interior-point researchers use the following barrier function, called the logarithmic barrier :

φ(x) = − log(x) .

Using φ, let us apply a barrier term to the linear optimization problem (LP)

min
x∈Rn

cT x− µ
∑

i

log(xi) s.t.
{

Ax = b
x > 0

(Pµ)

and to its dual (LD) (since it is a maximization problem, we have to subtract the barrier
term)

max
y∈Rm

bT y + µ
∑

i

log(si) s.t.
{

AT y + s = c
s > 0 and y free

. (Dµ)

6The notion of barrier function was first investigated in [Fri55, FM68].

1.3 – Interior-point algorithms 15

It is possible to prove (see e.g. [RTV97]) that both of these problems have unique optimal
solutions xµ and (yµ, sµ) for all µ > 0 if and only if both P+ and D+ are nonempty7. In that
case, we call the sets of optimal solutions {xµ | µ > 0} ⊂ P+ and {(yµ, sµ) | µ > 0} ⊂ D+

respectively the primal and dual central paths. These parametric curves have the following
properties:

¦ The primal (resp. dual) objective value cT x (resp. bT y) is monotonically decreasing
(resp. increasing) along the primal (resp. dual) central path when µ → 0.

¦ The duality gap cT xµ − bT yµ for the primal-dual solution (xµ, yµ, sµ) is equal to nµ.
For this reason, µ will be called the duality measure. When a point (x, y, s) does not
lie exactly on the central path, we can compute its estimated duality measure using
µ = (cT x− bT y)/n.

¦ The limit points x∗ = limµ→0 xµ and (y∗, s∗) = limµ→0(yµ, sµ) exist and hence are
optimal solutions to problems (LP) and (LD) (because we have cT x∗ − bT y∗ = 0).
Moreover, we have that x∗ + s∗ > 0, i.e. this optimal pair is strictly complementary8.

1.2.6 Link between central path and KKT equations

To conclude this section we establish a link between the central path and the KKT equations.
Applying the general KKT conditions to either problem (Pµ) or (Dµ) we find the following
necessary and sufficient conditions

Ax = b
AT y + s = c

xisi = µ ∀i
x and s > 0

⇔

x ∈ P+

(y, s) ∈ D+

xisi = µ ∀i
. (KKTµ)

This system is very similar to the original KKT system, the only difference being the
right-hand side of the third condition and the strict inequalities. This means in fact that
the points on the central path satisfy a slightly perturbed version of the optimality KKT
conditions for (LP) and (LD).

We now have all the tools we need to give a description of interior-point methods for
linear optimization.

1.3 Interior-point algorithms

Since Karmarkar’s breakthrough, many different interior-point methods have been developed.
It is important to note that there exists in fact a whole collection of methods, sharing the
same basic principles but whose individual characteristics may vary a lot.

7This condition is known as the interior-point condition.
8For optimal solutions (x, s) we always have xisi = 0, i.e. at least one of xi and si is zero. In the case of a

strictly complementary solution, exactly one of xi and si is zero.

16 1. Interior-point methods for linear optimization

Among the criteria that are commonly used to classify the methods, we have

¦ Iterate space. A method is said to be primal, dual or primal-dual when its iterates
belong respectively to the primal space, the dual space or the Cartesian product of these
spaces.

¦ Type of iterate. A method is said to be feasible when its iterates are feasible, i.e.
satisfy both the equality and nonnegativity constraints. In the case of an infeasible
method, the iterates need not satisfy the equality constraints, but are still required to
satisfy the nonnegativity conditions.

¦ Type of algorithm. This is the main difference between the methods. Although
the denominations are not yet fully standardized, we will distinguish path-following
algorithms, affine-scaling algorithms and potential reduction algorithms. Sections 1.3.1,
1.3.2 and 1.3.3 will describe these three types of algorithms with more detail.

¦ Type of step. In order to preserve their polynomial complexity, some algorithms are
obliged to take very small steps at each iteration, leading to a high total number of
iterations when applied to practical problems9. These methods are called short-step
methods and are mainly of theoretical interest. Therefore long-step methods, which are
allowed to take much longer steps, have been developed and are the only methods used
in practice.

It is not our purpose to give an exhaustive list of all the methods that have been developed
up to now, but rather to present some representative algorithms, highlighting their underlying
principles.

1.3.1 Path-following algorithms

We start with the most elegant category of methods, the path-following algorithms. As
suggested by their denomination, the main idea behind these methods is to follow the central
path up to its limit point. One could imagine the following naive conceptual algorithm (at
this point, we want to keep generality and do not specify whether our method is primal, dual
or primal-dual)

Given an initial iterate v0 and a sequence of duality measures monotonically
decreasing to zero: µ1 > µ2 > µ3 > . . . > 0 and limk→0 µk = 0.

Repeat for k = 0, 1, 2, . . .

Using vk as starting point, compute vk+1, the point on the central path with a
duality measure equal to µk+1.

End

9Please note that this is not in contradiction with the fact that this number of iterations is polynomially
bounded by the size of the problem. This may simply mean that the polynomial coefficients are large.

1.3 – Interior-point algorithms 17

It is clear from this scheme that vk will tend to the limit point of the central path, which
is an optimal solution to our problem.

However, the determination of a point on the central path requires the solution of a
minimization problem like (Pµ) or the (KKTµ) conditions, which potentially implies a lot of
computational work. This is why path-following interior-point methods only try to compute
points that are approximately on the central path, hopefully with much less computational
work, and will thus only loosely follow the central path. Our conceptual algorithm becomes

Given an initial iterate v0 and a sequence of duality measures monotonically
decreasing to zero: µ1 > µ2 > µ3 > . . . > 0 and limk→0 µk = 0.

Repeat for k = 0, 1, 2, . . .

Using vk as starting point, compute vk+1, an approximation of the point on the
central path with a duality measure equal to µk+1.

End

The main task in proving the convergence and complexity of these methods will be to assess
how well we approximate our targets on the central path (i.e. how close to the central path
we stay).

Short-step primal-dual path-following algorithm

This specific algorithm is a primal-dual feasible method, which means that all the iterates lie
in P+×D+. Let (xk, yk, sk) be the current iterate with duality measure µk. We also suppose
that this iterate is close to the point (xµk

, yµk
, sµk

) on the central path. To compute the
next iterate, we target (xµk+1

, yµk+1
, sµk+1

), a point on the central path with a smaller duality
measure µk+1 (thus closer to the optimal limit point). The main two characteristics of the
short-step method are

¦ The duality measure of the point we target is defined by µk+1 = σµk where σ is a
constant strictly between 0 and 1.

¦ The next iterate will be computed by applying one single Newton step to the perturbed
primal-dual conditions (KKTσµk

) defining our target on the central path10

Ax = b
AT y + s = c

xisi = σµk ∀i
. (1.3)

Formally, we have presented Newton’s method as a way to find a root of a function F and
not as a way to solve a systems of equations, so that we have first to define a function whose
roots are solution of the system (1.3). Indeed, considering

Fk : R2n+m 7→ R2n+m :

xk

yk

sk

 7→

Axk − b
AT yk + sk − c
XkSke− σµke

 ,

10Note that we have to ignore the nonnegativity conditions for the moment.

18 1. Interior-point methods for linear optimization

where e stands for the all-one vector and Xk and Sk are diagonal matrices made up with
vectors xk and sk (these notations are standard in the field of interior-point methods), we
find that the Newton step we take is defined by the following linear system

0 AT I
A 0 0
Sk 0 Xk

∆xk

∆yk

∆sk

 =

0
0

−XkSke + σµke

 . (1.4)

This leads to the following algorithm

Given an initial iterate (x0, y0, s0) ∈ P+ × D+ with duality measure µ0 and a
constant 0 < σ < 1.

Repeat for k = 0, 1, 2, . . .

Compute the Newton step (∆xk, ∆yk, ∆sk) using the linear system (1.4).

Let (xk+1, yk+1, sk+1) = (xk, yk, sk) + (∆xk,∆yk,∆sk) and µk+1 = σµk.

End

We now sketch a proof of the correctness of this algorithm. For our path-following
strategy to work, we have to ensure that our iterates (xk, yk, sk) stay close to the points
(xµk

, yµk
, sµk

) on the central path, which guide us to an optimal solution. For this purpose
we define a quantity that measures the proximity between a strictly feasible iterate (x, y, s) ∈
P+ × D+ and the central point (xµ, yµ, sµ). Since the main property of this central point is
xisi = µ ∀i, which is equivalent to11 xs = µe, the following measure (see e.g. [Wri97])

δ(x, s, µ) =
1
µ
‖xs− µe‖ =

∥∥∥∥
xs

µ
− e

∥∥∥∥

seems adequate: it is zero if and only if (x, y, s) is equal to (xµ, yµ, sµ) and increases as we move
away from this central point. It is also interesting to note that the size of a neighbourhood
defined by δ(x, s, µ) < R decreases with µ, because of the leading term 1

µ .

Another possibility of proximity measure with the same properties is

δ(x, s, µ) =
1
2

∥∥∥∥
√

xs

µ
−

√
µ

xs

∥∥∥∥

where the square roots are taken componentwise (see [RTV97]).

The proof has the following steps [RTV97, Wri97]

a. Strict Feasibility. Prove that strict feasibility is preserved by the Newton step: if
(xk, yk, sk) ∈ P+×D+, we have (xk+1, yk+1, sk+1) ∈ P+×D+. We have to be especially
careful with the strict nonnegativity constraints, since they are not taken into account
by Newton’s method.

11xs denotes here the componentwise product of vectors x and s.

1.3 – Interior-point algorithms 19

b. Duality measure. Prove that the target duality measure is attained after the Newton
step: if (xk, yk, sk) has a duality measure equal to µk, the next iterate (xk+1, yk+1, sk+1)
has a duality measure equal to σµk

c. Proximity. Prove that proximity to the central path targets is preserved: there is
a constant τ such that if δ(xk, sk, µk) < τ , we have δ(xk+1, sk+1, µk+1) < τ after the
Newton step.

Adding the additional initial assumption that δ(x0, s0, µ0) < τ , this is enough to prove that
the sequence of iterates will stay in a prescribed neighbourhood of the central path and will
thus (approximately) converge to its limit point, which is a (strictly complementary) optimal
solution. The last delicate question is to choose a suitable combination of constants σ and τ
that allows us to prove the three statements above. For the first duality measure we presented
the following values are acceptable (see [Wri97])

σ = 1− 0.4√
n

and τ = 0.4 ,

where n stands for the size of vectors x and s as usual, while for the second measure we may
choose (see [RTV97])

σ = 1− 1
2
√

n
and τ =

1√
2

.

To conclude this description, we specify how the algorithm terminates. Given an accuracy
parameter ε, we stop our computations when the duality gap falls below ε, which happens
when nµk < ε. This guarantees that cT x and bT y approximate the true optimal objective
value with an error smaller than ε. We now state this algorithm in its final form:

Given an initial iterate (x0, y0, s0) ∈ P+×D+ with duality measure µ0, an accu-
racy parameter ε and suitable constants 0 < σ < 1 and τ such that δ(x0, y0, s0) <
τ .

Repeat for k = 0, 1, 2, . . .

Compute the Newton step (∆xk, ∆yk, ∆sk) using the linear system (1.4).

Let (xk+1, yk+1, sk+1) = (xk, yk, sk) + (∆xk,∆yk,∆sk) and µk+1 = σµk.

Until nµk+1 < ε

Moreover, it is also possible to prove that in both cases, the solution with ε accuracy will
be reached after a number of iterations N such that

N = O
(√

n log
nµ0

ε

)
. (1.5)

This polynomial complexity bound on the number of iterations that varies like the square
root of the problem size is the best attained so far for linear optimization.

However, it is important to note that values of σ presented above will always be in
practice nearly equal to one, which means that the duality measures will decrease very slowly.
Although its complexity is polynomial, this method requires a large number of iterations and
is not very efficient from a practical point of view.

20 1. Interior-point methods for linear optimization

Dual short-step path-following methods

This second short-step method is very similar to the previous one but its iterates lie in the
dual space D+. We keep the general principle of following the dual central path and targeting
points (yµk

, sµk
) on it but we have to make the following adjustments12

¦ We cannot deduce the Newton step from the (KKTµ) conditions any more, since they
involve both primal and dual variables. We apply instead a single minimizing Newton
step to the (Dµ) barrier problem, which gives the following (n + m) × (n + m) linear
system (

AT I

AS−2
k AT 0

)(
∆yk

∆sk

)
=

(
0

b
σµk

−AS−1
k e

)
. (1.6)

¦ We have to modify our measure of proximity: we now define δ(s, µ) with [RTV97]

δ(s, µ) = min
x
{δ(x, s, µ) | Ax = b} =

1
µ

min
x
{‖xs− µe‖ | Ax = b}

(we have that this measure is zero if and only if s = sµ).

Our algorithm simply becomes

Given an initial iterate (y0, s0) ∈ D+ with duality measure µ0, an accuracy
parameter ε and suitable constants 0 < σ < 1 and τ such that δ(y0, s0) < τ .

Repeat for k = 0, 1, 2, . . .

Compute the Newton step (∆yk,∆sk) using the linear system (1.6).

Let (yk+1, sk+1) = (yk, sk) + (∆yk,∆sk) and µk+1 = σµk.

Until nµk+1 < ε

In this case we may for example choose

σ = 1− 1
3
√

n
and τ =

1√
2

,

which leads to the same complexity bound (1.5) for the total number of iterations.

Primal-dual long-step path-following methods

The long-step primal-dual method we are going to describe now is an attempt to overcome
the main limitation of the short-step methods: their very small step size. As presented above,
the fundamental reason for this slow progress is the value of σ that has to be chosen nearly
equal to one in order to prove the polynomial complexity of the method.

12It is of course also possible to design a primal short-step path-following method in a completely similar
fashion.

1.3 – Interior-point algorithms 21

A simple idea to accelerate the method would simply be to decrease the duality measure
more aggressively, i.e. still using µk+1 = σµk but with a lower σ. However, this apparently
small change breaks down the good properties we were able to prove for the short-step algo-
rithms. Indeed, if our target on the central path is too far from our current iterate, we may
have that

¦ The Newton step computed by (1.4) is no longer feasible. The reason for that is easy to
understand. Newton’s method is asked to solve the (KKTµ) system, which is made of
two linear equations and one mildly nonlinear equation. Because of this third equation,
the linear system we solve is only an approximation of the real set of equations, and
the further we are from the solution we target, the less accurate this approximation is.
When our target is located too far away, the linear approximation becomes so bad that
barrier term does not play its role and the Newton step jumps out of the feasible region
by violating the nonnegativity constraints13 x > 0 and s > 0.

Since the iterates of an interior-point method must always satisfy the strict nonnega-
tivity conditions, we have to take a so-called damped Newton step, i.e. reduce it with a
factor αk < 1 in order to make it stay within the strictly feasible region P+ ×D+:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(∆xk, ∆yk, ∆sk) .

¦ This damping of the Newton step cancels the property that the duality measure we
target is attained. It is indeed possible to show that the duality measure after a damped
Newton step becomes (1−αk(1−σ))µk, which varies linearly between µk and σµk when
α decreases from 1 to 0.

There is unfortunately no way to circumvent this drawback, and we have to accept that
our iterates never exactly achieve the targeted duality measures, unless a full Newton
step is taken.

¦ We cannot guarantee that a single Newton step will keep the proximity to the central
path in the sense of δ(x, s, µ) < τ , for the same reasons as above (nonlinearity). In
the long-step strategy we describe, we take several Newton steps with the same target
duality measure until proximity to the central path is restored. Then we may choose
another target and decrease µ.

Our long-step method may be described in the following way:

Given an initial iterate (x0, y0, s0) ∈ P+ × D+, an initial duality measure µ0,
an accuracy parameter ε and suitable constants 0 < σ < 1 and τ such that
δ(x0, y0, s0) < τ .

Repeat for k = 0, 1, 2, . . .

Compute the Newton step (∆xk, ∆yk, ∆sk) using the linear system (1.4).

Let (xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(∆xk,∆yk,∆sk) with a step length αk

chosen such that (xk+1, yk+1, sk+1) ∈ P+ ×D+.
13Note that since the first two conditions Ax = b and AT y + s = c are linear, they are always fulfilled after

the Newton step.

22 1. Interior-point methods for linear optimization

If δ(xk+1, sk+1, σµk) < τ Then let µk+1 = σµk Else let µk+1 = µk.

Until nµk+1 < ε

As opposed to the complexity analysis of the short-step method, we may choose here
whatever value we want for the constant σ, in particular values much smaller than 1. It is
the choice of τ and αk that makes the method polynomial. The main task is here to analyse
the number of iterations that is needed to restore proximity to the central path. Taking for
σ a constant independent of n (like .5, .1 or .01), it is possible to prove that suitable choices
of τ and αk lead to the following number of iterations

N = O
(
n log

nµ0

ε

)
.

Let us point out an odd fact: although this method takes longer steps and is practically more
efficient than the short-step methods, its theoretical complexity is worse than the short-step
complexity (1.5).

1.3.2 Affine-scaling algorithms

The intensive stream of research on the topic of interior-point methods for linear optimization
was triggered by Karmarkar’s seminal article [Kar84]. His method used projective transforma-
tions and was not described in terms of central path or Newton’s method. Later, researchers
simplified this algorithm, removing the need for projective transformations, and obtained a
class of methods called affine-scaling algorithms. It was later discovered that these methods
had been previously proposed by Dikin in Russia, 17 years before Karmarkar [Dik67].

Affine-scaling algorithms do not explicitly follow the central path and do not even refer
to it. The basic idea underlying these methods is the following: consider for example the
primal problem (LP)

min
x∈Rn

cT x s.t.
{

Ax = b
x ≥ 0

. (LP)

This problem is hard to solve because of the nonnegativity constraints, which give the feasible
region a polyhedral shape. Let us consider the current iterate xk and replace the polyhedral
feasible region by an inscribed ellipsoid centered at xk. The idea is to minimize the objective
on this ellipsoid, which should be easier than on a polyhedron, and take this minimum as
next iterate.

How do we construct an ellipsoid that is centered at xk and inscribed into the feasible
region ? Consider a positive diagonal matrix D. It is easy to show that problem (PD)

min
w∈Rn

(Dc)T w s.t.
{

ADw = b
w ≥ 0

(PD)

is equivalent to (LP), the x variable being simply scaled by x = Dw (this scaling operation is
responsible for the denomination of the method). Choosing a special diagonal matrix D = Xk,
which maps the current iterate xk to e, we obtain the following problem

min
w∈Rn

(Xkc)T w s.t.
{

AXkw = b
w ≥ 0

.

1.3 – Interior-point algorithms 23

We are now able to restrict the feasible region defined by w ≥ 0 to a unit ball centered at e,
according to the inclusion {w | ‖w − e‖ ≤ 1} ⊂ {w | w ≥ 0}. Our problem becomes

min
w∈Rn

(Xkc)T w s.t.
{

AXkw = b
‖w − e‖ ≤ 1

,

i.e. the minimization of a linear objective over the intersection of a unit ball and an affine
subspace, whose solution can be easily computed analytically via a linear system. Back in
the original space, this is equivalent to

min
x∈Rn

cT x s.t.
{

Ax = b

‖X−1
k x− e‖ ≤ 1

,

whose feasible region is an ellipsoid centered at xk. This ellipsoid is called the Dikin ellipsoid
and lies entirely inside P. The minimum over this ellipsoid is given by xk + ∆xk, where14

∆xk = −XkPAXk
Xkc

‖PAXk
Xkc‖ . (1.7)

Because our ellipsoid lies entirely within the feasible region, the step ∆xk is feasible and the
next iterate xk + ∆xk is expected to be closer to the optimal solution than xk.

Short- and long-step primal affine-scaling algorithms

Introducing a constant ρ to reduce the step size, we may state our algorithm as

Given an initial iterate x0 ∈ P+ and a constant 0 < ρ < 1.

Repeat for k = 0, 1, 2, . . .

Compute the affine scaling step ∆k with (1.7) and let xk+1 = xk + ρ∆k.

End

This scheme is known as the short-step primal affine-scaling algorithm. Convergence to
a primal solution has been proved for ρ = 1

8 , but we still do not know whether this method
has polynomial complexity15. It is of course possible to design a dual and even a primal-dual
variant of this method (all we have to do is to define the corresponding Dikin ellipsoids).

It is also possible to make the algorithm more efficient by taking longer steps, i.e. moving
outside of the Dikin ellipsoid. Keeping the same direction as for the short-step method, the
maximum step we can take without leaving the primal feasible region is given by

∆xk = − XkPAXk
Xkc

max [PAXk
Xkc]

, (1.8)

where max[v] stands for the maximum component of vector v, which leads to the following
algorithm:

14PQ denotes the projection matrix onto Ker Q, the null space of Q, which can be written as PQ = I −
QT (QQT)−1Q when Q has maximal rank.

15When certain nondegeneracy conditions hold, convergence has been proved for 0 < ρ < 1.

24 1. Interior-point methods for linear optimization

Given an initial iterate x0 and a constant 0 < λ < 1.

Repeat for k = 0, 1, 2, . . .

Compute the affine scaling step ∆k with (1.8) and let xk+1 = xk + λ∆k.

End

The constant λ decides which fraction of the way to the boundary of the feasible re-
gion we move16. Global convergence has been proved when 0 < λ ≤ 2/3 but a surprising
counterexample has been found with λ = 0.999 (see [Mas93]). Finally, as for the short-step
method, we do not know whether this method has polynomial complexity.

Link with path-following algorithms

There is an interesting and unexpected link between affine-scaling methods and path-following
algorithms. Taking for example the definition (1.6) of the dual Newton step in the path-
following framework and letting σ tend to zero, i.e. letting the target duality measure tend
to zero, we find that the resulting limit direction is exactly equal to the dual affine-scaling
direction ! This surprising fact, which is also valid for their primal counterparts, gives us
some insight about both methods:

¦ The affine-scaling method can be seen as an application of Newton’s method that is
targeting the limit point of the central path, i.e. that tries to jump directly to an
optimal solution without following the central path.

¦ Looking at (1.6), it is possible to decompose the dual Newton step into two parts:

∆xk =
1

σµk
∆axk + ∆cxk ,

where
(

AT I

AS−2
k AT 0

)(
∆ayk

∆ask

)
=

(
0
b

)
and

(
AT I

AS−2
k AT 0

)(
∆cyk

∆csk

)
=

(
0

−AS−1
k e

)
.

– ∆axk is called the affine-scaling component. It has the same direction as the
affine-scaling method and is only seeking optimality.

– ∆cxk is called the centering component. It is targeting a point on the central path
with the same duality measure as the current iterate, i.e. only tries to improve
proximity to the central path.

It is possible to show that most interior-point methods follow in fact directions that are
combinations of these two basic directions.

16This constant has to be strictly less than 1 since we want to stay in the interior of the feasible region.

1.3 – Interior-point algorithms 25

1.3.3 Potential reduction algorithms

Instead of targeting a decreasing sequence of duality measures, the method of Karmarkar
made use of a potential function to monitor the progress of its iterates. A potential function
is a way to measure the worth of an iterate. Its main two properties are the following:

¦ It should tend to −∞ if and only if the iterates tend to optimality.

¦ It should tend to +∞ when the iterates tend to the boundary of the feasible region
without tending to an optimal solution17.

The main goal of a potential reduction algorithm is simply to reduce the potential function
by a fixed amount δ at each step, hence its name. Convergence follows directly from the first
property above.

Primal-dual potential reduction algorithm

We are going to describe the application of this strategy in the primal-dual case. The Tanabe-
Todd-Ye primal-dual potential function is defined on the strictly feasible primal-dual space
P+ ×D+ by

Φρ(x, s) = ρ log xT s−
∑

i

log xisi ,

where ρ is a constant required to be greater than n. We may rewrite it as

Φρ(x, s) = (ρ− n) log xT s−
∑

i

log
xisi

xT s/n
+ n log n

and note the following

¦ The first term makes the potential tend to −∞ when (x, s) tends to optimality, since
we have then the duality gap xT s tending to 0.

¦ The second term measures centrality of the iterate. A perfectly centered iterate will
have all its products xisi equal to their average value xT s/n, making the second term
equal to zero. As soon these products become different, this term increases, and tends
to +∞ if one of the products xisi tends to zero without xT s tending also to zero (which
means exactly that we approach the boundary of the feasible region without tending to
an optimal solution).

The search direction for this method is not new: it is the same as for the path-following
algorithm, defined with a target duality measure nµk/ρ (i.e. with σ = n/ρ). However, in
this case, µk will not follow a predefined decreasing sequence, but will have to be recomputed
after each step (since this algorithm cannot guarantee that the duality measure targeted by
the Newton step will be attained). The algorithm proceeds as follows:

17We cannot of course simply prevent the method from approaching the boundary of the feasible region,
since our optimal solution lies on it.

26 1. Interior-point methods for linear optimization

Given an initial iterate (x0, y0, s0) ∈ P+ × D+ with duality measure µ0 and a
constant ρ > n. Define σ = n/ρ.

Repeat for k = 0, 1, 2, . . .

Compute the Newton step (∆xk, ∆yk, ∆sk) using the linear system (1.4).

Let (xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(∆xk, ∆yk, ∆sk) where αk is defined by

αk = arg min
α

Φρ(xk + α∆xk, sk + α∆sk)

s.t. (xk, yk, sk) + α(∆xk, ∆yk, ∆sk) ∈ P+ ×D+ .

Evaluate µk+1 with (xT
k+1sk+1)/n.

Until nµk+1 < ε

The principle of this method is thus to minimize the potential function along the search
direction at each iteration. The main task in analysing the complexity of this method is to
prove that this step will provide at least a fixed reduction of Φρ at each iteration. Using
ρ = n +

√
n, it is possible to prove that Φρ(xk+1, sk+1) ≤ Φρ(xk, sk) − δ with δ = 0.16 (see

e.g. [Ans96]), leading to a total number of iterations equal to

N = O
(√

n log
nµ0

ε

)
,

matching the best complexity results for the path-following methods.

It is in general too costly for a practical algorithm to minimize exactly the potential
function along the search direction, since Φρ is a highly nonlinear function. We may use
instead one the following strategies

¦ Define a quadratic approximation of Φρ along the search direction and take its minimizer
as next iterate.

¦ Take a fixed percentage (e.g. 95%) of the maximum step along the search direction
staying inside of the feasible region.

We note however that polynomial complexity is no longer guaranteed in these cases.

1.4 Enhancements

In the following, we present various enhancements that are needed to make the theoretical
methods of the previous section work in practice.

1.4.1 Infeasible algorithms

All the algorithms we have described up to now are feasible methods, which means they need
a strictly feasible iterate as starting point. However, such a point is not always available:

1.4 – Enhancements 27

¦ For some problems, a natural strictly feasible point is not directly available and finding
one may be as difficult as solving the whole linear program.

¦ Some problems have no strictly feasible points although they are perfectly valid and
have finite optimal solutions. This situation happens in fact if and only if the optimal
solution set is not bounded18.

We can think of two different strategies to handle such cases: embed the problem into a
larger one that admits a strictly feasible starting point (this will be developed in the next
paragraph) or modify the algorithm to make it work with infeasible iterates. We are now
going to give an overview of this second strategy.

We recall that the iterates of an infeasible method do not satisfy the equality constraints
Ax = b and AT y + s = c but are required to be nonnegative, i.e. x > 0 and s > 0. The
main idea is simply to ask Newton’s method to make the iterates feasible. This amounts to
a simple modification of the linear system (1.4), which becomes

0 AT I
A 0 0
Sk 0 Xk

∆xk

∆yk

∆sk

 =

c−AT yk − sk

b−Axk

−XkSke + σµke

 . (1.9)

The only difference with the feasible system is the right-hand side vector, which now incor-
porates the primal and dual residuals b−Axk and c− (AT yk + sk). Newton steps will try to
reduce both the duality measure and the iterate infeasibility at the same time.

Infeasible variants of both path-following and potential reduction methods have been
developed using this search direction. Without going into the details, let us point out that
an additional constraint on the step has to be enforced to ensure that infeasibility is reduced
at least at the same pace as the duality measure (to avoid ending with an ”optimal” solution
that would be infeasible). The complexity results for these methods are the same as those of
their feasible counterparts, although the analysis is generally much more involved.

1.4.2 Homogeneous self-dual embedding

As mentioned in the previous subsection, another way to handle infeasibility is to embed our
problem into a larger linear program that admits a known feasible starting point. We choose
a starting iterate (x0, y0, s0) such that x0 > 0 and s0 > 0 and define the following quantities

b̂ = b−Ax0

ĉ = c−AT y0 − s0

ĝ = bT y0 − cT x0 − 1
ĥ = xT

0 s0 + 1 .

18This is the case for example when a variable that is not bounded by the constraints is not present in the
objective.

28 1. Interior-point methods for linear optimization

We consider the following problem, introduced in [YTM94]

min ĥ θ

s.t. Ax −b τ +b̂ θ = 0
−AT y +c τ −ĉ θ −s = 0

bT y −cT x −ĝ θ −κ = 0
−b̂T y +ĉT x +ĝ τ = −ĥ

x ≥ 0 τ ≥ 0 s ≥ 0 κ ≥ 0

. (HSD)

It is easy to see find a strictly feasible starting point for this problem. Indeed, one can
check that (x, y, s, τ, κ, θ) = (x0, y0, s0, 1, 1, 1) is a suitable choice. Without going into too
many details, we give a brief description of the new variables involved in (HSD): τ is a
homogenizing variable, θ is measuring infeasibility and κ refers to the duality gap in the
original problem. We also point out that the first two equalities correspond to the feasibility
constraints Ax = b and AT y + s = c.

This program has the following interesting properties (see [YTM94]):

¦ This program is homogeneous, i.e. its right-hand side is the zero vector (except for the
last equality that is a homogenizing constraint).

¦ This program is self-dual, i.e. its dual is identical to itself (this is due to the fact that
the coefficient matrix is skew-symmetric).

¦ The optimal value of (HSD) is 0 (i.e. θ∗ = 0).

¦ Given a strictly complementary solution (x∗, y∗, s∗, τ∗, κ∗, 0) to (HSD) we have either
τ∗ > 0 or κ∗ > 0.

¦ If τ∗ > 0 then (x∗/τ∗, y∗/τ∗, s∗/τ∗) is an optimal solution to our original problem.

¦ If κ∗ > 0 then our original problem has no finite optimal solution. Moreover, we have
in this case bT y∗ − cT x∗ > 0 and

– When bT y∗ > 0, problem (LP) is infeasible.

– When −cT x∗ > 0, problem (LD) is infeasible.

Since we know a strictly feasible starting point, we can apply a feasible path-following
method to this problem that will converge to an optimal strictly complementary solution.
Using the above-mentioned properties, it is then possible to compute an optimal solution to
our original problem or detect its infeasibility.

This homogeneous self-dual program has roughly twice the size of our original linear
program, which may be seen as a drawback. However, it is possible to take advantage of the
self-duality property and use some algorithmic devices to solve this problem at nearly the
same computational cost as the original program.

1.4 – Enhancements 29

1.4.3 Theory versus implemented algorithms

We have already mentioned that a polynomial complexity result is not necessarily a guarantee
of good practical behaviour. Short-step methods are definitely too slow because of the tiny
reduction of the duality measure they allow. Long-step methods perform better but are
still too slow. This is why practitioners have implemented various tricks to accelerate their
practical behaviour. It is important to note that the complexity results we have mentioned
so far do not apply to these modified methods, since they do not strictly follow the theory.

The infeasible primal-dual long-step path-following algorithm is by far the most com-
monly implemented interior-point method. The following tricks are usually added:

¦ The theoretical long-step method takes several Newton steps targeting the same duality
measure until proximity to the central path is restored. Practical algorithms ignore this
and take only a single Newton step, like short-step methods.

¦ Instead of choosing the step length recommended by the theory, practical implemen-
tations usually take a very large fraction of the maximum step that stays within the
feasible region (common values are 99.5% or 99.9%). This modification works especially
well with primal-dual methods.

¦ The primal and dual steps are taken with different step lengths, i.e. we take

xk+1 = xk + αP ∆xk and (yk+1, sk+1) = (yk, sk) + αD(∆yk,∆sk) .

These steps are chosen according to the previous trick, for example with (αP , αD) =
0.995 (αP

max, α
D
max). This modification alone is responsible for a substantial decrease of

the total number of iterations, but is not theoretically justified.

1.4.4 The Mehrotra predictor-corrector algorithm

The description of the methods from the previous section has underlined the fact that the
constant σ, defining the target duality measure σµk, has a very important role in determining
the algorithm efficiency:

¦ Choosing σ nearly equal to 1 allows us to take a full Newton step, but this step is
usually very short and does not make much progress towards the solution. However it
has the advantage of increasing the proximity to the central path.

¦ Choosing a smaller σ produces a larger Newton step making more progress towards
optimality, but this step is generally infeasible and has to be damped. Moreover this
kind of step usually tends to move the iterate away from the central path.

We understand that the best choice of σ may vary according to the current iterate: small if a
far target is easy to attain and large otherwise. Mehrotra has designed a very efficient way to
choose σ according to this principle: the predictor-corrector primal-dual infeasible algorithm
[Meh92].

30 1. Interior-point methods for linear optimization

This algorithm first computes an affine-scaling predictor step (∆xa
k,∆ya

k , ∆sa
k), i.e. solves

(1.9) with σ = 0, targeting directly the optimal limit point of the central path. The maximum
feasible step lengths are then computed separately using

αa,P
k = arg max {α ∈ [0, 1] | xk + α∆xa

k ≥ 0} ,

αa,D
k = arg max {α ∈ [0, 1] | sk + α∆sa

k ≥ 0} .

Finally, the duality measure of the resulting iterate is evaluated with

µa
k+1 =

(xk + αa,P
k ∆xa

k)
T (αa,D

s ∆sa
k)

n
.

This quantity measures how easy it is to progress towards optimality: if it is much smaller than
the current duality measure µk, we can choose a small σ and hope to make much progress, on
the other hand if it is just a little smaller, we have to be more careful and choose σ closer to
one, in order to increase proximity to the central path and be in a better position to achieve a
large decrease of the duality measure on the next iteration. Mehrotra suggested the following
heuristic, which has proved to be very efficient in practice

σ =
(

µa
k+1

µk

)3

.

We now simply compute a corrector step (∆xc
k,∆yc

k,∆sc
k) using this σ and take the maximum

feasible step lengths separately in the primal and dual spaces.

However, this algorithm can be improved a little further using the following fact. After a
full predictor step, the pairwise product xisi is transformed into (xi + ∆xa

i)(si + ∆sa
i), which

can be shown to be equal to ∆xa
i ∆sa

i . Since Newton’s method was trying to make xisi equal
to zero, this last product measures the error due to the nonlinearity of the equations we are
trying to solve. The idea is simply to incorporate this error term in the computation of the
corrector step, using the following modification to the right-hand side in (1.9)

0 AT I
A 0 0
Sk 0 Xk

∆xk

∆yk

∆sk

 =

c−AT yk − sk

b−Axk

−XkSke−∆Xa
k∆Sa

ke + σµke

 . (1.10)

This strategy of computing a step taking into account the results of a first-order prediction
gives rise to a second-order method. The complete algorithm follows:

Given an initial iterate (x0, y0, s0) with duality measure µ0 such that x0 > 0 and
s0 > 0, an accuracy parameter ε and a constant ρ < 1 (e.g. 0.995 or 0.999).

Repeat for k = 0, 1, 2, . . .

Compute the predictor Newton step (∆xa
k, ∆ya

k , ∆sa
k) using the linear system (1.9)

and σ = 0.

Compute the maximal step lengths and the resulting duality measure with

αa,P
k = arg max {α ∈ [0, 1] | xk + α∆xa

k ≥ 0} ,

αa,D
k = arg max {α ∈ [0, 1] | sk + α∆sa

k ≥ 0} ,

µa
k+1 =

(xk + αa,P
k ∆xa

k)
T (sk + αa,D

k ∆sa
k)

n
.

1.5 – Implementation 31

Compute the corrector Newton step (∆xc
k, ∆yc

k, ∆sc
k) using the modified linear

system (1.10) and σ =
(
µa

k+1/µk

)3.

Compute the maximal step lengths with

αP
k = arg max {α ∈ [0, 1] | xk + α∆xc

k ≥ 0} ,

αD
k = arg max {α ∈ [0, 1] | sk + α∆sc

k ≥ 0} .

Let xk+1 = xk + ρ αP
k ∆xc

k and (yk+1, sk+1) = (yk, sk) + ραD
k (∆yc

k, ∆sc
k).

Evaluate µk+1 with (xT
k+1sk+1)/n.

Until nµk+1 < ε

It is important to note that the predictor step is only used to compute σ and the right-
hand side of (1.10) and is not actually taken. This has a very important effect on the
computational work, since the calculation of both the predictor and the corrector step is
made with the same current iterate. This implies that the coefficient matrix in the linear
systems (1.10) and (1.9) is the same, the only difference being the right-hand side vector.
The resolution of the second system will then reuse the factorization of the coefficient matrix
and will only need a computationally cheap additional backsubstitution. This property is
responsible for the great efficiency of Mehrotra’s algorithm: a clever heuristic to decrease the
duality measure using very little additional computational work.

1.5 Implementation

We mention here some important facts about the implementation of interior-point algorithms.

1.5.1 Linear algebra

It is important to realize that the resolution of the linear system defining the Newton step
takes up most of the computing time in interior-point methods (some authors report 80–90%
of the total CPU time). It should be therefore very carefully implemented. Equations (1.9)
are not usually solved in this format: some pivoting is done, leading first to the following
system (where we define D2

k = S−1
k Xk)

(−D−2
k AT

A 0

)(
∆xk

∆yk

)
=

(
c−AT yk − σµkX

−1
k e)

b−Axk

)
(1.11)

∆sk = −sk + σµkX
−1
k e−D−2

k ∆xk , (1.12)

and then to this one

AD2
kA

T ∆yk = b−A(xk −D2
kc + D2

kA
T yk + σµkS

−1
k e) (1.13)

∆sk = c−AT yk − sk −AT ∆yk (1.14)
∆xk = −xk + σµkS

−1
k e−D2

k∆sk . (1.15)

32 1. Interior-point methods for linear optimization

System (1.11) is called the augmented system and can be solved with a Bunch-Partlett fac-
torization. However, the most usual way to compute the Newton step is to solve (1.13), called
the normal equation, with a Cholevsky factorization, taking advantage of the fact that matrix
AD2

kA
T is positive definite (see [AGMX96] for a discussion). At this stage, it is important

to note that most real-world problems have very few nonzero entries in matrix A. It is thus
very important to exploit this sparsity in order to reduce both computing times and storage
capacity requirements. More specifically, one should try to find a reordering of the rows and
columns of matrix AD2

kA
T that leads to the sparsest Cholevsky factor19. This permutation

has to be computed only once, since the sparsity pattern of matrix AD2
kA

T is the same for
all iterations.

On a side note, let us note that the complexity of solving this linear system is O (
n3

)
arithmetic iterations, which gives the best interior-point methods a total complexity of

O(
n3.5 log

nµ0

ε

)

arithmetic operations20.

1.5.2 Preprocessing

In most cases, the linear program we want to solve is not formulated in the standard form
(1.2). The first task for an interior-point solver is thus to convert it by adding variables and
constraints

¦ Inequality constraints can be transformed into equality constraints with a slack variable:
fT x ≥ b ⇔ fT x− s = b with s ≥ 0.

¦ A free variable can be split into two nonnegative variables: x = x+ − x− with x+ ≥ 0
and x− ≥ 0. However this procedure has some drawbacks21 and practical solvers usually
include a modification of the algorithm to handle free variables directly.

¦ Lower bounds l ≤ x are handled using a translation x = x′ + l with x′ ≥ 0.

¦ Upper bounds x ≤ u could be handled using a slack variable, but practical solvers
usually implement a variation of the standard form that takes these bounds directly
into account.

After this initial conversion, it is not unusual that a series of simple transformations can
greatly reduce the size of the problem

¦ Zero lines and columns are either redundant (and thus may be removed) or make the
problem infeasible.

19Because the problem of finding the optimal reordering is NP-hard, heuristics have been developed, e.g. the
minimum degree and minimum local fill-in heuristics.

20A technique of partial updating of the coefficient matrix AD2
kAT in the normal equation can reduce this

total complexity to O �n3
�
.

21 It makes for example the optimal solution set unbounded and the primal-dual strictly feasible set empty.

1.6 – Concluding remarks 33

¦ Equality constraints involving only one variable are removed and used to fix the value
of this variable.

¦ Equality constraints involving exactly two variables can be used to pivot out one the
variables.

¦ Two identical lines are either redundant (one of them may thus be removed) or incon-
sistent (and make the problem infeasible).

¦ Some constraints may allow us to compute lower and upper bounds for some variables.
These bounds can improve existing bounds, detect redundant constraints or diagnose
an infeasible problem.

Every practical solver applies these rules (and some others) repeatedly before starting to solve
the problem.

1.5.3 Starting point and stopping criteria

The problem of finding a suitable starting point has already been addressed by the homoge-
neous self-dual embedding technique and the infeasible methods. In both cases, any iterate
satisfying x0 > 0 and s0 > 0 can be chosen as starting point. However, the actual performance
of the algorithm can be greatly influenced by this choice.

Although there is no theoretical justification for it, the following heuristic is often used
to find a starting point. We first solve

min
x∈Rn

cT x +
ω

2
xT x s.t. Ax = b and min

(y,s)∈Rm×Rn
bT y +

ω

2
sT s s.t. AT y + s = c .

These convex quadratic programs can be solved analytically at a cost comparable to a single
interior-point iteration. The negative components of the optimal x and s are then replaced
with a small positive constant to give x0 and (y0, s0).

As described earlier, the stopping criteria is usually a small predefined duality gap εg.
In the case of an infeasible method, primal and dual infeasibility are also monitored and
are required to fall below some predefined value εi. One can use for example the following
formulas

‖Ax− b‖
‖b‖+ 1

< εi,
‖AT y + s− c‖

‖c‖+ 1
< εi,

‖cT x− bT y‖
‖cT x‖+ 1

< εg .

The denominators are used to make these measures relative and the +1 constant to avoid
division by zero. However, when dealing with an infeasible problem, infeasible methods tend
to see their iterates diverging towards infinity. Practical solvers usually detect this behaviour
and diagnose an infeasible problem.

1.6 Concluding remarks

The theory of interior-point methods for linear optimization is now well established ; several
textbooks on the topic have been published (see e.g. [Wri97, RTV97, Ye97]). From a prac-

34 1. Interior-point methods for linear optimization

tical point of view, interior-point methods compete with the best simplex implementations,
especially for large-scale problems.

However some unsatisfying issues remain, in particular the gap between theoretical and
implemented algorithms. Another interesting point is the number of iterations that is practi-
cally observed, almost independent from the problem size or varying like log n or n1/4, instead
of the

√
n theoretical bound.

Research is now concentrating on the adaptation of these methods to the nonlinear
framework. Let us mention the following directions:

¦ Semidefinite optimization is a promising generalization of linear optimization in which
the nonnegativity condition on a vector x ≥ 0 is replaced by the requirement that a
symmetric matrix X is positive semidefinite. This kind of problem has numerous ap-
plications in various fields, e.g. combinatorial optimization (with the famous Goemans-
Williamson bound on the quality of a semidefinite MAXCUT relaxation [GW95]), con-
trol, classification (see [Gli98b] and Appendix A), structural optimization, etc. (see
[VB96] for more information). The methods we have presented here can be adapted
to semidefinite optimization with relatively little effort and several practical algorithms
are able to solve this kind of problem quite efficiently.

¦ In their brilliant monograph [NN94], Nesterov and Nemirovski develop a complete the-
ory of interior-point methods applicable to the whole class of convex optimization prob-
lems. They are able to prove polynomial complexity for several types of interior-point
methods and relate their efficiency to the existence of a certain type of barrier depend-
ing on the problem structure, a so-called self-concordant barrier. This topic is further
discussed in Chapter 2.

CHAPTER 2

Self-concordant functions

This chapter provides a self-contained introduction to the theory of self-conc-
ordant functions [NN94] and applies it to several classes of structured con-
vex optimization problems. We describe the classical short-step interior-point
method and optimize its parameters to provide its best possible iteration bound.
We also discuss the necessity of introducing two parameters in the definition
of self-concordancy, how they react to addition and scaling and which one is
the best to fix. A lemma from [dJRT95] is improved and allows us to review
several classes of structured convex optimization problems and evaluate their
algorithmic complexity, using the self-concordancy of the associated logarithmic
barriers.

2.1 Introduction

We start with a presentation of convex optimization.

2.1.1 Convex optimization

Convex optimization deals with the following problem

inf
x∈Rn

f0(x) s.t. x ∈ C , (C)

where C ⊆ Rn is a closed convex set and f0 : C 7→ R is a convex function defined on C.
Convexity of f0 and C plays a very important role in this problem, since it is responsible for

35

36 2. Self-concordant functions

the following two important properties [Roc70a, SW70]:

¦ Any local optimum for (C) is also a global optimum, which implies that the objective
value is equal for all local optima. Moreover, all these optima can be shown to form a
convex set.

¦ It is possible to use Lagrange duality to derive a dual problem strongly related to (C).
Namely, this pair of problems satisfies a weak duality property (the objective value
of any feasible solution for one of these problems provides a bound on the optimum
objective value for the dual problem) and, under a Slater-type condition, a strong
duality property (equality and attainment of the optimum objective values for the two
problems). These properties are described with more detail in Section 3.2.

We first note that it can be assumed with any loss of generality that the objective function f0

is linear, so that we can define it as f0(x) = cT x using a vector c ∈ Rn. Indeed, it is readily
seen that problem (C) is equivalent to the following problem with a linear objective:

inf
x∈Rn, t∈R t s.t. (x, t) ∈ C̄ ,

where C̄ ⊆ Rn+1 is suitably defined as

C̄ =
{
(x, t) ∈ Rn+1 | x ∈ C and f(x) ≤ t

}
.

We will thus consider in the rest of this chapter the problem

inf
x∈Rn

cT x s.t. x ∈ C . (CL)

It is interesting to ask ourselves how one can specify the data of a problem cast in such a
form, i.e. how one can describe its objective function and feasible set. While specifying the
objective function is easily done by providing vector c, describing the feasible set C, which is
responsible for the structure of problem (CL), can be done in several manners.

a. The traditional way to proceed in nonlinear optimization is to provide a list of convex
constraints defining C, i.e.

C =
{
x ∈ Rn | fi(x) ≤ 0 ∀i ∈ I = {1, 2, . . . , m}} , (2.1)

where each of the m functions fi : Rn 7→ R is convex. This guarantees the convexity of
C, as an intersection of convex level sets.

b. An alternative approach consists in considering the domain of a convex function. More
precisely, we require the interior of C to be equal to the domain of a convex function.
Extending the real line R with the quantity +∞, we introduce the convex function
F : Rn 7→ R ∪ {+∞} and define C as the closure of its effective domain, i.e.

C = cl domF = cl {x ∈ Rn | F (x) < +∞} .

Most of the time, we will require in addition F to be a barrier function for the set C,
according to the following definition.

2.1 – Introduction 37

Definition 2.1. A function F is a barrier function for the convex set C if and only if
it satisfies the following assumptions:

(a) F is smooth (three times continuously differentiable for our purpose),

(b) F is strictly convex, i.e. ∇2F is positive definite,

(c) F (x) tends to +∞ whenever x tends to ∂C, the boundary of C (this is the barrier
property).

Note 2.1. We also note that it is often possible to provide a suitable barrier function F
for a convex set C given by a functional description (2.1) using the logarithmic barrier
[Fri55] defined as

F : Rn 7→ R : x 7→ F (x) = −
∑

i∈I

log(−fi(x)) ,

where we define log z = +∞ whenever z ∈ R−. We have indeed to check that F is strictly
convex and is a barrier function for C, which is not always the case (for example, in
the case of C = R+, taking f1(x) = |x| − x does not lead to a strictly convex F while
f1(x) = −xx leads to F (x) = −x log x, which does not possess the barrier property).

c. It may also be worthwhile to consider the special case where C can be described as the
intersection of a convex cone C ⊆ Rn and an affine subspace b + L (where L is a linear
subspace)

C = C ∩ (b + L) = {x ∈ C | x− b ∈ L} .

The resulting class of problems is known as conic optimization, and can be easily shown
to be equivalent to convex optimization [NN94] (in practice, subspace b + L would be
defined with a set of linear equalities).

Special treatment for the linear constraints, i.e. their representation as an intersection
with an affine subspace, can be justified by the fact that these constraints are easier
to handle than general nonlinear constraints. In particular, let us mention that it is
usually easy for algorithms to preserve feasibility with respect to these constraints, and
that they cannot cause a nonzero duality gap, i.e. strong duality is valid without a
Slater-type assumption for linear optimization. We will not need to use this approach
in this chapter. It will nevertheless constitute the main tool used in the second part of
this thesis, which focuses on the topic of duality (see Chapters 4–7).

2.1.2 Interior-point methods

Among the different types of algorithms that can be applied to solve problem (CL), the so-
called interior-point methods have gained a lot of popularity in the last two decades. This is
mainly due to the following facts:

¦ it is not only possible to prove convergence of these methods to an optimal solution
but also to give a polynomial bound on the number of arithmetic operations needed to
reach a solution within a given accuracy,

38 2. Self-concordant functions

¦ these methods can be implemented and applied successfully to solve real-world prob-
lems, especially in the fields of linear (where they compare favourably with the simplex
method), quadratic and semidefinite optimization.

A fundamental ingredient in the elaboration of these methods is the above-mentioned notion
of barrier function F for the set C. Namely, let us consider the following parameterized family
of unconstrained minimization problems:

inf
x∈Rn

cT x

µ
+ F (x) , (CLµ)

where parameter µ belongs to R++ and is called the barrier parameter. The constraint x ∈ C
of the original problem (CL) has been replaced by a penalty term F (x) in the objective
function, which tends to +∞ as x tends to the boundary of C and whose purpose is to
avoid that the iterates leave the feasible set (see the classical monograph [FM68]). Assuming
existence of a minimizer x(µ) for each of these problems (strong convexity of F ensures
uniqueness of such a minimizer), we call the set {x(µ) | µ > 0} ⊆ C the central path for
problem (CL).

It is intuitively clear that as µ tends to zero, the first term proportional to the original
objective cT x

µ becomes preponderant in the sum, which implies that the central path converges
to a solution that is optimal for the original problem. The principle behind interior-point
methods will thus be to follow this central path until an iterate that is sufficiently close to
the optimum is found.

However, two questions remain pending: how do we compute x(µ) and how do we choose
a suitable barrier F . The first question is readily answered: interior-point methods rely on
Newton’s method to compute these minimizers, which leads us to a refined version of the
second question: is it possible to choose a barrier function F such that Newton’s method is
provably efficient in solving subproblems (CLµ) and has an algorithmic complexity that can
be estimated ? This crucial question is thoroughly answered by the remarkable theory of
self-concordant functions, first developed by Nesterov and Nemirovski [NN94], which we will
present in the next section.

2.1.3 Organization of the chapter

The purpose of this chapter is to give a self-contained introduction to the theory of self-
concordant functions and to apply it to several classes of structured convex optimization
problems. Section 2.2 introduces a definition of self-concordant functions and presents sev-
eral equivalent conditions. A short-step interior-point method using these functions is then
presented along with an explanation of how the proof of polynomiality works. Our contri-
bution at this stage is the computation of the best possible iteration bound for this method
(Theorem 2.5).

Section 2.3 deals with the construction of self-concordant functions. Scaling and addition
of self-concordant functions are considered, as well as a discussion on the utility of two pa-
rameters in the definition of self-concordancy and how to fix one of them in the best possible

2.2 – Self-concordancy 39

way. We then present an improved version of a lemma from [dJRT95] (Lemma 2.3). This
lemma is the main tool used in Section 2.4, where we review several classes of structured
convex optimization problems and prove self-concordancy of the corresponding logarithmic
barriers, improving the complexity results found in [dJRT95]. We conclude in Section 2.5
with some comments.

2.2 Self-concordancy

We start this section with a definition of a self-concordant function.

2.2.1 Definitions

We first recall the following piece of notation: the first, second and third differentials of a
function F : Rn 7→ R evaluated at the point x will be denoted by ∇F (x), ∇2F (x) and
∇3F (x). These are linear mappings, and we have indeed

∇F (x) : Rn 7→ R : h1 7→ ∇F (x)[h1]

∇2F (x) : Rn × Rn 7→ R : (h1, h2) 7→ ∇2F (x)[h1, h2]

∇3F (x) : Rn × Rn × Rn 7→ R : (h1, h2, h3) 7→ ∇3F (x)[h1, h2, h3] .

Definition 2.2. A function F : C 7→ R is called (κ, ν)-self-concordant for the convex set
C ⊆ Rn if and only if F is a barrier function according to Definition 2.1 and the following
two conditions hold for all x ∈ intC and h ∈ Rn:

∇3F (x)[h, h, h] ≤ 2κ
(∇2F (x)[h, h]

) 3
2 , (2.2)

∇F (x)T (∇2F (x))−1∇F (x) ≤ ν (2.3)

(note that the square root in (2.2) is well defined since its argument ∇2F (x)[h, h] is
positive because of the requirement that F is convex).

This definition does not exactly match the original definition of a self-concordant bar-
rier in [NN94], but merely corresponds to the notion of strongly non-degenerate κ−2-self-
concordant barrier functional with parameter ν, that is general enough for our purpose.

Note 2.2. We would like to point out that no absolute value is needed in (2.2): while some
authors usually require the apparently stronger condition

∣∣∇3F (x)[h, h, h]
∣∣ ≤ 2κ

(∇2F (x)[h, h]
) 3

2 , (2.4)

this is not needed since it suffices to notice that inequality (2.2) also has to hold in the
direction opposite to h, which gives

∇3F (x)[−h,−h,−h] ≤ 2κ
(∇2F (x)[−h,−h]

) 3
2 ⇔ −∇3F (x)[h, h, h] ≤ 2κ

(∇2F (x)[h, h]
) 3

2

(using the fact that the nth-order differential is homogeneous with degree n), which combined
with (2.2) gives condition (2.4).

40 2. Self-concordant functions

It is possible to reformulate conditions (2.2) and (2.3) into several equivalent inequalities
that may prove easier to handle in some cases. However, before we list them, we would like
to make a few comments about the use of inner products in our setting, following the line of
thought of Renegar’s monograph [Ren00].

It is indeed important to realize that the definitions of gradient and Hessian, i.e. first-
order and second-order differentials are in fact dependent from inner product that is being
used. Nevertheless, in most texts, it is customary to use the dot product1 as standard inner
product. This has the disadvantage to make all developments a priori dependent from the
coordinate system. However, Renegar notices that it is possible to develop the theory of self-
concordant functions in a completely coordinate-free manner, i.e. independently of a reference
inner product. The is due to the fact that the two principal objects in this theory are indeed
independent from the coordinate system: the Newton step n(x) and the intrinsic inner product
〈·, ·〉x. Given a barrier function F and a point x belonging to its domain, these two objects
are defined according to:

n(x) = −(∇2F (x))−1∇F (x) and 〈α, β〉x = 〈α,∇2F (x)β〉 .

It is also convenient to introduce the intrinsic norm ‖·‖x based on the intrinsic inner product
〈·, ·〉x according to the usual definition ‖a‖x =

√
〈a, a〉x.

Let x ∈ intC and h ∈ Rn and let us introduce the one-dimensional function Fx,h : R 7→
R : t 7→ F (x+ th), the restriction of F along the line {x + th | t ∈ R}. We are now in position
to state several reformulations of conditions (2.2) and (2.3), grouped in the following two
theorems:

Theorem 2.1. The following four conditions are equivalent:

∇3F (x)[h, h, h] ≤ 2κ
(∇2F (x)[h, h]

) 3
2 for all x ∈ intC and h ∈ Rn (2.5a)

F ′′′
x,h(0) ≤ 2κF ′′

x,h(0)
3
2 for all x ∈ intC and h ∈ Rn (2.5b)

F ′′′
x,h(t) ≤ 2κF ′′

x,h(t)
3
2 for all x + th ∈ intC and h ∈ Rn (2.5c)

(
− 1√

F ′′
x,h(t)

)′
≤ κ for all x + th ∈ intC and h ∈ Rn . (2.5d)

Proof. Since Fx,h(t) = F (x + th), we can write

F ′
x,h(t) = ∇F (x + th)[h], F ′′

x,h(t) = ∇2F (x + th)[h, h] and F ′′′
x,h(t) = ∇3F (x + th)[h, h, h] .

Condition (2.5b) is thus simply condition (2.5a) written differently. Moreover, condition (2.5c)
is equivalent to condition (2.5b) written for x + th instead of x. Finally, we note that

(
− 1√

F ′′
x,h(t)

)′
≤ κ ⇔ 1

2
F ′′

x,h(t)−
3
2 F ′′′

x,h(t) ≤ κ ⇔ F ′′′
x,h(t) ≤ 2κF ′′

x,h(t)
3
2 ,

which shows that (2.5d) and (2.5c) are equivalent.
1The dot product of two vector x and y whose coordinates are (α1, α2, . . . , αn) and (β1, β2, . . . , βn) in a

given coordinate system is equal to
Pn

i=1 αiβi.

2.2 – Self-concordancy 41

Theorem 2.2. The following four conditions are equivalent:

∇F (x)T (∇2F (x))−1∇F (x) ≤ ν for all x ∈ intC (2.6a)
F ′

x,h(0)2 ≤ νF ′′
x,h(0) for all x ∈ intC and h ∈ Rn (2.6b)

F ′
x,h(t)2 ≤ νF ′′

x,h(t) for all x + th ∈ intC and h ∈ Rn (2.6c)
(
− 1

F ′
x,h(t)

)′
≥ 1

ν
for all x + th ∈ intC and h ∈ Rn . (2.6d)

Proof. Proving these equivalences is a little more involved than for the previous theorem. We
start by showing that condition (2.6b) implies condition (2.6a). We can write

∇F (x)T (∇2F (x))−1∇F (x) = ∇F (x)[(∇2F (x))−1∇F (x)] = F ′
x,(∇2F (x))−1∇F (x)(0)

≤ √
ν
√

F ′′
x,(∇2F (x))−1∇F (x)

(0) using condition (2.6b)

=
√

ν
√
∇2F (x)[(∇2F (x))−1∇F (x), (∇2F (x))−1∇F (x)]

=
√

ν
√
∇F (x)T (∇2F (x))−1∇2F (x)(∇2F (x))−1∇F (x)

=
√

ν
√
∇F (x)T (∇2F (x))−1∇F (x) ,

which implies condition (2.6a). Considering now the reverse implication, we have

F ′
x,h(0)2 = (∇F (x)[h])2 =

(∇F (x)T h
)2

=
(∇F (x)T (∇2F (x))−1∇2F (x)h

)2
= 〈(∇2F (x))−1∇F (x), h〉2x

≤ ∥∥(∇2F (x))−1∇F (x)
∥∥2

x
‖h‖2

x (using the Cauchy-Schwarz inequality)

=
(∇F (x)T (∇2F (x))−1∇2F (x)(∇2F (x))−1∇F (x)

) (
hT∇2F (x)h

)

≤ ν∇2F (x)[h, h] using condition (2.6a)
= νF ′′

x,h(0) .

Condition (2.6c) is condition (2.6b) written for x + th instead of x, and we finally note that

(
− 1

F ′
x,h(t)

)′
≥ 1

ν
⇔ F ′

x,h(t)−2F ′′
x,h(t) ≥ 1

ν
⇔ νF ′′

x,h(t) ≥ F ′
x,h(t)2 ,

which shows that (2.6d) and (2.6c) are equivalent.

The first three reformulations for each condition are well-known and can be found for
example in [NN94, Jar96, Ren00]. Conditions (2.5d) and (2.6d) are less commonly seen (they
were however mentioned in [Bri00]).

2.2.2 Short-step method

As outlined in the introduction, interior-point methods for convex optimization rely on a
barrier function and the associated central path to solve problem (CL). Ideally, we would like

42 2. Self-concordant functions

our iterates to be a sequence of points on the central path x(µ0), x(µ1), . . . , x(µk), . . . for
a sequence of barrier parameters µk tending to zero (and thus x(µk) tending to an optimal
solution).

We already mentioned that Newton’s method, applied to problems (CLµ), will be the
workhorse to compute those minimizers. However, it would be too costly to compute each of
these points with high accuracy, so that interior-point methods require instead their iterates
to lie in a prescribed neighbourhood of the central path and its exact minimizers.

Let xk, the kth iterate, be an approximation of x(µk). A good proximity measure would
be ‖xk − x(µk)‖ or, to be independent from the coordinate system, ‖xk − x(µk)‖xk

. However,
these quantities involve the unknown central point x(µk), and are therefore difficult to work
with. Nevertheless, another elegant proximity measure can be used for that purpose. Let us
define nµ(x) to be the Newton step trying to minimize the objective in problem (CLµ), which
is thus aiming at x(µ). Since this objective is equal to Fµ(x) = cT x

µ + F (x), we have

nµ(x) = −(∇2Fµ(x))−1∇Fµ(x) = −(∇2F (x))−1(
c

µ
+∇F (x))

= − 1
µ

(∇2F (x))−1c + n(x) . (2.7)

Let us now define δ(x, µ), a measure of the proximity of x to the central point x(µ), as the
intrinsic norm of the newton step nµ(x), i.e. δ(x, µ) = ‖nµ(x)‖x. This quantity is indeed a
good candidate to measure how far x lies from the minimizer x(µ), since the Newton step at
x targeting x(µ) is supposed to be a good approximation of x(µ) − x. The goal of a short-
step interior-point method will be to trace the central path approximately, ensuring that the
proximity δ(xk, µk) is kept below a predefined bound for each iterate.

We are now in position to sketch a short-step algorithm. Given a problem of type (CL),
a barrier function F for C, an upper bound on the proximity measure τ > 0, a decrease
parameter 0 < θ < 1 and an initial iterate x0 such that δ(x0, µ0) < τ , we set k ← 0 and
perform the following main loop:

a. µk+1 ← µk(1− θ)

b. xk+1 ← xk + nµk+1
(xk)

c. k ← k + 1

The key is to choose parameters τ and θ such that δ(xk, µk) < τ implies δ(xk+1, µk+1) < τ ,
so that proximity to the central path is preserved. This is the moment where the self-
concordancy of the barrier function F comes into play. Indeed, it is precisely this property
that will guarantee that such a choice is always possible.

2.2.3 Optimal complexity

In order to relate the two proximities δ(xk, µk) and δ(xk+1, µk+1), it is useful to introduce
an intermediate quantity δ(xk, µk+1), the proximity from an iterate to its next target on the
central path. We have the following two properties:

2.2 – Self-concordancy 43

Theorem 2.3. Let F be a barrier function satisfying (2.3), x ∈ domF and µ+ = (1 − θ)µ.
We have

δ(x, µ+) ≤ δ(x, µ) + θ
√

ν

1− θ
.

Proof. Using (2.7), we have

µ+nµ+(x)− µ+n(x) = −(∇2F (x))−1c = µnµ(x)− µn(x)
(dividing by µ) ⇔ (1− θ)nµ+(x)− (1− θ)n(x) = nµ(x)− n(x)

⇔ (1− θ)nµ+(x) = nµ(x)− θn(x)
⇒ (1− θ)

∥∥nµ+(x)
∥∥

x
≤ ‖nµ(x)‖x + θ ‖n(x)‖x

⇒ (1− θ)δ(x, µ+) ≤ δ(x, µ) + θ
√

ν ,

which implies the desired inequality, where we used to derive the last implication the fact
that

‖n(x)‖x =
√
〈n(x), n(x)〉x =

√
∇F (x)T (∇2F (x))−1∇2F (x)(∇2F (x))−1∇F (x)

=
√
∇F (x)T (∇2F (x))−1∇F (x) ≤ √

ν ,

because of condition (2.3).

Theorem 2.4. Let F be a barrier function satisfying (2.2) and x ∈ domF . Let us suppose
δ(x, µ) < 1

κ . We have that x + nµ(x) ∈ domF and

δ(x + nµ(x), µ) ≤ κδ(x, µ)2

(1− κδ(x, µ))2
.

This proof is more technical and is omitted here ; it can be found in [NN94, Jar96, Ren00].

Note 2.3. It is now clear why the self-concordancy property relies on two separate conditions:
one of them is responsible for the control of the increase of the proximity measure when the
target on the central path is updated (Theorem 2.3), while the other guarantees that the
proximity to the target can be restored, i.e. sufficiently decreased when taking a Newton step
(Theorem 2.4).

Assuming for the moment that τ and θ can be chosen such that the proximity to central
path is preserved at each iteration, we see that the number of iterations needed to attain a
certain value of the barrier parameter µe depends solely on the ratio µ0

µe
and the value of θ.

Namely, since µk = (1− θ)kµ0, it is readily seen that this number of iterations is equal to
⌈
log(1−θ)

µe

µ0

⌉
=

⌈
1

log(1− θ)
log

µe

µ0

⌉
. (2.8)

Given a (κ, ν)-self-concordant function, we are now going to find a suitable pair of pa-
rameters τ and θ . Moreover, we will optimize this choice of parameters, i.e. try to provide
the greatest reduction for the parameter µ at each iteration, in other words maximize θ in

44 2. Self-concordant functions

order to get the lowest possible total iteration count. Letting δ = δ(xk, µk), δ′ = δ(xk, µk+1)
and δ+ = δ(xk+1, µk+1) and assuming δ ≤ τ , we have to satisfy δ+ ≤ τ with the greatest
possible value for θ.

Let us assume first that δ′ < 1
κ . Using Theorem 2.4, we find that

δ+ ≤ κδ′2

(1− κδ′)2

and therefore require that
κδ′2

(1− κδ′)2
≤ τ .

This is equivalent to
(

κδ′

1− κδ′

)2

≤ κτ ⇔
(

1
κδ′

− 1
)2

≥ 1
κτ

⇔ 1
κδ′

≥ 1 +
1√
κτ

(this also shows that the assumption κδ′ < 1 we made in the beginning was valid). Using
now Theorem 2.3, we know that

δ′ ≤ δ + θ
√

ν

1− θ
⇒ δ′ ≤ τ + θ

√
ν

1− θ
⇔ 1

κδ′
≥ 1− θ

κτ + θκ
√

ν

and thus require that
1− θ

κτ + θκ
√

ν
≥ 1 +

1√
κτ

.

Letting Γ = κ
√

ν and β =
√

κτ we have

1− θ

β2 + θΓ
≥ 1 +

1
β
⇔ 1− θ ≥ (1 +

1
β

)(β2 + Γθ) ⇔ 1− β − β2 ≥ θ

(
1 + Γ +

Γ
β

)
,

which means finally that we have to choose θ such that

θ ≤ 1− β − β2

1 + Γ + Γ
β

(2.9)

in order to guarantee δ+ ≤ τ . We are now in position to optimize the value of θ, i.e. find the
value of β that maximizes this upper bound. However, this value is likely to depend on Γ (and
thus on κ and ν) in a complex way. We are therefore going to work with the following slightly
worse upper bound, which has the advantage of allowing the optimization of β independently
of Γ (we use the fact that Γ = κ

√
ν ≥ 1, see [NN94])

θ ≤ 1
Γ

(1− β − β2

2 + 1
β

)
=

f(β)
Γ

(
≤ 1− β − β2

1 + Γ + Γ
β

)
.

It is now straightforward to maximize f(β): computing the derivative shows there is a unique
maximizer when β ≈ 0.273 (the exact value is the real root of 1 − 2β − 5β2 − 4β3) and our
upper bound in (2.9) becomes 0.65

1+4.66Γ . Translating back into our original quantities τ , κ and
ν we find that we can choose

τ =
β2

κ
≈ 1

13.42κ
and θ =

1− β − β2

1 + Γ + Γ
β

≈ 1
1.53 + 7.15κ

√
ν

, (2.10)

2.3 – Proving self-concordancy 45

which is the best result obtainable if we want β to be independent from κ and ν (more precisely,
it essentially corresponds to the best result in the case where κ

√
ν = 1). This improves several

results from the literature, e.g. θ = 1
9κ
√

ν
in [Jar96] and θ = 1

1+8κ
√

ν
in [Ren00].

Before we conclude this section with a global complexity result, let us say a few words
about termination of the algorithm. The most practical stopping criterion is a small target
value µe for the barrier parameter, which gives the iteration bound (2.8). Our final iterate
xe will thus satisfy δ(xe, µe) ≤ τ , which tells us it is not too far from x(µe), itself not too far
from the optimum since µe is small. Indeed, using again the self-concordancy property of F ,
it is possible to derive the following bound on the accuracy of the final objective cT xe, i.e. its
deviation from the optimal objective cT x∗

cT xe − cT x∗ ≤ µe

1− 3κτ
κ
√

ν (2.11)

(proof of this fact is omitted here and can easily be obtained combining Theorems 2.2.5 and
2.3.3 in [Ren00]). We are now ready to state our final complexity result:

Theorem 2.5. Given a convex optimization problem (CL), a (κ, ν)-self-concordant barrier
F for C and an initial iterate x0 such that δ(x0, µ0) < 1

13.42κ , one can find a solution with
accuracy ε in ⌈

(1.03 + 7.15κ
√

ν) log
1.29µ0κ

√
ν

ε

⌉
iterations.

Proof. Using our optimal values for θ and τ from (2.10) and the bound on the objective
accuracy in (2.11), we find that the stopping threshold on the barrier parameter µe must
satisfy

µe

1− 3/13.42
κ
√

ν ≤ ε ⇔ 1.29µeκ
√

ν ≤ ε ⇔ µe ≤ ε

1.29κ
√

ν
.

Plugging this value into (2.8) we find that the total number of iterations can be bounded by
(omitting the rounding bracket for clarity)

1
log(1− θ)

log
µe

µ0
≤ 1

log(1− θ)
log

ε

1.29µ0κ
√

ν

= − 1
log(1− θ)

log
1.29µ0κ

√
ν

ε

≤ (1
θ
− 1

2
)
log

1.29µ0κ
√

ν

ε

= (1.03 + 7.15κ
√

ν) log
1.29µ0κ

√
ν

ε
,

as announced (the third line uses the inequality 1
log(1−θ) ≥ 1

2 − 1
θ , which can be easily derived

using the Taylor series of log x around 1).

2.3 Proving self-concordancy

The previous section has made clear that the self-concordancy property of the barrier function
F is essential to derive a polynomial bound on the number of iterations of the short-step

46 2. Self-concordant functions

method. Moreover, smaller values for parameters κ and ν imply a lower total complexity.
The next question we may ask ourselves is how to find self-concordant barriers (ideally with
low parameters).

2.3.1 Barrier calculus

An impressive result in [NN94] states that every convex set in Rn admits a (K,n)-self-
concordant barrier, where K is a universal constant (independent of n). However, the univer-
sal barrier they provide in their proof is defined as a volume integral over an n-dimensional
convex body, and is therefore difficult to evaluate in practice, even for simple sets in low-
dimensional spaces. Another potential problem with this approach is that evaluating this
barrier (and/or its gradient and Hessian) might take a number of arithmetic operations that
grows exponentially with n, which would lead to an exponential algorithmic complexity for
the short-step method, despite the polynomial iteration bound.

Another approach to find self-concordant function is to combine basic self-concordant
functions using operations that are known to preserve self-concordancy (this approach is called
barrier calculus in [NN94]). We are now going to describe two of these self-concordancy pre-
serving operations, positive scaling and addition, and examine how the associated parameters
are affected in the process.

Let us start with positive scalar multiplication.

Theorem 2.6. Let F be a (κ, ν)-self-concordant barrier for C ⊆ Rn and λ ∈ R++ a positive
scalar. Then (λF) is also a self-concordant barrier for C with parameters (κ√

λ
, λν).

Proof. It is clear that (λF) is also a barrier function (i.e. smoothness, strong convexity and
the barrier property are obviously preserved by scaling). Looking at the restrictions (λF)x,h =
λFx,h, we also have that

(λF)′x,h = λF ′
x,h, (λF)′′x,h = λF ′′

x,h and (λF)′′′x,h = λF ′′′
x,h .

Since F is (κ, ν)-self-concordant, we have (using conditions (2.5b) and (2.6b) from Theo-
rems 2.1 and 2.2)

F ′′′
x,h(0) ≤ 2κF ′′

x,h(0)
3
2 and F ′

x,h(0)2 ≤ νF ′′
x,h(0) for all x ∈ intC and h ∈ Rn .

This is equivalent to

λF ′′′
x,h(0) ≤ 2

κ√
λ

(λF ′′
x,h(0))

3
2 and (λF ′

x,h(0))2 ≤ λνλF ′′
x,h(0) for all x ∈ intC and h ∈ Rn ,

which is precisely stating that (λF) is (κ√
λ
, λν)-self-concordant.

This theorem show that self-concordancy is preserved by positive scalar multiplication,
but that parameters κ and ν are both modified. It is interesting to note that these param-
eters do not occur individually in the iteration bound of Theorem 2.5 but are rather always

2.3 – Proving self-concordancy 47

appearing together in the expression κ
√

ν. This quantity, which we will call the complexity
value of the barrier, is solely responsible for the polynomial iteration bound. Looking at what
happens to it when F is scaled by λ, we find that the scaled complexity value is equal to
κ√
ν

√
λν = κ

√
ν, i.e. that the complexity value is invariant to scaling. This means in fine

that scaling a self-concordant barrier does not influence the algorithmic complexity of the
associated short-step method, a property than could reasonably be expected from the start.

Let us now examine what happens when two self-concordant barriers are added.

Theorem 2.7. Let F be a (κ1, ν1)-self-concordant barrier for C1 ⊆ Rn and G be a (κ2, ν2)-
self-concordant barrier for C2 ⊆ Rn. Then (F + G) is a self-concordant barrier for C1 ∩ C2

(provided this intersection is nonempty) with parameters (max{κ1, κ2}, ν1 + ν2).

Proof. It is straightforward to see that (F + G) is a barrier function for C1 ∩C2. Looking at
the restrictions (F + G)x,h, we also have that

(F + G)′x,h = F ′
x,h + G′

x,h, (F + G)′′x,h = F ′′
x,h + G′′

x,h and (F + G)′′′x,h = F ′′′
x,h + G′′′

x,h .

We can write thus

(F + G)′′′x,h = F ′′′
x,h + G′′′

x,h ≤ 2κ1F
′′
x,h

3
2 + 2κ2G

′′
x,h

3
2

≤ 2max{κ1, κ2}(F ′′
x,h

3
2 + G′′

x,h

3
2)

≤ 2max{κ1, κ2}(F ′′
x,h + G′′

x,h)
3
2 = 2max{κ1, κ2}(F + G)′′x,h

(where we used for the third inequality the easily proven fact x
3
2 +y

3
2 ≤ (x+y)

3
2 for x, y ∈ R++)

and

∣∣(F + G)′x,h

∣∣ =
∣∣F ′

x,h + G′
x,h

∣∣ ≤ ∣∣F ′
x,h

∣∣ +
∣∣G′

x,h

∣∣

≤ √
ν1

√
F ′′

x,h +
√

ν2

√
G′′

x,h

≤ √
ν1 + ν2

√
F ′′

x,h + G′′
x,h =

√
ν1 + ν2

√
(F + G)′′x,h

(where we used for the third inequality the Cauchy-Schwarz inequality applied to vectors
(
√

ν1,
√

ν2) and (
√

F ′′
x,h,

√
G′′

x,h)), which is precisely stating that (F +G) is (max{κ1, κ2}, ν1+

ν2)-self-concordant.

2.3.2 Fixing a parameter

As mentioned above, scaling a barrier function with a positive scalar does not affect its self-
concordancy, i.e. its suitability as a tool for convex optimization, and leaves its complexity
value unchanged. One can thus make the decision to fix one of the two parameters κ and ν
arbitrarily and only work with the corresponding subclass of barrier, without any real loss of
generality. We describe now two choices of this kind that have been made in the literature.

48 2. Self-concordant functions

First choice. Some authors [dJRT95, RT98, Jar89, dRT92] choose to work with the second
parameter ν fixed to one. However, this choice is not made explicitly but results from the
particular structure of the barrier functions that are considered. Indeed, these authors con-
sider convex optimization problems whose feasible sets are given by a functional description
like (2.1), i.e.

inf
x∈Rn

cT x s.t. fi(x) ≤ 0 ∀i ∈ I .

In order to apply the interior-point method methodology, a barrier function is needed and it
is customary to use the logarithmic barrier as described in Note 2.1

F : Rn 7→ R : x 7→ F (x) = −
∑

i∈I

log(−fi(x)) .

The following lemma will prove useful.

Lemma 2.1. Let f : Rn 7→ R be a convex function and define F : Rn 7→ R ∪ {+∞} : x 7→
− log(−f(x)), whose effective domain is the set C = {x ∈ Rn | f(x) < 0}. We have that F
satisfies the second condition of self-concordancy (2.3) with parameter ν = 1.

Proof. Using the equivalent condition (2.6b) of Theorem 2.2, we have to evaluate for x ∈ intC,
h ∈ Rn and t = 0

F ′
x,h(t) = −∇f(x + th)[h]

f(x + th)
and F ′′

x,h(t) =
∇f(x + th)[h]2 −∇2f(x + th)[h, h]f(x + th)

f(x + th)2
,

which implies

F ′
x,h(0)2 =

∇f(x)[h]2

f(x)2
≤ ∇f(x)[h]2 −∇2f(x)[h, h]f(x)

f(x)2
= F ′′

x,h(0)

(where we have used the fact that ∇2f(x)[h, h] ≥ 0 because f is convex and f(x) ≤ 0 because
x belongs to the feasible set C), which implies that F satisfies the second self-concordancy
condition (2.3) with ν = 1.

Since the complete logarithmic barrier is a sum of terms for which this lemma is appli-
cable, we can use Theorem 2.7 to find that it satisfies the same condition with ν = |I| = m,
the number of constraints.

This means that we only have to check the first condition (2.2) involving κ to es-
tablish self-concordancy for the logarithmic barrier. Assuming that each individual term
− log(−fi(x)) can be shown to satisfy it with κ = κi, we have that the whole logarithmic bar-
rier is (maxi∈I{κi}, m)-self-concordant, which leads to a complexity value equal to ‖κ‖∞

√
m,

where we have defined κ = (κ1, κ2, . . . , κm).

Second choice. Another arbitrary choice of self-concordance parameters that one en-
counters frequently in the literature consists in fixing κ = 1 in the first self-concordancy
condition (2.2). This approach has been used increasingly in the recent years (see e.g.

2.3 – Proving self-concordancy 49

[NN94, Ren00, Jar96]), and we propose to give here a justification of its superiority over
the alternative presented above.

Let us consider the same logarithmic barrier, and suppose again that each individual
term Fi : x 7→ − log(−fi(x)) has been shown to satisfy the first self-concordancy condi-
tion (2.2) with κ = κi. Our previous discussion implies thus that Fi is (κi, 1)-self-concordant.
Multiplying now Fi with κ2

i , Theorem 2.6 implies that κ2
i Fi is (1, κ2

i)-self-concordant. The
corresponding complete scaled logarithmic barrier

F̃ : x 7→ −
∑

i∈I

κ2
i log(−fi(x))

is then (1,
∑

i∈I κ2
i)-self-concordant by virtue of Theorem 2.7, which leads finally to a com-

plexity value equal to
√∑

i∈I κ2
i = ‖κ‖2. This quantity is always lower than the complexity

value for the standard logarithmic barrier considered above because of the well-known norm
inequality ‖κ‖2 ≤

√
m ‖κ‖∞, which proves the superiority of this second approach (the only

case where they are equivalent is when all parameters κi’s are equal).

Note 2.4. The fundamental reason why the first approach is less efficient is that it makes us
combine barriers with different κ parameters, with the consequence that only the largest value
maxi∈I{κi} appears in the final complexity value (the other smaller values become completely
irrelevant and do not influence the final complexity at all). The second approach avoids this
situation by ensuring that κ is always equal to one, which means that κ’s are equal for each
combination and that the final complexity is well depending on the parameters of all the
terms of the logarithmic barrier.

2.3.3 Two useful lemmas

We have seen so far how to construct self-concordant barrier by combining simpler functionals
but still have no tool to prove self-concordancy of these basic barriers. The purpose of this
section is to present two lemmas that can help us in that regard.

The first one deals with the second condition of self-concordancy with logarithmically
homogeneous barriers [NN94].

Lemma 2.2. Let us suppose F is a logarithmically homogeneous function with parameter α,
i.e.

F (tx) = F (x)− α log t . (2.12)

We have that F satisfies the second condition of self-concordancy (2.3) with parameter ν = α.

Proof. This fact admits the following straightforward proof. We start by differentiating both
sides of (2.12) with respect to t, to find

∇F (tx)[x] = −α

t
.

Fixing t = 1 gives
∇F (x)[x] = ∇F (x)T x = −α . (2.13)

50 2. Self-concordant functions

Differentiating this last equality again, this time with respect to x, leads to

∇F (x) +∇2F (x)x = 0 ⇔ ∇F (x) = −∇2F (x)x . (2.14)

Looking now at the left-hand side in (2.3) we have

∇F (x)T (∇2F (x))−1∇F (x) = −∇F (x)T (∇2F (x))−1∇2F (x)x = −∇F (x)T x = α

(using successively (2.14) and (2.13)), which implies immediately that F satisfies the second
condition of self-concordancy (2.3) with ν = α. It is worth to point out that this inequality
is in this case always satisfied with equality.

The second lemma we are going to present deals with the first self-concordancy condi-
tion. Let us first introduce two auxiliary functions r1 and r2, whose graphs are depicted in
Figure 2.1:

r1 : R 7→ R : γ 7→ max
{
1,

γ√
3− 2/γ

}
and r2 : R 7→ R : γ 7→ max

{
1,

γ + 1 + 1/γ√
3 + 4/γ + 2/γ2

}
.

Both of these functions are equal to 1 for γ ≤ 1 and strictly increasing for γ ≥ 1, with the
asymptotic approximations r1(γ) ≈ γ√

3
and r2(γ) ≈ γ+1√

3
when γ tends to +∞.

0 0.5 1 1.5 2 2.5 3

0.8

1

1.2

1.4

1.6

1.8

2

γ

r
1
(γ)

0 0.5 1 1.5 2 2.5 3

0.8

1

1.2

1.4

1.6

1.8

2

γ

r
2
(γ)

Figure 2.1: Graphs of functions r1 and r2

Lemma 2.3. Let us suppose F is a convex function with effective domain C ⊆ Rn
+ and that

there exists a constant γ such that

∇3F (x)[h, h, h] ≤ 3γ∇2F (x)[h, h]

√√√√
n∑

i=1

h2
i

x2
i

for all x ∈ intC and h ∈ Rn . (2.15)

2.3 – Proving self-concordancy 51

We have that

F1 : C 7→ R : x 7→ F (x)−
n∑

i=1

log xi

satisfies the first condition of self-concordancy (2.2) with parameter κ1 = r1(γ) on its domain
C and

F2 : C × R 7→ R : (x, u) 7→ − log
(
u− F (x)

)−
n∑

i=1

log xi

satisfies the first condition of self-concordancy (2.2) with parameter κ2 = r2(γ) on its domain
epiF = {(x, u) | F (x) ≤ u}.
Note 2.5. A similar lemma is proved in [dJRT95], with parameters κ1 and κ2 both equal to
1 + γ. The second result is improved in [Jar96], with κ2 equal to max{1, γ}, as a special case
of a more general compatibility theory developed in [NN94]. However, it is easy to see that
our result is better. Indeed, our parameters are strictly lower in all cases for F1 and as soon
as γ > 1 for r2, with an asymptotical ratio of

√
3 when γ tends to +∞.

Proof. We follow the lines of [dJRT95] and start with F1: computing its second and third
differentials gives

∇2F1(x)[h, h] = ∇2F (x)[h, h] +
n∑

i=1

h2
i

x2
i

and ∇3F1(x)[h, h, h] = ∇3F (x)[h, h, h]− 2
n∑

i=1

h3
i

x3
i

.

Introducing two auxiliary variables a ≥ 0 and b ≥ 0 such that

a2 = ∇2F [h, h] and b2 =
n∑

i=1

h2
i

x2
i

(convexity of F guarantees that a is real), we can rewrite inequality (2.15) as

∇3F (x)[h, h, h] ≤ 3γa2b .

Combining it with the fact that
∣∣∣∣∣∣

(
n∑

i=1

h3
i

x3
i

) 1
3

∣∣∣∣∣∣
≤

(
n∑

i=1

|hi|3
|xi|3

) 1
3

≤
(

n∑

i=1

h2
i

x2
i

) 1
2

= b , (2.16)

where the second inequality comes from the well-known relation ‖·‖3 ≤ ‖·‖2 applied to vector
(h1

x1
, . . . , hn

xn
), we find that

∇3F1(x)[h, h, h]

2(∇2F1(x)[h, h])
3
2

≤ 3γa2b + 2b3

2(a2 + b2)
3
2

.

According to (2.2), finding the best parameter κ for F1 amounts to maximize this last quantity
depending on a and b. Since a ≥ 0 and b ≥ 0 we can write a = r cos θ and b = r sin θ with
r ≥ 0 and 0 ≤ θ ≤ π

2 , which gives

3γa2b + 2b3

2(a2 + b2)
3
2

=
3γ

2
cos2 θ sin θ + sin3 θ = h(θ) .

52 2. Self-concordant functions

The derivative of h is

h′(θ) =
3γ

2
cos3 θ − 3γ sin2 θ cos θ + 3 cos θ sin2 θ = 3 cos θ

(γ

2
cos2 θ + (1− γ) sin2 θ

)
.

When γ ≤ 1, this derivative is clearly always nonnegative, which implies that the maximum
is attained for the largest value of θ, which gives hmax = h(π

2) = 1 = r1(γ). When γ > 1, we
easily see that h has a maximum when γ

2 cos2 θ + (1 − γ) sin2 θ = 0. This condition is easily
seen to imply sin2 θ = γ

3γ−2 , and hmax becomes

hmax = 3
γ

2
cos2 θ sin θ + sin3 θ =

(
3(γ − 1) + 1

)
sin3 θ

= (3γ − 2)
(

γ

3γ − 2

) 3
2

=
γ√

3− 2/γ
= r1(γ) .

A similar but slightly more technical proof holds for F2. Letting x̃ = (x, u), h̃ = (h, v)
and G(x̃) = F (x) − u, we have that F2(x̃) = − log(−G(x̃)) −∑n

i=1 log xi. G is easily shown
to be convex and negative on epiF , the domain of F2. Since F and G only differ by a linear
term, we also have that ∇2F (x)[h, h] = ∇2G(x̃)[h̃, h̃] and ∇3F (x)[h, h, h] = ∇3G(x̃)[h̃, h̃, h̃].
Looking now at the second differential of F2 we find

∇2F2(x̃)[h̃, h̃] =
∇G(x̃)[h]2

G(x̃)2
− ∇2G(x̃)[h̃, h̃]

G(x̃)
+

n∑

i=1

h2
i

x2
i

.

Let us define for convenience a ∈ R+, b ∈ R+ and c ∈ R with

a2 = −∇
2G(x̃)[h̃, h̃]

G(x̃)
, b2 =

n∑

i=1

h2
i

x2
i

and c = −∇G(x̃)[h]
G(x̃)

(convexity of G and the fact that it is negative on the domain of F2 guarantee that a is real),
which implies ∇2F2(x)[h̃, h̃] = a2 + b2 + c2. We can now evaluate the third differential

∇3F2(x̃)[h̃, h̃, h̃] = −∇
3G(x̃)[h̃, h̃, h̃]

G(x̃)
+ 3

∇2G(x̃)[h̃, h̃]∇G(x̃)[h̃]
G(x̃)2

− 2
∇G(x̃)[h̃]3

G(x̃)3
− 2

n∑

i=1

h3
i

x3
i

= −∇
3G(x̃)[h̃, h̃, h̃]

G(x̃)
+ 3a2c + 2c3 − 2

n∑

i=1

h3
i

x3
i

≤ −∇
3G(x̃)[h̃, h̃, h̃]
∇2G(x̃)[h̃, h̃]

∇2G(x̃)[h̃, h̃]
G(x̃)

+ 3a2c + 2c3 + 2b3 using again (2.16)

= −∇
3F (x)[h, h, h]
∇2F (x)[h, h]

∇2G(x̃)[h̃, h̃]
G(x̃)

+ 3a2c + 2c3 + 2b3

≤ 3γa2b + 3a2c + 2c3 + 2b3 using condition (2.15) .

According to (2.2), finding the best parameter κ for F2 amounts to maximize the following
ratio

∇3F2(x̃)

2(∇3F2(x̃))
3
2

≤ 3γa2b + 3a2c + 2c3 + 2b3

2(a2 + b2 + c2)
3
2

=
3γ
2 a2b + 3

2a2c + c3 + b3

(a2 + b2 + c2)
3
2

.

2.3 – Proving self-concordancy 53

Since this last quantity is homogeneous of degree 0 with respect to variables a, b and c, we
can assume that a2 + b2 + c2 = 1, which gives

3γ

2
a2b +

3
2
a2c + c3 + b3 =

3
2
a2(γb + c) + c3 + b3 =

3
2
(1− b2 − c2)(γb + c) + b3 + c3 .

Calling this last quantity m(b, c), we can now compute its partial derivatives with respect to
b and c and find

∂m

∂b
= −3

2
(
(3γ − 2)b2 + γc2 + 2bc− γ

)
and

∂m

∂c
= −3

2
(
b2 + c2 + 2bcγ − 1

)
.

We have now to equate those two quantities to zero and solve the resulting system. We can
for example write ∂m

∂b − γ ∂m
∂c = 0, which gives (g − 1)b(b − c(γ + 1)) = 0, and explore the

resulting three cases. The solutions we find are

(b, c) = (0,±1) and (
γ + 1√

3γ2 + 4γ + 2
,

1√
3γ2 + 4γ + 2

)

with an additional special case b + c = 1 when γ = 1. Plugging these values into m(b, c), one
finds after some computations the following potential maximum values

±1 and
γ2 + γ + 1√
3γ2 + 4γ + 2

=
γ + 1 + 1/γ√

3 + +4/γ + 2/γ2

(and 1 in the special case γ = 1). One concludes that the maximum we seek is equal to r2(γ),
as announced.

While the lemma we have just proved is useful to tackle the first condition of self-
concordancy (2.2), it does not say anything about the second condition (2.3). The following
Corollary about the second barrier F2 might prove useful in this respect.

Corollary 2.1. Let F satisfy the assumptions of Lemma 2.3. Then the second barrier

F2 : C × R 7→ R : (x, u) 7→ − log
(
u− F (x)

)−
n∑

i=1

log xi

is (r2(γ), n + 1)-self-concordant.

Proof. Since G(x, u) = F (x) − u is convex, − log(u − F (x)) = − log(−G(x, u)) is known
to satisfy the second self-concordancy condition (2.3) with ν = 1 by virtue of Lemma 2.1.
Moreover, it is straightforward to check that each term − log xi also satisfies that second
condition with parameter ν = 1. Using the addition Theorem 2.7 and combining with the
result of Lemma 2.3, we can conclude that F2 is (r2(γ), n + 1)-self-concordant.

Note 2.6. We would like to point out that no similar result can hold for the first function
F1, since we know nothing about the status of the second self-concordancy condition (2.3)
on its first term F (x). Indeed, taking the case of F : R+ 7→ R : x 7→ 1

x , we can check that
∇2F (x)[h, h] = 2h2

x3 and ∇3F (x)[h, h, h] = −6h3

x4 , which implies that condition (2.15) holds
with γ = 1 since

−6
h3

x4
≤ 3× 2

h2

x3

|h|
x
⇔ −h3 ≤ h2 |h|

54 2. Self-concordant functions

is satisfied. On the other hand, the second self-concordancy condition (2.3) cannot hold for
F1 : R+ 7→ R : x 7→ 1

x − log x, since

∇F (x)T (∇2F (x))−1∇F (x) =
F ′

1(x)2

F ′′
1 (x)

=
(x+1)2

x4

(2+x)
x3

=
(x + 1)2

x(x + 2)

does not admit an upper bound (it tends to +∞ when x → 0).

To conclude this section, we mention that since condition (2.15) is invariant with respect
to positive scaling of F , the results from Lemma 2.3 hold for barriers Fλ,1(x) = λF (x) −∑n

i=1 log xi and Fλ,2(x, u) = − log(u− λF (x))−∑n
i=1 log xi where λ is a positive constant.

2.4 Application to structured convex problems

In this section we rely on the work in [dJRT95], where several classes of structured convex
optimization problems are shown to admit a self-concordant logarithmic barrier. However,
Lemma 2.3 will allow us to improve the self-concordancy parameters and lower the resulting
complexity values.

2.4.1 Extended entropy optimization

Let c ∈ Rn, b ∈ Rm and A ∈ Rm×n. We consider the following problem

inf
x∈Rn

cT x +
n∑

i=1

gi(xi) s.t. Ax = b and x ≥ 0 (EEO)

where scalar functions gi : R+ 7→ R : z 7→ gi(z) are required to satisfy

∣∣g′′′i (z)
∣∣ ≤ κi

g′′i (z)
z

∀z > 0 (2.17)

(which by the way implies their convexity). This class of problems is studied in [HPY92,
PY93]. Classical entropy optimization results as a special case when gi(x) = x log x (in that
case, it is straightforward to see that condition (2.17) holds with κi = 1).

Let us use Lemma 2.3 with Fi : xi 7→ gi(xi) and γ = κi
3 . Indeed, checking condition (2.15)

amounts to write

h3g′′′i (x) ≤ 3
κi

3
h2g′′i (x)

|h|
x
⇔ h

|h|g
′′′
i (x) ≤ κi

g′′i (x)
x

,

which is guaranteed by condition (2.17). Using the second barrier and Corollary 2.1, we find
that

Fi : (xi, ui) 7→ − log
(
ui − gi(xi)

)− log xi

2.4 – Application to structured convex problems 55

is (r2(κi
3), 2)-self-concordant2. However, in order to use this barrier to solve problem (EEO),

we need to reformulate it as

inf
x∈Rn, u∈Rn

cT x +
n∑

i=1

ui s.t. Ax = b, gi(xi) ≤ ui ∀1 ≤ i ≤ n and x ≥ 0 ,

which is clearly equivalent. We are now able to write the complete logarithmic barrier

F : (x, u) 7→ −
n∑

i=1

log
(
ui − gi(xi)

)−
n∑

i=1

log xi ,

which is (r2(
max{κi}

3), 2n)-self-concordant by virtue of Theorem 2.7. In light of Note 2.4, we
can even do better with a different scaling of each term, to get

F̃ : (x, u) 7→ −
n∑

i=1

r2(
κi

3
)2 log

(
ui − gi(xi)

)−
n∑

i=1

r2(
κi

3
)2 log xi

which is then (1,
√

2
∑n

i=1 r2(κi
3)2)-self-concordant. In the case of classical entropy optimiza-

tion, these parameters become (1,
√

2n) , since r2(1
3) = 1.

2.4.2 Dual geometric optimization

Let {Ik}k=1...r be a partition of {1, 2, . . . , n}, c ∈ Rn, b ∈ Rm and A ∈ Rm×n. The dual
geometric optimization problem is (see Chapter 5 for a complete description)

inf
x∈Rn

cT x +
r∑

k=1

∑

i∈Ik

xi log(
xi∑

i∈Ik
xi

)

s.t. Ax = b and x ≥ 0 (GD)

It is shown in [dJRT95] that condition (2.15) holds for

Fk : (xi)i∈Ik
7→

∑

i∈Ik

xi log(
xi∑

i∈Ik
xi

)

with γ = 1, so that the corresponding second barrier in Lemma 2.15 is (1, |Ik| + 1)-self-
concordant. Using the same trick as for problem (EEO), we introduce additional variables uk

to find that the following barrier

F : (x, u) 7→
r∑

k=1

− log
(
uk −

∑

i∈Ik

xi log(
xi∑

i∈Ik
xi

)
)
−

n∑

i=1

log xi

is a (1, n + r)-self-concordant barrier for a suitable reformulation of problem (GD).

2This corrects the statement in [dJRT95] where it is mentioned that gi(xi)− log xi, i.e. the first barrier in
Lemma 2.3, is self-concordant. As it is made clear in Note 2.6, this cannot be true in general

56 2. Self-concordant functions

2.4.3 lp-norm optimization

Let {Ik}k=1...r be a partition of {1, 2, . . . , n}, b ∈ Rm, ai ∈ Rm, fk ∈ Rm, c ∈ Rn, d ∈ Rr and
p ∈ Rn such that pi ≥ 1. The primal lp-norm optimization problem is (see Chapter 4 for a
complete description)

sup
y∈Rm

bT y s.t. fk(y) ≤ 0 for all k = 1, . . . , r , (Plp)

where functions fk : Rm 7→ R are defined according to

fk : y 7→
∑

i∈Ik

1
pi

∣∣aT
i y − ci

∣∣pi + fT
k y − dk .

This problem can be reformulated as

sup
y∈Rm, s∈Rn, t∈Rn

bT y s.t.

∣∣aT
i y − ci

∣∣ ≤ si ∀i = 1, . . . , n

si ≤ t
1/pi

i ∀i = 1, . . . , n∑
i∈Ik

ti
pi

≤ dk − fT
k y ∀k = 1, . . . , r

where each of the m constraints involving an absolute value is indeed equivalent to a pair of
linear constraints aT

i y − ci ≤ si and ci − aT
i y ≤ si. Once again, a self-concordant function

can be found for the difficult part of the constraints, i.e. the nonlinear inequality si ≤ t
1/pi

i .
Indeed, it is straightforward to check that fi : ti 7→ −t

1/pi

i satisfies condition (2.15) with
γ = 2pi−1

3pi
< 1, which implies in the same fashion as above that

− log
(
t
1/pi

i − si

)− log ti

is (1, 2)-self-concordant. Combining with the logarithmic barrier for the linear constraints,
we have that

−
m∑

i=1

log(si − aT
i y + ci)−

m∑

i=1

log(si + aT
i y − ci)−

m∑

i=1

log
(
t
1/pi

i − si

)
. . .

. . .−
m∑

i=1

log ti −
r∑

k=1

log
(
dk − fT

k y −
∑

i∈Ik

ti
pi

)

is (1, 4m + r)-self-concordant for our reformulation of problem (Plp) (since each linear con-
straint is (1, 1)-self-concordant).

Let us mention that another reformulation is presented in [dJRT95], where Lemma 2.3
is applicable to the nonlinear constraint with parameter γ = |pi−2|

3 , with the disadvantage of
having a parameter that depends on pi (although r2(γ) will stay at its lowest value as long
as pi ≤ 5).

We conclude this section by mentioning that very similar results hold for the dual lp-norm
optimization problem, and we refer the reader to [dJRT95] for the details3.

3However, we would like to point out that the nonlinear function involved in these developments is wrongly

stated to satisfy condition (2.15) with γ =
√

2(qi+1)
3qi

, while a correct value is

√
5q2

i−2qi+2

3qi
.

2.5 – Concluding remarks 57

2.5 Concluding remarks

We gave in this chapter an overview of the theory of self-concordant functions. We would
like to point out that this very powerful framework relies on two different conditions (2.2)
and (2.3) and the two corresponding parameters κ and ν, each with its own purpose (see the
discussion in Note 2.3). However, the important quantity is the resulting complexity value
κ
√

ν, which is of the same order as the number of iterations that is needed to reduce the
barrier parameter by a constant factor by the short-step interior-point algorithm.

It is possible to scale self-concordant barriers such that one of the parameters is arbitrarily
fixed without any real loss of generality. We have shown that this is best done fixing parameter
κ, considering the way the complexity value is affected when adding several self-concordant
barriers. However, it is in our opinion better to keep two parameters all the time, in order to
simplify the presentation (for example, Lemma 2.3 intrinsically deals with the κ parameter
and would need a rather awkward reformulation to be written for parameter ν with κ fixed
to 1).

Several important results help us prove self-concordancy of barrier functions: Lemmas 2.1
and 2.2 deal with the second self-concordancy condition (2.3), while our improved Lemma 2.3
pertains to the first self-concordancy condition (2.2). They are indeed responsible for most
of the analysis carried out in Section 2.4, which is dedicated to several classes of struc-
tured convex optimization problems. Namely, it is proved that nearly all the nonlinear (i.e.
corresponding to the nonlinear constraints) terms in the associated logarithmic barriers are
self-concordant with κ = 1 (the exception being extended entropy optimization, which en-
compasses a very broad class of problems). We would also like to mention that since all
the barriers that are presented are polynomially computable, as well as their gradient and
Hessian, the short-step method applied to any of these problems would need to perform a
polynomial number of arithmetic operations to provide a solution with a given accuracy.

To conclude, we would like to speculate on the possibility of replacing the two self-
concordancy conditions by a single inequality. Indeed, since the complexity value κ

√
ν is the

only quantity that really matters in the final complexity result, one could imagine to consider
the following inequality

F ′′′
x,h(0)F ′

x,h(0)
F ′′

x,h(0)2
≤ 2Γ for all x ∈ intC and h ∈ Rn , (2.18)

which is satisfied with Γ = κ
√

ν for (κ, ν)-self-concordant barriers (to see that, simply multiply
condition (2.5b) by the square root of condition (2.6b)). We point out the following two
intriguing facts and leave their investigation for further research:

¦ Condition (2.18) appears to be central in the recent theory of self-regular functions
[PRT00], an attempt at generalizing self-concordant functions.

¦ Following the same principles as for (2.5d) and (2.6d), condition (2.18) can be reformu-
lated as (

−F ′
x,h(t)

F ′′
x,h(t)

)′
≤ 2Γ− 1 ,

58 2. Self-concordant functions

where the quantity on the left-hand side is the derivative of the Newton step applied to
the restriction Fx,h.

Part II

CONIC DUALITY

59

CHAPTER 3

Conic optimization

In this section, we describe conic optimization and the associated duality theory.
Conic optimization deals with a class of problems that is essentially equivalent
to the class of convex problems, i.e. minimization of a convex function over a
convex set. However, formulating a convex problem in a conic way has the
advantage of providing a very symmetric form for the dual problem, which often
gives a new insight about its structure, especially dealing with duality.

3.1 Conic problems

The results we present in this Chapter are well-known and we will skip most of the proofs.
They can be found for example in the Ph.D. thesis of Sturm [Stu97, Stu99a] with similar nota-
tions, more classical references presenting equivalent results are [SW70] and [ET76, Chapter
III, Section 5]).

The basic ingredient of conic optimization is a convex cone.

Definition 3.1. A set C is a cone if and only if it is closed under nonnegative scalar multi-
plication, i.e.

x ∈ C ⇒ λx ∈ C for all λ ∈ R+ .

Recall that a set is convex if and only if it contains the whole segment joining any two
of its points. Establishing convexity is easier for cones than for general sets, because of the
following elementary theorem [Roc70a, Theorem 2.6]:

61

62 3. Conic optimization

Theorem 3.1. A cone C is convex if and only if it is closed under addition, i.e.

x ∈ C and y ∈ C ⇒ x + y ∈ C .

In order to avoid some technical nuisances, the convex cones we are going to consider
will be required to be closed, pointed and solid, according to the following definitions. A cone
is said to be pointed if it doesn’t contain any straight line passing through the origin, which
can be expressed as

Definition 3.2. A cone C is pointed if and only if C ∩−C = {0}, where −C stands for the set
{x | −x ∈ C}

Furthermore, a cone is said to be solid if it has a nonempty interior, i.e. it is full-
dimensional.

Definition 3.3. A cone C is solid if and only if int C 6= ∅ (where intS denotes the interior of
set S).

For example, the positive orthant is a pointed and solid convex cone. A linear subspace
is a convex cone that is neither pointed, nor solid (except Rn itself).

We are now in position to define a conic optimization problem: let C ⊆ Rn a pointed,
solid, closed convex cone. The (primal) conic optimization problem is

inf
x∈Rn

cT x s.t. Ax = b and x ∈ C , (CP)

where x ∈ Rn is the column vector we are optimizing and the problem data is given by cone
C, a m × n matrix A and two column vectors b and c belonging respectively to Rm and Rn.
This problem can be viewed as the minimization of a linear function over the intersection
of a convex cone and an affine subspace. As an illustration, let us mention that a linear
optimization problem in the standard form (1.2) is formulated by choosing cone C to be the
positive orthant Rn

+.

At this stage, we would like to emphasize the fact that although our cone C is closed, it
may happen that the infimum in (CP) is not attained (some examples of this situation will
be given in Subsection 3.3).

It is well-known that the class of conic problems is equivalent to the class of convex
problems, see e.g. [NN94]. However, the usual Lagrangean dual of a conic problem can be
expressed very nicely in a conic form, using the notion of dual cone.

Definition 3.4. The dual of a cone C ⊆ Rn is defined by

C∗ =
{
x∗ ∈ Rn | xT x∗ ≥ 0 for all x ∈ C} .

For example, the dual of Rn
+ is Rn

+ itself. We say it is self-dual. Another example is the
dual of the linear subspace L, which is L∗ = L⊥, the linear subspace orthogonal to L (note
that in that case the inequality of Definition 3.4 is always satisfied with equality).

The following theorem stipulates that the dual of a closed convex cone is always a closed
convex cone [Roc70a, Theorem 14.1].

3.1 – Conic problems 63

Theorem 3.2. If C is a closed convex cone, its dual C∗ is another closed convex cone. More-
over, the dual (C∗)∗ of C∗ is equal to C.

Closedness is essential for (C∗)∗ = C to hold (without the closedness assumption on C,
we only have (C∗)∗ = cl C where clS denotes the closure of set S [Roc70a, Theorem 14.1]).
The additional notions of solidness and pointedness also behave well when taking the dual
of a convex cone: indeed, these two properties are dual to each other [Stu97, Corollary 2.1],
which allows us to state the following theorem:

Theorem 3.3. If C is a solid, pointed, closed convex cone, its dual C∗ is another solid,
pointed, closed convex cone.

The dual of our primal conic problem (CP) is defined by

sup
y∈Rm,s∈Rn

bT y s.t. AT y + s = c and s ∈ C∗ , (CD)

where y ∈ Rm and s ∈ Rn are the column vectors we are optimizing, the other quantities A,
b and c being the same as in (CP). It is immediate to notice that this dual problem has the
same kind of structure as the primal problem, i.e. it also involves optimizing a linear function
over the intersection of a convex cone and an affine subspace. The only differences are the
direction of the optimization (maximization instead of minimization) and the way the affine
subspace is described (it is a translation of the range space of AT , while primal involved a
translation of the null space of A). It is also easy to show that the dual of this dual problem
is equivalent to the primal problem, using the fact that (C∗)∗ = C.

One of the reasons the conic formulation (CP) is interesting is the fact that we may
view the constraint x ∈ C as a generalization of the traditional nonnegativity constraint
x ≥ 0 of linear optimization. Indeed, let us define the relation º on Rn × Rn according
x º y ⇔ x − y ∈ C. This relation is reflexive, since x º x ⇔ 0 ∈ C is always true. It is also
transitive, since we have

x º y and y º z ⇔ x− y ∈ C and y − z ∈ C ⇒ (x− y) + (y − z) = x− z ∈ C ⇔ x º z

(where we used the fact that a convex cone is closed under addition, see Theorem 3.1). Finally,
using the fact that C is pointed, we can write

x º y and y º x ⇔ x− y ∈ C and − (x− y) ∈ C ⇒ x− y = 0 ⇒ x = y ,

which shows that relation º is antisymmetric and is thus a partial order on Rn×Rn. Defining
º∗ to be the relation induced by the dual cone C∗, we can rewrite our primal-dual pair (CP)–
(CD) as

inf
x∈Rn

cT x s.t. Ax = b and x º 0

sup
y∈Rm

bT y s.t. c º∗ AT y ,

which looks very much like a generalization of the primal-dual pair of linear optimization
problems (LP)–(LD’).

For example, one of the most versatile cones used in convex optimization is the positive
semidefinite cone Sn

+.

64 3. Conic optimization

Definition 3.5. The positive semidefinite cone Sn
+ is a subset of Sn, the set of symmetric

n× n matrices. It consists of all positive semidefinite matrices, i.e.

M ∈ Sn
+ ⇔ zT Mz ≥ 0 ∀z ∈ Rn ⇔ λ(M) ≥ 0

where λ(M) denotes the vector of eigenvalues of M .

It is straightforward to check that Sn
+ is a closed, solid, pointed convex cone. A conic

optimization problem of the form (CP) or (CD) that uses a cone of the type Sn
+ is called

a semidefinite problem1. This cone provides us with the ability to model many more types
of constraints than a linear problem (see e.g. [VB96] or Appendix A for an application to
classification).

3.2 Duality theory

The two conic problems of this primal-dual pair are strongly related to each other, as demon-
strated by the duality theorems stated in this section. Conic optimization enjoys the same
kind of rich duality theory as linear optimization, albeit with some complications regarding
the strong duality property.

Theorem 3.4 (Weak duality). Let x a feasible (i.e. satisfying the constraints) solution for
(CP), and (y, s) a feasible solution for (CD). We have

bT y ≤ cT x ,

equality occurring if and only if the following orthogonality condition is satisfied:

xT s = 0 .

This theorem shows that any primal (resp. dual) feasible solution provides an upper
(resp. lower) bound for the dual (resp. primal) problem. Its proof is quite easy to obtain:
elementary manipulations give

cT x− bT y = xT c− (Ax)T y = xT (AT y + s)− xT AT y = xT s ,

this last inner product being always nonnegative because of x ∈ C, s ∈ C∗ and Definition 3.4
of the dual cone C∗. The nonnegative quantity xT s = cT x− bT y is called the duality gap.

Obviously, a pair (x, y) with a zero duality gap must be optimal. It is well known that
the converse is true in the case of linear optimization, i.e. that all primal-dual pairs of optimal

1The fact that our feasible points are in this case matrices instead of vectors calls for some explanation.
Since our convex cones are supposed to belong to a real vector space, we have to consider that Sn, the space of
symmetric matrices, is isomorphous to Rn(n+1)/2. In that setting, an expression such as the objective function
cT x, where c and x belong to Rn(n+1)/2, is to be understood as the inner product of the corresponding
symmetric matrices C and X in the space Sn, which is defined by 〈C, X〉 = trace CX. Moreover, A can be
seen in this case as an application (more precisely a tensor) that maps Sn to Rm, while AT is the adjoint of A
which maps Rm to Sn.

3.2 – Duality theory 65

solutions for a linear optimization problem have a zero duality gap (see Section 1.2.1), but
this is not in general the case for conic optimization.

Denoting by p∗ and d∗ the optimum objective values of problems (CP) and (CD), the
previous theorem implies that p∗ − d∗ ≥ 0, a nonnegative quantity which will be called the
optimal duality gap. Under certain circumstances, it can be proved to be equal to zero, which
shows that the optimum values of problems (CP) and (CD) are equal. Before describing
the conditions guaranteeing such a situation, called strong duality, we need to introduce the
notion of strictly feasible point.

Definition 3.6. A point x (resp. (y, s)) is said to be strictly feasible for the primal (resp.
dual) problem if and only if it is feasible and belongs to the interior of the cone C (resp. C∗),
i.e.

Ax = b and x ∈ int C (resp. AT y + s = c and s ∈ int C∗) .

Strictly feasible points, sometimes called Slater points, are also said to satisfy the interior-
point or Slater condition. Moreover, we will say that the primal (resp. dual) problem is
unbounded if p∗ = −∞ (resp. d∗ = +∞), that it is infeasible if there is no feasible solution,
i.e. when p∗ = +∞ (resp. d∗ = −∞), and that it is solvable or attained if the optimum
objective value p∗ (resp. d∗) is achieved by at least one feasible primal (resp. dual) solution.

Theorem 3.5 (Strong duality). If the dual problem (CD) admits a strictly feasible solution,
we have either

¦ an infeasible primal problem (CP) if the dual problem (CD) is unbounded, i.e. p∗ =
d∗ = +∞

¦ a feasible primal problem (CP) if the dual problem (CD) is bounded. Moreover, in this
case, the primal optimum is finite and attained with a zero duality gap, i.e. there is at
least an optimal feasible solution x∗ such that cT x∗ = p∗ = d∗.

The first case in this theorem (see e.g. [Stu97, Theorem 2.7] for a proof) is a simple
consequence of Theorem 3.4, which is also valid in the absence of a Slater point for the dual,
as opposed to the second case which relies on the existence of such a point. It is also worth
to mention that boundedness of the dual problem (CD), defining the second case, is implied
by the existence of a feasible primal solution, because of the weak duality theorem (however,
the converse implication is not true in general, since a bounded dual problem can admit an
infeasible primal problem ; an example of this situation is provided in Subsection 5.3.4).

This theorem is important, because it provides us with way to identify when both the
primal and the dual problems have the same optimal value, and when this optimal value is
attained by one of the problems. Obviously, this result can be dualized, meaning that the
existence of a strictly feasible primal solution implies a zero duality gap and dual attainment.
The combination of these two theorems leads to the following well-known corollary:

Corollary 3.1. If both the primal and the dual problems admit a strictly feasible point,
we have a zero duality gap and attainment for both problems, i.e. the same finite optimum
objective value is attained for both problems.

66 3. Conic optimization

When the dual problem has no strictly feasible point, nothing can be said about the
duality gap (which can happen to be strictly positive) and about attainment of the primal
optimum objective value. However, even in this situation, we can prove an alternate version
of the strong duality theorem involving the notion of primal problem subvalue. The idea
behind this notion is to allow a small constraint violation in the infimum defining the primal
problem (CP).

Definition 3.7. The subvalue of primal problem (CP) is given by

p− = lim
ε→0+

[
inf
x

cT x s.t. ‖Ax− b‖ < ε and x ∈ C
]

(a similar definition is holding for the dual subvalue d−).

It is readily seen that this limit always exists (possibly being +∞), because the feasible
region of the infimum shrinks as ε tends to zero, which implies that its optimum value is a
nonincreasing function of ε. Moreover, the inequality p− ≤ p∗ holds, because all the feasible
regions of the infima defining p− as ε tends to zero are larger than the actual feasible region
of problem (CP).

The case p− = +∞, which implies that primal problem (CP) is infeasible (since we have
then p∗ ≥ p− = +∞), is called primal strong infeasibility, and essentially means that the
affine subspace defined by the linear constraints Ax = b is strongly separated from cone C.
We are now in position to state the following alternate strong duality theorem:

Theorem 3.6 (Strong duality, alternate version). We have either

¦ p− = +∞ and d∗ = −∞ when primal problem (CP) is strongly infeasible and dual
problem (CD) is infeasible.

¦ p− = d∗ in all other cases.

This theorem (see e.g. [Stu97, Theorem 2.6] for a proof) states that there is no duality
gap between p− and d∗, except in the rather exceptional case of primal strong infeasibility
and dual infeasibility. Note that the second case covers situations where the primal problem
is infeasible but not strongly infeasible (i.e. p− < p∗ = +∞).

To conclude this section, we would like to mention the fact that all the properties and the-
orems described in this section can be easily extended to the case of several conic constraints
involving disjoint sets of variables.
Note 3.1. Namely, having to satisfy the constraints xi ∈ Ci for all i ∈ {1, 2, . . . , k}, where
Ci ⊆ Rni , we will simply consider the Cartesian product of these cones C = C1×C2×· · ·×Ck ⊆
R
Pk

i=1 ni and express all these constraints simultaneously as x ∈ C with x = (x1, x2, . . . , xk).
The dual cone of C will be given by

C∗ = (C1)∗ × (C2)∗ × · · · × (Ck)∗ ⊆ R
Pk

i=1 ni ,

as implied by the following theorem:

Theorem 3.7. Let C1 and C2 two closed convex cones, and C = C1 × C2 their Cartesian
product. Cone C is also a closed convex cone, and its dual C∗ is given by

C∗ = (C1)∗ × (C2)∗ .

3.3 – Classification of conic optimization problems 67

3.3 Classification of conic optimization problems

In this last section, we describe all the possible types of conic programs with respect to
feasibility, attainability of the optimum and optimal duality gap, and provide corresponding
examples.

Given our standard primal conic program (CP), we define

F+ = {x ∈ Rn | Ax = b and x ∈ C}
to be its feasible set and δ = dist(C, L) the minimum distance between cone C and the affine
subspace L = {x | Ax = b} defined by the linear constraints. We also call F++ the set of
strictly feasible solutions of (CP), i.e.

F++ = {x ∈ Rn | Ax = b and x ∈ int C} .

3.3.1 Feasibility

First of all, the distinction between feasible and infeasible conic problems is not as clear-cut
as for linear optimization. We have the following cases2

¦ A conic program is infeasible. This means the feasible set F+ = ∅, and that p∗ = +∞.
But we have to distinguish two subcases

– δ = 0, which means an infinitesimal perturbation of the problem data may trans-
form the program into a feasible one. We call the program weakly infeasible(‡).
This corresponds to the case of a finite subvalue, i.e. p− < p∗ = +∞.

– δ > 0, which corresponds to the usual infeasibility as for linear optimization.
We call the program strongly infeasible, which corresponds to an infinite subvalue
p− = p∗ = +∞.

¦ A conic program is feasible, which means F+ 6= ∅ and p∗ < +∞ (and thus δ = 0). We
also distinguish two subcases

– F++ = ∅, which implies that all feasible points belong to the boundary of the
feasible set F+ (this corresponds indeed to the case where the affine subspace L
is tangent to the cone C). This also means that an infinitesimal perturbation of
the problem data can make the program infeasible. We call the program weakly
feasible.

– F++ 6= ∅. We call the program strongly feasible. This means there exists at least
one feasible solution belonging to the interior of C, which is the main hypothesis
of the strong duality Theorem 3.5.

It is possible to characterize these situations by looking at the existence of certain types
of directions in the dual problem (level direction, improving direction, improving direction
sequence, see [Stu97]). Let us now illustrate these four situations with an example.

2In the following, we’ll mark with a (‡) the cases which never happen in the case of linear optimization.

68 3. Conic optimization

Example 3.1. Let us choose

C = S2
+ and x =

(
x1 x3

x3 x2

)
.

We have that x ∈ C ⇔ x1 ≥ 0, x2 ≥ 0 and x1x2 ≥ x2
3.

If we add the linear constraint x3 = 1, the feasible set becomes the epigraph of the
positive branch of the hyperbola x1x2 = 1, i.e. F+ = {(x1, x2) | x1 ≥ 0 and x1x2 ≥ 1} as
depicted on Figure 3.1.

0 0.5 1
0

2

4

6

8

10

Feasible region

Infeasible region

x
1

x
2

Figure 3.1: Epigraph of the positive branch of the hyperbola x1x2 = 1

This problem is strongly feasible.

¦ If we add another linear constraint x1 = −1, we get a strongly infeasible problem (since
x1 must be positive).

¦ If we add x1 = 0, we get a weakly infeasible problem (since the distance between the
axis x1 = 0 and the hyperbola is zero but x1 still must be positive).

¦ Finally, adding x1 +x2 = 2 leads to a weakly feasible problem (because the only feasible
point, x1 = x2 = x3 = 1, does not belong to the interior of C).

3.3.2 Attainability

Let us denote by F∗ the set of optimal solutions, i.e. feasible solutions with an objective equal
to p∗

F∗ = F+ ∩ {x ∈ Rn | cT x = p∗}

We have the following distinction regarding attainability of the optimum

¦ A conic program is solvable if F∗ 6= ∅.

3.3 – Classification of conic optimization problems 69

¦ A conic program is unsolvable if F∗ = ∅, but we have two subcases

– If p∗ = −∞, the program is unbounded (this is the only possibility in the case of
linear optimization).

– If p∗ is finite, we have a feasible unsolvable bounded program (‡). This situation
happens when the infimum defining p∗ is not attained, i.e. there exists feasible
solution with objective value arbitrarily close to p∗ but no optimal solution.

Let us examine a little further the second situation. In this case, we have a sequence of feasible
solutions whose objective value tends to p∗, but no optimal solution. This implies that at
least one of the variables in this sequence of feasible solutions tends to infinity. Indeed, if it
was not the case, that sequence would be bounded, and since the feasible set F is closed (it
is the intersection of a closed cone and a affine subspace, which is also closed), its limit would
also belong to the feasible set, hence would be a feasible solution with objective value p∗, i.e.
an optimal solution, which is a contradiction.

Example 3.2. Let us consider the same strongly feasible problem as in Example 3.1 (epigraph
of an hyperbola).

¦ If we choose a linear objective equal to x1 + x2,, F∗ is reduced to the unique point
(x1, x2, x3) = (1, 1, 1), and the problem is solvable (p∗ = 2).

¦ If we choose another objective equal to −x1 − x2, F∗ = ∅ because p∗ = −∞, and the
problem is unbounded.

¦ Finally, choosing x1 as objective function leads to an unsolvable bounded problem: p∗

is easily seen to be equal to zero but F∗ = ∅ because there is no feasible solution with
x1 = 0 since the product x1x2 has to be greater than 1.

3.3.3 Optimal duality gap

Finally, we state the various possibilities about the optimal duality gap, which is equal to
p∗ − d∗:

¦ The optimal duality gap is strictly positive (‡)

¦ The optimal duality gap is zero but there is no optimal solution pair. In this case, there
exists pairs (x, y) with an arbitrarily small duality gap (which means that the optimum
is not attained for at least one of the two programs (LP) and (LD)) (‡)

¦ An optimal solution pair (x, y) has a zero duality gap, as for linear optimization

Of course, the first two cases can be avoided if we require our problem to satisfy the Slater
condition. We can alternatively work with the subvalue p−, for which there is no duality gap
except when both problems are infeasible.

70 3. Conic optimization

Example 3.3. The first problem described in Example 3.2 has its optimal value equal to
p∗ = 2. Its data can be described as

c =
(

1 0
0 1

)
, A : S2 7→ R :

(
x1 x3

x3 x2

)
7→ x3 and b = 1 .

Using the fact that the adjoint of A can be written as3

AT : R 7→ S2 : y1 7→
(

0 y1/2
y1/2 0

)

and the dual formulation (CD), we can state the dual as

sup y1 s.t.
(

0 y1/2
y1/2 0

)
+

(
s1 s3

s3 s2

)
=

(
1 0
0 1

)
and

(
s1 s3

s3 s2

)
∈ S2

+

or equivalently, after eliminating the s variables,

sup y1 s.t.
(

1 −y1/2
−y1/2 1

)
∈ S2

+ .

The optimal value d∗ of this problem is equal to 2, because the semidefinite constraint is
equivalent to y2

1 ≤ 4), and the optimal duality gap p∗ − d∗ is zero as expected.

Changing the primal objective to c =
(

1 0
0 0

)
, we get an unsolvable bounded problem

inf x1 s.t. x3 = 1 and x1x2 ≥ 1

whose optimal value is p∗ = 0 but is not attained. The dual becomes

sup y1 s.t.
(

1 −y1/2
−y1/2 0

)
∈ S2

+

which admits only one feasible solution, namely y1 = 0, and has thus an optimal value d∗ = 0.
In this case, the optimal duality gap is zero but is not attained (because the primal problem
is unsolvable).

Finally, we give here an example where the optimal duality gap is nonzero. Choosing a
nonnegative parameter λ and

C = S3
+, c =

0 −1 0
−1 0 0
0 0 λ

 , A : S3 7→ R2 :

x1 x4 x5

x4 x2 x6

x5 x6 x3

 7→

(
x3 + x4

x2

)
and b =

(
1
0

)
,

we have for the primal

inf λx3 − 2x4 s.t. x3 + x4 = 1, x2 = 0 and

x1 x4 x5

x4 x2 x6

x5 x6 x3

 ∈ S3

+ .

3To check this, simply write 〈Ax, y〉 = 〈x, AT y〉, where the first inner product is the usual dot product on
Rn but the second inner product is the trace inner product on Sn.

3.3 – Classification of conic optimization problems 71

The fact that x2 = 0 implies x4 = x6 = 0, which in turn implies x3 = 1. We have thus that
all solutions have the form

x1 0 x5

0 0 0
x5 0 1

which is feasible as soon as x1 ≥ x2
5. All these feasible solutions have an objective value equal

λ, and hence are all optimal: we have p∗ = λ. Using the fact that the adjoint of A is

AT : R2 7→ S3 :
(

y1

y2

)
7→

0 y1/2 0
y1/2 y2 0

0 0 y1

we can write the dual (after eliminating the s variables with the linear equality constraints)
as

sup y1 s.t.

0 −1− y1/2 0
−1− y1/2 −y2 0

0 0 λ− y1

 ∈ S3

+

The above matrix can only be positive semidefinite if y1 = −2. In that case, any nonnegative
value for y2 will lead to a feasible solution with an objective equal to −2, i.e. all these solutions
are optimal and d∗ = −2. The optimal duality gap is equal to p∗−d∗ = λ+2, which is strictly
positive fear all values of λ. Note that in this case, as expected from the theory, none of the
two problems satisfies the Slater condition since every feasible primal or dual solution has at
least a zero on its diagonal, which implies a zero eigenvalue and hence that it does not belong
to the interior of S3

+.

CHAPTER 4

lp-norm optimization

In this chapter, we formulate the lp-norm optimization problem as a conic op-
timization problem, derive its standard duality properties and show it can be
solved in polynomial time.

We first define an ad hoc closed convex cone Lp, study its properties and derive
its dual. This allows us to express the standard lp-norm optimization primal
problem as a conic problem involving Lp. Using the theory of conic duality de-
scribed in Chapter 3 and our knowledge about Lp, we proceed to derive the dual
of this problem and prove the well-known regularity properties of this primal-
dual pair, i.e. zero duality gap and primal attainment. Finally, we prove that
the class of lp-norm optimization problems can be solved up to a given accu-
racy in polynomial time, using the framework of interior-point algorithms and
self-concordant barriers.

4.1 Introduction

lp-norm optimization problems form an important class of convex problems, which includes
as special cases linear optimization, quadratically constrained convex quadratic optimization
and lp-norm approximation problems.

A few interesting duality results are known for lp-norm optimization. Namely, a pair of
feasible primal-dual lp-norm optimization problems satisfies the weak duality property, which
is a mere consequence of convexity, but can also be shown to satisfy two additional properties
that cannot be guaranteed in the general convex case: the optimum duality gap is equal to

73

74 4. lp-norm optimization

zero and at least one feasible solution attains the optimum primal objective. These results
were first presented by Peterson and Ecker [PE70a, PE67, PE70b] and later greatly simplified
by Terlaky [Ter85], using standard convex duality theory (e.g. the convex Farkas theorem).

The aim of this chapter is to derive these results in a completely different setting, using
the machinery of conic convex duality described in Chapter 3. This new approach has the
advantage of further simplifying the proofs and giving some insight about the reasons why
this class of problems has better properties than a general convex problem. We also show that
this class of optimization problems can be solved up to a given accuracy in polynomial time,
using the theory of self-concordant barriers in the framework of interior-point algorithms (see
Chapter 2).

4.1.1 Problem definition

Let us start by introducing the primal lp-norm optimization problem [PE70a, Ter85], which
is basically a slight modification of a linear optimization problem where the use of lp-norms
applied to linear terms is allowed within the constraints. In order to state its formulation
in the most general setting, we need to introduce the following sets: let K = {1, 2, . . . , r},
I = {1, 2, . . . , n} and let {Ik}k∈K be a partition of I into r classes, i.e. satisfying

∪k∈KIk = I and Ik ∩ Il = ∅ for all k 6= l .

The problem data is given by two matrices A ∈ Rm×n and F ∈ Rm×r (whose columns will
be denoted by ai, i ∈ I and fk, k ∈ K) and four column vectors b ∈ Rm, c ∈ Rn, d ∈ Rr and
p ∈ Rn such that pi > 1 ∀i ∈ I. Our primal problem consists in optimizing a linear function
of a column vector y ∈ Rm under a set of constraints involving lp-norms of linear forms, and
can be written as

sup bT y s.t.
∑

i∈Ik

1
pi

∣∣ci − aT
i y

∣∣pi ≤ dk − fT
k y ∀k ∈ K . (Plp)

It is readily seen that this formulation is quite general. Indeed,

¦ linear optimization problems can be modelled by taking n = 0 (and thus Ik = ∅ ∀k ∈ K),
which gives

sup bT y s.t. F T y ≤ d ,

¦ problems of approximation in lp-norm correspond to the case fk = 0 ∀k ∈ K, described
in [PE70a, Ter85] and [NN94, Section 6.3.2],

¦ a convex quadratic constraint can be modelled with a constraint involving an l2-norm.
Indeed, 1

2yT Qy + fT y + g ≤ 0 (where Q is positive semidefinite) is equivalent to
1
2

∥∥HT y
∥∥2 ≤ −fT y − g, where H is a m × s matrix such that Q = HHT (whose

columns will be denoted by hi), and can be modelled as

s∑

i=1

1
2

∣∣hT
i y

∣∣2 ≤ −g − fT y ,

4.2 – Cones for lp-norm optimization 75

which has the same form as one constraint of problem (Plp) with pi = 2 and ci = 0.
This implies that linearly and quadratically constrained convex quadratic optimization
problems can be modelled as lp-norm optimization problems (since a convex quadratic
objective can be modelled using an additional variable, a linear objective and a convex
quadratic constraint).

Defining a vector q ∈ Rn such that 1
pi

+ 1
qi

= 1 for all i ∈ I, the dual problem for (Plp)
can be defined as (see e.g. [Ter85])

inf ψ(x, z) = cT x + dT z +
∑

k∈K|zk>0

zk

∑

i∈Ik

1
qi

∣∣∣∣
xi

zk

∣∣∣∣
qi

s.t.
{

Ax + Fz = b and z ≥ 0 ,
zk = 0 ⇒ xi = 0 ∀i ∈ Ik .

(Dlp)

We note that a special convention has been taken to handle the case when one or more
components of z are equal to zero: the associated terms are left out of the first sum (to avoid
a zero denominator) and the corresponding components of x have to be equal to zero. When
compared with the primal problem (Plp), this problem has a simpler feasible region (mostly
defined by linear equalities and nonnegativity constraints) at the price of a highly nonlinear
(but convex) objective.

4.1.2 Organization of the chapter

The rest of this chapter is organized as follows. In order to use the setting of conic optimiza-
tion, we define in Section 4.2 an appropriate convex cone that will allow us to express lp-norm
optimization problems as conic programs. We also study some aspects of this cone (closed-
ness, interior, dual). We are then in position to formulate the primal-dual pair (Plp)–(Dlp)
using a conic formulation and apply in Section 4.3 the general duality theory for conic opti-
mization, in order to prove the above-mentioned duality results about lp-norm optimization.
Section 4.4 deals with algorithmic complexity issues and presents a self-concordant barrier
construction for our problem. We conclude with some remarks in Section 4.5.

4.2 Cones for lp-norm optimization

Let us now introduce the Lp cone, which will allow us to give a conic formulation of lp-norm
optimization problems.

4.2.1 The primal cone

Definition 4.1. Let n ∈ N and p ∈ Rn with pi > 1. We define the following set

Lp =
{

(x, θ, κ) ∈ Rn × R+ × R+ |
n∑

i=1

|xi|pi

piθpi−1
≤ κ

}

76 4. lp-norm optimization

using in the case of a zero denominator the following convention:

|xi|
0

=

{
+∞ if xi 6= 0 ,

0 if xi = 0 .

This convention means that if (x, θ, κ) ∈ Lp, θ = 0 implies x = 0n. We start by proving that
Lp is a convex cone.

Theorem 4.1. Lp is a convex cone.

Proof. Let us first introduce the following function

fp : Rn × R+ 7→ R+ ∪ {+∞} : (x, θ) 7→
n∑

i=1

|xi|pi

piθpi−1
.

With the convention mentioned above, its effective domain is Rn × R++ ∪ 0n × 0. It is
straightforward to check that fp is positively homogeneous, i.e. fp(λx, λθ) = λfp(x, θ) for
λ ≥ 0. Moreover, fp is subadditive, i.e. fp(x + x′, θ + θ′) ≤ fp(x, θ) + fp(x′, θ′). In order to
show it, we only need to prove the following inequality for all x, x′ ∈ R and θ, θ′ ∈ R+:

|x|pi

θpi−1
+
|x′|pi

θ′pi−1
≥ |x + x′|pi

(θ + θ′)pi−1 .

First observe that this inequality is obviously true if θ or θ′ is equal to 0. When θ and θ′

are both different from 0, we use the well known fact that xpi is a convex function on R+ for
pi ≥ 1, implying that λapi +λ′a′pi ≥ (λa + λ′a′)pi for any nonnegative a, a′, λ and λ′ satisfying
λ + λ′ = 1. Choosing a = 1

θ |x|, a′ = 1
θ′ |x′|, λ = θ

θ+θ′ and λ′ = θ′
θ+θ′ , we find that

θ

θ + θ′
(|x|

θ

)pi

+
θ′

θ + θ′
(|x′|

θ′
)pi ≥

(
θ

θ + θ′
|x|
θ

+
θ′

θ + θ′
|x′|
θ′

)pi

1
θ + θ′

(|x|pi

θpi−1
+
|x′|pi

θ′pi−1

)
≥

(|x|+ |x′|
θ + θ′

)pi

|x|pi

θpi−1
+
|x′|pi

θ′pi−1
≥ (|x|+ |x′|)pi

(θ + θ′)pi−1 ≥ |x + x′|pi

(θ + θ′)pi−1 .

Positive homogeneity and subadditivity imply that fp is a convex function. Since fp(x, θ) ≥ 0
for all x and θ, we notice that Lp is the epigraph of fp, i.e.

epi fp =
{

(x, θ, κ) ∈ Rn × R+ × R | fp(x, θ) ≤ κ
}

= Lp .

Lp is thus the epigraph of a convex positively homogeneous function, hence a convex cone.

In order to characterize strictly feasible points, we would like to identify the interior of
this cone.

Theorem 4.2. The interior of Lp is given by

intLp =
{

(x, θ, κ) ∈ Rn × R++ × R++ |
n∑

i=1

|xi|pi

piθpi−1
< κ

}
.

4.2 – Cones for lp-norm optimization 77

Proof. According to Lemma 7.3 in [Roc70a] we have

intLp = int epi fp = {(x, θ, κ) | (x, θ) ∈ int dom fp and fp(x, θ) < κ} .

The stated result then simply follows from the fact that int dom fp = Rn × R++.

Corollary 4.1. The cone Lp is solid.

Proof. It suffices to prove that there exists at least one point that belongs to intLp, for
example by taking the point (e, 1, n), where e stands for the n-dimensional all-one vector.
Indeed, we have

∑n
i=1

|1|1
pi1pi−1 =

∑n
i=1

1
pi

<
∑n

i=1 1 = n.

Note 4.1. When n = 0, our cone Lp is readily seen to be equivalent to the two-dimensional
positive orthant R2

+. We also notice that in the special case where pi = 2 for all i, our cone
Lp becomes

L(2,··· ,2) =
{

(x, θ, κ) ∈ Rn × R+ × R+ |
n∑

i=1

x2
i ≤ 2θκ

}
,

which is usually called the hyperbolic or rotated second-order cone [LVBL98, Stu99a](it is a
simple linear transformation of the usual second-order cone, see Chapter 9).

To illustrate our purpose, we provide in Figure 4.1 the three-dimensional graphs of the
boundary surfaces of L(5) and L(2) (corresponding to the case n = 1).

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

θ
x

κ

−1

−0.5

0

0.5

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

θ

x

κ

Figure 4.1: The boundary surfaces of L(5) and L(2) (in the case n = 1).

4.2.2 The dual cone

We are now going to determine the dual cone of Lp. Let us first recall the following well-known
result, known as the weighted arithmetic-geometric inequality.

Lemma 4.1. Let x ∈ Rn
++ and δ ∈ Rn

++ such that
∑n

i=1 δi = 1. We have

n∏

i=1

xδi
i ≤

n∑

i=1

δixi ,

78 4. lp-norm optimization

equality occurring if and only if all xi’s are equal.

This result is easily proved, applying for example Jensen’s inequality [Roc70a, Theorem
4.3] to the convex function x 7→ ex.

We now introduce a useful inequality, which lies at the heart of duality for Lp cones
[Ter85, NN94]. In order to keep our exposition self-contained, we also include its proof.

Lemma 4.2. Let a, b ∈ R+ and α, β ∈ R++ such that 1
α + 1

β = 1. We have the inequality

aα

α
+

bβ

β
≥ ab ,

with equality holding if and only if aα = bβ.

Proof. The cases where a = 0 or b = 0 are obvious. When a, b ∈ R++, we can simply apply
Lemma 4.1 on aα and bβ with weights 1

α and 1
β (whose sum is equal to one), which gives

aα

α
+

bβ

β
≥ (aα)1/α(bβ)1/β = ab ,

with equality if and only if aα = bβ.

For ease of notation, we also introduce the switched cone Lp
s as the Lp cone with its last

two components exchanged, i.e.

(x, θ, κ) ∈ Lp
s ⇔ (x, κ, θ) ∈ Lp .

We are now ready to describe the dual of Lp.

Theorem 4.3 (Dual of Lp). Let p, q ∈ Rn
++ such that 1

pi
+ 1

qi
= 1 for each i. The dual of

Lp is Lq
s.

Proof. By definition of the dual cone, we have

(Lp)∗ =
{
v∗ ∈ Rn × R × R | vT v∗ ≥ 0 for all v ∈ Lp

}
.

We start by showing that Lq
s ⊆ (Lp)∗.

Let v∗ = (x∗, θ∗, κ∗) ∈ Lq
s and v = (x, θ, κ) ∈ Lp. We are going to prove that vT v∗ ≥ 0,

which will imply the desired inclusion. The case when θ = 0 is easily handled: we have then
x = 0 implying vT v∗ = κκ∗ ≥ 0. Similarly we can eliminate the case where κ∗ = 0. In the
remaining cases, we use the definitions of Lp and Lq

s to get

fp(x, θ) =
n∑

i=1

|xi|pi

piθpi−1
≤ κ and fq(x∗, κ∗) =

n∑

i=1

|x∗i |qi

qiκ∗qi−1
≤ θ∗ .

4.2 – Cones for lp-norm optimization 79

Dividing respectively by θ and κ∗ and adding the resulting inequalities we find
n∑

i=1

(|xi|pi

piθpi
+
|x∗i |qi

qiκ∗qi

)
≤ κ

θ
+

θ∗

κ∗
. (4.1)

Applying now Lemma 4.2 to each pair
|xi|
θ

,
|x∗i |
κ∗

we get

n∑

i=1

|xi|
θ

|x∗i |
κ∗

≤ κ

θ
+

θ∗

κ∗
, (4.2)

which is equivalent to
n∑

i=1

|xi| |x∗i | ≤ κκ∗ + θθ∗ .

Finally, noting that xix
∗
i ≥ − |xi| |x∗i | we conclude that

vT v∗ = xT x∗ + κκ∗ + θθ∗ =
n∑

i=1

xix
∗
i + κκ∗ + θθ∗ ≥

n∑

i=1

− |xi| |x∗i |+ κκ∗ + θθ∗ ≥ 0 , (4.3)

showing that Lq
s ⊆ (Lp)∗.

Let us prove now the reverse inclusion, i.e. (Lp)∗ ⊆ Lq
s.

Let v∗ = (x∗, θ∗, κ∗) ∈ (Lp)∗. We have to show that v∗ ∈ Lq
s, using that vT v∗ ≥ 0 for

every v = (x, θ, κ) ∈ Lp. Choosing v = (0, 0, 1), we first ensure that vT v∗ = κ∗ ≥ 0. We
distinguish the cases κ∗ = 0 and κ∗ > 0. If κ∗ = 0, we have that vT v∗ = xT x∗ + θθ∗ ≥ 0
for every v = (x, θ, κ) ∈ Lp. Choosing θ = 1 and κ ≥ fp(x, 1) for any x ∈ Rn, we find that
xT x∗ + θ∗ ≥ 0 for all x ∈ Rn, which implies x∗ = 0 and θ∗ ≥ 0 and thus v∗ ∈ Lq

s. When
κ∗ > 0, we can always choose a v ∈ Lp such that

|xi|pi

θpi
=
|x∗i |qi

κ∗qi
, xix

∗
i ≤ 0 and fp(x, θ) =

n∑

i=1

|xi|pi

piθpi−1
= κ . (4.4)

Writing

0 ≤ vT v∗

θκ∗
=

(x

θ

)T (x∗

κ∗
)T

+
θ∗

κ∗
+

κ

θ

=
n∑

i=1

xi

θ

x∗i
κ∗

+
θ∗

κ∗
+

κ

θ

=
n∑

i=1

−|xi|
θ

|x∗i |
κ∗

+
θ∗

κ∗
+

κ

θ
,

using the case of equality of Lemma 4.2 on the pairs
|xi|
θ

,
|x∗i |
κ∗

and the choice of v in (4.4),

= −
n∑

i=1

(|xi|pi

piθpi
+
|x∗i |qi

qiκ∗qi

)
+

θ∗

κ∗
+

κ

θ

=
θ∗

κ∗
−

n∑

i=1

|x∗i |qi

qiκ∗qi
,

80 4. lp-norm optimization

and finally multiplying by κ∗ leads to
n∑

i=1

|x∗i |qi

qiκ∗qi−1
≤ θ∗ ,

i.e. v∗ ∈ Lq
s, showing that (Lp)∗ ⊆ Lq

s and thus (Lp)∗ = Lq
s.

The dual of a Lp cone is thus equal, up to a permutation of two variables, to another Lp

cone with a dual vector of exponents.

Corollary 4.2. We also have (Lp
s)∗ = Lq, (Lq)∗ = Lp

s and (Lq
s)∗ = Lp.

Proof. Obvious considering both the symmetry between Lp and Lq
s and the symmetry between

p and q.

Corollary 4.3. Lp and Lq
s are solid and pointed.

Proof. We have already proved that Lp is solid which, for obvious symmetry reasons, implies
that its switched counterpart Lq

s is also solid. Since pointedness is the property that is dual
to solidness (Theorem 3.3), noting that Lp = (Lq

s)∗ and Lq
s = (Lp)∗ is enough to prove that

Lp and Lq
s are also pointed.

Corollary 4.4. Lp and Lq
s are closed.

Proof. Starting with (Lp)∗ = Lq
s and taking the dual of both sides, we find ((Lp)∗)∗ = (Lq

s)∗.
Since (Lq

s)∗ = Lp by Corollary 4.2 and ((Lp)∗)∗ = clLp [Roc70a, page 121], we have clLp = Lp,
hence Lp is closed. The switched cone Lq

s is obviously closed as well.

We can also provide a direct proof of the closedness of Lp: using the fact that it is
the epigraph of fp, it is enough to show that fp is a lower semicontinuous function [Roc70a,
Theorem 7.1]. Being convex, fp is continuous on the interior of its effective domain, i.e. when
θ > 0. When θ = 0, we have to prove that

lim
(x,θ)→(x0,0+)

fp(x, θ) ≥ fp(x0, 0) .

On the one hand, if x0
i 6= 0 for some index i, we have that fp(x0, 0) = +∞ but also that

lim(x,θ)→(x0,0+) fp(x, θ) = +∞, since the term |xi|pi

piθpi−1 tends to +∞ when (xi, θ) tends to
(x0

i , 0), hence the inequality is true. On the other hand, if x0 = 0, we have to check that
lim(x,θ)→(0,0+) fp(x, θ) ≥ fp(0, 0) = 0, which is obviously also true. From this we can conclude
that fp is lower semicontinuous and hence Lp is closed.

Note however that fp is not continuous in (0, 0). Choosing an arbitrary positive constant
M and defining for example xi(θ) = (Mpi)1/piθ1/qi , so that x(θ) → 0 when θ → 0+, we have
that limθ→0+ f(x(θ), θ) = nM 6= f(0, 0) = 0. The limit of fp at (0, 0) can indeed take any
positive value1.

1However, taking x(θ) proportional to θ, namely xi(θ) = Liθ, we have limθ→0+ f(x(θ), θ) = f(0, 0) = 0, i.e.
fp is continuous on its restrictions to lines passing through the origin.

4.2 – Cones for lp-norm optimization 81

Note 4.2. As special cases, we note that when n = 0, (Lp)∗ is equivalent to R2
+, which is the

usual dual for Lp = R2
+. In the case of pi = 2 ∀i, we find

(L(2,··· ,2))∗ = L(2,··· ,2)
s =

{
(x, θ, κ) ∈ Rn × R+ × R+ |

n∑

i=1

x2
i ≤ 2θκ

}
,

which is the expected result. Note that apart from these two special cases, Lp is in general
not self-dual.

Note 4.3 (Self-duality of Lp cones with n = 1). Let us examine the special case of three-
dimensional Lp cones, i.e. assume n = 1. Figure 4.2, representing L(5

4
), illustrates our point:

up to a permutation of variables, it is equal to (L(5))∗ (since 1/5 + 1/5
4 = 1) and is different

from L(5), and hence these cones are not self-dual. However, in the particular case where
n = 1, this difference is not as great as it could be. Namely, one can show easily that L(p)

and its dual are equal up to a simple scaling of some of the variables. Indeed, we have

(x, θ, κ) ∈ L(p) ⇔ |x|p ≤ pκθp−1

⇔ |x|q ≤ p
q
p κ

q
p θ

(p−1) q
p

using q
p = q 1

p = q(1− 1
q) = q − 1 and (p− 1) q

p = (1− 1
p)q = 1

q q = 1

⇔ |x|q ≤ pq−1κq−1θ

⇔ |x|q ≤ q(pκ)q−1 θ
q

⇔ (x, θ
q , pκ) ∈ L(q)

s = (L(p))∗ .

From another point of view, we could also state that these two cones are self-dual with respect
to a modified inner product that takes this scaling of the variables into account.

−1

−0.5

0

0.5

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

θ

x

κ

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

θ
x

κ

Figure 4.2: The boundary surfaces of L(5
4
) and L(5) (in the case n = 1).

Our last theorem in this section describes the cases where two vectors from Lp and Lq
s

are orthogonal to each other, which will be used in the study of the duality properties.

82 4. lp-norm optimization

Theorem 4.4 (orthogonality conditions). Let v = (x, θ, κ) ∈ Lp and v∗ = (x∗, θ∗, κ∗) ∈
Lq

s. We have vT v∗ = 0 if and only if the following set of conditions holds

κ∗(fp(x, θ)− κ) = 0 (4.5a)
θ(fq(x∗, κ∗)− θ∗) = 0 (4.5b)

κ∗
|xi|pi

θpi−1
= θ

|x∗i |qi

κ∗qi−1
(4.5c)

xix
∗
i ≤ 0 for all i . (4.5d)

Proof. When θ > 0 and κ∗ > 0, a careful reading of the first part of the proof of Theorem 4.3
shows that equality occurs if and only if all conditions in (4.5) are fulfilled. Namely, (4.5a) and
(4.5b) are responsible for equality in (4.1), (4.5c) ensures that we are in the case of equality
of Lemma 4.2 for inequality (4.2) and the last condition (4.5d) is necessary for equality in
(4.3).

When θ = 0 but κ∗ > 0, we have x = 0 and thus vT v∗ = κκ∗. This quantity is zero if
and only if κ = 0, which is equivalent in this case to fp(x, θ) = κ and occurs if and only if
(4.5a) is satisfied (all the other conditions being trivially fulfilled). A similar reasoning takes
care of the case θ > 0, κ∗ = 0.

Finally, when θ = κ∗ = 0, we have x = x∗ = 0 and vT v∗ = 0, while the set of conditions
(4.5) is also always satisfied.

4.3 Duality for lp-norm optimization

This is the main section , where we show how a primal-dual pair of lp-norm optimization
problems can be modelled using the Lp and Lq

s cones and how this allows us to derive the
relevant duality properties.

4.3.1 Conic formulation

Let us restate here for convenience the definition of the standard primal lp-norm optimization
problem (Plp).

sup bT y s.t.
∑

i∈Ik

1
pi

∣∣ci − aT
i y

∣∣pi ≤ dk − fT
k y ∀k ∈ K (Plp)

(where K = {1, 2, . . . , r}, I = {1, 2, . . . , n}, {Ik}k∈K is a partition of I into r classes, A ∈
Rm×n and F ∈ Rm×r (whose columns will be denoted by ai, i ∈ I and fk, k ∈ K), y ∈ Rm,
b ∈ Rm, c ∈ Rn, d ∈ Rr and p ∈ Rn such that pi > 1 ∀i ∈ I).

Let us now model problem (Plp) with a conic formulation. The following notation will be
useful in this context: vS (resp. MS) denotes the restriction of column vector v (resp. matrix
M) to the components (resp. rows) whose indices belong to set S.

4.3 – Duality for lp-norm optimization 83

We start by introducing an auxiliary vector of variables x∗ ∈ Rn to represent the argu-
ment of the power functions, namely we let

x∗i = ci − aT
i y for all i ∈ I or, in matrix form, x∗ = c−AT y ,

and we also need additional variables z∗ ∈ Rr for the linear term forming the right-hand side
of the inequalities

z∗k = dk − fT
k y for all k ∈ K or, in matrix form, z∗ = d− F T y .

Our problem is now equivalent to

sup bT y s.t. AT y + x∗ = c, F T y + z∗ = d and
∑

i∈Ik

1
pi
|x∗i |pi ≤ z∗k ∀k ∈ K ,

where we can easily plug our definition of the Lp cone, provided we fix variables θ to 1

sup bT y s.t. AT y + x∗ = c, F T y + z∗ = d and (x∗Ik
, 1, z∗k) ∈ Lpk ∀k ∈ K

(where for convenience we defined vectors pk = (pi | i ∈ Ik) for k ∈ K). We finally introduce
an additional vector of fictitious variables v∗ ∈ Rr whose components are fixed to 1 by linear
constraints to find

sup bT y s.t. AT y + x∗ = c, F T y + z∗ = d, v∗ = e and (x∗Ik
, v∗k, z

∗
k) ∈ Lpk ∀k ∈ K

(where e stands again for the all-one vector). Rewriting the linear constraints with a single
matrix equality, we end up with

sup bT y s.t.

AT

F T

0

 y +

x∗

z∗

v∗

 =

c
d
e

 and (x∗Ik

, v∗k, z
∗
k) ∈ Lpk ∀k ∈ K , (CPlp)

which is exactly a conic optimization problem in the dual2 form (CD), using variables (ỹ, s̃),
data (Ã, b̃, c̃) and a cone C∗ such that

ỹ = y, s̃ =

x∗

z∗

v∗

 , Ã =

(
A F 0

)
, b̃ = b, c̃ =

c
d
e

 and C∗ = Lp1 × Lp2 × · · · × Lpr

,

where C∗ has been defined according to Note 3.1, since we have to deal with multiple conic
constraints involving disjoint sets of variables.

Using properties of Lp proved in the previous section, it is straightforward to show that
C∗ is a solid, pointed, closed convex cone whose dual is

(C∗)∗ = C = Lq1

s × Lq2

s × · · · × Lqr

s ,

another solid, pointed, closed convex cone (where we have defined a vector q ∈ Rn such that
1
pi

+ 1
qi

= 1 for all i ∈ I and vectors qk such that qk = (qi | i ∈ Ik) for k ∈ K). This allows

2This is the reason why we added a ∗ superscript to the notation of our additional variables, in order to
emphasize the fact that the primal lp-norm optimization problem (Plp) is in fact in the dual conic form (CD).

84 4. lp-norm optimization

us to derive a dual problem to (CPlp) in a completely mechanical way and find the following
conic optimization problem, expressed in the primal form (CP) (since the dual of a problem
in dual form is a problem in primal form):

inf
(
cT dT eT

)

x
z
v

 s.t.

(
A F 0

)

x
z
v

 = b and (xIk

, vk, zk) ∈ Lqk

s for all k ∈ K ,

which is equivalent to

inf cT x + dT z + eT v s.t. Ax + Fz = b and (xIk
, vk, zk) ∈ Lqk

s for all k ∈ K , (CDlp)

where x ∈ Rn, z ∈ Rr and v ∈ Rr are the dual variables we optimize. This problem can be
simplified: making the conic constraints explicit, we find

inf cT x + dT z + eT v s.t. Ax + Fz = b,
∑

i∈Ik

|xi|qi

qiz
qi−1
k

≤ vk ∀k ∈ K and z ≥ 0 ,

keeping in mind the convention on zero denominators that in effect implies zk = 0 ⇒ xIk
= 0.

Finally, we can remove the v variables from the formulation since they are only constrained
by the sum inequalities, which have to be tight at any optimal solution. We can thus directly
incorporate these sums into the objective function, which leads to

inf ψ(x, z) = cT x + dT z +
∑

k∈K|zk>0

zk

∑

i∈Ik

1
qi

∣∣∣∣
xi

zk

∣∣∣∣
qi

s.t.
{

Ax + Fz = b and z ≥ 0 ,
zk = 0 ⇒ xi = 0 ∀i ∈ Ik .

(Dlp)

Unsurprisingly, the dual formulation (Dlp) we have just found without much effort is exactly
the standard form for a dual lp-norm optimization problem [Ter85].

4.3.2 Duality properties

We are now able to prove the weak duality property for the lp-norm optimization problem.

Theorem 4.5 (Weak duality). If y is feasible for (Plp) and (x, z) is feasible for (Dlp), we
have ψ(x, z) ≥ bT y. Equality occurs if and only if for all k ∈ K and i ∈ Ik

zk(
∑

i∈Ik

1
pi

∣∣ci − aT
i y

∣∣pi + fT
k y − dk) = 0, xi(ci − aT

i y) ≤ 0, zk

∣∣ci − aT
i y

∣∣pi =
|xi|qi

zqi−1
k

. (4.6)

Proof. Let y and (x, z) be feasible for (Plp) and (Dlp). Choosing vk = fqk(xIk
, zk) for all

k ∈ K, we have that (x, z, v) is feasible for (CDlp) with the same objective function, i.e. with
cT x + dT z + eT v = ψ(x, z). Moreover, computing (x∗, z∗, v∗) from y in order to satisfy the
linear constraints in (CPlp), i.e. according to

x∗i = ci − aT
i y, z∗k = dk − fT

k y, v∗k = 1 , (4.7)

we have that (x∗, z∗, v∗, y) is feasible for (CPlp). The standard weak duality property for the
conic pair (CPlp)–(CDlp) from Theorem 3.4 then states that cT x + dT z + eT v ≥ bT y, which
in turn implies ψ(x, z) ≥ bT y.

4.3 – Duality for lp-norm optimization 85

We proceed now to investigate the equality conditions. At the optimum, variables vk

must assume their lower bounds so that we can still assume that vk = fqk(xIk
, zk) holds

for all k ∈ K. We also keep variables (x∗, z∗, v∗) defined by (4.7). From the weak duality
Theorem 3.4, we know that equality can only occur if the primal and dual vectors of variables
are orthogonal to each other for each conic constraint, i.e. (x∗Ik

, z∗k, v∗k)
T (xIk

, zk, vk) = 0 for all
k ∈ K.

Having (x∗Ik
, v∗k, z

∗
k)T ∈ Lpk

and (xIk
, vk, zk) ∈ Lqk

s , Theorem 4.4 gives us the necessary
and sufficient conditions for equality to happen

zk(fpk(x∗Ik
, v∗k)− z∗k) = 0, v∗k(fqk(xIk

, zk)− vk) = 0, zk
|x∗i |pi

v∗kpi−1
= v∗k

|xi|qi

zqi−1
k

, xix
∗
i ≤ 0 (4.8)

for all i ∈ Ik and k ∈ K. The second condition is always satisfied while the other three
conditions can be readily simplified using (4.7) to give the announced inequalities (4.6).

The weak duality property is a rather straightforward consequence of the convexity of
the problems, and in fact can be proved without too many difficulties without sophisticated
tools from duality theory. However, this is not the case with the next theorem, which deals
with a strong duality property.

In the case of a general pair of primal and dual conic problems, the duality gap at the
optimum is not always equal to zero, neither are the primal or dual optimum objective values
always attained by feasible solutions (see the examples in Section3.3). However, it is well-
known that in the special case of linear optimization, we always have a zero duality gap
and attainment of both optimum objective values. The status of lp-norm optimization lies
somewhere between these two situations: the duality gap is always equal zero but attainment
of the optimum objective value can only be guaranteed for the primal problem.

In the course of our proof, we will need to use the well-known Goldman-Tucker theorem
[GT56] for linear optimization, which we state here for reference.

Theorem 4.6 (Goldman-Tucker). Let us consider the following primal-dual pair of linear
optimization problems in standard form:

min cT x s.t. Ax = b and x ≥ 0 and max bT y s.t. AT y + s = c and s ≥ 0 .

If both problems are feasible, there exists a unique partition (B,N) of the index set common
to vectors x and s such that

¦ every optimal solution x̂ to the primal problem satisfies x̂N = 0.

¦ every optimal solution (ŷ, ŝ) to the dual problem satisfies ŝB = 0.

This partition is called the optimal partition. Moreover, there exists at least an optimal
primal-dual solution (x̂, ŷ, ŝ) such that x̂ + ŝ > 0, hence satisfying x̂B > 0 and ŝN > 0. Such
a pair is called a strictly complementary pair3.

3This optimal partition can be computed in polynomial time by interior-point methods. Indeed, it is
possible to prove for example that the short-step algorithm presented in Chapter 2 converges to a strictly
complementary solution, and thus allows us to identify the optimal partition unequivocally.

86 4. lp-norm optimization

This theorem is central to the theory of duality for linear optimization. Its most impor-
tant consequence is the fact that any pair of primal-dual optimal solutions x̂ and (ŷ, ŝ) must
have a zero duality gap. Indeed, the duality gap is equal to x̂T ŝ (see Theorem 3.4) and the
theorem implies that x̂N = 0 and ŝB = 0, which leads to

x̂T ŝ =
∑

i∈B
x̂iŝi +

∑

i∈N
x̂iŝi = 0

since (B,N) is a partition of the index set of the variables. One can also consider this theorem
as a version of the strong duality Theorem 3.5 specialized for linear optimization, with the
important difference that it is valid even when no Slater point exists.

The strong duality theorem for lp-norm optimization we are about to prove is the follow-
ing:

Theorem 4.7 (Strong duality). If both problems (Plp) and (Dlp) are feasible, the primal
optimal objective value is attained with a zero duality gap, i.e.

p∗ = max bT y s.t.
∑

i∈Ik

1
pi

∣∣ci − aT
i y

∣∣pi ≤ dk − fT
k y ∀k ∈ K

= inf ψ(x, z) s.t.
{

Ax + Fz = b and z ≥ 0
zk = 0 ⇒ xi = 0 ∀i ∈ Ik

= d∗ .

Proof. The strong duality Theorem 3.5 tells us that zero duality gap and primal attainment
are guaranteed by the existence of a strictly interior dual feasible solution (excluding the
case of an unbounded dual). Let (x, z) be a feasible solution for (Dlp). We would like to
complement it with a vector v such that the corresponding solution (x, z, v) is strictly feasible
for the conic formulation (CDlp).

Since cone C is the cartesian products of the set of cones Lqk

s for k ∈ K, we need in fact
for (x, z, v) to be a strictly feasible solution of (CDlp) that (xIk

, zk, vk) ∈ intLqk

s holds for all
k ∈ K. Using now Theorem 4.2 to identify the interior of the Lq

s cones, we see that both
conditions vk > fpk(xIk

, zk) and zk > 0 have to be valid for all k ∈ K.

Since vector v contains only free variables and is not constrained by the linear constraints,
it is always possible to choose it such that vk > fpk(xIk

, zk) for all k ∈ K. However, the
situation is much different for z: it is unfortunately not always possible to find a strictly
positive z, since it may happen that the linear constraints combined with the nonnegativity
constraint on z force one or more of the components zk to be equal to zero for all primal
feasible solutions. Here is an outline of the three-step strategy we are going to follow:

a. Since some components of z may prevent the existence of a strictly feasible solution to
(CDlp), we are going to define a restricted version of (CDlp) where those problematic
components of z and the associated variables x have been removed. Hopefully, this
restricted problem (RDlp) will not behave too differently from the original because the
zero components of z and x did not play a crucial role in it.

4.3 – Duality for lp-norm optimization 87

b. Since this restricted problem will now admit a strictly feasible solution, its dual problem
(RPlp) (which is a problem in primal form) has a duality gap equal to zero with its
optimal objective value attained by some solution.

c. The last step of our proof will be to convert this optimal solution with a zero duality
gap for the restricted primal problem (RPlp) into an optimal solution for the original
primal problem (CPlp).

The whole procedure can be summarized with the following diagram:

(Plp) ≡ (CPlp)
Weak←→ (CDlp) ≡ (Dlp)

c. l l a.

(RPlp)
Strong (zero gap)←→ (RDlp)

↓
(Attainment) b.

↑
(Strictly feasible)

Let us first identify the problematic zk’s that are identically equal to zero for all feasible
solutions. This can be done by solving the following linear optimization problem:

min 0 s.t. Ax + Fz = b and z ≥ 0 . (ALP)

This problem has the same feasible region as our dual problem (Dlp) (actually, its feasible
region can be slightly larger from the point of view of the x variables, since the special
constraints zk = 0 ⇒ xIk

= 0 have been omitted, but this does not have any effect on our
reasoning). We are thus looking for components of z that are equal to zero on the whole
feasible region of (ALP).

Since this problem has a zero objective function, all its feasible solutions are optimal
and we can therefore deduce that if a variable zk is zero for all feasible solutions to problem
(ALP), it is zero for all optimal solution to problem (ALP). In order to use the Goldman-
Tucker theorem, we also write the dual4 of problem (ALP):

max bT y s.t. AT y = 0, F T y + z∗ = 0 and z∗ ≥ 0 . (ALD)

Both (ALP) and (ALD) are feasible (the former because (Dlp) is assumed to be feasible, the
latter because (y, z∗) = (0, 0) is always a feasible solution), which means that the Goldman-
Tucker theorem is applicable. Having now the optimal partition (B,N) at hand, we observe
that the index set N defines exactly the set of variables zi that are identically zero on the
feasible regions of problems (ALP) and (Dlp). We are thus now ready the apply the strategy
outlined above.

a. Let us introduce the reduced primal-dual pair of lp-norm optimization problems where
variables zk and xIk

with k ∈ N have been removed. We start with the dual problem

inf cT
IBxIB+dT

BzB+eT
BvB s.t. AIBxIB+FBzB = b, (xIk

, vk, zk) ∈ Lqk

s ∀k ∈ B , (RDlp)

4Although problem (ALP) is not exactly formulated in the standard form used to state Theorem 4.6, the
same results hold in the case of a general linear optimization problem.

88 4. lp-norm optimization

where IB stands for ∪k∈BIk. It is straightforward to check that this problem is com-
pletely equivalent to problem (CDlp), since the variables zN and xIN we removed, being
forced to zero for all feasible solutions, had no contribution to the objective or to the
linear constraints in (CDlp).

The corresponding conic constraints become (0, vk, 0) ∈ Lqk

s ⇔ vk ≥ 0 ∀k ∈ N , which
imply at the optimum that vk = 0 ∀k ∈ N , showing that variables vN can also be safely
removed without changing the optimum objective value. We can thus conclude that
inf (RDlp) = inf (CDlp) = inf (Dlp).

b. Because of the second part of the Goldman-Tucker theorem, there is at least one feasible
solution to (ALP) such that zB > 0. Combining the (xIB , zB) part of this solution with
a vector vB with sufficiently large components gives us a strictly feasible solution for
(RDlp) (zk > 0 and vk > fqk(xIk

, zk) for all k ∈ B), which is exactly what we need
to apply our strong duality Theorem 3.5. Let us first write down the dual problem of
(RDlp), the restricted primal:

sup bT y s.t.

{
AT

IBy + x∗IB = cIB , F T
B y + z∗B = dB, v∗B = e,

(x∗Ik
, v∗k, z

∗
k) ∈ Lpk ∀k ∈ B .

(RPlp)

We cannot be in the first case of the strong duality Theorem 3.5, since unboundedness of
(RDlp) would imply unboundedness of the original problem (Dlp) which in turn would
prevent the existence of a feasible primal solution (simple consequence of the weak
duality theorem). We can thus conclude that there exists an optimal solution to (RPlp)
(x̂∗IB , ẑ∗B, v̂∗B, ŷ) such that bT ŷ = max (RPlp) = inf (RDlp).

c. Combining the results obtained so far, we have proved that max (RPlp) = inf (Dlp).
The last step we need to perform is to prove that max (Plp) = max (RPlp), i.e. that
the optimum objective of (Plp) is attained and that it is equal to the optimal objective
value of (RPlp). Unfortunately, the apparently most straightforward way to do this,
namely using the optimal solution ŷ we have at hand for problem (RPlp), does not
work since it is not necessarily feasible for problem (CPlp). The reason is that (CPlp)
contains additional conic constraints (the ones corresponding to k ∈ N) which are not
guaranteed to be satisfied by the optimal solution ŷ of the restricted problem. We can
however overcome this difficulty by perturbing this solution by a suitably chosen vector
such that

¦ feasibility for the constraints k ∈ B is not lost,

¦ feasibility for the constraints k ∈ N can be gained.

Let us consider (x̄, z̄, ȳ, z̄∗), a strictly complementary solution to the primal-dual pair
(ALP)–(ALD) whose existence is guaranteed by the Goldman-Tucker theorem. We have
thus z̄∗N > 0 and z̄∗B = 0. Since all primal solutions have a zero objective, the optimal
dual objective value also satisfies bT ȳ = 0. Summarizing the properties of ȳ obtained
so far, we can write

bT ȳ = 0, AT ȳ = 0, F T
B ȳ = −z̄∗B = 0 and F T

N ȳ = −z̄∗N < 0 .

4.3 – Duality for lp-norm optimization 89

Let us now consider y = ŷ + λȳ with λ ≥ 0 as a solution of (CPlp) and compute the
value of x∗ and z∗ given by (4.7), distinguishing the B and N parts (we already know
that v∗ = e):

x∗IB = cIB −AT
IBy = cIB −AT

IB ŷ = x̂∗IB (using AT
IB ȳ = 0)

z∗B = dB − F T
B y = dB − F T

B ŷ = ẑ∗B (using F T
B ȳ = 0)

x∗IN = cIN −AT
IN y = cIN −AT

IN ŷ = x̂∗IN (using AT
IN ȳ = 0)

z∗N = dN − F T
N y = dN − F T

N ŷ + λz̄∗N (using − F T
N ȳ = z̄∗N) .

The conic constraints corresponding to k ∈ B remain valid for all λ, since the associated
variables do not vary with λ. Considering now the constraints for k ∈ N , we see that
x∗IN does not depend on λ, while z∗N can be made arbitrarily large by increasing λ, due

to the fact that z̄∗N > 0. Choosing a sufficiently large λ, we can force (x∗Ik
, 1, z∗k) ∈ Lqk

s

for k ∈ N and thus make (x∗, v∗, z∗, y) feasible for (CPlp). Obviously, we also have that
y is feasible for (Plp) with the same objective value.

Evaluating this objective value, we find that bT y = bT ŷ+λbT ȳ = bT ŷ = max (RPlp), i.e.
the feasible solution y we constructed has the same objective value for (CPlp) and (Plp)
as ŷ for (RPlp). This proves that max (RPlp) ≤ sup (Plp), which combined with our
previous results gives d∗ = inf (Dlp) = bT ŷ = max (RPlp) ≤ sup (Plp) = p∗. Finally,
using the weak duality of Theorem 4.5, i.e. p∗ ≤ d∗, we obtain d∗ = inf (Dlp) = bT ŷ =
sup (Plp) = p∗, which implies that ŷ is optimum for (Plp), sup (Plp) = max (Plp) and
finally the desired result p∗ = max (Plp) = inf (Dlp) = d∗.

4.3.3 Examples

We conclude this section by providing a few examples of the possible situations that can arise
for a couple of primal-dual lp-norm optimization problems. Let us consider the following
problem data:

r = 1, K = {1}, n = 1, I1 = {1}, m = 1, A = 1, F = 0, c = 5, d ∈ R, b = 1, p = 3

(d1 is left unspecified), which translates into the following primal problem:

sup y1 s.t.
1
3
|5− y1|3 ≤ d1 . (Plp)

Noting q = 3
2 , we can also write down the dual

inf 5x1 + d1z1 + z1
1

3/2

∣∣∣∣
x1

z1

∣∣∣∣
3/2

s.t. x1 = 1, z1 ≥ 0, z1 = 0 ⇒ x1 = 0 . (Dlp)

This pair of problems can readily be simplified to

sup y1 s.t. |5− y1| ≤ 3
√

3d1 and inf 5 + d1z1 +
2

3
√

z1
s.t. z1 > 0

90 4. lp-norm optimization

¦ When d = 9, our primal constraint becomes |5− y1| ≤ 3, which gives a primal optimum
equal to y1 = 8. Looking at the dual, we have

9z1 +
2

3
√

z1
=

1
3
(27z1) +

2
3
(

1√
z1

) ≤ (27z1)
1
3 (

1√
z1

)
2
3 = 3

(using the weighted arithmetic-geometric mean), which shows that the dual optimum is
also equal to 8, and is attained for (x, z) = (1, 1

9). This is the most common situation:
both optimum values are finite and attained, with a zero duality gap.

¦ When d = 0, our primal constraint becomes |5− y1| ≤ 0, which implies that the only
feasible solution is y1 = 5, giving a primal optimum equal to 5. The dual optimum
value is then inf 5 + 2

3
√

z1
= 5, equal to the primal but not attained (z1 → +∞). This

shows that there are problems for which the dual optimum is not attained, i.e. we do
not have the perfect duality of linear optimization (one can observe that in this case
the primal had no strict interior).

¦ Finally, when d = −1, the primal becomes infeasible while the dual is unbounded (take
again z → +∞).

4.4 Complexity

The goal of this section is to prove it is possible to solve an lp-norm optimization problem up
to a given accuracy in polynomial time. According to the theoretical framework of Nesterov
and Nemirovski [NN94], which was presented in Chapter 2, in order to solve the conic problem
described in Chapter 3

inf
x

cT x s.t. Ax = b and x ∈ C , (CP)

we only need to find a computable self-concordant barrier function for the cone C, according
to Definition 2.2. Indeed, we can apply for example the following variant of Theorem 2.5.

Theorem 4.8. Given a (κ, ν)-self-concordant barrier for the cone C ⊆ Rn and a feasible
interior starting point x0 ∈ int C satisfying δ(x0, µ0) < 1

13.42κ , a short-step interior-point
algorithm can solve problem (CP) up to ε accuracy within

O
(

κ
√

θ log
µ0κ

√
ν

ε

)
iterations,

such that at each iteration the self-concordant barrier and its first and second derivatives have
to be evaluated and a linear system has to be solved in Rn (i.e. the Newton step for the barrier
problem has to be computed).

We are now going to describe a self-concordant barrier that allows us to solve conic
problems involving our Lp cone (we follow an approach similar to the one used in [XY00]).
The following convex cone {

(x, y) ∈ R × R+ | |x|p ≤ y
}

4.4 – Complexity 91

(with p > 1) admits the well-known self-concordant barrier

fp : R × R++ 7→ R : (x, y) 7→ −2 log y − log(y2/p − x2)

with parameters (1, 4) (see [NN94, Propostion 5.3.1], note we are using here the convention
κ = 1). Let n ∈ N, p ∈ Rn and I = {1, 2, . . . , n}. We have that

{
(x, y) ∈ Rn × Rn

+ | |xi|pi ≤ yi ∀i ∈ I
}

admits

fp : Rn × Rn
++ 7→ R : (x, y) 7→

n∑

i=1

(
−2 log yi − log(y2/pi

i − x2
i)

)

with parameters (1, 4n) (using [NN94, Propostion 5.1.2]). This also implies that the set

Sp =
{

(x, y, κ) ∈ Rn × Rn
+ × R | |xi|pi ≤ yi ∀i ∈ I and κ =

n∑

i=1

yi

pi

}

admits a self-concordant barrier f ′p(x, y, κ) = fp(x, y) with parameters (1, 4n) (taking the
cartesian product with R essentially leaves the self-concordant barrier unchanged, taking the
intersection with an affine subspace does not influence self-concordancy). Finally, we use
another result from Nesterov and Nemirovski to find a self-concordant barrier for the conic
hull of Sp, which is defined by

Hp = cl
{

(x, t) ∈ Sp × R++ |
x

t
∈ Sp

}

= cl
{

(x, y, κ, θ) ∈ Sp × R++ | (
x

θ
,
y

θ
,
κ

θ
) ∈ Sp

}

= cl
{

(x, y, κ, θ) ∈ Rn × Rn
+ × R × R++ |

∣∣∣xi

θ

∣∣∣
pi ≤ yi

θ
∀i ∈ I and

κ

θ
=

n∑

i=1

yi

piθ

}

= cl
{

(x, y, κ, θ) ∈ Rn × Rn
+ × R × R++ |

|xi|pi

θpi−1
≤ yi ∀i ∈ I and κ =

n∑

i=1

yi

pi

}

=
{

(x, y, κ, θ) ∈ Rn × Rn
+ × R × R+ |

|xi|pi

θpi−1
≤ yi ∀i ∈ I and κ =

n∑

i=1

yi

pi

}

(to find the last equality, you have to consider accumulation points with θ = 0, which in fact
must satisfy x = 0, which in turn can be seen to match exactly the convention about zero
denominators we chose in Definition 4.1), and find that

hp : Rn × Rn
++ × R × R++ 7→ R : (x, y, κ, θ) 7→

(
fp(

x

θ
,
y

θ
)− 8n log θ

)

is a self-concordant barrier for Hp with parameter (20, 8n) (see [NN94, Proposition 5.1.4]).
We now make the following interesting observation linking Hp to our cone Lp.

Theorem 4.9. The Lp cone is equal to the projection of Hp on the space of (x, κ, θ), i.e.

(x, θ, κ) ∈ Lp ⇔ ∃y ∈ Rn
+ | (x, y, κ, θ) ∈ Hp .

92 4. lp-norm optimization

Proof. This proof is straightforward. First note that both sets take the same convention in
case of a zero denominator. Let (x, θ, κ) ∈ Lp. Choosing y such that yi = |xi|pi

θpi−1 for all i ∈ I
ensures that

n∑

i=1

yi

pi
=

n∑

i=1

|xi|pi

piθpi−1
≤ κ

(this last inequality because of the definition of Lp). It is now possible to increase y1 until
the equality κ =

∑n
i=1

yi

pi
is satisfied, which shows (x, y, κ, θ) ∈ Hp. For the reverse inclusion,

suppose (x, y, κ, θ) ∈ Hp. This implies that

κ =
n∑

i=1

yi

pi
≥

n∑

i=1

|xi|pi

piθpi−1
,

which is exactly the defining inequality of Lp.

Suppose now we have now to solve

inf
x

cT x s.t. Ax = b and x ∈ Lp . (4.9)

In light of the previous theorem, it is equivalent to solve

inf
(x,y)

cT x s.t. Ax = b and (x, y) ∈ Hp ,

for which we know a self-concordant barrier with parameter (20, 8n). This implies that it
is possible to find an approximate solution to problem (4.9) with accuracy ε in O(√

n log 1
ε

)
iterations. Moreover, since it is possible to compute in polynomial time the value of hp and
of its first two derivatives, we can conclude that problem (4.9) is solvable in polynomial time.

This argument is rather easy to generalize to the case of the cartesian product of sev-
eral Lp cones or dual Lq

s cones, which shows eventually that any primal or dual lp-norm
optimization can be solved up to a given accuracy in polynomial time.

4.5 Concluding remarks

In this chapter, we have formulated lp-norm optimization problems in a conic way and applied
results from the standard conic duality theory to derive their special duality properties.

This leads in our opinion to clearer proofs, the specificity of the class of problems under
study being confined to the convex cone used in the formulation. Moreover, the fundamental
reason why this class of optimization problems has better duality properties than a general
convex problem becomes clear: this is essentially due to the existence of a strictly interior
dual solution (even if a reduction procedure involving an equivalent regularized problem has
to be introduced when the original dual lacks a strictly feasible point).

It is also worthy to note that this is an example of nonsymmetric conic duality, i.e.
involving cones that are not self-dual, unlike the very well-studied cases of linear, second-
order and semidefinite optimization.

4.5 – Concluding remarks 93

Another advantage of this approach is the ease to prove polynomial complexity for our
problems: finding a suitable self-concordant barrier is essentially all that is needed.

In the special case where all pi’s are equal, one might think it is possible to derive those
duality results with a simpler formulation relying on the standard cone involving p-norms,
i.e. the p-cone defined as

Ln
p =

{
(x, κ) ∈ Rn × R+ | ‖x‖p ≤ κ

}
=

{
(x, κ) ∈ Rn × R+ |

n∑

i=1

|xi|p ≤ κp
}

.

However, we were note able to reach that goal, the reason being that the homogenizing
variables θ and κ∗ appear to play a significant role in our approach and cannot be avoided.

Finally, we mention that this framework is general enough to be applied to other classes
of structured convex problems. Chapter 5 will indeed deal with the class of problems known
as geometric optimization.

CHAPTER 5

Geometric optimization

Geometric optimization is an important class of problems that has many ap-
plications, especially in engineering design. In this chapter, we provide new
simplified proofs for the well-known associated duality theory, using conic opti-
mization. After introducing suitable convex cones and studying their properties,
we model geometric optimization problems with a conic formulation, which al-
lows us to apply the powerful duality theory of conic optimization and derive the
duality results valid for geometric optimization.

5.1 Introduction

Geometric optimization forms an important class of problems that enables practitioners to
model a large variety of real-world applications, mostly in the field of engineering design. We
refer the reader to [DPZ67, Chapter V] for two detailed case studies in mechanical engineering
(use of sea power) and electrical engineering (design of a transformer).

Although not convex itself, a geometric optimization problem can be easily transformed
into a convex problem, for which a Lagrangean dual can be explicitly written. Several duality
results are known for this pair of problems, some being mere consequences of convexity (e.g.
weak duality), others being specific to this particular class of problems (e.g. the absence of a
duality gap).

These properties were first studied in the sixties, and can be found for example in the
reference book of Duffin, Peterson and Zener [DPZ67]. The aim of this chapter is to derive

95

96 5. Geometric optimization

these results using the machinery of duality for conic optimization of Chapter 3, which has
in our opinion the advantage of simplifying and clarifying the proofs.

In order to use this setting, we start by defining an appropriate convex cone that allows
us to express geometric optimization problems as conic programs. The first step we take
consists in studying some properties of this cone (e.g. closedness) and determine its dual. We
are then in position to apply the general duality theory for conic optimization described in
Chapter 3 to our problems and find in a rather seamless way the various well-known duality
theorems of geometric optimization.

This chapter is organized as follows: we define and study in Section 5.2 the convex
cones needed to model geometric optimization. Section 5.3 constitutes the main part of this
chapter and presents new proofs of several duality theorems based on conic duality. Finally,
we provide in Section 5.4 some hints on how to establish the link between our results and the
classical theorems found in the literature, as well as some concluding remarks.

The approach we follow here is quite similar to the one we used in Chapter 4. However,
geometric optimization differs from lp-norm optimization in some important respects, which
will be detailed later in this chapter.

5.2 Cones for geometric optimization

Let us introduce the geometric cone Gn, which will allow us to give a conic formulation of
geometric optimization problems.

5.2.1 The geometric cone

Definition 5.1. Let n ∈ N. The geometric cone Gn is defined by

Gn =
{

(x, θ) ∈ Rn
+ × R+ |

n∑

i=1

e−
xi
θ ≤ 1

}

using in the case of a zero denominator the following convention:

e−
xi
0 = 0 .

We observe that this convention results in (x, 0) ∈ Gn for all x ∈ Rn
+. As special cases,

we mention that G0 is the nonnegative real line R+, while G1 is easily shown to be equal to
the 2-dimensional nonnegative orthant R2

+.

In order to use the powerful duality theory outlined in Chapter 3, we first have to prove
that Gn is a convex cone.

Theorem 5.1. Gn is a convex cone.

5.2 – Cones for geometric optimization 97

Proof. To prove that a set is a convex cone, it suffices to show that it is closed under addition
and nonnegative scalar multiplication (Definition 3.1 and Theorem 3.1). Indeed, if (x, θ) ∈ Gn,
(x′, θ′) ∈ Gn and λ ≥ 0, we have

n∑

i=1

e−
λxi
λθ =

{∑n
i=1 e−

xi
θ ≤ 1 if λ > 0

0 ≤ 1 if λ = 0

which shows that λ(x, θ) ∈ Gn. Looking now at (x, θ) + (x′, θ′), we first consider the case
θ > 0 and θ′ > 0 and write

n∑

i=1

e
−xi+x′i

θ+θ′ =
n∑

i=1

(
e−

xi
θ

) θ
θ+θ′

(
e−

x′i
θ′

) θ′
θ+θ′

.

We can now apply Lemma 4.1 on each term of the sum, using vector (e−
xi
θ , e−

x′i
θ′) and weights

(θ
θ+θ′ ,

θ′
θ+θ′), satisfying θ

θ+θ′ + θ′
θ+θ′ = 1, to obtain

n∑

i=1

e
−xi+x′i

θ+θ′ ≤
n∑

i=1

θ

θ + θ′
(e−

xi
θ) +

θ′

θ + θ′
(e−

x′i
θ′)

=
θ

θ + θ′

n∑

i=1

e−
xi
θ +

θ′

θ + θ′

n∑

i=1

e−
x′i
θ′

≤ θ

θ + θ′
1 +

θ′

θ + θ′
1 = 1 ,

while in the case of θ′ = 0 we have
n∑

i=1

e
−xi+x′i

θ+θ′ =
n∑

i=1

e−
xi+x′i

θ ≤
n∑

i=1

e−
xi
θ ≤ 1

(the case θ = 0 is similar). We have thus shown that (x + x′, θ + θ′) ∈ Gn in all cases, and
therefore that Gn is a convex cone.

We now proceed to prove some properties of the geometric cone Gn.

Theorem 5.2. Gn is closed.

Proof. Let
{
(xk, θk)

}
a sequence of points in Rn+1 such that (xk, θk) ∈ Gn for all k and

limk→∞(xk, θk) = (x∞, θ∞). In order to prove that Gn is closed, it suffices to show that
(x∞, θ∞) ∈ Gn. Let us distinguish two cases:

¦ θ∞ > 0. Using the easily proven fact that functions (xi, θ) 7→ e−
xi
θ are continuous on

R+ × R++, we have that

n∑

i=1

e−
x∞i
θ∞ =

n∑

i=1

lim
k→∞

e
−xk

i
θk = lim

k→∞

n∑

i=1

e
−xk

i
θk ≤ 1 ,

which implies (x∞, θ∞) ∈ Gn.

98 5. Geometric optimization

¦ θ∞ = 0. Since (xk, θk) ∈ Gn, we have xk ≥ 0 and thus x∞ ≥ 0, which implies that
(x∞, 0) ∈ Gn.

In both cases, (x∞, θ∞) is shown to belong to Gn, which proves the claim.

In order to use the strong duality theorem, we now proceed to identify the interior of the
geometric cone.

Theorem 5.3. The interior of Gn is given by

intGn =
{

(x, θ) ∈ Rn
++ × R++ |

n∑

i=1

e−
xi
θ < 1

}
.

Proof. A point x belongs to the interior of a set S if and only if there exists an open ball
centered at x entirely included in S. Let (x, θ) ∈ Gn. We first note that (x, 0) cannot
belong to intGn, because every open ball centered at (x, 0) contains a point with a negative
θ component, which does not belong to the cone Gn. Suppose θ > 0 and the inequality in the
definition of Gn is satisfied with equality, i.e.

n∑

i=1

e−
xi
θ = 1 .

Every open ball centered at (x, θ) contains a point (x′, θ′) with x′ < x and θ′ > θ, which
satisfies then

n∑

i=1

e−
x′i
θ′ >

n∑

i=1

e−
xi
θ = 1

and is thus outside of Gn, implying (x, θ) /∈ intGn. We now show that all the remaining
points that do not satisfy one of the two conditions mentioned above, i.e. the points with
θ > 0 satisfying the strict inequality, belong to the interior of Gn. Let (x, θ) one of these
points, and B(ε) the open ball centered at (x, θ) with radius ε. Restricting ε to sufficiently
small values (i.e. choosing ε < θ), we have for all points (x′, θ′) ∈ B(ε)

xi − ε ≤ x′i ≤ xi + ε and 0 < θ − ε ≤ θ′ ≤ θ + ε ,

which implies

x′i
θ′
≥ x− ε

θ + ε
and thus

n∑

i=1

e−
x′i
θ′ ≤

n∑

i=1

e−
xi−ε

θ+ε for all (x′, θ′) ∈ B(ε) . (5.1)

Taking the limit of the last right-hand side when ε → 0, we find

lim
ε→0

n∑

i=1

e−
xi−ε

θ+ε =
n∑

i=1

e−
xi
θ < 1

(because of the continuity of functions (xi, θ) 7→ e−
xi
θ on R+×R++). Therefore we can assume

the existence of a value ε∗ such that
n∑

i=1

e−
xi−ε∗
θ+ε∗ < 1 ,

5.2 – Cones for geometric optimization 99

which because of (5.1) will imply that

n∑

i=1

e−
x′i
θ′ < 1

for all (x′, θ′) ∈ B(ε∗). This inequality, combined with θ′ > 0, is sufficient to prove that the
open ball B(ε∗) is entirely included in Gn, hence that (x, θ) ∈ intGn.

Theorem 5.4. Gn is solid and pointed.

Proof. The fact that 0 ∈ Gn ⊆ Rn+1
+ implies that Gn ∩ −Gn = {0}, i.e. Gn is pointed (Defi-

nition 3.2). To prove it is solid (Definition 3.3), we simply provide a point belonging to its
interior, for example (e, 1

n) (where e stands for the all-one vector). We have then

n∑

i=1

e−
xi
θ = ne−n < 1 ,

because en > n for all n ∈ N, and therefore (e, 1
n) ∈ intGn.

To summarize, Gn is a solid pointed close convex cone, hence suitable for conic optimiza-
tion.

5.2.2 The dual geometric cone

In order to express the dual of a conic problem involving the geometric cone Gn, we need to
find an explicit description of its dual.

Theorem 5.5. The dual of Gn is given by

(Gn)∗ =

{
(x∗, θ∗) ∈ Rn

+ × R | θ∗ ≥
∑

i|x∗i >0

x∗i log
x∗i∑n
i=1 x∗i

}
.

Proof. Using Definition 3.4 for the dual cone, we have

(Gn)∗ =
{
(x∗, θ∗) ∈ Rn × R | (x, θ)T (x∗, θ∗) ≥ 0 for all (x, θ) ∈ Gn

}

(the ∗ superscript on variables x∗ and θ∗ is a reminder of their dual nature). This condition
on (x∗, θ∗) is equivalent to saying that the following infimum

δ(x∗, θ∗) = inf xT x∗ + θθ∗ s.t. (x, θ) ∈ Gn .

has to be nonnegative. Let us distinguish the cases θ = 0 and θ > 0: we have that

δ(x∗, θ∗) = min{δ1(x∗, θ∗), δ2(x∗, θ∗)}
with {

δ1(x∗, θ∗) = inf xT x∗ + θθ∗ s.t. (x, θ) ∈ Gn and θ = 0
δ2(x∗, θ∗) = inf xT x∗ + θθ∗ s.t. (x, θ) ∈ Gn and θ > 0

.

100 5. Geometric optimization

The first of these infima can be rewritten as

inf xT x∗ s.t. x ≥ 0 ,

since (x, 0) ∈ Gn ⇔ x ≥ 0. It is easy to see that this infimum is equal to 0 if x∗ ≥ 0 and
to −∞ when x∗ � 0. Since we are looking for points with a nonnegative infimum δ(x∗, θ∗),
we will require in the rest of this proof x∗ to be nonnegative and only consider the second
infimum, which is equal to

inf θ

[
xT x∗

θ
+ θ∗

]
s.t.

n∑

i=1

e−
xi
θ ≤ 1 and (x, θ) ∈ Rn

+ × R++ . (5.2)

Let us again distinguish two cases. When x∗ = 0, this infimum becomes

inf θθ∗ s.t.
n∑

i=1

e−
xi
θ ≤ 1 and (x, θ) ∈ Rn

+ × R++ ,

which is nonnegative if and only if θ∗ ≥ 0, since θ can take any value in the open positive
interval]0 + ∞[. On the other hand, if x∗ 6= 0, we have

∑n
i=1 x∗i > 0 and can define the

auxiliary variables w∗i by

w∗i =
x∗i∑n
i=1 x∗i

(in order to simplify notations). We write the following chain of inequalities

1 ≥
n∑

i=1

e−
xi
θ ≥

∑

i|w∗i >0

e−
xi
θ =

∑

i|w∗i >0

w∗i

(
e−

xi
θ

w∗i

)
≥

∏

i|w∗i >0

(
e−

xi
θ

w∗i

)w∗i

(5.3)

The second inequality comes from the fact that each term of the sum is positive (we remove
some terms), and the third one uses Lemma 4.1 with weights w∗i , noting that

∑
i|w∗i >0 w∗i =∑n

i=1 w∗i = 1. From this last inequality we derive successively

∏

i|w∗i >0

e−
xiw∗i

θ ≤
∏

i|w∗i >0

w∗i
w∗i ,

−
∑

i|w∗i >0

xiw
∗
i

θ
≤

∑

i|w∗i >0

w∗i log w∗i (taking the logarithms) ,

n∑

i=1

xix
∗
i

θ
≥ −

∑

i|x∗i >0

x∗i log w∗i (multiplying by −∑n
i=1 x∗i) ,

xT x∗

θ
+ θ∗ ≥ θ∗ −

∑

i|x∗i >0

x∗i log w∗i , and finally

inf
(x,θ)∈Gn|θ>0

xT x∗

θ
+ θ∗ ≥ θ∗ −

∑

i|x∗i >0

x∗i log w∗i .

Examining carefully the chain of inequalities in (5.3), we observe that a suitable choice
of (x, θ) can lead to attainment of this last infimum: namely, we need to have

5.2 – Cones for geometric optimization 101

¦ ∑n
i=1 e−

xi
θ = 1, for the first inequality in (5.3),

¦ xi → +∞ for all indices i such that w∗i = 0, in order to have e−
xi
θ → 0 when w∗i = 0 for

the second inequality in (5.3),

¦ all terms (e−
xi
θ

w∗i
) with indices such that w∗i > 0 equal to each other, for the third

inequality in (5.3).

These conditions are compatible: summing up the constant terms, we find

e−
xi
θ

w∗i
(when w∗i > 0) =

∑
i|w∗i >0 e−

xi
θ

∑
i|w∗i >0 w∗i

=
∑

i|w∗i >0

e−
xi
θ →

n∑

i=1

e−
xi
θ = 1 ,

which gives e−
xi
θ = w∗i for all i such that w∗i > 0. Summarizing, we can choose x according

to {
xi = −θ log w∗i when w∗i > 0
xi → +∞ when w∗i = 0

,

which proves that

inf
(x,θ)∈Gn|θ>0

xT x∗

θ
+ θ∗ = θ∗ −

∑

i|x∗i >0

x∗i log w∗i . (5.4)

Since the additional multiplicative θ in (5.2) doesn’t change the sign of this infimum (because
θ > 0), we may conclude that it is nonnegative if and only if

θ∗ −
∑

i|x∗i >0

x∗i log w∗i ≥ 0 .

Combining with the special case x∗ = 0 and the constraint x∗ ≥ 0 implied by the first infimum,
we conclude that the dual cone is given by

(Gn)∗ =
{

(x∗, θ∗) ∈ Rn
+ × R | θ∗ ≥

∑

i|x∗i >0

x∗i log w∗i
}

,

as announced.

As special cases, since G0 = R+ and G1 = R2
+, we may check that (G0)∗ = (R+)∗ = R+

and (G1)∗ = (R2
+)∗ = R2

+, as expected. These two cones are thus self-dual, but it is easy to
see that geometric cones of higher dimension are not self-dual any more. To illustrate our
purpose, we provide in Figure 5.1 the three-dimensional graphs of the boundary surfaces of
G2 and (G2)∗.

Note 5.1. Since we have 0 ≤ w∗i ≤ 1 for all indices i, each logarithmic term appearing in
this definition is nonpositive, as well as their sum, which means that (x∗, θ∗) ∈ (Gn)∗ as soon
as x∗ and θ∗ are nonnegative. This fact could have been guessed prior to any computation:
noticing that Gn ⊆ Rn+1

+ and (Rn+1
+)∗ = Rn+1

+ , we immediately have that (Gn)∗ ⊇ Rn+1
+ ,

because taking the dual of a set inclusion reverses its direction.

102 5. Geometric optimization

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

x
2

x
1

θ

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

−1.5

−1

−0.5

0

x*
2

x*
1

θ*

Figure 5.1: The boundary surfaces of G2 and (G2)∗.

Finding the dual of Gn was a little involved, but establishing its properties is straight-
forward.

Theorem 5.6. (Gn)∗ is a solid, pointed, closed convex cone. Moreover, ((Gn)∗)∗ = Gn.

Proof. The proof of this fact is immediate by Theorem 3.3 since (Gn)∗ is the dual of a solid,
pointed, closed convex cone.

The interior of (Gn)∗ is also rather easy to obtain:

Theorem 5.7. The interior of (Gn)∗ is given by

int(Gn)∗ =

{
(x∗, θ∗) ∈ Rn

++ × R | θ∗ >

n∑

i=1

x∗i log
x∗i∑n
i=1 x∗i

}
.

Proof. We first note that (Gn)∗, a convex set, is the epigraph of the following function

fn : Rn
+ 7→ R : x 7→

∑

i|x∗i >0

x∗i log
x∗i∑n
i=1 x∗i

,

which implies that fn is convex (by definition of a convex function). Hence we can apply
Lemma 7.3 in [Roc70a] to get

int(Gn)∗ = int epi fn = {(x∗, θ∗) ∈ int dom fn × R | θ∗ > fn(x∗)} ,

which is exactly our claim since intRn
+ = Rn

++.

5.3 – Duality for geometric optimization 103

The last piece of information we need about the pair of cones (Gn, (Gn)∗) is its set of
orthogonality conditions.

Theorem 5.8 (orthogonality conditions). Let v = (x, θ) ∈ Gn and v∗ = (x∗, θ∗) ∈ (Gn)∗.
We have vT v∗ = 0 if and only if one of these two sets of conditions is satisfied

θ = 0 and xix
∗
i = 0 for all i

θ > 0 and

{ ∑
i|x∗i >0 x∗i log w∗i = θ∗

(
∑n

i=1 x∗i)e
−xi

θ = x∗i for all i
.

Proof. To prove this fact, we merely have to reread carefully the proof of Theorem 5.5, paying
attention to the cases where the infimum is equal to zero. In the first case examined, θ = 0,
we have vT v∗ = xT x∗. Since x and x∗ are two nonnegative vectors, we have vT v∗ = 0 if and
only if xix

∗
i = 0 for every index i, which gives the first set of conditions of the theorem.

When θ > 0, we first have the special case x∗ = 0 which gives vT v∗ = θθ∗. This quantity
can only be zero if θ∗ = 0, i.e. when (x∗, θ∗) = 0. When x∗ 6= 0, the proof of Theorem 5.5
shows that vT v∗ can only be zero when the infimum (5.4) is equal to zero and attained, which
implies θ∗ =

∑
i|x∗i >0 x∗i log w∗i . However, this infimum is not always attained by a finite vector

(x, θ), because of the condition xi → +∞ that is required when w∗i = 0. The scalar product
vT v∗ is thus equal to zero only if all w∗i ’s are positive, i.e. when all x∗i ’s are positive: in this
case, the two sets of equalities θ∗ =

∑
i|x∗i >0 x∗i log w∗i (to have a zero infimum) and e−

xi
θ = w∗i

(to attain the infimum) must be satisfied.

Rephrasing this last equality as (
∑n

i=1 x∗i)e
−xi

θ = x∗i to take into account the special case
(x∗, θ∗) = 0, we find the second set of conditions of our theorem.

5.3 Duality for geometric optimization

In this section, we introduce a form of geometric optimization problems that is suitable to our
purpose and prove several duality properties using the previously defined primal-dual pair of
convex cones. These results are well-known and can be found e.g. in [DPZ67]. However, our
presentation differs and handles problems expressed in a slightly different (but equivalent)
format, and hence provides results adapted to the formulation we use. We refer the reader
to Subsection 5.4.1 where the connection is made between our results and their classical
counterparts.

5.3.1 Conic formulation

We start with the original formulation of a geometric optimization problem (see e.g. [DPZ67]).
Let us define two sets K = {0, 1, 2, . . . , r} and I = {1, 2, . . . , n} and let {Ik}k∈K be a partition
of I into r + 1 classes, i.e. satisfying

∪k∈KIk = I and Ik ∩ Il = ∅ for all k 6= l .

104 5. Geometric optimization

The primal geometric optimization problem is the following:

inf G0(t) s.t. t ∈ Rm
++ and Gk(t) ≤ 1 for all k ∈ K \ {0} , (OGP)

where t is the m-dimensional column vector we want to optimize and the functions Gk defining
the objective and the constraints are so-called posynomials, given by

Gk : Rm
++ 7→ R++ : t 7→

∑

i∈Ik

Ci

m∏

j=1

t
aij

j ,

where exponents aij are arbitrary real numbers and coefficients Ci are required to be strictly
positive (hence the name posynomial). These functions are very well suited for the formulation
of constraints that come from the laws of physics or economics (either directly or using an
empirical fit).

Although not convex itself (choose for example G0 : t 7→ t1/2 as the objective, which is
not a convex function), a geometric optimization problem can be easily transformed into a
convex problem, for which a Lagrangean dual can be explicitly written. This transformation
uses the following change of variables:

tj = eyj for all j ∈ {1, 2, . . . , m} , (5.5)

to become
inf g0(y) s.t. gk(y) ≤ 1 for all k ∈ K \ {0} . (OGP’)

The functions gk are defined to satisfy gk(y) = Gk(t) when (5.5) holds, which means

gk : Rm 7→ R++ : y 7→
∑

i∈Ik

Ci

m∏

j=1

(eyj)aij =
∑

i∈Ik

e−ci+
Pm

j=1 yjaij =
∑

i∈Ik

eaT
i y−ci ,

where the coefficient vector c ∈ Rn is given by ci = − log Ci and ai = (ai1, ai2, . . . , aim)T is
an m-dimensional column vector. Note that unlike the original variables t and coefficients C,
variables y and coefficients c are not required to be strictly positive and can take any real
value.

It is straightforward to check that functions gk are now convex, hence that (OGP’) is a
convex optimization problem. However, we will not establish convexity directly but rather
derive it from the fact that problem (OGP’) can be cast as a conic optimization problem.
Moreover, following others [Kla74, dJRT95, RT98], we will not use this formulation but
instead work with a slight variation featuring a linear objective:

sup bT y s.t. gk(y) ≤ 1 for all k ∈ K , (GP)

where b ∈ Rm and 0 has been removed from set K.

It will be shown later that problems in the form (OGP’) (and (OGP)) can be expressed
in this format, and the results we are going to obtain about problem (GP) will be translated
back to these more traditional settings later in Subsection 5.4.1. We can focus our attention
on formulation (GP) without any loss of generality.

5.3 – Duality for geometric optimization 105

Let us now model problem (GP) with a conic formulation. As in Chapter 4, we will
use the following useful convention: vS (resp. MS) denotes the restriction of column vector v
(resp. matrix M) to the components (resp. rows) whose indices belong to set S. We introduce
a vector of auxiliary variables s ∈ Rn to represent the exponents used in functions gk, more
precisely we let

si = ci − aT
i y for all i ∈ I or, in matrix form, s = c−AT y ,

where A is a m× n matrix whose columns are ai. Our problem becomes then

sup bT y s.t. s = c−AT y and
∑

i∈Ik

e−si ≤ 1 for all k ∈ K ,

which is readily seen to be equivalent to the following, using the definition of Gn (where
variables θ have been fixed to 1),

sup bT y s.t. AT y + s = c and (sIk
, 1) ∈ G#Ik for all k ∈ K ,

and finally to

sup bT y s.t.
(

AT

0

)
y +

(
s
v

)
=

(
c
e

)
and (sIk

, vk) ∈ Gnk for all k ∈ K , (CGP)

where e is the all-one vector in Rr, nk = #Ik and an additional vector of fictitious variables
v ∈ Rr has been introduced, whose components are fixed to 1 by part of the linear constraints.
This is exactly a conic optimization problem, in the dual form (CD), using variables (ỹ, s̃),
data (Ã, b̃, c̃) and a cone K∗ such that

ỹ = y, s̃ =
(

s
v

)
, Ã =

(
A 0

)
, b̃ = b, c̃ =

(
c
e

)
and K∗ = Gn1 × Gn2 × · · · × Gnr ,

where K∗ has been defined according to Note 3.1, since we have to deal with multiple conic
constraints involving disjoint sets of variables.

Using properties of Gn and (Gn)∗ proved in the previous section, it is straightforward to
show that K∗ is a solid, pointed, closed convex cone whose dual is

(K∗)∗ = K = (Gn1)∗ × (Gn2)∗ × · · · × (Gnr)∗ ,

another solid, pointed, closed convex cone, according to Theorem 5.6. This allows us to
derive a dual problem to (CGP) in a completely mechanical way and find the following conic
optimization problem, expressed in the primal form (CP):

inf
(
cT eT

) (
x
z

)
s.t.

(
A 0

) (
x
z

)
= b and (xIk

, zk) ∈ (Gnk)∗ for all k ∈ K , (CGD)

where x ∈ Rn and z ∈ Rr are the vectors we optimize. This problem can be simplified:
making the conic constraints explicit, we find

inf cT x + eT z s.t. Ax = b, xIk
≥ 0 and zk ≥

∑

i∈Ik|xi>0

xi log
xi∑

i∈Ik
xi

for all k ∈ K ,

106 5. Geometric optimization

which can be further reduced to

inf cT x +
∑

k∈K

∑

i∈Ik|xi>0

xi log
xi∑

i∈Ik
xi

s.t. Ax = b and x ≥ 0 . (GD)

Indeed, since each variable zk is free except for the inequality coming from the associated conic
constraint, these inequalities must be satisfied with equality at each optimum solution and
variables z can therefore be removed from the formulation. As could be expected, the dual
problem we have just found using conic duality and our primal-dual pair of cones (Gn, (Gn)∗)
corresponds to the usual dual for problem (GP) found in the literature [Kla76, dJRT95]. We
will also show later in Subsection 5.4.1 that it also allows us to derive the dual problem in the
traditional formulations (OGP) and (OGP’). We end this section by pointing out that, up to
now, our reasoning has been completely similar to the one used for lp-norm optimization in
Chapter 4.

5.3.2 Duality theory

We are now about to apply the various duality theorems described in Chapter 3 to geometric
optimization. Our strategy will be the following: in order to prove results about the pair
(GP)–(GD), we are going to apply our theorems to the conic primal-dual pair (CGP)–(CGD)
and use the equivalence that holds between (CGP) and (GP) and between (CGD) and (GD).
We start with the weak duality theorem.

Theorem 5.9 (Weak duality). Let y a feasible solution for primal problem (GP) and x a
feasible solution for dual problem (GD). We have

bT y ≤ cT x +
∑

k∈K

∑

i∈Ik|xi>0

xi log
xi∑

i∈Ik
xi

, (5.6)

equality occurring if and only if
(∑

i∈Ik

xi

)
eaT

i y−ci = xi for all i ∈ Ik, k ∈ K .

Proof (the original proof can be found in [Roc70b] or [Kla74, §1]). On the one hand, we note
that y can be easily converted to a feasible solution (y, s, v) for the conic problem (CGP),
simply by choosing vectors s and v according to the linear constraints. On the other hand,
x can also be converted to a feasible solution (x, z) for the conic problem (CGD), admitting
the same objective value, by choosing

zk =
∑

i∈Ik|xi>0

xi log
xi∑

i∈Ik
xi

for all k ∈ K . (5.7)

Applying now the weak duality Theorem 3.4 to the conic primal-dual pair (CGP)–(CGD)
with feasible solutions (x, z) and (y, s, v), we find the announced inequality

bT y ≤ cT x +
∑

k∈K

∑

i∈Ik|xi>0

xi log
xi∑

i∈Ik
xi

,

5.3 – Duality for geometric optimization 107

equality occurring if and only if the orthogonality conditions given in Theorem 5.8 are satisfied
for each conic constraint. Since θ corresponds here to vk, which is always equal to 1 because
of the linear constraints, we can rule out the first set of equalities (occurring where θ = 0)
and keep only the second set of conditions. The first of these equalities being always satisfied
because of our choice of zk, we finally conclude that equality (5.6) can occur if and only if
the following set of remaining equalities is satisfied, namely

(∑

i∈Ik

xi

)
e
− si

vi = xi for all i ∈ Ik, k ∈ K ,

which is equivalent to our claim because of the linear constraints on si and vi.

The following theorem is an application of the strong duality Theorem 3.5, and requires
therefore the existence of a specific primal feasible solution.

Theorem 5.10. If there exists a feasible solution for the primal problem (GP) satisfying
strictly the inequality constraints, i.e. a vector y such that

gk(y) < 1 for all k ∈ K

we have either

¦ an infeasible dual problem (GD) if primal problem (GP) is unbounded

¦ a feasible dual problem (GD) whose optimum objective value is attained by a feasible
vector x if primal problem (GP) is bounded. Moreover, the optimum objective values of
(GP) and (GD) are equal.

Proof (a more classical proof can be found in [Kla74, §2]). Choosing again vectors s and v
according to the linear constraints, we find a feasible solution (y, s, v) for the primal conic
problem (CGP). Moreover, recalling the description of intGn given by Theorem 5.3, the
conditions vk = 1 > 0 and gk(y) =

∑
i∈Ik

e−si < 1 ensure that (y, s, v) is a strictly feasible
solution for (CGP). The strong duality Theorem 3.5 implies then that we have either

¦ an infeasible dual problem (CGD) if primal problem (CGP) is unbounded: this is equiv-
alent to the first part of our claim, since it is clear that (CGP) is unbounded if and
only if (GP) is unbounded and that (CGD) is infeasible if and only if (GD) is infeasible
(indeed, (x, z) feasible for (CGD) implies x feasible for (GD), while x feasible for (GD)
implies (x, 0) feasible for (CGD)). This fact could also have been obtained as a simple
consequence of weak duality Theorem 5.9.

¦ a feasible dual problem (CGD) whose optimum objective value is attained by a feasible
vector (x, z) if primal problem (CGP) is bounded. Moreover, the optimum objective
values of (CGP) and (CGD) are equal. Obviously, the finite optimum objective values
of (CGP) and (GP) are equal. It is also clear that optimal variables zk in (CGD) must
attain the lower bounds defined by the conic constraints, as in (5.7), which implies that
vector x is optimum for problem (GD) and has the same objective value as (x, z) in
(CGD). This proves the second part of our claim.

108 5. Geometric optimization

Let us note again that a sufficient condition for the second case of this theorem to happen
is the existence of a feasible solution for the dual problem (GD), because of the weak duality
property.

The strong duality theorem can also be applied on the dual side.

Theorem 5.11. If there exists is a strictly positive feasible solution for the dual problem
(GD), i.e. a vector x such that

Ax = b and x > 0 ,

we have either

¦ an infeasible primal problem (GP) if dual problem (GD) is unbounded

¦ a feasible primal problem (GP) whose optimum objective value is attained by a feasible
vector y if dual problem (GD) is bounded. Moreover, the optimum objective values of
(GD) and (GP) are equal.

Proof (a traditional proof can be found in [Kla74, §5]). As for the previous theorem, the first
part of our claim is a direct consequence of Theorem 5.9, that does not really rely on the
existence of a strictly positive x. Let us prove the second part of our claim and suppose
that problem (GD) is bounded. Problem (CGD) cannot be unbounded, because each feasible
solution (x, z) for (CGD) leads to a feasible x for (GD) with a lower objective (because of the
conic constraints), which would also lead to an unbounded (GD). Using the description of
int(Gn)∗ given by Theorem 5.7, we find that a feasible x > 0 for (GD) can be easily converted
to a strictly feasible solution (x, z) for (CGD), taking sufficiently large values for variables zk

(letting zk = 1 for example is enough). The strong duality theorem implies thus, since (CGD)
has been shown to be bounded, that problem (CGP) is feasible with an optimum objective
value attained by a feasible vector (y, s, v) and equal to the dual optimum objective value
of (CGD). Obviously, on the one hand, vector y is a feasible optimum solution to problem
(GP), attaining the same objective value as (y, s, v) in (CGD). On the other hand, the finite
optimum objective values of (CGD) and (GD) must be equal, even if no feasible solution is
actually optimum (since x feasible for (GD) implies (x, z) feasible for (CGD) with the same
objective value and (x, z) feasible for (CGD) implies x feasible for (GD) with a smaller or
equal objective value). This is enough to prove the second part of our claim.

To conclude this section, we prove a last theorem that involves the alternate version of
the strong duality theorem. Let us introduce the following family of optimization problems,
parameterized by a strictly positive parameter δ:

p̂(δ) = sup bT y s.t. gk(y) ≤ eδ for all k ∈ K . (GPδ)

It is clear that each of these problems is a (strict) relaxation of problem (GP), because eδ > 1
for δ > 0, hence we have p̂(δ) ≥ p∗ for all δ. Moreover, since the feasible region of these

5.3 – Duality for geometric optimization 109

problems shrinks as δ tends to zero, p̂(δ) is a nondecreasing function of δ and we can always
define the following limit

p̂ = lim
δ→0+

p̂(δ) ,

which we will call the subvalue of problem (GP). We have the following theorem

Theorem 5.12. If there exists a feasible solution to the dual problem (GD), the subvalue of
the primal problem (GP) is equal to the optimum objective value of the dual problem (GD).

Proof. We are going to show in fact that the primal subvalue p̂ is equal to the subvalue p− of
the primal conic optimization problem (CGP) according to Definition 3.7. Using Theorem 3.6
on the primal-dual conic pair (CGP)–(CGD), we will find that p− = d∗ (the first case of the
theorem cannot happen since (GD), and hence (CGD), is feasible by hypothesis). Noting
finally that the optimum objective values of (CGD) and (GD) are equal (which has been
shown in the course of the previous proof) will conclude our proof.

Let us restate the definition of the subvalue p− for problem (CGP). Defining the following
family of problems, parameterized by a strictly positive parameter ε,

sup
(y,s,v)

bT y s.t.
∥∥∥∥
(

AT

0

)
y +

(
s
v

)
−

(
c
e

)∥∥∥∥ < ε, (sIk
, vk) ∈ Gnk ∀k ∈ K , (CGPε)

whose optimum objective values will be denoted by p̄(ε), we have that the subvalue p− of the
primal problem (CGP) is defined by

p− = lim
ε→0+

p̄(ε) .

We first show that for all δ > 0, the inequality p̂(δ) ≤ p̄(ε) holds for some well chosen value
of ε. Let y a feasible solution for problem (GPδ). Using the definition of gk, constraints
gk(y) ≤ eδ easily give ∑

i∈Ik

eaT
i y−ci−δ ≤ 1 ,

which shows that the following choice of vectors s and v

si = ci − aT
i y + δ for all i ∈ I and vk = 1 for all k ∈ K

will be feasible for problem (CGPε) with ε = δ
√

n, since we have then (sIk
, vk) ∈ Gnk∀k ∈ K

and ∥∥∥∥
(

AT

0

)
y +

(
s
v

)
−

(
c
e

)∥∥∥∥ =
∥∥∥∥
(

δ
0

)∥∥∥∥ = δ
√

n .

Since every feasible solution y for (GPδ) gives a feasible solution (y, s, v) for (CGPε) with the
same objective value, the latter problem cannot have a smaller optimum objective value and
we have p̂(δ) ≤ p̄(δ

√
n). Taking the limit when δ → 0, this shows that p̂ ≤ p−.

Let us now work in the opposite direction and let (y, s, v) a feasible solution to problem
(CGPε). We have thus

∑

i∈Ik

e
− si

vk ≤ 1 for all k ∈ K and
∥∥∥∥
(

AT y + s− c
v − e

)∥∥∥∥ < ε ,

110 5. Geometric optimization

which implies { ∣∣aT
i y + si − ci

∣∣ < ε for all i ∈ I
|vk − 1| < ε for all k ∈ K

.

We write

1 ≥
∑

i∈Ik

e
− si

vi >
∑

i∈Ik

e−
ci−aT

i y+ε

1−ε ,

since vk > 1− ε, si < ci − aT
i y + ε and x 7→ e−x is a monotonic decreasing function. Defining

ỹ = y
1−ε , we have

ci − aT
i y + ε

1− ε
= ci − aT

i ỹ +
ci + ε

1− ε
− ci

= ci − aT
i ỹ +

ε

1− ε
(ci + 1)

≤ ci − aT
i ỹ +

ε

1− ε
(max ci + 1)

≤ ci − aT
i ỹ +

Cε

1− ε
,

where C = max ci + 1. We have thus

1 >
∑

i∈Ik

e−
ci−aT

i y+ε

1−ε ≥
∑

i∈Ik

eaT
i ỹ−ci− Cε

1−ε = e−
Cε
1−ε

∑

i∈Ik

eaT
i ỹ−ci ,

which shows that ∑

i∈Ik

eaT
i ỹ−ci < e

Cε
1−ε ,

i.e. ỹ is a feasible solution to problem (GPδ) with δ = Cε
1−ε . Since this solution has an objective

value bT ỹ equal to bT y divided by 1−ε, this means that p̄(ε) ≤ (1−ε)p̂(Cε
1−ε). Taking the limit

when ε → 0, this shows that p− ≤ p̂, and we may conclude that p− = p̂, as announced.

5.3.3 Refined duality

The properties we have proved so far about our pair of primal-dual geometric optimization
problems (GP)–(GD) are merely more or less direct consequences of their convex nature,
hence valid for all convex optimization problems. In this section, we are going further and
prove a result that does not hold in the general convex case, namely we show that our pair
of primal-dual problems cannot have a strictly positive duality gap.

Theorem 5.13. If both problems (GP) and (GD) are feasible, their optimum objective values
are equal (but not necessarily attained).

Proof (the original proof can be found in [Kla74, §7]). In Theorem 5.11, we proved the exis-
tence of a zero duality gap using some assumption on the dual, namely the existence of a
strictly positive feasible vector. What we are going to show here is that if such a point does
not exist, i.e. one or more components of vector x are zero for all feasible dual solutions, our

5.3 – Duality for geometric optimization 111

primal-dual pair can be reduced to an equivalent pair of problems where these components
have been removed, in other words a primal-dual pair with a strictly positive feasible dual
solution and a zero duality gap.

In order to use this strategy, we start by identifying the components of x that are iden-
tically equal to zero on the dual feasible region. This can be done with the following linear
optimization problem:

min 0 s.t. Ax = b and x ≥ 0 . (BLP)

Since this problem has a zero objective function, all feasible solutions are optimal and we
deduce that if a variable xi is zero for all feasible solutions to problem (GD), it is zero for all
optimal solution to problem (BLP). We are going to need the Goldman-Tucker Theorem 4.6
previously used in Chapter 4.

Writing the dual of problem (BLP)

max bT y s.t. AT y + s = 0 and s ≥ 0 , (BLD)

we find that both (BLP) and (BLD) are feasible (the former because (GD) is feasible, the
latter because (y, s) = (0, 0) is always a feasible solution), and thus that the Goldman-Tucker
theorem is applicable.

Having now the optimal partition (B,N) at hand, we observe that the index setN defines
exactly the set of variables xi that are identically zero on the feasible region of problem (GD).
We are now able to introduce a reduced primal-dual pair of geometric optimization problems,
where variables xi with i ∈ N have been removed. We start with the dual problem

inf cT
BxB +

∑

k∈K

∑

i∈Ik∩B|xi>0

xi log
xi∑

i∈Ik∩B xi
s.t. ABxB = b and xB ≥ 0 . (RGD)

It is straightforward to check that this problem is completely equivalent to problem (GD),
since the variables we removed had no contribution to the objective or to the constraints
in (GD). Indeed, there is a one-to-one correspondence preserving objective values between
feasible solutions xB for (RGD) and feasible solutions x for (GD), the latter satisfying always
xN = 0. Our primal geometric optimization problem becomes

sup bT y s.t. gBk (y) ≤ 1 for all k ∈ K , (RGP)

where functions gBk are now defined over the sets Ik ∩ B, i.e.

gBk : Rm 7→ R++ : y 7→
∑

i∈Ik∩B
eaT

i y−ci .

Since the Goldman-Tucker theorem implies the existence of a feasible vector x∗ such that
x∗B > 0 and x∗N = 0, we find that x∗B is a strictly positive feasible solution to (RGD), which
allows us to apply Theorem 5.11. Knowing that (GP) is feasible, problems (GD) and (RGD)
must be bounded: we are in the second case of the theorem and can conclude that problem
(RGP) attains an optimum objective value equal to the optimum objective value of problem
(RGD). The last thing we have to show in order to finish our proof is that the optimum
values of primal problem (GP) and its reduced version (RGP) are equal.

112 5. Geometric optimization

Let us start with ȳ, one of the optimal solutions to (RGP) that are known to exist.
Our goal is thus to prove that problem (GP) has an optimum objective value equal to bT ȳ.
Unfortunately, ȳ is not always feasible for problem (GP), since the additional terms in gk

corresponding to indices i ∈ N result in gk(ȳ) > gBk (ȳ) and possibly gk(ȳ) > 1.

To solve this problem, we are going to perturb ȳ with a suitably chosen vector, in order
to make it feasible. The existence of this perturbation vector will be again derived from the
Goldman-Tucker theorem, in the following manner. Let (x∗, y∗, s∗) a strictly complementary
pair for problems (BLP)–(BLD). Since the optimum primal objective value is obviously equal
to zero, we also have that the optimum dual objective bT y∗ is equal to zero. Moreover, we
have that AT y∗ + s∗ = 0, which gives

AT
By∗ = −s∗B = 0 and AT

N y∗ = −s∗N < 0 .

Considering a vector y defined by y = ȳ + λy∗, where λ is a positive parameter that is going
to tend to +∞, it is easy to check that

gk(y) = gBk (y) + gNk (y)

=
∑

i∈Ik∩B
eaT

i y−ci +
∑

i∈Ik∩N
eaT

i y−ci

=
∑

i∈Ik∩B
eaT

i ȳ+λaT
i y∗−ci +

∑

i∈Ik∩N
eaT

i ȳ+λaT
i y∗−ci

=
∑

i∈Ik∩B
eaT

i ȳ−ci +
∑

i∈Ik∩N
eaT

i ȳ−ci−λs∗i

= gBk (ȳ) +
∑

i∈Ik∩N
eaT

i ȳ−ci−λs∗i ,

which means that
lim

λ→+∞
gk(y) = gBk (ȳ) ≤ 1 for all k ∈ K ,

since s∗i > 0 for all i ∈ N implies that all the exponents in the second sum are tending to
−∞. Moreover, the objective value bT y is equal to bT ȳ + λbT y∗ = bT ȳ for all values of λ,
since bT y∗ = 0.

Until now, our proof has followed the lines of the corresponding proof for lp-norm op-
timization (Theorem 4.7). However, an additional difficulty arises in the case of geometric
optimization. Namely, our vector y is not necessarily feasible for problem (GP) (we may have
gBk (ȳ) = 1 for some k and thus gk(y) > 1 for all λ), and cannot therefore help us in proving
that its optimum objective value is equal to bT ȳ. We have to use a second trick, namely to
”mix” y with a feasible solution to make it feasible.

Let y0 a feasible solution to problem (GP). We know thus that

gk(y0) = gBk (y0) + gNk (y0) ≤ 1 ,

which implies
gBk (y0) < 1

5.3 – Duality for geometric optimization 113

since gNk (y0) is strictly positive. Considering now the vector y = δy0 + (1 − δ)ȳ + λy∗, we
may write

gk(y) = gBk (y) + gNk (y)
= gBk (δy0 + (1− δ)ȳ + λy∗) + gNk (δy0 + (1− δ)ȳ + λy∗)
= gBk (δy0 + (1− δ)ȳ) + gNk (δy0 + (1− δ)ȳ + λy∗) ,

this last line using again the fact that AT
By∗ = 0. We have thus

lim
λ→+∞

gk(y) = gBk (δy0 + (1− δ)ȳ)

for the same reasons as above (exponents in gNk tending to −∞). Since we know that functions
gk are convex, we have that

gBk (δy0 + (1− δ)ȳ) ≤ δgBk (y0) + (1− δ)gBk (ȳ) < δ + (1− δ) = 1 ,

which finally implies
lim

λ→+∞
gk(y) < 1 .

Taking now a sufficiently large value of λ, we can ensure that gk(y) < 1 for all k, i.e. that y
is feasible for problem (GP). The objective value associated to such a solution is equal to

bT y = δbT y0 + (1− δ)bT ȳ + λbT y∗ = δbT y0 + (1− δ)bT ȳ .

Letting finally δ tend to zero, we obtain a sequence of solutions y, feasible for problem (GP),
whose objective values converge to bT ȳ, the optimum objective value of the reduced problem
(RGP), itself equal to the optimum objective value of the dual problem (GD). This is enough
to prove that the primal-dual pair of problems (GP)–(GD) has a zero duality gap.

We also have the following corollary about the subvalue p− of problem (GP).

Corollary 5.1. When both problems (GP) and (GD) are feasible, the optimum objective
value of problem (GP) is equal to its subvalue.

Proof. Indeed, we have in general p∗ ≤ p− ≤ d∗. Since the last theorem implies p∗ = d∗, we
obtain p∗ = p−.

5.3.4 Summary and examples

Let us summarize the possible situations about the primal problem (GP), and give corre-
sponding examples to show that the results obtained so far cannot be sharpened.

¦ In the best possible situation, the dual problem has a strictly positive solution and is
bounded: our primal problem is guaranteed by Theorem 5.11 to be feasible and have
at least one finite optimal solution with a zero duality gap. Taking for example

A =
(

1 0
0 1

)
, b =

(
1
1

)
, c =

(
0
0

)
and I1 = {1, 2} ,

114 5. Geometric optimization

our primal-dual pair (CGP)–(CGD) becomes

sup y1 + y2 s.t. ey1 + ey2 ≤ 1

inf 0 + x1 log
x1

x1 + x2
+ x2 log

x2

x1 + x2
s.t. x1 = 1, x2 = 1 and x ≥ 0 .

The only feasible dual solution is strictly positive, giving a bounded optimum objective
value d∗ = 2 log 1

2 = −2 log 2, and we may easily check (using Lemma 4.1) that y1 =
y2 = − log 2 is the only optimum primal solution, giving also p∗ = −2 log 2.

¦ In the case of an unbounded dual, the primal problem has to be infeasible because of
the weak duality theorem. Choosing

A =
(
0 1

)
, b = 1, c =

(−1
0

)
and I1 = {1, 2} ,

our primal-dual pair becomes

sup y1 s.t. e1 + ey1 ≤ 1

inf − x1 + x1 log
x1

x1 + x2
+ x2 log

x2

x1 + x2
s.t. x2 = 1 and x ≥ 0 .

The dual is unbounded: the feasible solution x = (λ, 1) for all λ > 0 has an objective
value equal to −λ+λ log λ

λ+1 +log 1
λ+1 , which is easily shown to tend to (−∞−1−∞) =

−∞ when λ → +∞. The primal problem is obviously infeasible, as expected.

¦ When both the primal and the dual problems are feasible but the dual does not have a
strictly feasible solution, the duality gap is guaranteed by Theorem 5.13 to be equal to
zero with a finite common optimal objective value, but not necessarily with attainment.
Adding a third variable to our previous examples

A =

1 0 0
0 1 1
0 0 2

 , b =

1
1
0

 , c =

0
0
1

 and I1 = {1, 2, 3} ,

our primal-dual pair becomes

sup y1 + y2 s.t. ey1 + ey2 + ey2+2y3−1 ≤ 1

inf x3 +
∑

i|xi>0

xi log
xi∑3
i=1 xi

s.t. x1 = 1, x2 + x3 = 1, 2x3 = 0 and x ≥ 0 .

The only feasible dual solution x = (1, 1, 0) has a zero component and gives d∗ =
−2 log 2. It is not too difficult to find a sequence of primal feasible solutions tending
to y = (− log 2,− log 2,−∞) that establishes that the supremum of the primal problem
is also equal to p∗ = −2 log 2. However, this value cannot be attained: the primal
constraint implies ey1 + ey2 < 1, which in turn can be shown to force y1 + y2 < −2 log 2
using Lemma 4.1.

5.4 – Concluding remarks 115

¦ Our last example will demonstrate the worst situation that can happen: a feasible
bounded dual problem with an infeasible primal problem. Taking

A =
(

1 0 −1
0 1 0

)
, b =

(
1
0

)
, c =

1
0
−1

 and I1 = {1, 2} , I2 = {3} ,

our primal-dual pair becomes (after some simplifications in the dual objective)

sup y1 s.t. ey1−1 + ey2 ≤ 1 and e1−y1 ≤ 1

inf x1 − x3 + x1 log
x1

x1 + x2
s.t. x1 − x3 = 1, x2 = 0 and x ≥ 0 .

All the feasible dual solution have at least one zero component and it is not difficult
to compute that d∗ = 1 (when x = (1, 0, 0), for example). It is also easy to check that
the primal problem is infeasible: the first constraint implies ey1−1 < 1 and thus y1 < 1,
while the second constraint forces y1 ≥ 1. However, Theorem 5.12 tells us that the
primal problem has a subvalue p− equal to d∗. Indeed, relaxing the primal problem to

sup y1 s.t. ey1−1 + ey2 ≤ eδ and e1−y1 ≤ eδ

for any δ > 0, we find y1 < 1 + δ and y1 ≥ 1 − δ, implying 1 − δ ≤ p̄(δ) < 1 + δ and
leading to a subvalue p− equal to 1, as expected.

5.4 Concluding remarks

5.4.1 Original formulation

In Subsection 5.3.1, we presented a conic formulation for the primal-dual pair of geomet-
ric optimization problems (GP)–(GD) involving linear objective functions, which allowed us
to derive several duality theorems. However, the traditional formulation of geometric opti-
mization usually involves a posynomial objective function, as in (OGP) or in (OGP’), its
convexified variant. In this subsection, we show that such problems can be cast as prob-
lems with a linear objective, and outline how these duality results can be translated into this
traditional formulation.

Let us restate for convenience the convexified problem (OGP’)

inf g0(y) s.t. gk(y) ≤ 1 for all k ∈ K \ {0} , (OGP’)

which is readily seen to be equivalent to

inf e−y0 s.t. g0(y) ≤ e−y0 and gk(y) ≤ 1 for all k ∈ K \ {0} ,

introducing a new variable y0 to express the posynomial objective. Noticing that minimizing
e−y0 amounts to maximizing y0, we can rewrite this last problem as

sup y0 s.t. ey0g0(y) ≤ 1 and gk(y) ≤ 1 for all k ∈ K \ {0} ,

116 5. Geometric optimization

which can now be expressed in the format of (GP) as

sup b̃T ỹ s.t. g̃k(ỹ) ≤ 1 for all k ∈ K ,

where vector of variables ỹ ∈ Rm+1, objective vector b̃ ∈ Rm+1 and posynomials g̃k are defined
by

ỹ =
(

y0

y

)
, b̃ =

(
1
0

)
, g̃0(ỹ) = ey0g0(y) and g̃k(ỹ) = gk(y) for all k ∈ K \ {0} .

This last definition of posynomials g̃k corresponds to the following choice of column
vectors ãi (constants ci are left unchanged):

ãi =
(

1
ai

)
for all i ∈ I0 and ãi =

(
0
ai

)
for all i ∈ I \ I0 .

It is now easy to find a dual for problem (OGP’), based on the known dual for (GP) and
our special choice of ãi and b̃. Defining a matrix Ã whose columns are the ai’s, i.e.

I0︷ ︸︸ ︷ Ik ∀k 6=0︷ ︸︸ ︷

Ã =
(

1, . . . , 1 0, . . . , 0
A

)
,

we find the dual problem

inf cT x +
∑

k∈K

∑

i∈Ik|xi>0

xi log
xi∑

i∈Ik
xi

s.t. Ãx = b̃ and x ≥ 0

or, equivalently,

inf cT x +
∑

k∈K

∑

i∈Ik|xi>0

xi log
xi∑

i∈Ik
xi

s.t. Ax = 0 ,
∑

i∈I0

xi = 1 and x ≥ 0 .

We can manipulate further the second part of the objective function
∑

k∈K

∑

i∈Ik|xi>0

xi log
xi∑

i∈Ik
xi

=
∑

k∈K

∑

i∈Ik|xi>0

(
xi log xi − xi log

∑

i∈Ik

xi

)

=
∑

i∈I

xi log xi −
∑

k∈K

(∑

i∈Ik

xi

)
log

(∑

i∈Ik

xi

)
,

with the convention that 0 log 0 = 0, and find

inf cT x +
∑

i∈I

xi log xi −
∑

k∈K\{0}

(∑

i∈Ik

xi

)
log

(∑

i∈Ik

xi

)
s.t. Ax = 0 ,

∑

i∈I0

xi = 1 and x ≥ 0

(we could remove the term for k = 0 in the second sum because of the linear constraint∑
i∈I0

xi = 1). Noting finally that the objective of (OGP’) is actually e−y0 and not y0, we
find after some easy transformations the final dual problem (using ci = − log Ci)

sup
∏

i∈I

(
Ci

xi

)xi ∏

k∈K\{0}

(∑

i∈Ik

xi

)P
i∈Ik

xi

s.t. Ax = 0 ,
∑

i∈I0

xi = 1 and x ≥ 0 . (OGD’)

5.4 – Concluding remarks 117

This dual problem is identical to the usual formulation that can be found in the litera-
ture [DPZ67, Chapter III]. To close this discussion, we give a few hints on how to establish
links between the classical theory elaborated in [DPZ67] and the results presented in Subsec-
tions 5.3.2 and 5.3.3.

The main lemma in [DPZ67, Chapter IV] is essentially our weak duality theorem with
its associated set of orthogonality conditions. The first and second duality theorems from
[DPZ67, Chapter III] are basically coming from Theorems 5.10 and 5.11, i.e. the application
of the strong duality theorem to the primal and the dual problems (note that the hypotheses
of the first duality theorem suppose primal attainment while our version only requires primal
boundedness, which is a weaker condition). We also note that the notion of subinfimum in
[DPZ67, Chapter VI] for the primal problem is equivalent to our concept of subvalue. Finally,
the strong duality theorems in [DPZ67, Chapter VI] are closely related to our Theorem 5.13,
stating that a nonzero duality gap cannot occur ; the notion of canonical problem that is
heavily used in the associated proofs corresponds to the case N = ∅ in the optimal partition
of problem (BLP), i.e. existence of a strictly feasible dual solution.

5.4.2 Conclusions

In this chapter, we have shown how to use the duality theory of conic optimization to derive
results about geometric optimization. This process involved the introduction of a dedicated
pair of convex cones Gn and (Gn)∗. We would like to point out that conic optimization had so
far been mostly applied to self-dual cones, i.e. to linear, second-order cone and semidefinite
optimization. We hope to have demonstrated here that this theory can be equally useful in
the case of a less symmetric duality.

The results we obtained can be classified into two distinct categories: most of them are
direct consequences of the convex nature of geometric optimization (weak and strong duality
theorems), while some of them are specific to this class of problems (absence of a duality
gap). The set of problems we studied differed in fact slightly from the classical formulation
of geometric optimization, because of the linear objective function.

We would like to point out that this variation in the formulation was necessary since
conic optimization cannot be applied directly to geometric optimization problems cast in
the traditional form. Indeed, problem (OGP) is not convex, which already prevents us from
applying Lagrange duality, while the pair of problems (OGP’)–(OGD’) does not feature a
linear objectives and hence is not suitable for a conic formulation. However, extension of
our results to the case of a posynomial objective function is straightforward, as outlined in
Subsection 5.4.1. We also consider the results associated to our formulation more natural than
their traditional counterparts. For example, looking at the structure of the linear constraints
in the dual problem (OGD’), we understand that the presence of the normalizing constraint∑

i∈I0
x1 = 1 in (OGD’) is essentially a consequence of the posynomial objective, while our

dual problem (GD) features a simpler set of linear constraints Ax = b.

The proofs presented in this chapter possess in our opinion several advantages over the
classical ones: in addition to being shorter, they allow us to confine the specificity of the
class of problems under study to the convex cones used in the formulation. Moreover, the

118 5. Geometric optimization

reason why geometric optimization has better duality properties than a general conic problem
becomes clear: this is essentially due to the existence of a strictly feasible dual solution.
Indeed, even if such an interior solution does not always exist, a regularization procedure
involving an equivalent reduced problem can always be carried out and allows us to prove the
absence of a duality gap in all cases (we note however that the property of primal attainment,
satisfied when there exists a strictly feasible dual solution, is lost in this process and is thus
no longer valid in the general case).

Duality for geometric optimization is a little weaker than for lp-norm optimization.
Namely, we do not have the primal attainment property of Theorem 4.7. The reason for
this became clear in the proof of Theorem 5.13: because the solutions of the restricted primal
problem were not necessarily feasible for the original primal problem, we had to perturb them
with a feasible solution. Decreasing the size of this perturbation term led to a sequence of
feasible solutions y, whose objective values tended to the optimal objective value of problem,
but attainment was lost with this procedure since this sequence does not necessarily have a
finite limit point. Indeed, the third example in Section 5.3.4 demonstrates a situation when
such a sequence of feasible points tending to optimality has one component tending to +∞.

A last advantage of our conic formulation is that it allows us to benefit with minimal
work from the theory of polynomial interior-point methods for convex optimization developed
in [NN94]. Indeed, finding a computable self-concordant barrier for our geometric cone Gn,
would be all that is needed to build an algorithm able to solve a geometric optimization prob-
lem up to a given accuracy within a polynomial number of arithmetic operations. However,
the definition of cone Gn is not convenient and Chapter 6 will provide an alternative cone
suitable for geometric optimization, which will prove much more suitable for the purpose of
finding a self-concordant barrier.

CHAPTER 6

A different cone for geometric optimization

Chapters 4 and 5 have presented a new way of formulating two classical classes
of structured convex problems, lp-norm and geometric optimization, using ded-
icated convex cones. This approach has some advantages over the traditional
formulation: it simplifies the proofs of the well-known associated duality prop-
erties (i.e. weak and strong duality) and the design of a polynomial algorithm
becomes straightforward.

In this chapter, we make a step towards the description of a common frame-
work that would include these two classes of problems. Indeed, we introduce a
variant of the cone for geometric optimization Gn used in Chapter 5 and show
it is equally suitable to formulate this class of problems. This new cone has
the additional advantage of being very similar to the cone Lp used for lp-norm
optimization 4, which opens the way to a common generalization.

6.1 Introduction

In Chapter 5, we defined an appropriate convex cone that allowed us to express geometric
optimization problems as conic programs, the aim being to apply the general duality theory
for conic optimization from Chapter 3 to these problems and prove in a seamless way the
various well-known duality theorems of geometric optimization. The goal of this chapter is
to introduce a variation of this convex cone that preserves its ability to model geometric
optimization problems but bears more resemblance with the cone that was introduced for
lp-norm optimization in Chapter 4, hinting for a common generalization of these two families

119

120 6. A different cone for geometric optimization

of cones.

This chapter is organized as follows: Section 6.2 introduces the convex cones needed to
model geometric optimization and studies some of their properties. Section 6.4 constitutes
the main part of this chapter and demonstrates how the above-mentioned cones enable us
to model primal and dual geometric optimization problems in a seamless fashion. Modelling
the primal problem with our first cone is rather straightforward and writing down its dual is
immediate, but some work is needed to prove the equivalence with the traditional formulation
of a dual geometric optimization problem. Finally, concluding remarks in Section 6.5 provide
some insight about the relevance of our approach and pave the way to Chapter 7, where it is
applied to a much larger class of cones.

6.2 The extended geometric cone

Let us introduce the extended geometric cone Gn
2 , which will allow us to give a conic formu-

lation of geometric optimization problems.

Definition 6.1. Let n ∈ N. The extended geometric cone Gn
2 is defined by

Gn
2 =

{
(x, θ, κ) ∈ Rn

+ × R+ × R+ | θ
n∑

i=1

e−
xi
θ ≤ κ

}

using in the case of a zero denominator the following convention:

e−
xi
0 = 0 .

We observe that this convention results in (x, 0, κ) ∈ Gn
2 for all x ∈ Rn

+ and κ ∈ R+. As
a special case, we mention that G0

2 is the 2-dimensional nonnegative orthant R2
+. The main

difference between this cone and the original geometric cone Gn described in Chapter 5 is the
addition of a variable κ.

In order to use the conic formulation from Chapter 3, we first prove that Gn
2 is a convex

cone.

Theorem 6.1. Gn
2 is a convex cone.

Proof. Let us first introduce the following function

fn : Rn
+ × R+ 7→ R+ : (x, θ) 7→

n∑

i=1

θe−
xi
θ .

With the convention mentioned above, its effective domain is Rn+1
+ . It is straightforward to

check that fn is positively homogeneous, i.e. fn(λx, λθ) = λfn(x, θ) for λ ≥ 0. Moreover, fn

is subadditive, i.e. fn(x + x′, θ + θ′) ≤ fn(x, θ) + fn(x′, θ′). In order to show this property, we
can work on each term of the sum separately, which means that we only need to prove the
following inequality for all x, x′ ∈ R and θ, θ′ ∈ R+:

θe−
x
θ + θ′e−

x′
θ′ ≥ (θ + θ′)e−

x+x′
θ+θ′ .

6.2 – The extended geometric cone 121

First observe that this inequality holds when θ = 0 or θ′ = 0. For example, when θ = 0, we

have to check that θ′e−
x′
θ′ ≥ θ′e−

x+x′
θ′ , which is a consequence of the fact that x 7→ e−x is a

decreasing function. When θ + θ′ > 0, we use the well-known fact that x 7→ e−x is a convex
function on R+, implying that λe−a + λ′e−a′ ≥ e−(λa+λa′) for any nonnegative a, a′, λ and λ′

satisfying λ + λ′ = 1. Choosing a = x
θ , a′ = x′

θ′ , λ = θ
θ+θ′ and λ′ = θ′

θ+θ′ , we find that

θ
θ+θ′ e

−x
θ + θ′

θ+θ′ e
−x′

θ′ ≥ e
− θ

θ+θ′
x
θ
− θ′

θ+θ′
x′
θ′ ,

which, after multiplying by (θ + θ′), lead to the desired inequality

θe−
x
θ + θ′e−

x′
θ′ ≥ (θ + θ′)e−

x+x′
θ+θ′ .

Positive homogeneity and subadditivity imply that fn is a convex function. Since fn(x, θ) ≥ 0
for all x ∈ Rn

+ and θ ∈ R+, we notice that Gn
2 is the epigraph of fn, i.e.

epi fn =
{

(x, θ, κ) ∈ Rn
+ × R+ × R | fn(x, θ) ≤ κ

}
= Gn

2 .

Gn
2 is thus the epigraph of a convex positively homogeneous function, hence a convex cone

[Roc70a].

Note that the above proof bears much more resemblance with the corresponding proof
for the Lp cone of lp-norm optimization than the original geometric cone Gn. We now proceed
to prove some properties of the extended geometric cone Gn

2 .

Theorem 6.2. Gn
2 is closed.

Proof. Let
{
(xk, θk, κk)

}
a sequence of points in Rn+2

+ such that (xk, θk, κk) ∈ Gn
2 for all k

and limk→∞(xk, θk, κk) = (x∞, θ∞, κ∞). In order to prove that Gn
2 is closed, it suffices to

show that (x∞, θ∞, κ∞) ∈ Gn
2 . Let us distinguish two cases:

¦ θ∞ > 0. Using the easily proven fact that functions (xi, θ) 7→ θe−
xi
θ are continuous on

R+ × R++, we have that

θ∞
n∑

i=1

e−
x∞i
θ∞ =

n∑

i=1

θ∞e−
x∞i
θ∞ =

n∑

i=1

lim
k→∞

θke
−xk

i
θk = lim

k→∞

n∑

i=1

θke
−xk

i
θk ≤ lim

k→∞
κk = κ∞ ,

which implies (x∞, θ∞) ∈ Gn
2 .

¦ θ∞ = 0. Since (xk, θk, κk) ∈ Gn
2 , we have xk ≥ 0 and κk ≥ 0, which implies that x∞ ≥ 0

and k∞ ≥ 0. This shows that (x∞, 0, κ∞) ∈ Gn
2 .

In both cases, (x∞, θ∞, κ∞) is shown to belong to Gn
2 , which proves the claim.

It is also interesting to identify the interior of this cone.

122 6. A different cone for geometric optimization

Theorem 6.3. The interior of Gn
2 is given by

intGn
2 =

{
(x, θ, κ) ∈ Rn

++ × R++ × R++ | θ
n∑

i=1

e−
xi
θ < κ

}
.

Proof. According to Lemma 7.3 in [Roc70a] we have

intGn
2 = int epi fn = {(x, θ, κ) | (x, θ) ∈ int dom fn and fn(x, θ) < κ} .

The above-stated result then simply follows from the fact that int dom fn = Rn+1
++ .

Corollary 6.1. The cone Gn
2 is solid.

Proof. It suffices to prove that there exists at least one point that belongs to intGn
2 (Defini-

tion 3.3). Taking for example the point (e, 1
n , 1), where e stands for the n-dimensional all-one

vector, we have
n∑

i=1

θe−
xi
θ = e−n < 1 = κ ,

and therefore (e, 1
n , 1) ∈ intGn

2 .

We also have the following fact:

Theorem 6.4. Gn
2 is pointed.

Proof. The fact that 0 ∈ Gn
2 ⊆ Rn+2

+ implies that Gn
2 ∩ −Gn

2 = {0}, i.e. Gn
2 is pointed (Defini-

tion 3.2).

To summarize, Gn
2 is a solid pointed closed convex cone, hence suitable for conic opti-

mization.

6.3 The dual extended geometric cone

In order to express the dual of a conic problem involving the extended geometric cone Gn
2 , we

need to find an explicit description of its dual.

Theorem 6.5. The dual of Gn
2 is given by

(Gn
2)∗ =

{
(x∗, θ∗, κ∗) ∈ Rn

+ × R × R+ | θ∗ ≥
∑

0<x∗i <κ∗

(
x∗i log

x∗i
κ∗
− x∗i

)−
∑

x∗i≥κ∗
κ∗

}
.

6.3 – The dual extended geometric cone 123

Proof. Using Definition 3.4 for the dual cone, we have

(Gn
2)∗ =

{
(x∗, θ∗, κ∗) ∈ Rn × R × R | (x, θ, κ)T (x∗, θ∗, κ∗) ≥ 0 for all (x, θ, κ) ∈ Gn

2

}

(the ∗ superscript on variables x∗ and θ∗ is a reminder of their dual nature). We first note
that in the case θ = 0, we may choose any x ∈ Rn

+ and κ ∈ R+ and have (x, 0, κ) ∈ Gn
2 , which

means that the product

(x, θ, κ)T (x∗, θ∗, κ∗) = xT x∗ + θθ∗ + κκ∗ = xT x∗ + κκ∗

has to be nonnegative for all (x, κ) ∈ Rn+1
+ and is easily seen to imply that x∗ and κ∗ are

nonnegative. We may now suppose θ > 0, (x∗, κ∗) ≥ 0 and write

xT x∗ + θθ∗ + κκ∗ ≥ 0 for all (x, θ, κ) ∈ Gn
2

⇔ xT x∗ + θθ∗ +
(
θ

n∑

i=1

e−
xi
θ
)
κ∗ ≥ 0 for all (x, θ) ∈ Rn

+ × R++

⇔ θ∗ ≥ −xT x∗

θ
− κ∗

n∑

i=1

e−
xi
θ for all (x, θ) ∈ Rn

+ × R++

⇔ θ∗ ≥ −tT x∗ − κ∗
n∑

i=1

e−ti for all t ∈ Rn
+

⇔ θ∗ ≥ −
n∑

i=1

(
tix

∗
i + κ∗e−ti

)
for all t ∈ Rn

+ ,

where we have defined ti = xi
θ for convenience. We now proceed to seek the greatest possible

lower bound on θ∗, examining each term of the sum separately: we have thus to seek the
minimum of

tix
∗
i + κ∗e−ti .

The derivative of this quantity with respect to ti being equal to x∗i − κ∗e−ti , we have a
minimum when ti = − log x∗i

κ∗ , but we have to take into account the fact that ti has to be
nonnegative, which leads us to distinguish the following three cases

¦ κ∗ = 0: in this case, the minimum is always equal to 0,

¦ κ∗ > 0 and x∗i ≤ κ∗: in this case, the minimum is attained for a nonnegative ti and is
equal to −x∗i log x∗i

κ∗ +x∗i , this quantity being taken as equal to zero in the case of x∗i = 0,

¦ κ∗ > 0 and x∗i > κ∗: in this case, the minimum value for a nonnegative t is attained for
t = 0 and is equal to κ∗.

These three cases can be summarized with

inf
ti≥0

(
tix

∗
i + κ∗e−ti

)
=

{
−x∗i log x∗i

κ∗ + x∗i when x∗i < κ∗

κ∗ when x∗i ≥ κ∗
.

124 6. A different cone for geometric optimization

Since all of these lower bounds can be simultaneously attained with a suitable choice of t, we
can state the final defining inequalities of our dual cone as

x∗ ≥ 0, κ∗ ≥ 0 and θ∗ ≥
∑

0<x∗i <κ∗

(
x∗i log

x∗i
κ∗
− x∗i

)−
∑

x∗i≥κ∗
κ∗ .

As a special case, since G0
2 = R2

+, we check that (G0
2)∗ = (R2

+)∗ = R2
+, as expected.

Note 6.1. It can be easily checked that the lower bound on θ∗ appearing in the definition is
always nonpositive, which means that (x∗, θ∗, κ∗) ∈ (Gn

2)∗ as soon as x∗ and θ∗ are nonnega-
tive. This fact could have been guessed prior to any computation: noticing that Gn

2 ⊆ Rn+2
+

and (Rn+2
+)∗ = Rn+2

+ , we immediately have that (Gn
2)∗ ⊇ Rn+2

+ , because taking the dual of a
set inclusion reverses its direction.

Finding the dual of Gn
2 was a little involved, but establishing its properties is straight-

forward.

Theorem 6.6. (Gn
2)∗ is a solid, pointed, closed convex cone. Moreover, ((Gn

2)∗)∗ = Gn
2 .

Proof. The proof of this fact is immediate by Theorem 3.3 since (Gn
2)∗ is the dual of a solid,

pointed, closed convex cone.

The interior of (Gn
2)∗ is also rather easy to obtain:

Theorem 6.7. The interior of (Gn
2)∗ is given by

int(Gn
2)∗ =

{
(x∗, θ∗, κ∗) ∈ Rn

++ × R × R++ | θ∗ >
∑

0<x∗i <κ∗

(
x∗i log

x∗i
κ∗
− x∗i

)−
∑

x∗i≥κ∗
κ∗

}
.

Proof. We first note that (Gn
2)∗, a convex set, is the epigraph of the following function

fn : Rn
+ × R+ 7→ R : (x∗, κ∗) 7→

∑

0<x∗i <κ∗

(
x∗i log

x∗i
κ∗
− x∗i

)−
∑

x∗i≥κ∗
κ∗ ,

which implies that fn is convex (by definition of a convex function). Hence we can apply
Lemma 7.3 from [Roc70a] to get

int(Gn
2)∗ = int epi fn =

{
(x∗, κ∗, θ∗) ∈ int dom fn × R | θ∗ > fn(x∗, κ∗)

}
,

which is exactly our claim since int(Rn
+ × R+) = Rn

++ × R++.

6.4 A conic formulation

This is the main section of this chapter, where we show how a primal-dual pair of geometric
optimization problems can be modelled using the Gn

2 and (Gn
2)∗ cones.

6.4 – A conic formulation 125

6.4.1 Modelling geometric optimization

Let us restate here for convenience the definition of the standard primal geometric optimiza-
tion problem.

sup bT y s.t. gk(y) ≤ 1 for all k ∈ K , (GP)

where functions gk are defined by

gk : Rm 7→ R++ : y 7→
∑

i∈Ik

eaT
i y−ci .

We first introduce a vector of auxiliary variables s ∈ Rn to represent the exponents used
in functions gk, more precisely we let

si = ci − aT
i y for all i ∈ I or, in matrix form, s = c−AT y ,

where A is a m× n matrix whose columns are ai. Our problem becomes then

sup bT y s.t. s = c−AT y and
∑

i∈Ik

e−si ≤ 1 for all k ∈ K ,

which is readily seen to be equivalent to the following, using the definition of Gn
2 (where both

variables κ and θ have been fixed to 1),

sup bT y s.t. AT y + s = c and (sIk
, 1, 1) ∈ G#Ik

2 for all k ∈ K ,

and finally to

sup bT y s.t.

AT

0
0

 y +

s
v
w

 =

c
e
e

 and (sIk

, vk, wk) ∈ Gnk
2 for all k ∈ K , (CG2P)

where e is the all-one vector in Rr, nk = #Ik and two additional vectors of fictitious variables
v, w ∈ Rr have been introduced, whose components are fixed to 1 by part of the linear
constraints. This is exactly a conic optimization problem, in the dual form (CD), using
variables (ỹ, s̃), data (Ã, b̃, c̃) and a cone K∗ such that

ỹ = y, s̃ =

s
v
w

 , Ã =

(
A 0 0

)
, b̃ = b, c̃ =

c
e
e

 and K∗ = Gn1

2 × Gn2
2 × · · · × Gnr

2 ,

where K∗ has been defined as the Cartesian product of several disjoint extended geometric
cones, according to Note 3.1, in order to deal with multiple conic constraints involving disjoint
sets of variables. We also note that the fact that we have been able to model geometric
optimization with a convex cone is a proof that these problems are convex.

126 6. A different cone for geometric optimization

6.4.2 Deriving the dual problem

Using properties of Gn
2 and (Gn

2)∗ proved in the previous section, it is straightforward to show
that K∗ is a solid, pointed, closed convex cone whose dual is

(K∗)∗ = K = (Gn1
2)∗ × (Gn2

2)∗ × · · · × (Gnr
2)∗ ,

another solid, pointed, closed convex cone, according to Theorem 3.3. This allows us to
derive a dual problem to (CG2P) in a completely mechanical way and find the following conic
optimization problem, expressed in the primal form (CP):

inf

c
e
e

T

x
z
u

 s.t.

(
A 0 0

)

x
z
u

 = b and (xIk

, zk, uk) ∈ (Gnk
2)∗ ∀k ∈ K , (CG2D)

where x ∈ Rn, z ∈ Rr and u ∈ Rr are the vectors we optimize. This problem can be simplified:
making the conic constraints explicit, we find

inf cT x + eT z + eT u s.t.

{
Ax = b, xIk

≥ 0, uk ≥ 0 ,

zk ≥
∑

i∈Ik|0<xi<uk

(
xi log xi

uk
− xi

)−∑
i∈Ik|xi≥uk

uk ∀k ∈ K ,

which can be further reduced to

inf cT x+eT u+
∑

k∈K

(∑

i∈Ik|0<xi<uk

(
xi log

xi

uk
−xi

)−
∑

i∈Ik|xi≥uk

uk

)
s.t. Ax = b, u ≥ 0 and x ≥ 0 .

Indeed, since each variable zk is free except for the inequality coming from the associated conic
constraint, these inequalities must be satisfied with equality at each optimum solution and
variables z can therefore be removed from the formulation. At this point, the formulation
we have is simpler than the pure conic dual but is still different from the usual geometric
optimization dual problem (GD) one can find in the literature. A little bit of calculus will
help us to bridge the gap: let us fix k and consider the corresponding terms in the objective

cT
Ik

xIk
+ uk +

∑

i∈Ik|0<xi<uk

(
xi log

xi

uk
− xi

)−
∑

i∈Ik|xi≥uk

uk .

We would like to eliminate variable uk, i.e. find for which value of uk the previous quantity is
minimum. It is first straightforward to check that such a value of uk must satisfy xi < uk for
all i ∈ Ik, i.e. will only involve the first summation sign (since the value −uk in the second
sum is attained as a limit case in the first sum when xi tends to uk from below). Taking the
derivative with respect to uk and equating it to zero we find

0 = 1 +
∑

i∈Ik

xi
uk

xi
(− xi

u2
k

) = 1−
∑

i∈Ik
xi

uk
, which implies uk =

∑

i∈Ik

xi .

Our objective terms become equal to

cT
Ik

xIk
+

∑

i∈Ik

xi +
∑

i∈Ik

(
xi log

xi∑
i∈Ik

xi
− xi

)
= cT

Ik
xIk

+
∑

i∈Ik

xi log
xi∑

i∈Ik
xi

,

6.5 – Concluding remarks 127

and leads to the following simplified dual problem

inf cT x +
∑

k∈K

∑

i∈Ik|xi>0

xi log
xi∑

i∈Ik
xi

s.t. Ax = b and x ≥ 0 , (GD)

which is, as we expected, the traditional form of a dual geometric optimization problem (see
Chapter 5). This confirms the relevance of our pair of primal-dual extended geometric cones
as a tool to model the class of geometric optimization problems.

6.5 Concluding remarks

In this chapter, we have formulated geometric optimization problems in a conic way using
some suitably defined convex cones Gn

2 and (Gn
2)∗. This approach has the following advantages:

¦ Classical results from the standard conic duality theory can be applied to derive the
duality properties of a pair of geometric optimization problems, including weak and
strong duality. This was done in Chapters 4 and 5 and could be done here in a very
similar fashion.

¦ Proving that geometric optimization problems can be solved in polynomial time can
now be done rather easily: finding a suitable (i.e. computable) self-concordant barrier
for cones Gn

2 and (Gn
2)∗ is essentially all that is needed.

¦ Unlike the cones Gn and (Gn)∗ introduced in Chapter 5, the pair of cones we have
introduced in this chapter bears some strong similarities with the cones Lp and Lq

s used
in Chapters 4 for lp-norm optimization. We can indeed write the following equivalent
definition of the cone Lp

Lp =
{

(x, θ, κ) ∈ Rn × R+ × R+ | θ
n∑

i=1

1
pi

∣∣∣xi

θ

∣∣∣
pi ≤ κ

}

and compare it to

Gn
2 =

{
(x, θ, κ) ∈ Rn

+ × R+ × R+ | θ
n∑

i=1

e−
xi
θ ≤ κ

}
.

The only difference between those two definitions is the function that is applied to the
quantities xi

θ for each term of the sum: the extended geometric cone Gn
2 uses x 7→ e−x

while the lp-norm cone Lp is based on x 7→ 1
pi
|x|pi . This observation is the first step

towards the design of a common framework that would encompass geometric optimiza-
tion, lp-norm optimization and several other kinds of structured convex problems, which
is the topic of Chapter 7.

CHAPTER 7

A general framework for separable convex optimization

In this chapter, we introduce the notion of separable cone Kf to generalize the
cones Lp and Gn

2 presented in Chapters 4 and 6 to model lp-norm and geometric
optimization. We start by giving a suitable definition for this new class of cones,
and then proceed to investigate their properties and compute the correspond-
ing dual cones, which share the same structure as their primal counterparts.
Special care is taken to handle in a correct manner the boundary of these cones.

This allows us to present a new class of primal-dual convex problems using the
conic formulation of Chapter 3, with the potential to model many different types
of constraints.

7.1 Introduction

Chapter 4 and Chapter 5 were devoted to the study of lp-norm optimization and geometric
optimization using a conic formulation. The reader has probably noticed a lot of similarity
between these two chapters. Indeed, in both cases, we started by defining an ad hoc con-
vex cone, studied its properties (i.e. proved closedness, solidness, pointedness and identified
its interior), computed the corresponding dual cone and listed the associated orthogonality
conditions.

The primal cone allowed us to model the traditional primal formulation of these two
classes of problems, while the dual cone allowed us to find in a straightforward manner the
classical dual associated to these problems. Furthermore, this setting allowed us to prove the
associated duality properties (using the theory of conic duality, see Chapter 3) and in the case

129

130 7. A general framework for separable convex optimization

of lp-norm optimization to describe an interior-point polynomial-time algorithm (using the
framework of self-concordant barriers, see Chapter 2). This new approach had the advantage
of simplifying the proofs and giving some insight on the duality properties of these two classes
of problems, which are better than in the case of a general convex problem.

The purpose of this chapter is to show that this process can be generalized to a great
extent. Indeed, Chapter 6 started to bridge the gap between lp-norm optimization and geo-
metric optimization by giving an alternate formulation for the latter. We recall here the last
remark of Section 6.5, whose purpose was to compare the following equivalent definition of
the cone Lp

Lp =
{

(x, θ, κ) ∈ Rn × R+ × R+ | θ
n∑

i=1

1
pi

∣∣∣xi

θ

∣∣∣
pi ≤ κ

}

with the definition of the extended geometric cone

Gn
2 =

{
(x, θ, κ) ∈ Rn

+ × R+ × R+ | θ
n∑

i=1

e−
xi
θ ≤ κ

}
.

We noticed that the only difference between those two definitions was the function that was
applied to the quantities xi

θ for each term of the sum: the extended geometric cone Gn
2 used

the negative exponential x 7→ e−x while the lp-norm cone Lp was based on x 7→ 1
pi
|x|pi . The

purpose of this chapter is to generalize these two cones, based on the use of an arbitrary
convex function in the definition of a cone with the same structure as Lp and Gn

2 .

This chapter is organized as follows. In order to use the setting of conic optimization,
we define in Section 7.2 a large class of convex cones called separable cones. Section 7.3 is
devoted to the computation of the corresponding dual cone. Section 7.4 provides an alternate
and more explicit definition of these cones. Section 7.5 shows that the class of separable
cones is indeed a generalization of the lp-norm and geometric cones presented in previous
chapters. Section 7.6 presents the primal-dual pair of conic optimization problems built with
our separable cones and finally Section 7.7 concludes with some possible directions for future
research.

7.2 The separable cone

Let n ∈ N and let us consider a set of n convex scalar functions

{fi : R 7→ R ∪ {+∞} : x 7→ fi(x) for all 1 ≤ i ≤ n} ,

which can be conveniently assembled into an n-dimensional function of R

f : R 7→ (R ∪ {+∞})n : x 7→ (
f1(x), f2(x), . . . , fn(x)

)
.

Function f is obviously also convex. We will also require functions f to be proper and closed,
according to the following definitions (see e.g. [Roc70a]).

Definition 7.1. A convex function f : Rn 7→ R∪{+∞} is proper if it is not identically equal
to +∞ on Rn, i.e. if there exists at least a point y ∈ Rn such that f(y) is finite.

7.2 – The separable cone 131

Definition 7.2. A convex function f : Rn 7→ R ∪ {+∞} is closed if and only if its epigraph
is closed, i.e. if

{(x, t) ∈ Rn × R | f(x) ≤ t} = cl{(x, t) ∈ Rn × R | f(x) ≤ t} .

Theorem 7.1 in [Roc70a] states that a function f is closed if and only if it is lower
semi-continuous, according to the following definition:

Definition 7.3. A function f : Rn 7→ R ∪ {+∞} is lower semi-continuous if and only if

f(x) ≤ lim
k 7→+∞

f(xk)

for every sequence such that xk converges to x and the limit of f(x1), f(x2), . . . exists in
R ∪ {+∞}.

Let us now consider the following set

K◦f =
{

(x, θ, κ) ∈ Rn × R++ × R | θ
n∑

i=1

fi(
xi

θ
) ≤ κ

}
.

The closure of this set will be define the separable cone Kf .

Definition 7.4. The separable cone Kf ⊆ Rn+2 is defined by

Kf = clK◦f = cl
{

(x, θ, κ) ∈ Rn × R++ × R | θ
n∑

i=1

fi(
xi

θ
) ≤ κ

}
.

Comparing this with the definitions of cones Lp, Gn and Gn
2 , we notice that we did

not have to introduce an arbitrary convention for the case of a zero denominator, since the
definition of K◦f , which is based on the potentially undefined argument xi

θ , only uses strictly
positive values of θ.

We first show that Kf is a closed convex cone, i.e. that it will be suitable for conic
optimization.

Theorem 7.1. Kf is a closed convex cone.

Proof. Since Kf is obviously a closed set, we only have to prove that it is closed under addition
and nonnegative scalar multiplication. Let us first suppose y ∈ Kf and consider λ > 0. Since
Kf = clK◦f , we have that there exists a sequence y1, y2, . . . converging to y such that yk ∈ K◦f
for all k. Letting yk = (xk, θk, κk), we immediately see that λyk = (λxk, λθk, λκk) also belongs
to K◦f , since

θk ∈ R++ ⇔ λθk ∈ R++ and θk
n∑

i=1

fi(
xk

i

θk
) ≤ κk ⇔ λθk

n∑

i=1

fi(
λxk

i

λθk
) ≤ λκk for all λ > 0 .

Taking now the limit of the sequence λyk, we find that limk→+∞ λyk = λ limk→+∞ yk = λy
belongs to Kf , because of the closure operation.

132 7. A general framework for separable convex optimization

We also have to handle the case λ = 0, i.e. prove that 0 always belongs to Kf . Indeed,
recalling that functions fi are proper, we have for each index i a real x̂i such that fi(x̂i) < +∞.
This is easily seen to imply that the point (x̂, 1,

∑n
i=1 fi(x̂i)) belongs to K◦f . Using the above

discussion, we immediately also have that (µx̂, µ, µ
∑n

i=1 fi(x̂i)) ∈ K◦f for all µ > 0. Letting
µ tend to 0, we find that the limit point of this sequence is (0, 0, 0) and has to belong to the
closure of K◦f , i.e. that 0 ∈ Kf .

Let us now consider another point z belonging to Kf , which implies the existence of a
sequence z1, z2, . . . converging to z such that zk ∈ K◦f for all k. We would like to show that
yk + zk belongs to K◦f , since it would then imply that

lim
k→+∞

(yk + zk) = lim
k→+∞

yk + lim
k→+∞

zk = y + z ,

which belongs to clK◦f = Kf . Indeed, letting zk = (x′k, θ′k, κ′k), we first check that θk+θ′k >
0. Convexity of functions fi implies then that

fi

(xk
i + x′i

k

θk + θ′k
)

= fi

(θk

θk + θ′k
xk

i

θk
+

θ′k

θk + θ′k
x′i

k

θ′k
) ≤ θk

θk + θ′k
fi

(xk
i

θk

)
+

θ′k

θk + θ′k
fi

(x′i
k

θ′k
)

,

since we have θk

θk+θ′k + θ′k
θk+θ′k = 1. This shows that

(θk + θ′k)
n∑

i=1

fi

(xk
i + x′i

k

θk + θ′k
) ≤ θk

n∑

i=1

fi

(xk
i

θk

)
+ θ′k

n∑

i=1

fi

(x′i
k

θ′k
) ≤ κk + κ′k ,

i.e. that (yk + zk) belongs to K◦f , which concludes this proof (which was quite similar to the
one we used to show that Lp is convex).

Let us now identify the interior of the separable cone Kf .

Theorem 7.2. The interior of Kf is given by

intKf = intK◦f

=
{

(x, θ, κ) ∈ Rn × R++ × R | xi ∈ int dom fi ∀1 ≤ i ≤ n and θ

n∑

i=1

fi(
xi

θ
) < κ

}
.

Proof. The first equality is obvious, since int clS = intS for any set S. We note K◦f can be
seen as the epigraph of a function g defined by

g : Rn × R++ 7→ R : (x, θ) 7→ θ
n∑

i=1

fi(
xi

θ
) ,

i.e. (x, θ, κ) ∈ K◦f ⇔ g(x, θ) ≤ κ. Moreover, the effective domain of g is easily seen to be
equal to dom f1 × dom f2 × · · · × dom fn × R++. Using now Lemma 7.3 in [Roc70a], we find
that

intK◦f = {(x, θ, κ) ∈ Rn × R++ × R | xi ∈ int dom fi for all 1 ≤ i ≤ n and g(x, θ) < κ
}

,

which is exactly what we wanted to prove.

7.3 – The dual separable cone 133

At this point, we make an additional assumption on our scalar functions fi, namely we
require that int dom fi 6= ∅. Recall that properness of fi only implies dom fi 6= ∅. Since we
know that dom fi is a convex subset in R [Roc70a, p. 23], i.e. an interval, we see that the only
effect of this assumption is to exclude the case where dom fi = {a}, i.e. the situation where
fi is infinite everywhere except at a single point. With this assumption, we have that

Corollary 7.1. The separable cone Kf is solid.

Proof. It suffices to prove that there exists at least one point (x, θ, κ) that belongs to intKf .
The previous theorem shows this is trivially done by taking xi ∈ int dom fi for all 1 ≤ i ≤ n,
θ = 1 and a sufficiently large κ.

7.3 The dual separable cone

We are now going to determine the dual cone of Gf . In order to do that, we have to introduce
the notion of conjugate function (see e.g. [Roc70a]).

Definition 7.5. The conjugate of the convex function f : Rn 7→ R ∪ {+∞} is the function

f∗ : Rn 7→ R ∪ {+∞} : x∗ 7→ sup
x∈Rn

{xT x∗ − f(x)} .

Theorem 12.2 in [Roc70a] states that the conjugate of a closed proper convex function
is also closed, proper and convex, and that the conjugate of that conjugate is equal to the
original function. We will require in addition that int dom f∗i 6= ∅ as for functions fi.

Just as we did in Chapter 4 for the Lp cone, it is convenient to introduce a switched
separable cone Kf

s , which is obtained by taking the opposite x variables and exchanging the
roles of variables θ and κ (note that in the case of the Lp cone, the opposite sign of the dual
x∗ variables was hidden by the fact that the conjugate functions f∗i were even).

Definition 7.6. The switched separable cone Kf
s ⊆ Rn × R × R+ is defined by

(x, θ, κ) ∈ Kf
s ⇔ (−x, κ, θ) ∈ Kf .

We are now ready to describe the dual of Kf .

Theorem 7.3. Let us define f∗ as

f∗ : R 7→ (R ∪ {+∞})n : x 7→ (
f∗1 (x), f∗2 (x), . . . , f∗n(x)

)

where f∗i is the scalar function that is conjugate to fi. The dual of Kf is Kf∗
s .

Proof. Using first the fact that (cl C)∗ = C∗ [Roc70a, p. 121], we have (Kf)∗ = (clK◦f)∗ =
(K◦f)∗. By Definition 3.4 of the dual cone, we have then

(Kf)∗ =
{

v∗ ∈ Rn × R × R | vT v∗ ≥ 0 for all v ∈ K◦f
}

, (7.1)

134 7. A general framework for separable convex optimization

which translates into

(x∗, θ∗, κ∗) ∈ (Kf)∗ ⇔ xT x∗ + θθ∗ + κκ∗ ≥ 0 for all (x, θ, κ) ∈ K◦f .

Let us suppose first that κ∗ > 0. We find that

xT x∗ + θθ∗ + κκ∗ ≥ 0 ∀(x, θ, κ) ∈ K◦f ⇔ xT

θ

x∗

κ∗
+

θ∗

κ∗
+

κ

θ
≥ 0 ∀(x, θ, κ) ∈ K◦f ,

which, since θ > 0 and κ is only restricted to its lower bound in the definition of K◦f , is
equivalent to

xT

θ

x∗

κ∗
+

θ∗

κ∗
+

θ
∑n

i=1 fi(xi
θ)

θ
≥ 0 ⇔ θ∗

κ∗
≥ −xT

θ

x∗

κ∗
−

n∑

i=1

fi(
xi

θ
) ∀(x, θ) s.t.

xi

θ
∈ dom fi ,

where we could replace condition (x, θ, κ) ∈ K◦f with the simpler requirement that xi/θ
belongs to the domain of fi for all 1 ≤ i ≤ n. The key insight to have here is to note that
the maximum of the right-hand side for all valid x and θ can be expressed with the conjugate
functions f∗i , since

f∗i (−x∗i
κ∗

) = sup
y∈R

{−y
x∗i
κ∗
− fi(y)} = sup

y∈dom fi

{−y
x∗i
κ∗
− fi(y)} = sup

(xi/θ)∈dom fi

{−xi

θ

x∗i
κ∗
− fi(

xi

θ
)} .

Our condition is thus equivalent to

θ∗

κ∗
≥

n∑

i=1

f∗i (−x∗i
κ∗

) ⇔ κ∗
n∑

i=1

f∗i (−x∗i
κ∗

) ≤ θ∗ ,

which is exactly the same as saying that (−x∗, κ∗, θ∗) ∈ K◦f∗ or, using our definition of the
switched cone, (x∗, θ∗, κ∗) ∈ K◦f∗s .

We have finally to examine the case κ∗ = 0, which will be done using an indirect approach.
We have just shown that (Kf)∗∩H = K◦f∗s , where H is the open half-space defined by κ∗ > 0,
i.e. H = Rn×R×R++. We are going to make use of Theorem 6.5 in [Roc70a], which essentially
states that

cl(C1 ∩ C2) = cl C1 ∩ cl C2 provided intC1 ∩ intC2 6= ∅ ,

i.e. that the closure of the intersection of two sets is the intersection of their closures, provided
the intersection of their interiors is nonempty. We would like to apply this theorem to sets
(Kf)∗ and H. We first check that int(Kf)∗∩ intH 6= ∅. Indeed, we first have that intH = H.
Moreover, it is easy to see that intK◦f∗s ∩ H 6= ∅ (see Theorem 7.2), which implies that
int(Kf)∗ ∩ H 6= ∅ since K◦f∗s ⊆ (Kf)∗. This allows us to apply the theorem and find that
cl((Kf)∗ ∩H) = cl(Kf)∗ ∩ clH and, since (Kf)∗ is closed, cl((Kf)∗ ∩H) = (Kf)∗ ∩ cl H.

However, we cannot have a point with κ∗ < 0 in (Kf)∗. Indeed, choosing any point
(x, θ, κ) in K◦f , we have that (x, θ, κ′) ∈ K◦f for all κ′ ≥ κ. If κ∗ < 0, we see that the
quantity xT x∗ + θθ∗ + κκ∗ can be made arbitrarily negative when κ′ → +∞, meaning that
the point (x∗, θ∗, κ∗) does not belong to our dual cone. Using the fact that clH is the closed
half-space defined by κ∗ ≥ 0 allows us to write that (Kf)∗ ∩ cl H = (Kf)∗, which combined
with the previous result shows that cl((Kf)∗ ∩H) = (Kf)∗.

Using finally the fact that (Kf)∗ ∩ H = K◦f∗s , we can conclude that (Kf)∗ = clK◦f∗s , i.e.
(Kf)∗ = Kf∗

s .

7.4 – An explicit definition of Kf 135

We note this proof is simpler than its counterpart for the Lp or the Gn
2 cones, because

the adequate use of K◦f instead of Kf which allows an elegant treatment of the case κ∗ = 0.

The dual of a separable cone is thus equal, up to a change of sign and a permutation of
two variables, to another separable cone based on conjugate functions.

Corollary 7.2. We also have (Kf
s)∗ = Kf∗, (Kf∗)∗ = Kf

s and (Kf∗
s)∗ = Kf .

Proof. Immediate considering on the one hand the symmetry between Kf and Kf
s and on the

other hand the symmetry between f and f∗.

Corollary 7.3. Kf and Kf∗
s are solid and pointed.

Proof. We have already proved that Kf is solid which, for obvious symmetry reasons, implies
that its switched counterpart Kf∗

s is also solid. Since pointedness is the property that is dual
to solidness (Theorem 3.3), noting that Kf = (Kf∗

s)∗ and Kf∗
s = (Kf)∗ is enough to prove

that Kf and Kf∗
s are also pointed.

7.4 An explicit definition of Kf

A drawback in our Definition 7.4 is the fact that it expresses Kf as the closure of another set,
namely K◦f . Since K◦f ⊆ Rn×R++×R, we immediately have that Kf = clK◦f ⊆ Rn×R+×R,
which shows that Kf can have points with a θ component equal to 0. This relates to the
various conventions that had to be taken to handle the case of a zero denominator in the
definitions of cones Lp and Gn

2 .

The next theorem gives an explicit definition of Kf . It basically states that the points of
Kf with a strictly positive θ are exactly the points of K◦f , while the points with θ = 0 can
be identified using the domain of the conjugate functions f∗i .

Theorem 7.4. We have

Kf = K◦f ∪
{

(x, 0, κ) ∈ Rn × R+ × R | xT x∗ ≤ κ for all x∗i ∈ dom f∗i , 1 ≤ i ≤ n
}

.

Proof. A point (x, θ, κ) belongs to Kf if and only if there exists a sequence of points (xk, θk, κk)
belonging to K◦f such that θk → θ, xk → x and κk → κ. Let us suppose first that θ > 0.

It is obvious that points belonging to K◦f satisfy θ > 0 and also belong to Kf . Let us
show there are no other points in Kf with θ > 0. Using the fact that

θk
n∑

i=1

fi

(xk
i

θk

) ≤ κk ,

we can take the limit and write

lim
k→+∞

θk
n∑

i=1

fi

(xk
i

θk

) ≤ lim
k→+∞

κk = κ . (7.2)

136 7. A general framework for separable convex optimization

Using now the lower-semicontinuity of fi we have that

lim
k→+∞

θk
n∑

i=1

fi

(xk
i

θk

)
= θ

n∑

i=1

lim
k→+∞

fi

(xk
i

θk

) ≥ θ
n∑

i=1

fi

(xi

θ

)
,

since xk
i /θk converges to xi/θ, which shows eventually that

θ

n∑

i=1

fi

(xi

θ

) ≤ κ ,

i.e. that (x, θ, κ) belongs to K◦f . The sets Kf and K◦f are thus identical when θ > 0.

Let us now examine the case θ = 0. Using Corollary 7.2, we have that Kf = (Kf∗
s)∗.

Looking now at equation (7.1) in the proof of Theorem 7.3, we see that points of Kf satisfying
θ = 0 can be characterized by

(x, 0, κ) ∈ Kf ⇔ xT x∗ + κκ∗ ≥ 0 for all (x∗, θ∗, κ∗) ∈ K◦f∗s ,

which is equivalent to

(x, 0, κ) ∈ Kf ⇔ xT x∗ + κκ∗ ≥ 0 for all (−x∗, κ∗, θ∗) ∈ K◦f∗

⇔ xT (x∗/κ∗) + κ ≥ 0 for all (−x∗, κ∗, θ∗) ∈ K◦f∗ (using κ∗ > 0)
⇔ κ ≥ −xT (x∗/κ∗) for all (−x∗, κ∗, θ∗) ∈ K◦f∗

⇔ κ ≥ −xT (x∗/κ∗) for all (−x∗i /κ∗) ∈ dom f∗i , 1 ≤ i ≤ n

⇔ κ ≥ xT x′∗ for all x′i
∗ ∈ dom f∗i , 1 ≤ i ≤ n (where x′∗ = x∗/κ∗) ,

which equivalent to the announced result.

7.5 Back to geometric and lp-norm optimization

Let us check that our the separable cone Kf generalizes the cones Lp and Gn
2 introduced in

Chapters 4 and 6 for lp-norm and geometric optimization. Special care will be taken to justify
the conventions we had to introduce in order to handle the cases where θ = 0.

As mentioned in the introduction of this chapter, the Lp cone corresponds to the choice
of fi : x 7→ 1

pi
|x|pi , which is easily seen to be a proper closed convex function. Let us compute

the conjugate of this function: we have

f∗i (x∗) : x∗ 7→ f∗i (x∗) = sup
x∈R

{
xx∗ − |x|pi

pi

}
.

Introducing parameters qi such that 1/pi + 1/qi = 1, we perform the maximization by letting
the derivative of quantity appearing inside of the supremum equal to zero, which leads to
x∗ = |x|pi /x and a supremum equal to

xx∗ − |x|pi

pi
= xx∗ − xx∗

pi
= xx∗

(
1− 1

pi

)
=

xx∗

qi
=
|x|pi

qi
.

7.5 – Back to geometric and lp-norm optimization 137

Using now
x∗ = |x|pi /x ⇒ |x∗| = |x|pi−1 ⇔ |x∗|qi = |x|qi(pi−1)

and
qi(pi − 1) =

pi − 1
1− 1/pi

= (pi − 1)
pi

pi − 1
= pi ,

we find that |x∗|qi = |x|pi and finally have that

f∗i (x∗) =
|x∗|qi

qi
.

Let us check our convention when θ = 0. In light of Theorem 7.4, a point (x, 0, κ) will belong
to Kf if and only if xT x∗ ≤ κ for all x∗i ∈ dom f∗i , 1 ≤ i ≤ n. Since dom f∗i = R, we see that
this is possible if and only if xi = 0, in which case we must have κ ≥ 0. This shows that

Kf =
{

(x, θ, κ) ∈ Rn × R+ × R |
n∑

i=1

1
pi

|xi|pi

θpi−1
≤ κ

}
,

with the convention
|x|
0

=

{
+∞ if x 6= 0 ,

0 if x = 0 ,

which is exactly the definition of Lp given in Chapter 4 (one can also easily check that the
dual Lq

s is equivalent to Kf∗
s).

The geometric cone Gn
2 is based on fi : x 7→ e−x but features a slight difference with

our separable cone Kf since it requires x ≥ 0. However, the same effect can be obtained by
restricting the effective domain of fi to R+, i.e. letting

fi : R 7→ R ∪ {+∞} : x 7→
{

e−x when x ≥ 0 ,

+∞ when x < 0 .

It is straightforward to check that this function is convex proper and closed (note that the
alternative choice fi(0) = +∞ does not lead to a closed function). Its conjugate function can
be computed in a straightforward manner, to find

f∗i (x∗) : x∗ 7→ f∗i (x∗) =

−1 when x∗ ≤ −1 ,

x∗ − x∗ log(−x∗) when − 1 < x∗ < 0 ,

0 when x∗ = 0 ,

+∞ when 0 < x∗ .

According to Theorem 7.4, a point (x, 0, κ) will belong to Gn
2 if and only if the product

xT x∗ is smaller than κ for all x∗i ∈ dom f∗i , 1 ≤ i ≤ n. Since dom f∗i = R−, we see that κ can
only be finite when x ≥ 0, in which case it must satisfy κ ≥ 0. This justifies the convention
e−

xi
0 = 0 that was made in Chapter 6, since it leads to

Kf =
{

(x, θ, κ) ∈ Rn
+ × R+ × R+ | θ

n∑

i=1

e−
xi
θ ≤ κ

}
,

138 7. A general framework for separable convex optimization

which is exactly the original definition of Gn
2 . Let us compute its dual: we have

(Kf)∗ =
{

(x∗, θ∗, κ∗) ∈ Rn × R × R+ | θ∗
n∑

i=1

f∗i (−x∗i
κ∗

) ≤ θ∗
}

,

which is equivalent to
{

(x∗, θ∗, κ∗) ∈ Rn
+ × R × R+ | θ∗ ≥ κ∗

∑

0<x∗i <κ∗
(−x∗i

κ∗
+

x∗i
κ∗

log
x∗i
κ∗

) + κ∗
∑

x∗i≥κ∗
(−1)

}

=
{

(x∗, θ∗, κ∗) ∈ Rn
+ × R × R+ | θ∗ ≥

∑

0<x∗i <κ∗
(x∗i log

x∗i
κ∗
− x∗i)−

∑

x∗i≥κ∗
κ∗

}
,

the original definition of the dual cone (Gn
2)∗. We first note that the effective domain of f∗i

is responsible for restricting x∗ to Rn
+ and that we had to distinguish the cases −x∗i /κ∗ ≤ −1

and −x∗i /κ∗ > 1). Moreover, the special case κ∗ = 0 is handled correctly: we must have in
that case −xT x∗ ≤ θ∗ for all x ∈ dom fi, which implies x∗ ≥ 0 and θ∗ ≥ 0, which is exactly
what is expressed by our definition.

To conclude this section, we note that it is possible to give a simpler variant of our
geometric cone Gn

2 . Indeed, one can consider the negative exponential function on the whole
real line, i.e. choose fi : x 7→ e−x, which is again closed, proper and convex. The expression
of its conjugate function is simpler

f∗i (x∗) : x∗ 7→ f∗i (x∗) =

x∗ − x∗ log(−x∗) when x∗ < 0 ,

0 when x∗ = 0 ,

+∞ when 0 < x∗ ,

and leads to the following primal-dual pair of cones

Kf =
{

(x, θ, κ) ∈ Rn × R+ × R | θ
n∑

i=1

e−
xi
θ ≤ κ

}

(Kf)∗ =
{

(x∗, θ∗, κ∗) ∈ Rn
+ × R × R+ | θ∗ ≥

∑

x∗i >0

(x∗i log
x∗i
κ∗
− x∗i)

}

(note that negative components of x are now allowed in the primal, and that the distinction
between x∗i < κ∗ and x∗i ≥ κ∗ has disappeared in the dual ; the convention e−

xi
0 = 0 stays

valid when xi ≥ 0 but has to be transformed to e−
xi
0 = +∞ for xi < 0).

7.6 Separable convex optimization

The previous sections have introduced and studied the notion of separable cone, which en-
compasses the extended geometric cone Gn

2 as well as the Lp cone used to model lp-norm
optimization. These separable cones are convex, closed, pointed and solid, and have a well-
identified dual, which makes them perfect candidates to be used in the framework of conic
optimization described in Chapter 3.

7.6 – Separable convex optimization 139

We define now the class of separable convex optimization and show how its primal and
dual problems can be modelled using the Kf and (Kf)∗ cones.

As can be expected from the above developments, the structure of this class of problems
is very similar to that of lp-norm and geometric optimization. Indeed, we define two sets
K = {1, 2, . . . , r}, I = {1, 2, . . . , n} and let {Ik}k∈K be a partition of I into r classes. We also
choose n closed, proper convex scalar functions fi : R 7→ R ∪ {+∞}, whose conjugates will
be denoted by f∗i . Finally, we assume that both int dom fi and int dom f∗i are nonempty for
all i ∈ I.

The data of our problems is given by two matrices A ∈ Rm×n and F ∈ Rm×r (whose
columns will be denoted by ai, i ∈ I and fk, k ∈ K) and three column vectors b ∈ Rm, c ∈ Rn

and d ∈ Rr. The primal separable convex optimization problem consists in optimizing a linear
function of a column vector y ∈ Rm under a set of constraints involving functions fi applied
to linear forms, and can be written as

sup bT y s.t.
∑

i∈Ik

fi(ci − aT
i y) ≤ dk − fT

k y ∀k ∈ K . (SP)

Let us now model this problem with a conic formulation. We start by introducing an
auxiliary vector of variables x∗ ∈ Rn to represent the linear arguments of functions fi, namely
we let

x∗i = ci − aT
i y for all i ∈ I or, in matrix form, x∗ = c−AT y ,

and we also introduce additional variables z∗ ∈ Rr for the linear right-hand side of the
inequalities

z∗k = dk − fT
k y for all k ∈ K or, in matrix form, z∗ = d− F T y .

Our problem is now equivalent to

sup bT y s.t. AT y + x∗ = c, F T y + z∗ = d and
∑

i∈Ik

fi(x∗i) ≤ z∗k ∀k ∈ K ,

where it is easy to plug our definition of the separable cone Kf , provided variables θ are fixed
to one

sup bT y s.t. AT y + x∗ = c, F T y + z∗ = d and (x∗Ik
, 1, z∗k) ∈ Kfk ∀k ∈ K

(where for convenience we defined fk = (fi | i ∈ Ik) for k ∈ K). We finally introduce an addi-
tional vector of fictitious variables v∗ ∈ Rr whose components are fixed to one by additional
linear constraints to find

sup bT y s.t. AT y + x∗ = c, F T y + z∗ = d, v∗ = e and (x∗Ik
, v∗k, z

∗
k) ∈ Kfk ∀k ∈ K

(where e stands for the all-one vector). We point out that the description of the points
belonging our separable cone when θ = 0 is not used here, since variables vr cannot be equal
to zero. Rewriting the linear constraints with a single matrix equality, we end up with

sup bT y s.t.

AT

F T

0

 y +

x∗

z∗

v∗

 =

c
d
e

 and (x∗Ik

, v∗k, z
∗
k) ∈ Kfk ∀k ∈ K , (CSP)

140 7. A general framework for separable convex optimization

which is exactly a conic optimization problem in the dual form (CD) of Chapter 3, using
variables (ỹ, s̃), data (Ã, b̃, c̃) and a cone C∗ such that

ỹ = y, s̃ =

x∗

z∗

v∗

 , Ã =

(
A F 0

)
, b̃ = b, c̃ =

c
d
e

 and C∗ = Kf1 ×Kf2 × · · · × Kfr

,

where C∗ has been defined according to Note 3.1, since we have to deal with multiple conic
constraints involving disjoint sets of variables.

Using properties of Kf proved in the first part of this chapter, it is straightforward to
show that C∗ is a solid, pointed, closed convex cone whose dual is

(C∗)∗ = C = Kf1∗
s ×Kf2∗

s × · · · × Kfr∗
s ,

another solid, pointed, closed convex cone (where we have defined fk∗ =
(
f i∗ | i ∈ Ik

)
for

k ∈ K). This allows us to derive a dual problem to (CSP) in a completely mechanical way
and find the following conic optimization problem, expressed in the primal form (CP) (since
the dual of a problem in dual form is a problem in primal form):

inf
(
cT dT eT

)

x
z
v

 s.t.

(
A F 0

)

x
z
v

 = b and (xIk

, vk, zk) ∈ Kfk∗
s for all k ∈ K ,

which is equivalent to

inf cT x + dT z + eT v s.t. Ax + Fz = b and (xIk
, vk, zk) ∈ Kfk∗

s for all k ∈ K , (CSD)

where x ∈ Rn, z ∈ Rr and v ∈ Rr are the dual variables we optimize. This problem can be
simplified: developing the conic constraints, we find

inf cT x + dT z + eT v s.t.

Ax + Fz = b, z ≥ 0
zk

∑
i∈Ik

f∗i
(− xi

zk

) ≤ vk ∀k ∈ K | zk > 0
−xT

Ik
x∗Ik

≤ vk ∀x∗Ik
∈ dom fIk

∀k ∈ K | zk = 0

(where dom fIk
is the cartesian product of all dom fi such that i ∈ Ik), using the explicit

definition of Kf given by Theorem 7.4. Finally, we can remove the v variables from the
formulation since they are only lower bounded by the conic constraints, and have thus to
attain this lower bound at any optimal solution. We can thus directly incorporate these terms
into the objective function, which leads to the final dual separable optimization problem

inf ψ(x, z) = cT x + dT z +
∑

k∈K|zk>0

zk

∑

i∈Ik

f∗i
(−xi

zk

)−
∑

k∈K|zk=0

inf
x∗Ik

∈dom fIk

xT
Ik

x∗Ik
(SD)

s.t. Ax + Fz = b and z ≥ 0 .

Finally, we note that similarly to the case of geometric optimization, the special situation
where F = 0 can lead to a further simplification of this dual problem. Indeed, since variables
zk do not appear in the linear constraints any more, they can be optimized separately and
possibly be replaced in the objective function by a closed form of their optimal value.

7.7 – Concluding remarks 141

7.7 Concluding remarks

In this chapter, we have generalized the cones Gn
2 and Lp for geometric and lp-norm opti-

mization with the notion of separable cone Kf . This allowed us to present a new pair of
primal-dual problems (SP)–(SD).

It is obvious that much more has to be said about this topic. We mention the following
suggestions for further research:

¦ Duality for the pair of primal-dual problems (SP)–(SD) can be studied using the theory
presented in Chapter 3. Proving weak duality should be straightforward, as well as
establishing the equivalent of the strong duality Theorem 3.5. Our feeling is that it
should also be possible to prove that a zero duality gap can be guaranteed without
any constraint qualification, because of the scalar nature of the functions used in the
formulation.

¦ Similarly to what was done in Chapter 4, it should be straightforward to build a self-
concordant barrier for the separable cone Kf , using as building blocks self-concordant
barriers for the 2-dimensional epigraphs of functions fi.

¦ Finally, this formulation has the potential to model many more classes of convex prob-
lems. We mention the following three possibilities (see [Roc70a, p. 106])

– Let a ∈ R++. Functions of the type

f : x 7→
{
−√a2 − x2 if |x| ≤ a

+∞ if |x| > a
and f∗ : x∗ 7→ a

√
1 + x∗2

are conjugate to each other, and could help modelling problems involving square
roots or describing circles and ellipses.

– Let 0 < p < 1 and −∞ < q < 0 such that 1/p + 1/q = 1. Functions of the type

f : x 7→
{
−1

pxp if x ≥ 0

+∞ if x < 0
and f∗ : x∗ 7→

{
−1

q (−x∗)q if x∗ < 0

+∞ if x∗ ≥ 0

are conjugate to each other, and appear to be able to model so-called CES functions
[HvM97], which happen to be useful in production and consumer theory [Sat75].

– Functions

f : x 7→
{
−1

2 − log x if x > 0
+∞ if x ≤ 0

and f∗ : x∗ 7→
{
−1

2 − log(−x∗) if x∗ < 0
+∞ if x∗ ≥ 0

are conjugate to each other, and could be used in problems involving logarithms.
They also feature the property that f∗(x∗) = f(−x∗), which could add another
level of symmetry between the corresponding primal Kf and dual Kf∗

s cones.

We also point out that the definition of our separable convex optimization problems
allows the use of different types of cones within the same constraint, which can lead for
example to the formulation of a mixed geometric-lp-norm optimization problem.

Part III

APPROXIMATIONS

143

CHAPTER 8

Approximating geometric optimization
with lp-norm optimization

In this chapter, we demonstrate how to approximate geometric optimization with
lp-norm optimization. These two classes of problems are well known in struc-
tured convex optimization. We describe a family of lp-norm optimization prob-
lems that can be made arbitrarily close to a geometric optimization problem, and
show that the dual problems for these approximations are also approximating
the dual geometric optimization problem. Finally, we use these approximations
and the duality theory for lp-norm optimization to derive simple proofs of the
weak and strong duality theorems for geometric optimization.

8.1 Introduction

Let us recall first for convenience the formulation of the primal lp-norm optimization problem
(Plp) presented in chapter 4. Given two sets K = {1, 2, . . . , r} and I = {1, 2, . . . , n}, we
let {Ik}k∈K be a partition of I into r classes. The problem data is given by two matrices
A ∈ Rm×n and F ∈ Rm×r (whose columns are be denoted by ai, i ∈ I and fk, k ∈ K) and
four column vectors b ∈ Rm, c ∈ Rn, d ∈ Rr and p ∈ Rn such that pi > 1 ∀i ∈ I. The primal
lp-norm optimization problem is

sup bT y s.t.
∑

i∈Ik

1
pi

∣∣ci − aT
i y

∣∣pi ≤ dk − fT
k y ∀k ∈ K . (Plp)

145

146 8. Approximating geometric optimization with lp-norm optimization

The purpose of this chapter is to show that this category of problems can be used to approx-
imate another famous class of problems known as geometric optimization [DPZ67], presented
in Chapter 5.

Using the same notations as above for sets K and Ik, k ∈ K, matrix A and vectors b, c
and ai, i ∈ I, we recall for convenience that the primal geometric optimization problem can
be stated as

sup bT y s.t.
∑

i∈Ik

eaT
i y−ci ≤ 1 ∀k ∈ K (GP)

We will start by presenting in Section 8.2 an approximation of the exponential function,
which is central in the definition of the constraints of a geometric optimization problem.
This will allow us to present a family of lp-norm optimization problems which can be made
arbitrarily close to a primal geometric optimization problem. We derive in Section 8.3 a dual
problem for this approximation, and show that the limiting case for these dual approximations
is equivalent to the traditional dual geometric optimization problem. Using this family of pairs
of primal-dual problems and the weak and strong duality theorems for lp-norm optimization,
we will then show how to derive the corresponding theorems for geometric optimization in a
simple manner. Section 8.4 will conclude and present some topics for further research.

8.2 Approximating geometric optimization

In this section, we will show how geometric optimization problems can be approximated with
lp-norm optimization.

8.2.1 An approximation of the exponential function

A key ingredient in our approach is the function that will be used to approximate the expo-
nential terms that arise within the constraints of (GP). Let α ∈ R++ and let us define

gα : R+ 7→ R+ : x 7→
∣∣∣1− x

α

∣∣∣
α

.

We have the following lemma relating gα(x) to e−x:

Lemma 8.1. For any fixed x ∈ R+, we have that

gα(x) ≤ e−x ∀α ≥ x and e−x < gα(x) + α−1 ∀α > 0 , (8.1)

where the first inequality is tight if and only if x = 0. Moreover, we have

lim
α→+∞ gα(x) = e−x .

Proof. Let us fix x ∈ R+. When 0 < α < x, we only have to prove the second inequality
in (8.1), which is straightforward: we have e−x < e−α < α−1 < gα(x) + α−1, where we used
the obvious inequalities eα > α and gα(x) > 0. Assuming α ≥ x for the rest of this proof, we

8.2 – Approximating geometric optimization 147

define the auxiliary function h : R++ 7→ R : α 7→ log gα(x). Using the Taylor expansion of
log(1− x) around x = 0

log(1− x) = −
∞∑

i=1

xi

i
for all x such that |x| ≤ 1 (8.2)

we have

h(α) = α log
∣∣∣1− x

α

∣∣∣ = α log
(
1− x

α

)
= −

∞∑

i=1

xi

iαi−1
= −x−

∞∑

i=2

xi

iαi−1
(8.3)

(where we used the fact that x
α ≤ 1 to write the Taylor expansion). It is now clear that

h(α) ≤ −x, with equality if and only if x = 0, which in turn implies that gα(x) ≤ e−x, with
equality if and only if x = 0, which is the first inequality in (8.1).

The second inequality is equivalent, after multiplication by ex, to

1 < exgα(x) + exα−1 ⇔ 1− exα−1 < exehα(x) ⇔ 1− exα−1 < ex+hα(x) .

This last inequality trivially holds when its left-hand side is negative, i.e. when α ≤ ex. When
α > ex, we take the logarithm of both sides, use again the Taylor expansion (8.2) and the
expression for hα(x) in (8.3) to find

log
(
1− exα−1

)
< x + hα(x) ⇔ −

∞∑

i=1

exi

iαi
< −

∞∑

i=2

xi

iαi−1
⇔ 0 <

∞∑

i=1

1
αi

(
exi

i
− xi+1

i + 1

)
.

This last inequality holds since each of the coefficients between parentheses can be shown to
be strictly positive: writing the well-known inequality ea > an

n! for a = xi and n = i + 1, we
find

exi >
(xi)i+1

(i + 1)!
⇔ exi

i
>

xi+1

(i + 1)
ii

i!
⇒ exi

i
>

xi+1

i + 1
⇔ exi

i
− xi+1

i + 1
> 0

(where we used ii ≥ i! to derive the third inequality).

To conclude this proof, we note that (8.3) implies that limα→+∞ h(α) = −x, which gives
limα→+∞ gα(x) = e−x, as announced. This last property can also be easily derived from the
two inequalities in (8.1).

The first inequality in (8.1) and the limit of gα(x) are well-known, and are sometimes
used as definition for the real exponential function, while the second inequality in (8.1) is
much less common.

8.2.2 An approximation using lp-norm optimization

The formulation of the primal geometric optimization problem (GP) relies heavily on the
exponential function. Since Lemma 8.1 shows that it is possible to approximate e−x with
increasing accuracy using the function gα, we can consider using this function to formulate an

148 8. Approximating geometric optimization with lp-norm optimization

approximation of problem (GP). The key observation we make here is that this approximation
can be expressed as an lp-norm optimization problem.

Indeed, let us fix α ∈ R++ and write the approximate problem

sup bT y s.t.
∑

i∈Ik

(
gα(ci − aT

i y) + α−1
) ≤ 1 ∀k ∈ K . (GPα)

We note that this problem is a restriction of the original problem (GP), i.e. that any y that
is feasible for (GPα) is also feasible for (GP), with the same objective value. This is indeed a
direct consequence of the second inequality in (8.1), which implies for any y feasible for (GPα)

∑

i∈Ik

eci−aT
i y <

∑

i∈Ik

(
gα(ci − aT

i y) + α−1
) ≤ 1 .

We need now to transform the expressions gα(ci − aT
i y) + α−1 to fit the format of the

constraints of an lp-norm optimization problem. Assuming that α > 1 for the rest of this
chapter, we write

∑

i∈Ik

(
gα(ci − aT

i y) + α−1
) ≤ 1 ⇔

∑

i∈Ik

gα(ci − aT
i y) ≤ 1− nkα

−1

⇔
∑

i∈Ik

∣∣∣∣1−
ci − aT

i y

α

∣∣∣∣
α

≤ 1− nkα
−1

⇔
∑

i∈Ik

∣∣α− ci + aT
i y

∣∣α ≤ αα(1− nkα
−1)

⇔
∑

i∈Ik

1
α

∣∣ci − α− aT
i y

∣∣α ≤ αα−1(1− nkα
−1)

(where nk is the number of elements in Ik), which allows us to write (GPα) as

sup bT y s.t.
∑

i∈Ik

1
α

∣∣ci − α− aT
i y

∣∣α ≤ αα−1(1− nkα
−1) ∀k ∈ K . (GP′α)

This is indeed an lp-norm optimization in the form (Plp): dimensions m, n and r are the
same in both problems, sets I, K and Ik are identical, the vector of exponents p satisfies
pi = α > 1 for all i ∈ I, matrix A and vector b are the same for both problems while matrix
F is equal to zero. The only difference consists in vectors c̃ and d, which satisfy c̃i = ci − α
and dk = αα−1(1− nkα

−1).

We have thus shown how to approximate a geometric optimization problem with a stan-
dard lp-norm optimization problem. Solving this problem for a fixed value of α will give a
feasible solution to the original geometric optimization problem. Letting α tend to +∞, the
approximations gα(ci − aT

i y) will be more and more accurate, and the corresponding feasible
regions will approximate the feasible region of (GP) better and better. We can thus expect
the optimal solutions of problems (GP′α) to tend to an optimal solution of (GP). Indeed, this
is the most common situation, but it does not happen in all the cases, as will be showed in
the next section.

8.3 – Deriving duality properties 149

8.3 Deriving duality properties

The purpose of this section is to study the duality properties of our geometric optimization
problem and its approximations. Namely, using the duality properties of lp-norm optimization
problems, we will derive the corresponding properties for geometric optimization, using our
family of approximate problems.

8.3.1 Duality for lp-norm optimization

Defining a vector q ∈ Rn such that 1
pi

+ 1
qi

= 1 for all i ∈ I, we recall from Chapter 4 that
the dual problem for (Plp) consists in finding two vectors x ∈ Rn and z ∈ Rr that maxi-
mize a highly nonlinear objective while satisfying some linear equalities and nonnegativity
constraints:

inf ψ(x, z) = cT x + dT z +
∑

k∈K|zk>0

zk

∑

i∈Ik

1
qi

∣∣∣∣
xi

zk

∣∣∣∣
qi

s.t.
{

Ax + Fz = b and z ≥ 0 ,
zk = 0 ⇒ xi = 0 ∀i ∈ Ik .

(Dlp)

Let us recall here for convenience from Chapter 4 the following duality properties for the
pair of problems (Plp)–(Dlp):

Theorem 8.1 (Weak duality). If y is feasible for (Plp) and (x, z) is feasible for (Dlp), we
have ψ(x, z) ≥ bT y.

Theorem 8.2 (Strong duality). If both problems (Plp) and (Dlp) are feasible, the primal
optimal objective value is attained with a zero duality gap, i.e.

p∗ = max bT y s.t.
∑

i∈Ik

1
pi

∣∣ci − aT
i y

∣∣pi ≤ dk − fT
k y ∀k ∈ K

= inf ψ(x, z) s.t.
{

Ax + Fz = b and z ≥ 0
zk = 0 ⇒ xi = 0 ∀i ∈ Ik

= d∗ .

We would like to bring the reader’s attention to an interesting special case of dual lp-norm
optimization problem. When matrix F is identically equal to 0, i.e. when there are no pure
linear terms in the constraints, and when all exponents pi corresponding to same set Ik are
equal to each other, i.e. when we have pi = pk ∀i ∈ Ik for all k ∈ K, problem (Dlp) becomes

inf ψ(x, z) = cT x+ dT z +
∑

k∈K|zk>0

z1−qk

k

qk

∑

i∈Ik

|xi|q
k

s.t.
{

Ax = b and z ≥ 0 ,
zk = 0 ⇒ xi = 0 ∀i ∈ Ik .

(Dl′p)

This kind of formulation arises in problems of approximation in lp-norm, see [NN94, Sec-
tion 6.3.2] and [Ter85, Section 11, page 98].

Since variables zk do not appear any more in the linear constraints but only in the
objective function ψ(x, z), we may try to find a closed form for their optimal value. Looking
at one variable zk at a time and isolating the corresponding terms in the objective, one finds

150 8. Approximating geometric optimization with lp-norm optimization

dkzk + 1
qk z1−qk

k

∑
i∈Ik

|xi|q
k

, whose derivative is equal to dk + 1−qk

qk z−qk

k

∑
i∈Ik

|xi|q
k

. One easily
sees that this quantity admits a single maximum when

zk = (pk dk)
− 1

qk ‖xIk
‖qk

(where ‖·‖p corresponds to the usual p-norm defined by ‖x‖p = (
∑

i |xi|p)
1
p and xIk

denotes
the vector made of the components of x whose indices belong to Ik), which always satisfies
the nonnegativity constraint in (Dl′p) and gives after some straightforward computations a
value of

dkzk +
1
qk

z1−qk

k

∑

i∈Ik

|xi|q
k

= . . . =
(
1 +

pk

qk

)
dkzk = pk dkzk = (pk dk)

1

pk ‖xIk
‖qk

for the two corresponding terms in the objective. Our dual problem (Dl′p) becomes then

inf ψ(x) = cT x +
∑

k∈K

(pk dk)
1

pk ‖xIk
‖qk s.t. Ax = b , (Dl′′p)

a great simplification when compared to (Dl′p). One can check that the special treatment for
the case zk = 0 is well handled: indeed, zk = 0 happens when xIk

= 0, and the implication
that is stated in the constraints of (Dl′p) is thus satisfied.

It is interesting point out that problem(Dl′′p) is essentially unconstrained, since it is well-
known that linear equalities can be removed from an optimization problem that does not
feature other types constraints (assuming matrix A has rank l, one can for example use these
equalities to express l variables as linear combinations of the other variables and pivot these
l variables out of the formulation). We also observe that in this case a primal problem with
p-norms leads to a dual problem with q-norms, a situation which is examined by Dax and
Sreedharan in [DS97].

8.3.2 A dual for the approximate problem

We are now going to write the dual for the approximate problem (GP′α). Since we are in the
case where F = 0 and all pi’s are equal to α, we can use the simplified version of the dual
problem (Dl′′p) and write

inf ψα(x) = cT x− αeT
nx +

∑

k∈K

(
α αα−1(1− nkα

−1)
) 1

α ‖xIk
‖β s.t. Ax = b

(where en is a notation for the all-one n-dimensional column vector and β > 1 is a constant
such that 1

α + 1
β = 1), which can be simplified to give

inf ψα(x) = cT x− αeT
nx + α

∑

k∈K

(1− nkα
−1)

1
α ‖xIk

‖β s.t. Ax = b . (GDα)

We observe that the constraints and thus the feasible region of this problem are independent
from α, which only appears in the objective function ψα(x). Intuitively, since problems (GP′α)

8.3 – Deriving duality properties 151

become closer and closer to (GP) as α tends to +∞, the corresponding dual problems (GP′α)
should approximate the dual of (GP) better and better. It is thus interesting to write down
the limiting case for these problems, i.e. find the limit of ψα when α → +∞. Looking first at
the terms that are related to single set of indices Ik, we write

ψk,α(x) = cT
Ik

xIk
− αeT

nk
xIk

+ α(1− nkα
−1)

1
α ‖xIk

‖β

= cT
Ik

xIk
− αeT

nk
xIk

+ α ‖xIk
‖1 − α ‖xIk

‖1 + α(1− nkα
−1)

1
α ‖xIk

‖β

= cT
Ik

xIk
+ α

[‖xIk
‖1 − eT

nk
xIk

]
+ α

[
(1− nkα

−1)
1
α ‖xIk

‖β − ‖xIk
‖1

]

= cT
Ik

xIk
+ α

[‖xIk
‖1 − eT

nk
xIk

]
+

β

β − 1

[
(1− nkα

−1)
1
α ‖xIk

‖β − ‖xIk
‖1

]

(where we used at the last line the fact that α = β
β−1). When α tends to +∞ (and thus

β → 1), we have that the limit of ψk,α(x) is equal to

cT
Ik

xIk
+ lim

α→+∞α
[‖xIk

‖1 − eT
nk

xIk

]
+ lim

α→+∞
β→1

β

β − 1

[
(1− nkα

−1)
1
α ‖xIk

‖β − ‖xIk
‖1

]

= cT
Ik

xIk
+ lim

α→+∞α
[‖xIk

‖1 − eT
nk

xIk

]
+ lim

β→1

‖xIk
‖β − ‖xIk

‖1

β − 1

The last term in this limit is equal to the derivative of the real function mk : β 7→ ‖xIk
‖β at

the point β = 1. We can check with some straightforward but lengthy computations that

m′
k(β) =

‖xIk
‖

1
β
−1

β

β2

β

∑

i∈Ik|xi>0

|xi|β log |xi| − ‖xIk
‖1 log ‖xIk

‖1

 ,

which gives for β = 1

m′
k(1) =

∑

i∈Ik|xi>0

|xi| log
|xi|
‖xIk

‖1

,

and leads to

lim
α→+∞
β→1

ψk,α(x) = cT
Ik

xIk
+ lim

α→+∞α
[‖xIk

‖1 − eT
nk

xIk

]
+

∑

i∈Ik|xi>0

|xi| log
|xi|
‖xIk

‖1

.

It is easy to see that ‖xIk
‖1 − eT

nk
xIk

≥ 0, with equality if and only if xIk
≥ 0. This means

that the limit of our objective ψk,α(x) will be +∞ unless xIk
≥ 0. An objective equal to +∞

for a minimization problem can be assimilated to an unfeasible problem, which means that
the limit of our dual approximations (GDα) admits the hidden constraint xIk

≥ 0. Gathering
now all terms in the objective, we eventually find the limit of problems (GDα) when α → +∞
to be

inf φ(x) = cT x +
∑

k∈K

∑

i∈Ik|xi>0

xi log
xi∑

i∈Ik
xi

s.t. Ax = b and x ≥ 0 , (GD)

which is exactly the dual geometric optimization problem that was presented in Chapter 5.

152 8. Approximating geometric optimization with lp-norm optimization

8.3.3 Duality for geometric optimization

Before we start to prove duality results for geometric optimization, we make a technical
assumption on problem (GP), whose purpose will become clear further in this section: we
assume that nk ≥ 2 for all k ∈ K, i.e. forbid problems where a constraint is defined with a
single exponential term. This can be done without any loss of generality, since a constraint
of the form eaT

i y−ci ≤ 1 can be equivalently rewritten as eaT
i y−ci−log 2 + eaT

i y−ci−log 2 ≤ 1.

Let us now prove the weak duality Theorem 5.9 for geometric optimization:

Theorem 8.3 (Weak duality). If y is feasible for (GP) and x is feasible for (GD), we
have φ(x) ≥ bT y.

Proof. Our objective is to prove this theorem using our family of primal-dual approximate
problems (GP′α)–(GDα). We first note that x is feasible for (GDα) for every α, since the
only constraints for this family of problems are the linear constraints Ax = b, which are also
present in (GD). The situation is a little different on the primal side: the first inequality
in (8.1) and feasibility of y for (GP) imply

∑

i∈Ik

gα(ci − aT
i y) ≤

∑

i∈Ik

eaT
i y−ci ≤ 1 ,

with equality if and only if ci−aT
i y = 0 for all i ∈ Ik. But this cannot happen, since we would

have
∑

i∈Ik
eaT

i y−ci =
∑

i∈Ik
1 = nk > 1, because of our assumption on nk, which contradicts

the feasibility of y. We can conclude that the following strict inequality holds for all k ∈ K:
∑

i∈Ik

gα(ci − aT
i y) < 1 .

Since the set K is finite, this means that there exists a constant M such that for all α ≥ M ,
∑

i∈Ik

gα(ci − aT
i y) ≤ 1− nkα

−1 ∀k ∈ K ,

which in turn implies feasibility of y for problems (GP′α) as soon as α ≥ M . Feasibility of
both y and x for their respective problem allows us to apply the weak duality Theorem 8.1
of lp-norm optimization to our pair of approximate problems (GP′α)–(GDα), which implies
ψα(x) ≥ bT y for all α ≥ M . Taking now the limit of ψα(x) for α tending to +∞, which
is finite and equal to φ(x) since x ≥ 0, we find that φ(x) ≥ bT y, which is the announced
inequality.

The strong duality Theorem 5.13 for geometric optimization is stated below. We note
that contrary to the class of lp-norm optimization problems, attainment cannot be guaranteed
for any of the primal and dual optimum objective values.

Theorem 8.4. If both problems (GP) and (GD) are feasible, their optimum objective values
p∗ and d∗are equal.

8.4 – Concluding remarks 153

Proof. As shown in the proof of the previous theorem, the existence of a feasible solution
for (GP) and (GD) implies that problems (GP′α) and (GDα) are both feasible for all α
greater than some constant M . Denoting by p∗α (resp. d∗α) the optimal objective value of
problem (GP′α) (resp. (GDα)), we can thus apply the strong duality Theorem 8.2 of lp-norm
optimization to these pairs of problems to find that p∗α = d∗α for all α ≥ M . Since all
the dual approximate problems p∗α = d∗α share the same feasible region, it is clear that the
optimal value corresponding to the limit of the objective ψα when α → +∞ is equal to
the limit of the optimal objective values d∗α for α → +∞. Since the problem featuring this
limiting objective has been shown to be equivalent to (GD) in Section 8.3.2 (including the
hidden constraint x ≥ 0), we must have d∗ = limα→+∞ d∗α. On the other hand, Theorem 8.2
guarantees for each of the problems (GP′α) the existence of an optimal solution yα that
satisfies bT yα = p∗α. Since each of these solutions is also a feasible solution for (GP) (since
problems (GP′α) are restrictions of (GP)), which shares the same objective function, we
have that the optimal objective value of (GP) p∗ is at least equal to bT yα for all α ≥ M ,
which implies p∗ ≥ limα→+∞ bT yα = limα→+∞ p∗α = limα→+∞ d∗α = d∗. Combining this last
inequality with the easy consequence of the weak duality Theorem 8.3 that states d∗ ≥ p∗,
we end up with the announced equality p∗ = d∗.

The reason why attainment of the primal optimum objective value cannot be guaranteed
is that the sequence yα may not have a finite limit point, a justification that is very similar
to the one that was given in the concluding remarks of Chapter 5.

8.4 Concluding remarks

In this chapter, we have shown that the important class of geometric optimization problems
can be approximated with lp-norm optimization.

We have indeed described a parameterized family of primal and dual lp-norm optimization
problems, which can be made arbitrarily close to the geometric primal and dual problems. It is
worth to note that the primal approximations are restrictions of the original geometric primal
problem, sharing the same objective function, while the dual approximations share essentially
the same constraints as the original geometric dual problem (except for the nonnegativity
constraints) but feature a different objective.

Another possible approach would be to work with relaxations instead of restrictions on
the primal side, using the first inequality in (8.1) instead of the second one, leading to the
following problem:

sup bT y s.t.
∑

i∈Ik

gα(ci − aT
i y) ≤ 1 ∀k ∈ K .

However, two problems arise in this setting:

¦ the first inequality in (8.1) is only valid when α ≥ x, which means we would have to
add a set of explicit linear inequalities ci−aT

i y ≤ α to our approximations, which would
make them and their dual problems more difficult to handle,

154 8. Approximating geometric optimization with lp-norm optimization

¦ following the same line of reasoning as in the proof of Theorem 8.2, we would end up with
another family of optimal solutions yα for the approximate problems; however, since all
of these problems are relaxations, we would have no guarantee that any of the optimal
vectors yα are feasible for the original primal geometric optimization problem, which
would prevent us to conclude that the duality gap is equal to zero. This would only show
that there is a family of asymptotically feasible primal solutions with their objective
values tending to the objective value of the dual, a fact that is always true in convex
optimization (this is indeed the essence of the alternate strong duality Theorem 3.6,
related to the notion of subvalue, see Chapter 3).

To conclude, we note that our approximate problems belong to a very special subcategory
of lp-norm optimization problem, since they satisfy F = 0. It might be fruitful to investigate
which class of generalized geometric optimization problems can be approximated with general
lp-norm optimization problems, a topic we leave for further research.

CHAPTER 9

Computational experiments with
a linear approximation

of second-order cone optimization

In this chapter, we present and improve a polyhedral approximation of the
second-order cone due to Ben-Tal and Nemirovski [BTN98]. We also discuss
several ways of reducing the size of this approximation. This construction al-
lows us to approximate second-order cone optimization problems with linear
optimization.

We implement this scheme and conduct computational experiments dealing
with two classes of second-order cone problems: the first one involves truss-
topology design and uses a large number of second-order cones with relatively
small dimensions, while the second one models convex quadratic optimization
problems with a single large second-order cone.

9.1 Introduction

Chapter 3 deals with conic optimization, which is a powerful setting that relies on convex
cones to formulate convex problems. We recall here the standard conic primal-dual pair for

155

156 9. Linear approximation of second-order cone optimization

convenience

inf
x∈Rn

cT x s.t. Ax = b and x ∈ C (CP)

sup
y∈Rm,x∗∈Rn

bT y s.t. AT y + x∗ = c and x∗ ∈ C∗ , (CD)

where x and (y, x∗) are the primal and dual variables, A is a m × n matrix, b and c are m
and n-dimensional column vectors, C ⊆ Rn is a closed pointed solid convex cone and C∗ ⊆ Rn

is its dual cone, defined by C∗ = {x∗ ∈ Rn | xT x∗ ≥ 0 ∀x ∈ C}.
Different types of convex cones lead to different classes of problems: for example, linear

optimization uses the nonnegative orthant Rn
+ while semidefinite optimization relies on the

set of positive semidefinite matrices Sn
+ (see Chapter 3). In this chapter, we will focus the

second-order cone, also known as Lorentz cone or ice-cream cone, which leads to second-order
cone optimization. It is defined as follows:

Definition 9.1. The second order cone Ln is the subset of Rn+1 defined by

Ln = {(r, x) ∈ R × Rn | ‖x‖ ≤ r} ,

where ‖·‖ denotes the usual Euclidean norm on Rn.

It is indeed straightforward to check that this is a closed pointed solid convex cone (it is
in fact the epigraph of the Euclidean norm). Another interesting property of Ln is the fact
that it is self-dual, i.e. (Ln)∗ = Ln.

The standard second-order cone problems are based on the cartesian product of several
second-order cones, which can be formalized using r constants nk ∈ N, 1 ≤ k ≤ r such that∑r

k=1(nk +1) = n and defining C = Ln1×Ln2×· · ·×Lnr . This set is obviously also a self-dual
closed convex cone, which allows us to rewrite problems (CP) and (CD) as

inf cT x s.t. Ax = b and xk ∈ Lnk ∀k = 1, 2, . . . , r (9.1)
sup bT y s.t. AT y + x∗ = c and xk∗ ∈ Lnk ∀k = 1, 2, . . . , r , (9.2)

where vectors x and x∗ have been split into r subvectors (x1, x2, . . . , xr) and (x1∗, x2∗, . . . , xr∗)
with xk ∈ Rnk+1 and xk∗ ∈ Rnk+1 for all k = 1, . . . , r. It is usually more practical to pivot
out variables x∗ in the dual problem (9.2), i.e. write them as a function of vector y. Splitting
matrix A into (A1, A2, . . . , Ar) with Ak ∈ Rm×(nk+1) and vector c into (c1, c2, . . . , cr) with
ck ∈ Rnk+1, we have xk∗ = ck − AkT y. The last step is to isolate the first column in Ak and
the first component in ck, i.e. letting Ak = (fk, Gk) with fk ∈ Rm and Gk ∈ Rm×nk and
ck = (dk, hk) with dk ∈ R and hk ∈ Rnk , we can rewrite the dual problem (9.2) as

sup bT y s.t.
∥∥GkT y + hk

∥∥ ≤ fkT y + dk ∀k = 1, 2, . . . , r ,

which is more convenient to formulate real-world problems (we also note that these constraints
bear a certain similarity to lp-norm optimization constraints, see Chapter 4).

Second-order optimization admits many different well-known classes of optimization
problems as special cases, such as linear optimization, linearly and quadratically constrained

9.2 – Approximating second-order cone optimization 157

convex quadratic optimization, robust linear optimization, matrix-fractional problems and
problems with hyperbolic constraints (see the survey [LVBL98]). Applications arise in var-
ious fields such as engineering (antenna array design, finite impulse response filter design,
truss design) and finance (portfolio optimization), see again [LVBL98].

From the computational point of view, second-order cone optimization is a relatively
young field if compared to linear and quadratic optimization (for example, the leading com-
mercial linear and quadratic solvers do not yet offer the option of solving second-order cone
optimization problems). This observation led Ben-Tal and Nemirovski to develop an inter-
esting alternative approach to solving second-order cone problems: they show in [BTN98]
that it is possible to write a polyhedral approximation of the second order cone Ln with a
prescribed accuracy ε using a number of variables and constraints that is polynomial in n
and log 1

ε . This implies that second-order cone optimization problems can be approximated
with an arbitrarily prescribed accuracy by linear optimization problems using this polyhedral
approximation.

This potentially allows the approximate resolution of large-scale second-order cone prob-
lems using state of the art linear solvers, capable of handling problems with hundreds of
thousands of variables and constraints.

This chapter is organized as follows: Section 9.2 presents a polyhedral approximation of
the second-order cone. This construction relies on a decomposition scheme based on three-
dimensional second order cones. We present first an efficient way to approximate these cones
and then show how to combine them in order to approximate a second-order cone of higher
dimension, which ultimately gives a method to approximate any second-order cone optimiza-
tion problem with a linear problem. Section 9.3 reports our computational experiments with
this scheme. After a presentation of our implementation and some related issues, we describe
two classes of second-order problems: truss-topology design problems and convex quadratic
optimization problems. We present and discuss the results of our computational experiments,
highlighting when necessary the particular features of each class of problems (guaranteed accu-
racy, alternative formulations). We conclude this chapter with a few remarks and suggestions
for further research.

9.2 Approximating second-order cone optimization

In this section, we present a polyhedral approximation of the second-order cone Ln which
allows us to derive a linearizing scheme for second-order cone optimization. It is a variation
of the construction of Ben-Tal and Nemirovski that features slightly better properties.

9.2.1 Principle

The principle that lies behind their approximation is twofold:

a. Decomposition. Since the Lorentz cone Ln is a n + 1-dimensional subset, any cir-
cumscribed polyhedral cone around Ln is bound to have its number of facets growing

158 9. Linear approximation of second-order cone optimization

exponentially with the dimension n, i.e. will need an exponential number of linear in-
equalities to be defined. The remedy is to decompose the second-order cone into a
polynomial number of smaller second-order cones with fixed dimension, for which a
good polyhedral approximation can be found. In the present case, Ln can be decom-
posed into n − 1 three-dimensional second-order cones L2, at the price of introducing
n− 2 additional variables (see Section 9.2.2).

b. Projection. Even the three-dimensional second-order cone L2 is not too easy to ap-
proximate: the most obvious way to proceed, a regular circumscribed polyhedral cone,
requires hundreds of inequalities even for an approximation with modest accuracy (see
Section 9.2.3). The key idea to lower the number of inequalities is to introduce several
additional variables, i.e. lift the approximating polyhedron into a higher dimensional
space and consider its projection onto a (n + 1)-dimensional subspace as the approxi-
mation of Ln (see Section 9.2.4).

To summarize, the introduction of a certain number of additional variables, combined with
a projection, can be traded against a much lower number of inequality constraints defining
the polyhedron. We first concentrate on the decomposition of Ln into smaller second-order
cones.

9.2.2 Decomposition

Let us start with the following equivalent definition of Ln

Ln =
{

(r, x1, x2, . . . , xn) ∈ R+ × Rn |
n∑

i=1

x2
i ≤ r2

}
.

Introducing a vector of bn
2 c additional variables y = (y1, y2, . . . , ybn

2
c), we consider the set Ln′

defined by

{
(r, x, y) ∈ R+×Rn+bn

2
c | x2

2i−1 + x2
2i ≤ y2

i , 1 ≤ i ≤ bn
2
c,

{∑n
2
i=1 y2

i ≤ r2 (n even)
∑n

2
i=1 y2

i + x2
n ≤ r2 (n odd)

}
.

It it straightforward to prove that the projection of this set on the subspace of its first n + 1
variables (r, x1, . . . , xn) is equal to Ln, i.e.

(r, x) ∈ Ln ⇔ ∃y ∈ Rbn
2
c s.t. (r, x, y) ∈ Ln′ .

It is also worth to point out that all the constraints defining Ln′ are second-order cone
constraints, i.e. that Ln′ can also be written as

{
(r, x, y) ∈ R+×Rn+bn

2
c | (yi, x2i−1, x2i) ∈ L2, 1 ≤ i ≤ bn

2
c,

{
(r, y) ∈ Ldn

2
e (n even)

(r, y, xn) ∈ Ldn
2
e (n odd)

}
.

(9.3)
This means that Ln can be decomposed into bn

2 c 3-dimensional second-order cones and a single
Ld

n
2
e second-order cone, at the price of introducing bn

2 c auxiliary variables. This procedure

9.2 – Approximating second-order cone optimization 159

can be applied recursively to the largest of the remaining second-order cone Ld
n
2
e until it also

becomes equal to L2.

It is not too difficult to see that there are in the final expression n−1 second-order cones
L2 and n− 2 additional yi variables. Indeed, the addition of each small cone L2 reduces the
size of the largest cone by one, since we remove two variables from this cone (the last two
variables in L2) but replace them with a single new variable (the first variable in L2).

Since we start with this largest cone equal Ln and stop when its size is equal to 2, we
need n− 2 small cones along with n− 2 auxiliary variables to reduce the cone to L2. But this
last L2 cone also has to be counted, which gives then a total number of cones equal to n− 1.

The existence of this decomposition implies that any second-order cone optimization
problem can be transformed into a problem using only 3-dimensional second-order cones, using
the construction above. We note however that strictly speaking, the resulting formulation is
not a conic problem, since some variables belong to two different cones at the same time. It is
nonetheless possible to add a extra variable for each shared variable, along with a constraint
to make them equal on the feasible region, to convert this formulation into the strict conic
format (CP)–(CD).

9.2.3 A first approximation of L2

The previous section has shown that we can focus our attention on approximations of the
3-dimensional second-order. Moreover, it seems reasonable to require this approximation to
be a cone itself too. Taking into account this additional assumption, we can take advantage
of the homogeneity property of these cones to write

(r, x1, x2) ∈ L2 ⇔ (1,
x1

r
,
x2

r
) ∈ L2 , (9.4)

which basically means we can fix r = 1 and look for a polyhedral approximation of the
resulting set {

x ∈ R2 | (1, x) ∈ L2
}

=
{
x ∈ R2 | x2

1 + x2
2 ≤ 1

}
= B2(1) ,

which is exactly the disc of radius one in R2. Any approximating polyhedron for B2(2) will
be then later straightforwardly converted into a polyhedral cone approximating L2, using the
additional homogenizing variable r.

At this point, we have to introduce a measure of the quality of our approximations. A
natural choice for this measure is to state that a polyhedron P ⊆ R2 is a ε-approximation of
B2(1) if and only we have the double inclusion B2(1) ⊆ P ⊆ B2(1 + ε), i.e. the polyhedron
contains the unit disc but lies entirely within the disc of radius 1 + ε.

The most obvious approximation of the unit disc is the regular m-polyhedron Pm, which
is described by m linear inequalities. We have the following theorem:

Theorem 9.1. The regular polyhedron with m sides is an approximation of the unit disc
B2(1) with accuracy ε = cos(π

m)−1 − 1.

160 9. Linear approximation of second-order cone optimization

Proof. The proof is quite straightforward: looking at Figure 9.1 (which represents the case
m = 8), we see that angle ∠AOM is equal to π

m and thus that |OA| cos(π
m) = |OM | = 1. Our

measure of quality is then equal to ε = |OA| − 1 = cos(π
m)−1 − 1, as announced.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 A

M

B

C

D

E

B’

C’

D’

Figure 9.1: Approximating B2(1) with a regular octagon.

This result is not very satisfying: since cos(x)−1 ≈ 1 + x2

2 when x is small, we have that
ε ≈ π2

2m2 when m is large, which means that doubling the number of inequalities only divides
the accuracy by four. For example, approximating B2(1) with the relatively modest accuracy
10−4 would already take a 223-sided polyhedron, i.e. more than 200 linear inequalities.

9.2.4 A better approximation of L2

As outlined in Section 9.2.1, the key idea introduced by Ben-Tal and Nemirovski to obtain a
better polyhedral approximation is to consider the projection of a polyhedron belonging to a
higher dimensional space. The construction we are going to present here is a variation of the
one described in [BTN98], featuring slightly better parameters and a more transparent proof.

Let us introduce an integer parameter k ≥ 2 and consider the set Dk ⊆ R2k+2 defined as

{
(α0, . . . , αk, β0, . . . , βk) ∈ R2k+2 |

αi+1 = αi cos π
2i + βi sin π

2i

βi+1 ≥ βi cos π
2i − αi sin π

2i

−βi+1 ≤ βi cos π
2i − αi sin π

2i

1 = αk cos π
2k + βk sin π

2k

∀ 0 ≤ i < k
}

.

This set is obviously a polyhedron1, since its defining constraints consist in k + 1 linear
equalities and 2k inequalities. The following theorem gives some insight about the structure
of this set.

1Strictly speaking, this set is not a full-dimensional polyhedron in R2k+2 because of the additional linear
constraints but this has no incidence on our purpose.

9.2 – Approximating second-order cone optimization 161

Theorem 9.2. The projection of the set Dk on the subspace of its two variables (α0, β0) is
equal to the regular 2k-sided polyhedron, i.e. we have

(α0, β0) ∈ P2k ⇔ ∃(α1, . . . , αk, β1, . . . , βk) ∈ R2k | (α0, . . . , αk, β0, . . . , βk) ∈ Dk .

Proof. To fix ideas, we are going to present some figures corresponding to the case k = 3, but
our reasoning will of course be valid for all k ≥ 2. Looking at Figure 9.1, which depicts P23 ,
we see that the last equality in the definition of Dk describes the line AM . Indeed, we have
A = (cos(π

2k)−1, 0) and M = (cos(π
2k), sin(π

2k)) and it is straightforward that both of these
points satisfy the last equality in the definition of Dk.

Recall now that the application

Rθ : R2 7→ R2 :
(

x
y

)
7→ Rθ

(
x
y

)
=

(
x cos θ + y sin θ
−x sin θ + y cos θ

)

is a clockwise rotation around the origin with angle θ. Calling Pi the point of R2 whose
coordinates are (αi, βi) and P̂i = (α̂i, β̂i) the image of Pi by rotation Rπ/2i , we have that
the first three constraints in the definition of Dk are equivalent to αi+1 = α̂i, βi+1 ≥ β̂i

and −βi+1 ≤ β̂i. These last two inequalities rewritten as −βi+1 ≤ β̂i ≤ βi+1 immediately
imply that βi+1 has to be nonnegative. Under this assumption, we call P̄i the points whose
coordinates are (αi,−βi) and find that these three constraints are equivalent to saying that
P̂i ∈ [Pi+1 P̄i+1]. In other words, the point P̂i has to belong to a vertical segment [Pi+1 P̄i+1]
such that Pi+1 has its second coordinate nonnegative. Since P̂i is the image of Pi by a rotation
of angle π/2i, saying that P̂i belongs to some set is equivalent to saying that Pi belongs to
the image of this set by the inverse rotation. In our case, this means in fine that Pi has to
belong to the image by a rotation of angle −π/2i of a segment [Pi+1 P̄i+1] such that Pi+1 has
its second coordinate nonnegative.

We can now specialize this result to i = k − 1. Recall that Pk is known to belong to the
line AB. According to the above discussion, we have first to restrict this set to its points with
a nonnegative βk, which gives the half line [AB. Taking the union of all segments [Pk P̄k]
for all possible Pk’s gives the region bounded by half lines [AB and [AB′. Taking finally the
image of this set by a rotation of angle −π/2k−1, we find that Pk−1 has to belong to the
region bounded by half lines [BA and [BC.

We can now iterate this procedure and describe the set of points Pk−2, Pk−3, etc. Indeed,
using exactly the same reasoning, we find that the set of points Pi−1 can be deduced from
the set of points Pi with a three-step procedure:

a. Restrict the set of points Pi to those with a nonnegative βi coordinate.

b. Consider the union of segments [Pi P̄i] where Pi belongs to the above restricted set, i.e.
add for each point (αi, βi) the set of points (αi, x) for all x ranging from −βi to βi.

c. Rotate this union counterclockwise around the origin with an angle equal to π/2i to
find the set of points Pi−1.

162 9. Linear approximation of second-order cone optimization

In the case of our example with k = 3, we have already shown that the set {Pk} = {P3} = [AB
and {Pk−1} = {P2} is the region bounded by [BA ∪ [BC. Going on with the procedure
described above, we readily find that {Pk−2} = {P1} is the region bounded by the polygonal
line [ABCDE] while {Pk−3} = {P0} is the complete octagon ABCDED′C ′B′A, which is the
expected result (see Figure 9.2 for the corresponding pictures). It is not difficult to see that
in the general case {Pk−i} is a set bounded by 2i consecutive sides of P2k , which means we
always end up with {P0} equal to the whole regular 2k-sided polyhedron P2k . This completes
the proof since the set of points P0 is the projection of Dk on the subspace of the two variables
(α0, β0).

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 A

M

B

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 A

M

B

C

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 A

M

B

C

D

E

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 A

M

B

C

D

E

B’

C’

D’

Figure 9.2: The sets of points P3, P2, P1 and P0 when k = 3.

This theorem allows us to derive quite easily a polyhedral approximation for B2(1).

Corollary 9.1. The projection of Dk on the subspace of its two variables (α0, β0) is a poly-
hedral approximation of B2(1) with accuracy ε = cos(π

2k)−1 − 1.

Proof. Straightforward application of Theorems 9.1 and 9.2.

9.2 – Approximating second-order cone optimization 163

This approximation is much better than the previous one: we have here that ε ≈ π2

22k+1 ,
which means that dividing the accuracy by four can be achieved by increasing k by 1, which
corresponds to adding 2 variables, 1 equality and 2 inequality constraints (compare to the
previous situation which needed to double the number of inequalities to reach to same goal).
For example, an accuracy of ε = 10−4 can be obtained with k = 8, i.e. with 16 inequalities, 9
equalities and 18 variables (as opposed to 223 inequalities with the previous approach).

We are now in position to convert this polyhedral approximation of B2(1) into an ap-
proximation of L2. We define the set Lk ∈ R2k+3 as

{
(r, α0, . . . , αk, β0, . . . , βk) ∈ R2k+3 |

αi+1 = αi cos π
2i + βi sin π

2i

βi+1 ≥ βi cos π
2i − αi sin π

2i

−βi+1 ≤ βi cos π
2i − αi sin π

2i

r = αk cos π
2k + βk sin π

2k

∀ 0 ≤ i < k
}

.

Note the close resemblance between this set and Dk, the only difference being the introduction
of an additional variable r in the last equality constraint. This set Lk is our final polyhedral
approximation of L2. Obviously, before we give proof of this fact, we need a measure of the
quality of an approximation in the case of a second-order cone. This is the purpose of the
next definition.

Definition 9.2. A set S ⊆ Rn+1 is said to be an ε-approximation of the second-order cone
Ln if and only if we have

Ln ⊆ S ⊆ Ln
ε = {(r, x) ∈ R × Rn | ‖x‖ ≤ (1 + ε)r}

where Ln
ε is an ε-relaxed second-order cone.

This definition extends our definition of ε-approximation for the unit disc B2(1). The next
theorem demonstrates how Corollary 9.1 on the accuracy of the polyhedral approximation
Dk for B2(1) can be converted into a result on the accuracy of Lk for L2.

Theorem 9.3. The projection of Lk on the subspace of its three variables (r, α0, β0) is a
polyhedral approximation of L2 with accuracy ε = cos(π

2k)−1 − 1.

Proof. Assuming r > 0 for the moment, we first establish a link between Dk and Lk. It is
indeed straightforward to check using the corresponding definitions that the following equiv-
alence holds

(r, α0, . . . , αk, β0, . . . , βk) ∈ Lk ⇔ (
α0

r
, . . . ,

αk

r
,
β0

r
, . . . ,

βk

r
) ∈ Dk , (9.5)

since

αi+1 = αi cos π
2i + βi sin π

2i

βi+1 ≥ βi cos π
2i − αi sin π

2i

−βi+1 ≤ βi cos π
2i − αi sin π

2i

r = αk cos π
2k + βk sin π

2k

⇔

αi+1

r = αi
r cos π

2i + βi

r sin π
2i

βi+1

r ≥ βi

r cos π
2i − αi

r sin π
2i

−βi+1

r ≤ βi
r cos π

2i − αi
r sin π

2i

1 = αk
r cos π

2k + βk
r sin π

2k

which means that Lk is nothing more than the homogenized polyhedral cone corresponding
to Dk.

164 9. Linear approximation of second-order cone optimization

Let us now suppose (r, x1, x2) ∈ L2. Equivalence (9.4) implies (x1
r , x2

r) ∈ B2(1), which in
turn implies by Corollary 9.1 that there exists a vector (α, β) ∈ R2k such that (x1

r , α, x2
r , β)

belongs to Dk. Using the link (9.5), this last inclusion is equivalent to (r, x1, rα, x2, rβ) ∈ Lk,
which means that (r, α0, β0) belongs to the projection of Lk on the subspace (r, α0, β0). We
have thus shown that this projection is a relaxation of L2, the first condition for it to be an
ε-approximation of L2.

Supposing now (r, x1, x2) belongs to the projection of Lk, there exists a vector (α, β) ∈
R2k such that (r, x1, α, x2, β) ∈ Lk. The equivalence (9.5) implies then that (x1

r , α
r , x2

r , β
r) ∈

Dk, which means that (x1
r , x2

r) belongs to the projection of Dk on its subspace (α0, β0).
Using now Corollary 9.1, which states that this projection is an ε-approximation of B2(1)
with ε = cos(π

2k)−1 − 1, we can write that
∥∥(x1

r , x2
r)

∥∥ ≤ 1 + ε, which can be rewritten as
‖(x1, x2)‖ ≤ (1 + ε)r, which is the exactly the second condition for this projection to be an
ε-approximation of L2.

The last task we have to accomplish is to check what happens in the case where r ≤ 0.
Suppose (r, x1, α, x2, β) ∈ Lk. Looking at the definition of Lk, and using the same reasoning
as in the proof of Theorem 9.2, it is straightforward to show that the variables α0 and β0 can
only be equal to 0 when r = 0, and that they cannot satisfy the constraints if r < 0 (i.e. in
the first case the set {P0} is equal to {(0, 0)} while in the second case {P0} = ∅). Since this
is also the situation of the second-order cone L2, our approximation is exact when r ≤ 0, and
we can conclude that the projection of Lk on the subspace of its three variables (r, α0, β0) is
an ε-approximation of the three dimensional second-order cone L2 with ε = cos(π

2k)−1−1.

9.2.5 Reducing the approximation

Our polyhedral approximation Lk features 2k + 3 variables, 2k linear inequalities and k + 1
linear equalities. It is possible to reduce these numbers by pivoting out a certain number
of variables. Namely, using the set of constraints αi+1 = αi cos π

2i + βi sin π
2i for 0 ≤ i < k,

we can replace αk by a linear combination of αk−1 and βk−1, then replace αk−1 by a linear
combination of αk−2 and βk−2, and so on until all variables αi have been replaced except α0

(which cannot and should not be pivoted out since it belongs to the projected approximation).
The last equality r = αk cos π

2k + βk sin π
2k can also be used to pivot out βk.

The resulting polyhedron has then k+2 variables (r, α0, β0, . . . , βk−1), 2k linear inequali-
ties and no linear equality. However, it should be noted that the constraint matrix describing
the reduced polyhedron is denser than in the original approximation, i.e. it contains many
more nonzero elements, as depicted on Figure 9.3 in the case k = 15 (which also mentions
the number of nonzero elements in each case).

This denser constraint matrix has of course a negative impact on the efficiency of the
algorithm used to solve the approximation problems, so that computational experiments are
needed to decide whether this is enough to counterbalance the advantage of a reduced number
of equalities and variables Indeed, preliminary testing on a few problems representative of the
ones we are going to consider in Section 9.3 led us to the conclusion that pivoting out the
variables is beneficial, leading roughly to a 20% reduction of computing times.

9.2 – Approximating second-order cone optimization 165

10 20 30

5

10

15

20

25

30

35

40

45

nz = 138

Original approximation

10 20 30

5

10

15

20

25

30

35

40

45

nz = 300

Reduced approximation

Figure 9.3: Constraint matrices for L15 and its reduced variant.

Another interesting remark can be made when we have to approximate a second-order
cone whose components are restricted to be nonnegative. Namely, if we know beforehand that
x1 and x2 cannot be negative, the polyhedral approximation of L2 can be reduced. Indeed,
looking back at the proof of Theorem 9.2, we see that the set of points P2 is bounded by 2k−2

consecutive sides of the regular 2k-sided polyhedron (see for example the set {P2} depicted in
Figure 9.2). Combining this with the restriction that α2 and β2 are nonnegative, we have that
the set {P2} is exactly equal to the restriction of P2k to the positive orthant, and is thus a
valid ε-approximation of L2 on this positive orthant with ε = cos(π

2k)−1− 1. This observation
leads to the formulation of a reduced polyhedral approximation L′k defined by

{
(r, α2, . . . , αk, β2, . . . , βk) ∈ R2k−1 |

αi+1 = αi cos π
2i + βi sin π

2i

βi+1 ≥ βi cos π
2i − αi sin π

2i

−βi+1 ≤ βi cos π
2i − αi sin π

2i

r = αk cos π
2k + βk sin π

2k

∀ 2 ≤ i < k
}

,

whose projection of the subspace of (r, α2, β2) approximates the nonnegative part L2. This
approximation features 2k − 1 variables, 2k − 4 linear inequalities and k − 1 linear equalities
and can be reduced to k variables, 2k − 4 linear inequalities and no linear equality if we
perform the pivoting described above.

At this stage, we would like to compare our approximation with the one presented in
[BTN98]. Both of these feature the same accuracy ε = cos(π

2k)−1 − 1 (with parameter ν
in [BTN98] equal to k − 1 in our setting). However, Ben-Tal and Nemirovski do not make
explicit that the projection of their polyhedral approximation is equal to the regular 2k-sided
polyhedron in R2 and only prove the corresponding accuracy result.

Table 9.1 compares the sizes of the polyhedral approximations in three cases: the orig-
inal approximation, the reduced approximation where variables αi are pivoted out and the
nonnegative approximation L′k (also with variables αi pivoted out).

166 9. Linear approximation of second-order cone optimization

Table 9.1: Comparison of our approximation Lk with [BTN98].

Original Reduced Nonnegative
[BTN98] Lk [BTN98] Lk [BTN98] L′k

Variables 2k + 3 2k + 3 k + 4 k + 2 k + 2 k
Inequalities 2k + 4 2k 2k + 4 2k 2k 2k − 4
Equalities k − 1 k + 1 0 0 0 0

Our version uses 4 less inequality constraints in all three cases. It also features 2 more
equality constraints in the original approximation, which turns out to be an advantage since
it allows us to pivot out more variables in the reduced versions. Both the reduced and the
nonnegative versions of Lk use 2 less variables than their counterparts in the original article
of Ben-Tal and Nemirovski.

9.2.6 An approximation of Ln

We are now going to use the decomposition presented in Section 9.2.2 and our polyhedral
approximation Lk for L2 to build an approximation for Ln. Recall that expression (9.3)
decomposed Ln into bn/2c three-dimensional second-order cones L2 and a single larger cone
Ld

n
2
e. Applying this decomposition recursively, we can decompose Ld

n
2
e into bdn/2e/2c second-

order cones L2 with a remaining larger cone Lddn/2e/2e, which can be again decomposed into
bddn/2e/2e/2c cones L2, etc.

Calling qk the number of three-dimensional second-order cones appearing in the decom-
position at each stage of this procedure and rk the corresponding size of the remaining cone,
we have initially q0 = 0, r0 = n and

qk = brk−1

2
c and rk = drk−1

2
e ∀ k > 0 .

Obviously, rk is strictly decreasing and we must eventually end up with rk equal to 2. Indeed,
it is easy to see that 2i−1 < rk−1 ≤ 2i implies 2i−2 < rk ≤ 2i−1 and a simple recursive argument
shows then that if 2m−1 < n ≤ 2m we have 2m−k−1 < rk ≤ 2m−k and thus that rm−1 = 2. At
this stage, the remaining second-order cone is L2, which we can add to the decomposition in
the last stage with qm = 1 to have rm = 0. Our decomposition has thus in total m stages.
We also showed in Section 9.2.2 that the total of L2 cones in the final decomposition is equal
to

∑m
i=1 qi = n − 1, and we also note for later use that 2m−k < rk−1 ≤ 2m−k+1 implies

2m−k−1 ≤ qk ≤ 2m−k.

We ask ourselves now what happens if each of the second-order cones appearing in this
decomposition is replaced by an ε-approximation. Namely, suppose each of the bn/2c second-
order cones L2 in expression (9.3) is replaced by an ε(i)-approximation (0 ≤ i ≤ bn/2c), while
the remaining larger cone is replaced by an ε′-approximation. We end up with the set

{
(r, x, y) ∈ R+×Rn+bn

2
c | (yi, x2i−1, x2i) ∈ L2

ε(i)
, 1 ≤ i ≤ bn

2
c,

{
(r, y) ∈ Ldn/2e

ε′ (n even)
(r, y, xn) ∈ Ldn/2e

ε′ (n odd)

}
,

9.2 – Approximating second-order cone optimization 167

whose constraints are equivalent to

x2
2i−1 + x2

2i ≤ (1 + ε(i))2y2
i , 1 ≤ i ≤ bn

2
c,

{∑n
2
i=1 y2

i ≤ (1 + ε′)2r2 (n even)
∑n

2
i=1 y2

i + x2
n ≤ (1 + ε′)2r2 (n odd)

}
.

Ideally, we would like this decomposition to be an ε-approximation of Ln. We already know
that it is a relaxation of Ln, since each approximation of L2 is itself a relaxation. We have
thus to concentrate on the second condition defining an ε-approximation, ‖x‖ ≤ (1 + ε)r.
Writing ∑2bn/2c

i=1 x2
i ≤

∑bn/2c
i=1 (1 + ε(i))2y2

i ,

we would like to bound the quantity on the right hand-side. Unfortunately, we only know a
bound on the sum of y2

i ’s, which forces us to write

∑2bn/2c
i=1 x2

i ≤ (1 + maxi ε(i))2
∑bn/2c

i=1 y2
i ⇒ ∑n

i=1 x2
i ≤ (1 + maxi ε(i))2(1 + ε′)2r2 .

This shows that our decomposition is an approximation of Ln with accuracy ε = (1 +
maxi εi)(1 + ε′). This immediately implies that there is no point in approximating with
different accuracies the bn/2c small second-order cones L2 appearing in the decomposition,
since only the largest of these accuracies has an influence on the resulting approximation for
Ln. Applying now our decomposition recursively to the remaining cone, and choosing at each
stage k a unique accuracy εk for all the L2 cones, we find that 1+ ε =

∏m
k=1(1+ εk) ,, i.e. that

the final accuracy of our polyhedral approximation is the product of the accuracies chosen at
each stage of the decomposition (note that, unlike the situation for a single stage, there is no
reason here to choose all εk accuracies to be equal to each other).

9.2.7 Optimizing the approximation

The previous section has shown how to build a polyhedral approximation of Ln and how its
quality depends on the accuracy of the approximations used at each stage of the decomposi-
tion. Our goal is here to optimize these quantities, i.e. given a target accuracy ε for Ln, find
the values of εk (1 ≤ k ≤ m) that lead to the smallest polyhedral approximation, i.e. the one
with the smallest number of variables and constraints.

Let us suppose we use at stage k the approximation Luk
with uk + 2 variables and 2uk

linear inequalities (i.e. with variables α pivoted out of the formulation), which has an accuracy
εk = cos(π

2uk)−1 − 1. Recalling notation qk for the number of cones L2 introduced at stage
k of the decomposition, the final polyhedral approximation has thus an accuracy equal to∏m

k=1 cos(π
2uk)−1 with 2

∑m
k=1 qkuk inequalities and n+

∑m
k=1 qkuk variables. Indeed, we have

n original xi variables and uk additional variables for each of the qk approximations at stage
k, since the first two variables in these approximations are coming from the previous stage.
We observe that the main quantity to be minimized is

∑m
k=1 qkuk for both the number of

variables and inequalities, which leads to the following optimization problem:

σn,ε = min
u∈Nm

m∑

k=1

qkuk s.t.
m∏

k=1

cos(
π

2uk
)−1 ≤ 1 + ε . (9.6)

168 9. Linear approximation of second-order cone optimization

A possible choice for variables uk is to take them all equal. Plugging this unique value into
the accuracy constraint, we readily find that uk has to be equal to

uk = dlog2

(
π/ arccos(1 + ε)−1/m

)e

and that when the dimension of the cone Ln (and thus m) tends to +∞, we have uk =
O (

log m
ε

)
and σn,ε = O (

n log m
ε

)
.

This obviously does not lead to an optimal solution of (9.6). Indeed, since the number of
approximations is decreasing as we move from one stage of the decomposition to the next, it is
intuitively clear that trading a lower accuracy for first stages against a higher accuracy for the
last stages will be beneficial, since the lowering of the number of variables and inequalities
in the first stages will affect many more constraints than the increase of size for the last
stages. This implies that the components uk of any optimal solution of (9.6) will have to be
in increasing order.

Finding a closed form optimal solution of (9.6) does not appear to be possible, but we
can find a good suboptimal solution using some approximations. We first introduce variables
vk such that vk = 4−uk ⇔ uk = − log4 vk and rewrite problem (9.6) as

σn,ε = min
v∈Rm

− log4

m∏

k=1

vqk
k s.t.

m∑

k=1

log(cos(π
√

vk)−1) ≤ log(1 + ε) .

Since uk ≥ 2, we have π
√

vk ≤ π
4 and we can use the easily proven2 inequality

log(cos(x)−1) ≤ (
3x

4
)2

valid for all 0 ≤ x ≤ π
4 to write

σn,ε = − max
v∈Rm

log4

m∏

k=1

vqk
k s.t.

m∑

k=1

vk ≤ 16
9

π−2 log(1 + ε) = K(ε) ,

which is thus a restriction of our original problem. It amounts to maximizing a product of
variables whose sum is bounded, a problem whose optimality conditions are well-known. In
our case, they can written as

v1

q1
=

v2

q2
= . . .

vm

qm
=

∑m
k=1 vk∑m
k=1 qk

=
K(ε)
n− 1

⇒ vk =
qk

n− 1
K(ε) ⇔ uk = log4

n− 1
qk

− log4 K(ε) .

However uk must be integer, so that we have to degrade this solution further and round it
towards a larger integer. Using that fact that n− 1 ≤ 2m and qk ≥ 2m−k−1, we have

n− 1
qk

≤ 2m

2m−k−1
= 2k+1 ⇒ log4

n− 1
qk

≤ log4 2k+1 =
k + 1

2
,

so that we can take uk = dk+1
2 e − blog4 K(ε)c as our suboptimal integer solution for (9.6).

2This inequality can be easily checked by plotting the graphs of its two sides on the interval [0 π
4
].

9.2 – Approximating second-order cone optimization 169

Let us plug now these values into the objective function σn,ε: we find

m∑

k=1

qkuk =
m∑

k=1

qkdk + 1
2

e −
m∑

k=1

qkblog4 K(ε)c

≤
m∑

k=1

qk(
k

2
+ 1)− (n− 1)blog4 K(ε)c (using

m∑

k=1

qk = n− 1)

≤
m∑

k=1

2m−k(
k

2
+ 1)− (n− 1)blog4 K(ε)c (using qk ≤ 2m−k)

≤ 2m+1 − m

2
− 2− (n− 1)blog4 K(ε)c

≤ 4(n− 1)− (n− 1)blog4 K(ε)c (using 2m−1 ≤ n− 1)

≤ (n− 1)d4− log4 K(ε)e = (n− 1)d4− log4

16
9

+ log4 π2 − log4 log(1 + ε)e
≤ (n− 1)d5.3− log4 log(1 + ε)e

(where we have used at the fourth line the fact that
∑m

k=1 2m−k(k
2 +1) = 2m+1− m

2 −2, which
is easily proved recursively). We can wrap this result into the following theorem:

Theorem 9.4. For every ε < 1
2 , there exists a polyhedron with no more than

2 + (n− 1)d5.3− log4 log(1 + ε)e = O(
n log

1
ε

)
variables

and
2 + 2(n− 1)d4.3− log4 log(1 + ε)e = O(

n log
1
ε

)
inequalities

whose projection on a certain subspace of n+1 variables is an ε-approximation of the second-
order cone Ln ⊆ Rn+1.

Proof. This a consequence of the previous derivation, which showed that choosing uk =
dk+1

2 e − blog4 K(ε)c lead to an ε-approximation of Ln with n + σn,ε variables and 2σn,ε linear
inequalities, with σn,ε = (n − 1)d5.3 − log4 log(1 + ε)e. However, the size of this polyhedron
can be further reduced using L′k, the polyhedral approximation of the nonnegative part of
L2. Indeed, looking at the decomposition (9.3), we see that all the y variables used in the
second stage of the decomposition are guaranteed to be nonnegative, since we have in our
approximation (yi, x2i−1, x2i) ∈ Lu1 which implies yi ≥ 0. This means that we can use for the
second stage and the following our reduced approximation L′uk

, known to be valid when its
first two variables are restricted to the nonnegative orthant L2, which uses 2 less variables and
4 less inequalities per cone. Since there are n

2 cones in the first stage of the decomposition and
n− 1 cone in total, we can use n

2 − 1 reduced approximations L′, which give us a total saving
of n−2 variables and 2n−4 constraints3. Combining this with the value of σn,ε, we find that
our approximation has 2+(n−1)d5.3− log4 log(1+ε)e variables and 2+d4.3− log4 log(1+ε)e
inequalities.

3This reasoning was made for an even n. In the case of an odd n, we have one cone in the decomposition for
which only the first variable is known to be nonnegative. It is possible to show that there exists a polyhedral
approximation adapted to this situation that uses 1 less variable and 2 less inequalities than the regular
approximation, which allows us to write exactly the same results as for an even n.

170 9. Linear approximation of second-order cone optimization

We also have to prove the asymptotic behaviour of σn,ε when n tends to infinity. Indeed,
we have log(1 + ε) ≥ ε

2 when ε < 1
2 , which implies − log4 log(1 + ε) ≤ log4

1
ε . This leads to

d5.3− log4 log(1 + ε)e = O(
log 1

ε

)
, which is enough to prove the theorem.

This result is better than the one we previously obtained choosing all uk’s equal to each
other: indeed, we had in that case σn,ε = O(

n log m
ε

)
= O(

n log log n
ε

)
while we have here

O(
n log 1

ε

)
. For a fixed accuracy ε, our first choice translates into σn,ε = O (n log log n) when

n tends to infinity while our optimized choice of uk’s leads to σn,ε = O (n), which is better.
We note however that if we fix n and let ε tends to 0, the asymptotic behaviour is the same
in both cases , namely we have σn,ε = O(

log 1
ε

)
.

Ben-Tal and Nemirovski achieve essentially the same result in [BTN98], albeit in the
special case when n is a power of two. Our proof has the additional advantage of providing a
closed form for the parameters uk as well as for the total size of the polyhedral approximation,
for all values of n. They also prove that the number of inequalities of a ε-approximation of
Ln must be greater that O(

n log 1
ε

)
, i.e. that the order of the result of Theorem 9.4 is not

improvable.

9.2.8 An approximation of second-order cones optimization

The previous sections have proven the existence of a polyhedral approximation of the second-
order cone with a moderate size (growing linearly with the dimension of the cone and the
logarithm of the accuracy). However, we have to point out that these polyhedrons are not
strictly speaking approximations of the second-order cone: more precisely, it is their projection
on a certain subspace than is an ε-approximation of Ln.

This does not pose any problem when trying to approximate a second-order cone opti-
mization problem with linear optimization. Let us suppose we want to approximate prob-
lem (9.1), which we recall here for convenience,

inf cT x s.t. Ax = b and xk ∈ Lnk ∀k = 1, 2, . . . , r (9.1)

with ε-approximations of the second order cones Lnk . Theorem 9.4 implies the existence of a
polyhedron

Qk =
{

(xk, yk) ∈ Rnk+1 × RO
(
nk log 1

ε

)
| Ak(xk, yk)T ≥ 0

}

with
Ak ∈ RO

(
nk log 1

ε

)
×O

(
nk log 1

ε

)
,

whose projection on the subspace (r, x) is an ε-approximation of Lnk , which allows us to write
the following linear optimization problem4

min cT x s.t. Ax = b and Ak(xk, yk)T ≥ 0 ∀k = 1, 2, . . . , r . (9.7)

We note that the fact that our approximations are projections is handled in a seamless way
by this formulation: the only difference with the use of a direct approximation of the cones

4We could replace the inf of problem (9.1) by a min since it is well-known that linear optimization problems
always attain their optimal objectives, see Chapter 3.

9.2 – Approximating second-order cone optimization 171

Lnk is the addition of the auxiliary variables yk to the formulation. This problem features∑r
k=1O

(
nk log 1

ε

)
= O(

n log 1
ε

)
variables, m equality constraints and

∑r
k=1O

(
nk log 1

ε

)
=

m +O(
n log 1

ε

)
homogeneous inequality constraints. We also point out as a minor drawback

of this formulation the fact that it involves irrational coefficients, namely the quantities sin π
2i

and cos π
2i occurring in the definition of Lk. However, it rational coefficients are really needed

(for example if one wants to work with a complexity model based on exact arithmetic), it
is possible to replace those quantities with rational approximations while keeping an essen-
tially equivalent accuracy for the resulting polyhedral approximation, i.e. featuring the same
asymptotic behaviour.

To conclude this section, we are going to compare the algorithmic complexity of solving
problem (9.1) either directly or using our polyhedral approximation. The best complexity
obtained so far5 for solving a linear program with v variables up to accuracy ε is O(

v3.5 log(1
ε)

)
arithmetic operations (using for example a short-step path-following method, see Chapter 1).
In our case, assuming we solve the approximate problem (9.7) up to the same accuracy that
the one used to approximate the second-order cones, this leads to a complexity equal to
O(

n3.5 log(1
ε)

4.5
)
.

On the other hand, solving problem (9.1) can be done using O(√
r n3 log(1

ε)
)

arithmetic
operations, using for example a potential reduction approach, see e.g. [LVBL98]. If r = O (1),
i.e. if the number of cones used in the formulation is bounded, the second complexity is better,
both if n → +∞ or ε → 0. However, if r = O (n), which means that the dimension of the
cones used in the formulation is bounded, both complexity become equivalent from the point
of view of the dimension n, but the second one is still better when letting the accuracy tend
to 0. We conclude that the direct solving of (9.1) as a second-order cone problem is superior
from the point of view of algorithmic complexity. The purpose of the second part of this
chapter will be to test whether this claim is also valid for computational experiments.

9.2.9 Accuracy of the approximation

The linearizing scheme for second-order cone optimization presented in the previous section
is based on a polyhedral approximation whose accuracy is guaranteed in the sense of Defi-
nition 9.2. It is important to realize that this bound on the accuracy of the approximation
does not imply a bound on the accuracy of the solutions (or the objective value) of the
approximated problem.

Indeed, let us consider the following set:

{
(r, x1, x2) ∈ R3 | r − x2 =

1
2

and (r, x1, x2) ∈ L2
}

.

This set can be seen as the feasible region of a second-order cone problem. Using the fact
that

x2
1 + x2

2 ≤ r2 ⇔ x2
1 + x2

2 ≤ (x2 +
1
2
)2 ⇔ x2

1 −
1
4
≤ x2 ,

we find that the projection of this set on the subspace (x1, x2) is the epigraph of the parabola
x 7→ x2 − 1

4 . Let us now replace L2 by the polyhedral approximation Lk. Since the resulting
5Using standard linear algebra and without partial updating.

172 9. Linear approximation of second-order cone optimization

set will be polyhedral, its projection on the subspace (x1, x2) will also be polyhedral, and we
can deduce without difficulties that it is the epigraph of a piecewise linear function, as shown
by Figure 9.4 (depicting the cases k = 1, 2, 3 and 4).

−10 −5 0 5 10
−20

0

20

40

60

80

100

x
1

x
2

−10 −5 0 5 10
−20

0

20

40

60

80

100

x
1

x
2

−10 −5 0 5 10
−20

0

20

40

60

80

100

x
1

x
2

−10 −5 0 5 10
−20

0

20

40

60

80

100

x
1

x
2

Figure 9.4: Linear approximation of a parabola using Lk for k = 1, 2, 3, 4.

Because a polyhedron has a finite number of vertices, this piecewise linear function must
have a finite number of segments. Considering the rightmost piece, i.e. whose x1 values span
an interval of the type [α +∞[, it is obvious that it cannot approximate the parabola with
a guaranteed accuracy. Indeed, the difference between the approximation and the parabola
grows quadratically on this segment, which means that even the ratio of variable x2 between
the parabola and its linear approximation is not bounded.

Let us now consider the following parameterized family of second-order cone optimization
problems

min x2 s.t. x1 = λ, r − x2 =
1
2

and (r, x1, x2) ∈ L2 , (PBλ)

which is using the same feasible set as above with an additional constraint fixing the variable
x1 to λ. Denoting the optimal objective value of (PBλ) by p∗(λ), we have in light of the
previous discussion that p∗(λ) = λ2− 1

4 . However, we also showed that the optimal objective
value p∗k(λ) of the approximated problem

min x2 s.t. x1 = λ, r − x2 =
1
2

and (r, x1, x2, y) ∈ Lk

9.3 – Computational experiments 173

must be a piecewise linear function of λ with a finite number of segments. Indeed, simple
computations6 show that the endpoints of these segments occur for

λ =
sin(iθ)

2 cos θ
2 − 2 cos(iθ)

for i = 1, 2, . . . , 2k − 1 with θ =
π

2k−1
,

which shows that p∗(λ) is linear as soon as λ ≥ sin θ
2 cos θ

2
−2 cos θ

.

The discrepancy between the real optimum p∗(λ) and the approximated optimum p∗k(λ)
is thus unbounded when λ goes to infinity. Moreover, we have that the relative accuracy of
p∗k(λ) tends to 1, the worst possible value, i.e.

p∗(λ)− p∗k(λ)
p∗(λ)

→ 1 .

Another interesting feature of this small example is that performing a complete parametric
analysis for parameter λ ranging from −∞ to +∞ would lead to 2k−1 different break points.

We conclude that we cannot give an a priori bound on the accuracy of the optimal
objective value of the linear approximation of a second-order cone optimization problem
(this remark is also valid for accuracy of the optimal solution itself, since we have in our
example (PBλ) that the optimal value of x2 is equal to p∗).

9.3 Computational experiments

In this section, we present computational experiments with an implementation of the lineariz-
ing scheme for second-order cone optimization we have just described.

9.3.1 Implementation

The computer used to conduct those experiments is an Intel 500 MHz Pentium III with 128
megabytes of memory. We chose to use the MATLAB programming environment, developed
by The MathWorks, for the following reasons:

¦ MATLAB is a flexible and modular environment for technical computing, two very
important characteristics when developing research code. Although MATLAB may be
somehow slower than a pure C or FORTRAN approach, we think that this loss of
performance is more than compensated by the ease of development (especially from the
point of view of graphic capabilities and debugging). Moreover, the critical (i.e. time
consuming) parts of the algorithms can be coded separately in C or FORTRAN and
used in MATLAB via MEX files (this is the approach taken by the solvers we mention
below), which allows a well designed MATLAB program to be nearly as efficient as an
equivalent pure C or FORTRAN program.

6Simply observe that the extremal rays of Lk obey to the relation x2 = x1 tan iθ with i = 1, 2, . . . , 2k and
θ = π/2k−1.

174 9. Linear approximation of second-order cone optimization

¦ Efficient interior-point solvers are available on the MATLAB platform. Indeed, we used
in our experiments

– The MOSEK optmization toolbox for MATLAB by EKA Consulting ApS, a full-
featured optimization package including a simplex solver and primal-dual interior-
point solvers for linear optimization, convex linearly and quadratically constrained
optimization, second-order cone optimization, linear least square problems, lin-
ear l1 and l∞-norm optimization and geometric and entropy optimization [AA99,
ART00]. When compared with the standard optimization toolbox from MATLAB,
MOSEK is particularly efficient on large-scale and sparse problems. MOSEK can
be downloaded for research and evaluation purposes at http://www.mosek.com.

– SeDuMi by Jos Sturm [Stu99b], another primal-dual interior-point solver which is
able to handle linear, second-order cone and semidefinite optimization problems.
SeDuMi is designed to take into account sparsity and complex values, and has
the advantage of dealing with the very important class of semidefinite optimiza-
tion, but is a little more restrictive than MOSEK concerning the input format,
since problems must be entered in the standard conic form (9.1). SeDuMi can be
downloaded at http://www.unimaas.nl/~sturm/.

The main routines we implemented are the following (source code is available in the
appendix):

¦ PolySOC2(k) generates the polyhedron Lk with accuracy εk = cos(π
2uk)−1−1. Variables

αi are pivoted out, so that this routine returns a polyhedron with k + 2 variables and
2k inequalities. An optional parameter is available to use the reduced approximation
L′k, valid on the nonnegative restriction of L2.

¦ Steps(q, e) computes the optimal choice for the size of the cones at each stage of the
decomposition of Ln. Indeed, q contains our vector q (i.e. the number of cones at each
stage) and e is the target accuracy ε.

¦ PolySOCN(n, e) generates a e-approximation of Ln. It uses the output of PolySOC2
and the optimal sizes for the cones computed by Steps.

¦ PolySOCLP(p, e) linearizes the second-order cone optimization problem p, replacing
each second-order cone constraint with a polyhedral e-approximation using PolySOCN
and outputting a linear optimization problem.

The procedure Steps we implemented features some improvements when compared with
the theory we presented in the previous section. Indeed, Theorem 9.4 shows that the choice
uk = dk+1

2 e − blog4 K(ε)c leads to a polyhedron of size O(
n log 1

ε

)
, but is not optimal for two

reasons:

¦ We approximated the formula giving the accuracy of the approximation to derive uk

(namely, we used log(cos(x)−1) ≤ (3x
4)2).

¦ The optimal solution for this approximated accuracy was not guaranteed to be integer
and had to be rounded to the smallest greater integer.

http://www.mosek.com�
http://www.unimaas.nl/~sturm/�

9.3 – Computational experiments 175

However, one can easily improve this choice in practice as follows. Let us suppose theory
predicts some optimal values vk for the sizes of the cones at stage k, which have to be
rounded to dvke. Because of this rounding, the actual accuracy of the approximation will be
much better than our target ε. Recalling now that this accuracy is equal to (1 + ε1)(1 + ε′),
where ε1 is the accuracy of the cones in the first stage, and is thus equal to cos(π

2dv1e)
−1 − 1,

and ε′ is the accuracy from the cone modelled by all the remaining stages Ldn/2e, we can
compute an upper bound for ε′, according to

(1 + ε1)(1 + ε′) ≤ ε ⇔ ε′ ≤ ε

1 + ε1
− 1

which will be better (i.e. higher) than in the theoretical derivation since it takes into account
the exact accuracy ε1 of the first stage, rounding included. We can now apply this procedure
to the second stage, i.e. computing a theoretical value for ε2 and an upper bound on the
accuracy of Lddn/2e/2e, and so on, obtaining in the end a smaller polyhedral approximation,
since the required accuracies for the cones at every stage (except the first one) are higher and
hence need less constraints and variables.

Still, this improved rounding does not address the first reason why our uk’s are not
optimal, the fact that we do not optimize the actual formula for the accuracy. Since it
seems impossible to deal with it in closed form, we implemented a dynamic programming
approach to optimize it. This algorithm uses the theoretical suboptimal solution described
above (including the improved rounding procedure) to provide bounds on the optimal solution
and therefore reduce the computing time.

Figure 9.5 presents the graphs of the size (measured by σn,ε) of our approximations in
two situations: fixed dimension (n = 50, 200, 800) with accuracy ranging from 10−1 to 10−8

and fixed accuracy (ε = 10−2, 10−5, 10−8) with dimension ranging from 10 to 1000. The
asymptotic behaviour of σn,ε is very clear on these graphs: we have a linear increase when
n tends to +∞ for a fixed accuracy and a logarithmic increase when ε tends to 0 for a fixed
dimension (since the first graph has a logarithmic scale of abscissas).

Finally, in order to give an idea of the efficiency of our improved rounding procedure
and dynamic programming resolution, we provide in Table 9.2 the value of σn,ε for different
strategies, using a target accuracy ε = 10−8.

Table 9.2: Different approaches to optimize the size of a 10−8-approximation of Ln

n Theory All equal (rounded) Theory (rounded) Dynamic programming
10 171 139 141 139

100 1881 1584 1552 1537
1000 18981 15987 15688 15522

10000 189981 160140 157063 155392

The first column represents the theoretical value σn,ε = (n− 1)d5.3− log4 log(1+ ε)e, the
second column describes the choice of all uk’s, equal to each other, albeit using the improved
rounding procedure presented above, the third column reports the choice of the theoretical

176 9. Linear approximation of second-order cone optimization

10
−8

10
−6

10
−4

10
−2

0

5000

10000

15000

ε

σ
k

n=50

n=200

n=800

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000

14000

16000

n

σ
k

ε=10−2

ε=10−5

ε=10−8

Figure 9.5: Size of the optimal approximation versus accuracy (left) and dimension (right).

value for uk, this time with the improved rounding procedure, and the last column gives the
true optimal value via our dynamic programming approach. We observe that our iterative
rounding procedure improves the theoretical value of σn,ε in a noticeable way, lowering it by
approximately 15%. The differences between the last three columns are less important, the
dynamic programming approach giving a few additional percents of decrease in the size of
the approximation.

9.3.2 Truss-topology design

We first tested our linearizing scheme for second-order cone optimization on a series of truss
topology design problems. A truss is a structure composed of elastic bars connecting a set of
nodes, like a railroad bridge or the Eiffel tower. The task consists in determining the size (i.e.
the cross sectional areas) of the bars that lead to the stiffest truss when submitted to a set of
forces, subject to a total weight limit. The problem we want to solve here is a multi-load truss
topology design problem, which means we are simultaneously considering a set of k loading
scenarios. This problem can be formulated as follows (see [BTN94]):

min
n∑

i=1

σi s.t. ‖(qi1, . . . , qik)‖ ≤ σi ∀1 ≤ i ≤ n and B

q1j

q2j
...

qnj

 = fj ∀1 ≤ j ≤ k , (TTD)

where n is the number of bars, k is the number of loading, vector σ ∈ Rn and matrix Q ∈ Rn×k

are the design variables, B ∈ Rm×n is a matrix describing the physical configuration of the
truss and fj ∈ Rm, 1 ≤ j ≤ k are vectors of forces describing the loadings scenarios.

It is easily cast as a second-order cone problem in the form (9.1), since the norm con-
straints can be modelled as (σi, qi1, . . . , qik) ∈ Lk for all 1 ≤ i ≤ n. Indeed, we have that the

9.3 – Computational experiments 177

variables x ∈ Rk(n+1), the objective c ∈ Rk(n+1) and the equality constraints Ax = b with
A ∈ Rkm×k(n+1) and b ∈ Rkm are given by

x =

σ
q11

q21
...

qnk

, c =

1n×1

0
0
...
0

, A =

0m×n B
0m×n B

...
. . .

0m×n B

 and b =

f1

f2
...

fk

to give the following second-order cone optimization problem equivalent to (TTD):

min

1n×1

0
0
...
0

T

σ
q11

q21
...

qnk

s.t.

0m×n B
0m×n B

...
. . .

0m×n B

σ
q11

q21
...

qnk

=

f1

f2
...

fk

(σi, qi1, . . . , qik) ∈ Lk for all 1 ≤ i ≤ n

. (TP)

This allows us to write a dual problem in the form (9.2) in a straightforward manner:

max
k∑

j=1

fT
j yj s.t.

0m×n 0m×n · · · 0m×n

BT

BT

. . .
BT

yσ

y1
...

yk

 +

σ∗

q∗11

q∗21
...

q∗nk

=

1n×1

0
0
...
0

(σ∗i , q
∗
i1, . . . , q

∗
ik) ∈ Lk for all 1 ≤ i ≤ n

(TD)

where σ∗ ∈ Rn, Q∗ ∈ Rn×k, yσ ∈ Rm and yj ∈ Rm for all 1 ≤ j ≤ k are the dual variables.
Variables σ∗ and Q∗ can be pivoted out of the formulation using the linear constraints

σ∗ = 1n×1 and q∗ij = −bT
i yj ∀1 ≤ i ≤ n, 1 ≤ j ≤ k

(where bi ∈ Rm is the ith column of B), which gives then

max
k∑

j=1

fT
j yj s.t. (1,−bT

i y1, . . . ,−bT
i yk) ∈ Lk for all 1 ≤ i ≤ n

and finally

max
k∑

j=1

fT
j yj s.t.

k∑

j=1

(bT
i yj)2 ≤ 1 for all 1 ≤ i ≤ n , (TQC)

which is a convex quadratically constrained problem with a linear objective. We can thus solve
a truss-topology design problem in at least three different manners: either solving the second-
order cone optimization problems (TP) or (TD) or solving the quadratically constrained
problem (TQC).

The problems we used for our computational experiments were randomly created using
a generator developed by A. Nemirovski. Given three integers p, q and k, it produced the

178 9. Linear approximation of second-order cone optimization

Table 9.3: Dimensions of the truss-topology design problems.

Problem description Formulation Primal Dual
2× 2 grid with 2 loads 5 cones L2 15× 8 23× 15
2× 2 grid with 4 loads 5 cones L4 25× 16 41× 25
2× 2 grid with 8 loads 5 cones L8 45× 32 77× 45
2× 2 grid with 16 loads 5 cones L16 85× 64 149× 85
2× 2 grid with 32 loads 5 cones L32 165× 128 293× 165
4× 4 grid with 2 loads 114 cones L2 342× 48 390× 342
4× 4 grid with 4 loads 114 cones L4 570× 96 666× 570
4× 4 grid with 6 loads 114 cones L6 798× 144 942× 798
6× 6 grid with 2 loads 615 cones L2 1845× 120 1965× 1845
6× 6 grid with 4 loads 615 cones L4 3075× 240 3315× 3075
8× 8 grid with 2 loads 1988 cones L2 5964× 224 6188× 5964

matrix B and vectors fj corresponding to k loading scenarios for a truss using a 2-dimensional
p× q nodal grid, with n ≈ 1

2p2q2 and m ≈ 2pq. We tested 11 combinations of parameters p,
q and k. The dimensions of the corresponding problems are reported in Table 9.3 (the last
two columns report the number of variables × the number of constraints). We see that the
last problems involve a fairly large number of small second-order cones.

Polyhedral approximations of these problems were computed for three different accura-
cies, namely ε = 10−2, 10−5 and 10−8. The dimensions of the resulting linear optimization
problems are reported in Table 9.4. It is interesting to note that problems with accuracy
10−8 are only approximately three times larger than problems with accuracy 10−2 and 50%
larger than problems with accuracy 10−5 (with several dozens of thousands of variables for
the largest among them).

Before we present computing times, we have to mention a special feature of this class of
problems. Contrary to the general assertion that is stated in Section 9.2.9, it is possible to give
here an estimation of the quality of the optimum objective value of the approximated problem.
Indeed, let us call t∗ the optimal objective value of problem (TTD) and t∗ε the optimal objective
value of the approximated problem with accuracy ε. Since our approximation is a relaxation,
we obviously have t∗ε ≤ t∗, and the optimal solution of the approximated problem (Q∗

ε , σ
∗
ε) is

not necessarily feasible for the original problem. However, Definition 9.2 of a ε-approximation
of a second-order cone implies in our case that

∥∥(q∗ε,i1, . . . , q
∗
ε,ik)

∥∥ ≤ (1 + ε)σ∗ε,i ∀1 ≤ i ≤ n ,

which means that (Q∗
ε , (1 + ε)σ∗ε) is feasible for the original problem, with an objective value

equal to (1 + ε)t∗ε . Since we must have then t∗ ≤ (1 + ε)t∗ε , we conclude that

t∗

1 + ε
≤ t∗ε ≤ t∗ ⇔ 0 ≤ t∗ − t∗ε

t∗
≤ ε

1 + ε
,

i.e. we have a bound on the relative accuracy of our approximated optimum objective value.

9.3 – Computational experiments 179

Table 9.4: Dimensions of the approximated problems (primal above, dual below).

p× q × k ε = 10−2 ε = 10−5 ε = 10−8

2× 2× 2 35× 58 60× 108 85× 158
2× 2× 4 85× 146 160× 296 235× 446
2× 2× 8 200× 352 370× 692 545× 1042
2× 2× 16 420× 744 795× 1494 1165× 2234
2× 2× 32 860× 1528 1635× 3078 2410× 4628
4× 4× 2 798× 1188 1368× 2328 1938× 3468
4× 4× 4 1938× 3060 3648× 6480 5358× 9900
4× 4× 6 3306× 5388 6156× 11088 9006× 16788
6× 6× 2 4305× 6270 7380× 12420 10455× 18570
6× 6× 4 10455× 16230 19680× 34680 28905× 53130
8× 8× 2 13916× 20104 23856× 39984 33796× 59864

p× q × k ε = 10−2 ε = 10−5 ε = 10−8

2× 2× 2 43× 65 68× 115 93× 165
2× 2× 4 101× 155 176× 305 251× 455
2× 2× 8 232× 365 402× 705 577× 1055
2× 2× 16 484× 765 859× 1515 1229× 2255
2× 2× 32 988× 1565 1763× 3115 2538× 4665
4× 4× 2 846× 1482 1416× 2622 1986× 3762
4× 4× 4 2034× 3534 3744× 6954 5454× 10374
4× 4× 6 3450× 6042 6300× 11742 9150× 17442
6× 6× 2 4425× 7995 7500× 14145 10575× 20295
6× 6× 4 10695× 19065 19920× 37515 29145× 55965
8× 8× 2 14140× 25844 24080× 45724 34020× 65604

180 9. Linear approximation of second-order cone optimization

Table 9.5: Computing times to solve truss-topology problems using different approaches.

QCO SOCO 10−2 10−5 10−8

p× q × k (D) (P) (D) (D’) (P) (D) (P) (D) (P) (D)
2× 2× 2 0.00 0.00 0.00 0.58 0.01 0.00 0.01 0.02 0.04 0.03
2× 2× 4 0.01 0.01 0.00 0.10 0.02 0.02 0.05 0.05 0.11 0.12
2× 2× 8 0.01 0.01 0.01 0.12 0.05 0.05 0.14 0.14 0.33 0.34
2× 2× 16 0.01 0.02 0.01 0.19 0.10 0.11 0.37 0.37 0.85 0.83
2× 2× 32 0.02 0.03 0.03 0.35 0.26 0.27 0.87 0.90 1.96 1.86
4× 4× 2 0.09 0.06 0.29 0.60 0.30 0.21 0.73 0.69 1.54 1.52
4× 4× 4 0.11 0.13 0.74 1.74 1.52 0.92 3.19 2.86 9.30 5.61
4× 4× 6 0.20 0.26 2.22 5.03 3.86 2.09 7.98 5.50 13.50 10.84
6× 6× 2 0.47 0.61 1.96 30.13 2.54 1.88 21.59 5.16 34.95 10.45
6× 6× 4 1.28 1.32 6.48 475.73 19.08 7.82 40.80 23.89 396.04 43.43
8× 8× 2 4.30 2.76 11.81 339.66 12.08 8.89 53.29 24.55 127.68 48.42

We generated three random problems for each of the 11 combinations of parameters
(p, q, k) presented in Table 9.3, and report in Table 9.5 the average computing time in seconds.
Each column in this table corresponds to a different way to solve the truss-topology design
problem:

a. the first column reports computing times using MOSEK on the quadratically con-
strained formulation (TQC),

b. the following three columns report computing times using MOSEK on the primal and
the dual second-order cone formulations (TP)–(TD) in columns (P) and (D), as well as
the results of SeDuMi on the dual formulation in column (D’).

c. the last six columns report computing times using the interior-point code in MOSEK to
solve the polyhedral approximations of the primal and dual second-order cone problems
(TP)–(TD) with three different accuracies.

Our first constatation is that solving the quadratically constrained formulation (TQC)
and the primal second-order cone formulation (TP) directly are the two fastest methods (with
similar computing times). The quadratically constrained formulation has less variables and
constraints, but this advantage seems to be counterbalanced by a more efficient second-order
cone solver.

Solving the dual second-order cone formulation (TP) directly is also very fast with a
2 × 2 nodal grid but noticeably slower on the larger problems (3 to 8 times slower). This is
most probably due to the greater dimensions of the problem. The SeDuMi solver is much less
efficient to solve these dual problems, and is really slow on the three largest problems.

Let us now look at the approximated problems. First of all, we checked whether the
accuracy of the optimum approximated objective was below the theoretical bound ε

1+ε , since
rounding errors in the computations and handling of irrational coefficients could affect this

9.3 – Computational experiments 181

result. Unsurprisingly, the accuracy was below the theoretical threshold for all experiments.
Computing times are worse than for the direct approaches, even with the low accuracy 10−2.
The difference grows up to one or two orders of magnitude for the larger problems.

We also observe that despite slightly greater dimensions, solving the approximated dual
problem is more efficient than solving the primal problem, especially with the largest problems.
The reasons for this behaviour, which is opposite to the situation for direct resolutions, are
unclear to us, but could be related to sparsity issues.

Finally, let us mention that we also tried to solve the linear approximations using the
simplex algorithm instead of an interior-point method. This lead to surprisingly bad com-
puting times: for example, solving problem 4× 4× 4 with accuracy 10−2 using the MOSEK7

simplex code took 21.57 seconds, instead of 1.52 seconds with the interior-point algorithm.
We believe this disastrous behaviour of the simplex algorithm is due to the presence of an
exponential number of vertices in the approximation, which leads to very slow progress.

9.3.3 Quadratic optimization

Second-order cone formulations of truss-topology design problems feature a relatively large
number of small cones. Since our approximation procedure has not proven to be more efficient
than direct methods on these problems, we would like to turn our attention to the opposite
configuration, i.e. a small number of large cones. We are going to show that convex quadratic
optimization can be formulated such as to meet this requirement.

More specifically, we are going to consider linearly constrained convex quadric optimiza-
tion problems. Such problems can be formulated as

min
1
2
xT Qx + cT x + c0 s.t. lc ≤ Ax ≤ uc and lx ≤ x ≤ ux , (QO)

where x ∈ Rn denotes the vector of design variable. The objective is defined by a matrix
Q ∈ Rn×n, required to be positive semidefinite to ensure convexity of the problem, a vector
c ∈ Rn and a scalar c0 ∈ R. Variables are bounded by two vectors lx ∈ Rn and ux ∈ Rn (note
that some components of lx or ux can be equal to −∞ or +∞ if a variable has no lower or
upper bound). Finally, the linear constraints are described by a matrix A ∈ Rm×n and two
vectors lc ∈ Rm and uc ∈ Rm (with the same remark holding about possible infinite values
for some components of lc and uc).

In order to model problem (QO) with a second-order cone formulation, we first write the
Cholevsky factorization of matrix Q. Indeed, we have Q = LT L with L ∈ Rk×n, where k ≤ n
is the rank of Q. Introducing a vector of auxiliary variables z ∈ Rk such that z = Lx, we have
that xT Qx = xT LT Lx = (Lx)T Lx = zT z, which allows us to write the following problem:

min
r + v

2
+cT x+c0 s.t. (r, v, z) ∈ Lk+1, r−v = 1, lc ≤ Ax ≤ uc and lx ≤ x ≤ ux . (QO’)

7In order to make sure that this behaviour was not caused by a flaw in the MOSEK simplex solver, we
performed a similar comparison with the CPLEX solver, which lead to the same conclusion.

182 9. Linear approximation of second-order cone optimization

It is indeed equivalent to (QO), since the conic constraint (r, v, z) ∈ Lk+1 combined with the
equality r − v = 1 leads to

v2 +
k∑

i=1

z2
i ≤ r2 ⇔

k∑

i=1

z2
i ≤ r2 − v2 ⇔ zT z ≤ (r − v)(r + v) ⇔ zT z ≤ r + v ,

which is why the quadratic term 1
2xT Qx in the objective of (QO) could be replaced by r+v

2
in (QO’).

The problems we tested come from the convex quadratic optimization library QPDATA,
collected by Maros and Mészáros [MM99]. As for our tests with truss-topology design prob-
lems, we decided to formulate approximations with three different accuracies 10−2, 10−5 and
10−8. Table 9.6 lists for each problem its original size (variables × constraints), the number
of nonzero elements in the constraint matrix A, the number of nonzero elements in the upper
triangular part of Q and the size (variables × constraints) of each of the three polyhedral
approximations.

Table 9.7 reports computing times (in seconds) needed to solve these convex quadratic
optimization problems in three different ways:

a. the first column reports computing times using MOSEK directly on the original quadratic
formulation (QO),

b. the following two columns report computing times needed to solve the second-order cone
formulation (QO’) of these problems with MOSEK and SeDuMi (in columns labelled
(SOCO) and (SOCO’) respectively),

c. the last three columns report computing times using MOSEK to solve the polyhedral
approximations of the second-order cone problem (QO’) with three different accuracies.

Once again, the direct approach, i.e. solving (QO), is the most efficient method. Solving
these problems with a second-order cone formulation is slower, especially on larger problems.
Using SeDuMi instead of MOSEK degrades further the computing times.

It is also manifest that the linear approximations take more time than the direct approach
to provide a solution, even with the lowest accuracy 10−2 (however, we note that this low
accuracy approximation is faster than the SeDuMi resolution on a few problems).

Although we only tested small-scale and medium-scale problems, it is pretty clear from
the trend present for the last problems that large-scale problems would also be most efficiently
solved directly as convex quadratic optimization problems.

We pointed out in Section 9.2.9 that our bound on the accuracy of the polyhedral approx-
imation did not imply anything on the quality of the optimum of the approximated problems.
Indeed, Table 9.8 reports the relative accuracy for a few representative approximated prob-
lems. Some problems (GENHS28, DUALC5) behave very well, with a relative accuracy well below
the target accuracy. Other problems (GOULDQP2, MOSARQP1) have higher relative accuracies,
but still decreasing when the target accuracy is decreased. Problem CVXQP3S shows a worse

9.3 – Computational experiments 183

Table 9.6: Statistics for the convex quadratic optimization problems.

Name Size ANZ QNZ Size 10−2 Size 10−5 Size 10−8

TAME 2× 1 2 3 9× 13 14× 23 19× 33
HS21 2× 1 2 2 14× 22 24× 42 34× 62
ZECEVIC2 2× 2 4 1 9× 14 14× 24 19× 34
HS35 3× 1 3 5 20× 31 35× 61 50× 91
HS35MOD 3× 1 3 5 20× 31 35× 61 50× 91
HS52 5× 3 7 7 29× 46 49× 86 69× 126
HS76 4× 3 10 6 28× 46 48× 86 68× 126
HS51 5× 3 7 7 29× 46 49× 86 69× 126
HS53 5× 3 7 7 29× 46 49× 86 69× 126
S268 5× 5 25 15 34× 57 59× 107 84× 157
HS268 5× 5 25 15 34× 57 59× 107 84× 157
GENHS28 10× 8 24 19 61× 100 106× 190 151× 280
LOTSCHD 12× 7 54 6 47× 70 76× 128 106× 188
HS118 15× 17 39 15 99× 169 174× 319 248× 467
QPCBLEND 83× 74 491 83 545× 914 959× 1742 1373× 2570
CVXQP2S 100× 25 74 386 647× 1020 1135× 1996 1624× 2974
CVXQP1S 100× 50 148 386 647× 1045 1135× 2021 1624× 2999
CVXQP3S 100× 75 222 386 647× 1070 1135× 2046 1624× 3024
QPCBOEI2 143× 166 1196 143 939× 1614 1652× 3040 2366× 4468
DUALC5 8× 278 2224 36 54× 61 94× 441 134× 521
PRIMALC1 230× 9 2070 229 1505× 2329 2646× 4611 3789× 6897
PRIMALC5 287× 8 2296 286 1878× 2903 3304× 5755 4732× 8611
DUAL4 75× 1 75 2799 493× 761 867× 1509 1241× 2257
GOULDQP2 699× 349 1047 697 2635× 3872 4370× 7342 6107× 10816
DUAL1 85× 1 85 3558 558× 861 982× 1709 1406× 2557
PRIMALC8 520× 8 4160 519 3410× 5268 5996× 10440 8586× 15620
GOULDQP3 699× 349 1047 1395 4584× 7420 8062× 14376 11546× 21344
DUAL2 96× 1 96 4508 632× 976 1110× 1932 1589× 2890
MOSARQP2 900× 600 2390 945 5911× 9721 10395× 18689 14887× 27673

184 9. Linear approximation of second-order cone optimization

Table 9.7: Computing times to solve convex quadratic optimization problems

Name QO SOCO SOCO’ 10−2 10−5 10−8

TAME 0.06 0.11 0.46 0.01 0.01 0.02
HS21 0.00 0.01 0.17 0.01 0.01 0.02
ZECEVIC2 0.01 0.00 0.101 0.00 0.00 0.03
HS35 0.00 0.00 0.1 0.01 0.01 0.02
HS35MOD 0.00 0.03 0.361 0.01 0.01 0.02
HS52 0.00 0.01 0.09 0.01 0.02 0.03
HS76 0.00 0.00 0.11 0.00 0.02 0.04
HS51 0.00 0.01 0.08 0.00 0.02 0.04
HS53 0.01 0.00 0.09 0.00 0.02 0.03
S268 0.02 0.01 0.20 0.01 0.04 0.07
HS268 0.01 0.00 0.20 0.01 0.04 0.07
GENHS28 0.00 0.01 0.08 0.01 0.03 0.07
LOTSCHD 0.02 0.01 0.16 0.02 0.03 0.08
HS118 0.00 0.01 0.25 0.05 0.11 0.17
QPCBLEND 0.03 0.12 0.83 0.41 1.43 2.75
CVXQP2S 0.02 0.23 1.34 0.58 1.91 3.58
CVXQP1S 0.03 0.14 1.55 0.57 1.88 4.47
CVXQP3S 0.05 0.21 1.86 0.60 2.32 3.93
QPCBOEI2 0.08 0.59 4.01 1.26 5.53 11.55
DUALC5 0.01 0.01 1.56 0.04 0.04 0.09
PRIMALC1 0.04 0.91 2.17 1.27 7.93 17.85
PRIMALC5 0.03 0.83 0.69 3.15 9.49 20.83
DUAL4 0.04 0.13 0.57 0.39 0.83 1.42
GOULDQP2 1.21 0.41 1.87 3.54 10.14 20.65
DUAL1 0.06 0.18 0.72 0.72 1.66 2.53
PRIMALC8 0.08 4.72 4.32 3.97 30.32 50.99
GOULDQP3 0.98 12.16 6.32 9.16 38.44 74.15
DUAL2 0.07 0.16 0.93 0.88 2.03 3.03
MOSARQP2 0.38 1.64 8.512 7.69 39.03 76.59

9.4 – Concluding remarks 185

Table 9.8: Relative accuracy of the optimum of some approximated problems.

Name 10−2 10−5 10−8

GENHS28 5.2e-4 8.8e-7 7.6e-10
HS21 3.3e-10 3.3e-10 3.3e-10
CVXQP3S 6.7e-3 7.2e-4 4.7e-4
DUALC5 3.9e-3 7.2e-7 3e-10
GOULDQP2 5.2e-1 5.6e-3 2.1e-5
MOSARQP2 8.6e-1 2.5e-4 8.5e-7

behaviour, with virtually no improvement between the second and the third approximation.
Finally, HS21 is a toy problem with the surprising property that its approximation is exact
for any accuracy.

We were able to compute these relative accuracies because the true optimal objective
values were known by other means. In a real-world situation where such a piece information
would not be available, it would be still possible to estimate roughly this accuracy. Indeed,
since our approximation is a relaxation, we have that the approximated optimal objective
p∗ε is lower than the true optimum p∗. On the other hand, the optimal solution x∗ε of the
approximation must be feasible, since it satisfies the linear constraints. Computing the ob-
jective function corresponding to this solution, i.e. letting p′ε∗ = 1

2x∗ε T Qx∗ε + cT x∗ε + c0, we
have finally that p∗ε ≤ p∗ ≤ p′ε∗, which allows us to estimate a posteriori the true optimum
objective value.

However, in the special case where the objective is purely quadratic, i.e. when c = 0
and c0 = 0, it is possible to slightly modify the formulation so that we have a bound on the
accuracy of the objective8. Indeed, letting again z = Lx, we add this time the conic constraint
(r, z) ∈ Lk, which implies to zT z ≤ r2 ⇔ xT Qx ≤ r2. We can now choose r as our objective,
which is equivalent to minimizing

√
xT Qx and is obviously the same thing as minimizing the

true quadratic objective 1
2xT Qx. This leads to a situation that is very similar to the case of

truss-topology design problems, and one can show without difficulties that this approximated
problem provides an estimation of the true optimum with a relative accuracy equal to (ε

1+ε)
2.

9.4 Concluding remarks

In this chapter, we presented a polyhedral approximation of the second-order cone originally
developed by Ben-Tal and Nemirovski [BTN98]. Our presentation features several improve-
ments, including smaller dimensions for the approximation, a more transparent proof of its
correctness, complete developments valid for any size of the second-order cone (i.e. not limited
to powers of two) and explicit constants in the derivation of a theoretical bound on the size
of the approximation (Theorem 9.4).

8 A similar improvement can be made in the case when c belongs to the column space of LT , the Cholevsky
factor of Q. However, we have been unable to generalize this construction to the case where c does not belong
to this column space, e.g. for an objective equal to x2

1 + x2.

186 9. Linear approximation of second-order cone optimization

This scheme was implemented in MATLAB and optimized as much as possible. Indeed,
we developed several approaches to reduce the size of the resulting linear problems (including
pivoting out some variables and using dynamic programming to choose the best accuracies
for each stage of the decomposition). Our experiments mainly showed that solving the orig-
inal second-order cone problems or alternative equivalent formulations is more efficient than
solving the linear approximations, even at low accuracies. On a side note, we noticed that
these approximate problems are particularly difficult to solve with the simplex algorithm.

However, we would like to point out this approximating scheme can still prove very
useful in certain well-defined circumstances, such as a situation where a user is equipped with
a solver that is only able to solve linear optimization problems. In this case, this procedure
provides him with an inexpensive and relatively straightforward way to test improved versions
of his linear models that make use of second-order cones.

Moreover, we have to admit that we tested two very specific classes of second-order
cone optimization problems for which either a simplified formulation or a well-understood
dedicated algorithm was available. It might well be possible that this linearizing scheme
becomes competitive for other types of difficult (i.e. that cannot be simplified and for which
no dedicated solver is available) second-order cones optimization problems.

We would also like to insist on the fact that it is not possible to guarantee a priori the
accuracy of a linear approximation of a general second-order optimization problem (see the
example in Section 9.2.9). It is nevertheless possible to provide such a bound in some special
cases (e.g. truss-topology design problems or convex quadratic optimization problems with a
pure quadratic objective).

It is worth to point out that a straightforward modification of our polyhedral approxima-
tion of L2 can lead to a restriction instead of a relaxation of second-order cone optimization
problems. This would then provide an upper bound instead of a lower bound on the true
optimum objective value, and optimal solutions of the approximate problems would always
be feasible for the original problem. However, this approach can be problematic in some
cases since it might happen that the approximated problem is infeasible, even if the original
problem admits some feasible solutions.

An interesting topic for further research is the generalization of the polyhedral approxi-
mation of L2 or, more precisely, of the unit ball B2(1), to other convex sets. Indeed, finding a
similar polyhedral approximation for a set like {(x1, x2) ∈ R2 | |x1|p + |x2|p ≤ 1} with p > 1,
i.e. the unit ball for the p-norm, would lead to linearizing scheme for other classes of convex
problems, such as lp-norm optimization (see Chapter 4). However, it is unclear to us at this
stage whether this goal is achievable or not, since the symmetry of the standard unit ball,
which is not present for other norms, seems to play a great role in the construction of the
approximation.

Part IV

CONCLUSIONS

187

Concluding remarks and future research directions

We give here some concluding remarks about the research presented in this thesis, highlighting
our personal contributions and hinting at some possible directions for further research (we
however refer the reader to the last section of each chapter for more detailed comments).

Interior-point methods

Chapters 1 and 2 presented a survey of interior-point methods for linear optimization and
a self-contained overview of the theory of self-concordant functions for structured convex
optimization. We contributed some new results in Chapter 2, namely the computation of the
optimal complexity of the short-step method and the improvement of a very useful Lemma
to prove self-concordancy. We also gave a detailed explanation of why the definition of self-
concordancy that is most commonly used nowadays is the best possible.

A very promising research direction in this area consists in investigating other types of
barriers functions that lead to polynomial-time algorithms for convex optimization, possibly
using the single condition (2.18) instead of the two inequalities (2.2) and (2.3) that characterize
a self-concordant function.

Conic duality

Chapter 3 presented the framework of conic optimization and the associated duality theory,
which is heavily used in the rest of this thesis. The approach we take in Chapters 4–6 to study
lp-norm and geometric optimization and give simplified proofs of their duality properties is
completely new. The corresponding convex cones Lp, Gn, Gn

2 were to the best of our knowledge

189

190 Concluding remarks and future research directions

never studied before.

Chapter 7 generalizes our conic formulations of geometric and lp-norm optimization with
the notion of separable cone and is the culminating point of our study of convex problems
with a nonsymmetric dual. We believe that most of the structured convex optimization that
one can encounter in practice can be formulated within this framework (with the notable
exceptions of second-order cone and semidefinite optimization).

It is obvious that much more research has to be done in this area. First of all, it would
be highly desirable to study the duality properties relating the primal-dual pair of separable
problems (SP)–(SD). Proving weak duality and strong duality in the presence of a Slater
point should be straightforward. Moreover, we believe the zero duality gap property can
probably also be proved (possibly with some minor technical assumptions), because of the
inherent separability that is present in the definition of the Kf cone (i.e. the fact that all the
functions that are used within this definition are scalar functions).

Another promising approach consists in generalizing the self-concordant barrier we de-
signed for the Lp cone to the whole class of separable cones Kf and implementing the corre-
sponding interior-point algorithms. Based on the results of existing conic solvers for linear,
second-order and semidefinite optimization, our feeling is that the conic approach could lead
to significant improvements in computational efficiency over more traditional methods.

Approximations

Chapter 8 demonstrated that it is possible to approximate geometric optimization using lp-
norm optimization. Despite the large amount of similarities between these two problems that
was noticed by several authors, it is to the best of our knowledge the first time that such a
strong link between these two classes of problems is presented.

Finally, Chapter 9 described a linearizing scheme for second-order cone optimization
first introduced in [BTN98]. Our presentation features several improvements over the original
construction, such as smaller dimensions for the polyhedral approximation, a more transparent
proof of its correctness, complete developments valid for any size of the second-order cone
(i.e. not limited to powers of two) and explicit constants in the derivation of a theoretical
bound on the size of the approximation. We also contributed a careful implementation of this
procedure using the MATLAB programming environment.

Although the computational experiments we conducted tend to show that solving the
approximated problems is not as efficient as solving directly the original problem, we would
like to stress the nonintuitive fact, demonstrated in this chapter, that it is possible, albeit with
a relative loss of efficiency, to solve second-order cone and quadratic optimization problems
with a linear optimization solver. Another interesting topic for further research in this area
would be to generalize the principle of this polyhedral approximation to other types of convex
sets.

Part V

APPENDICES

191

APPENDIX A

An application to classification

We present here a summary of our research on the application of semidef-
inite optimization to classification, which was the topic of our master’s the-
sis [Gli98b].

A.1 Introduction

Machine learning is a scientific discipline whose purpose is to design computer procedures
that are able to perform classification tasks. For example, given a certain number of medical
characteristics about a patient (e.g. age, weight, blood pressure), we would like to infer
automatically whether he or she is healthy or not.

A special case of machine learning problem is the separation problem, which asks to find
a way to classify patterns that are known to belong to different well-defined classes. This is
equivalent to finding a procedure that is able to recognize to which class each pattern belongs.
The obvious utility of such a procedure is its use on unknown patterns, in order to determine
to which one of the classes they are most likely to belong.

In this chapter, we present a new approach for this question based on two fundamental
ideas: use ellipsoids to perform the pattern separation and solve the resulting problems with
semidefinite optimization.

193

194 A. An application to classification

A.2 Pattern separation

Let us suppose we are faced with a set of objects. Each of these objects is completely described
by an n-dimensional vector. We call this vector a pattern. To each component in this vector
corresponds in fact a numerical characteristic about the objects. We assume that the only
knowledge we have about an object is its pattern vector.

Let us imagine there is a natural way to group those objects into c classes. The pattern
separation problem is simply the problem of separating these classes, i.e. finding a partition
of the whole pattern space Rn into c disjoint components such that the patterns associated
to each class belong to the corresponding component of the partition.

The main use for such a partition is of course classification: suppose we have some well-
known objects that we are able to group into classes and some other objects for which we
don’t know the correct class. Our classification process will take place as follows:

a. Separate the patterns of well-known objects. This is called the learning phase1.

b. Use the partition found above to classify the unknown objects. This is called the
generalization phase.

We might ask ourselves what is a good separation. A good algorithm should of course
be able to separate correctly the well-known objects, but is only really useful if it classifies
correctly the unknown patterns. The generalization capability is thus the ultimate criteria to
judge a separation algorithm.

We list here a few examples of common classification tasks.

¦ Medical diagnosis. This is one of the most important applications. The pattern vectors
represent various measures of a patient’s condition (e.g. age, temperature, blood pres-
sure, etc.). We want here to separate the class of ill people from the class of healthy
people.

¦ Species identification. The pattern vector represent various characteristics (e.g. colour,
dimensions) of a plant or animal. Our objective is to classify them into different species.

¦ Credit screening. A company is trying to evaluate applicants for a credit card. The
pattern contains information about the customer (e.g. type of job, monthly income,
owns a house) and the goal is to identify for which applicants it is financially safe to
give a credit card.

Ellipsoid representation. The main idea of this chapter is to use ellipsoids to separate
our classes. Assuming we want to separate two classes of patterns2, this means that we would

1Some authors refer to it as supervised learning phase. In fact, one may want to separate patterns without
knowing a priori the classes they belong to, which is then called unsupervised learning. This is in fact a
clustering problem, completely different from ours, and won’t be discussed further in this work.

2It is shown in [Gli98b] that we can restrict our attention to the problem of separating two classes without
loss of generality.

A.2 – Pattern separation 195

like to compute a separating ellipsoid such that the points from one class belong to the interior
of the ellipsoid while the points from the other class lie outside of this ellipsoid. Let us explain
this idea with Figure A.1.

4 4.5 5 5.5 6 6.5 7

1.5

2

2.5

3

3.5

4

4.5

Figure A.1: A bidimensional separation problem.

This example is an easy bidimensional separation problem taken from a species classifi-
cation data set (known as Fisher’s Iris test set), using only the first two characteristics. The
patterns from the first class appear as small circles, while the other class appear as small
crosses. Computing a separating ellipsoid leads to the situation depicted on Figure A.2.

4 4.5 5 5.5 6 6.5 7

1.5

2

2.5

3

3.5

4

4.5

Figure A.2: A separating ellipsoid.

We decided to use ellipsoids for the following reasons:

196 A. An application to classification

¦ We expect patterns from the same class to be close to each other. This suggests enclosing
them in some kind of hull, possibly a ball. But we also want our procedure to be scaling
invariant. This is why we use the affine deformations of balls, which are the ellipsoids.

¦ Ellipsoids are the simplest convex sets (besides affine sets, which obviously do not fit
our purpose).

¦ The set of points lying between two parallel hyperplanes is a (degenerate) ellipsoid.
This means our separation procedures will generalize procedures that use a hyperplane
to separate patterns.

¦ We know that some geometrical problems involving ellipsoids can be modelled using
semidefinite optimization (this is due to the fact that an ellipsoid can be conveniently
described using a positive semidefinite matrix).

Separating patterns. Our short presentation has avoided two difficulties that may arise
with a pattern separation algorithm using ellipsoids, namely

a. Most of the time, the separating ellipsoid is not unique. How do we choose one ?

b. It may happen that there exists no separating ellipsoid.

Both of these issues can be addressed with the use optimization. Each ellipsoid is a priori a
feasible solution. The objective function of our program will measure how well this ellipsoid
separates our points. Ideally, non separating ellipsoids should have a high objective value
(since we minimize our objective), while separating ellipsoids should have a lower objective
value. With this kind of formulation, the conic program will always give us a solution, even
when there is no separating ellipsoid.

We have thus to find an objective function that adequately represents the quality of the
ellipsoid separation.

A.3 Maximizing the separation ratio

Let us consider the simple example depicted on Figure A.3: we want to include the small
circles in an ellipsoid in order to obtain the best separation from the small crosses. A way to
express this is to ask for two different separating ellipsoids. We want these ellipsoids to share
the same center and axis directions (i.e. we want them to be geometrically similar), but the
second one will be larger by a factor ρ, which we will subsequently call the separation ratio.
Figure A.4 shows such a pair of ellipsoids with a ρ equal to 3

2 .

We now use the separation ratio to assess the quality of the separation: the higher
the value of ρ, the better the separation. Our goal will be to maximize ρ over the set of
separating ellipsoids. Figure A.5 shows the optimal pair of ellipsoids, with the maximal ρ
equal to 1.863. However, we don’t need two ellipsoids, so we finally partition the pattern

A.3 – Maximizing the separation ratio 197

5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4

2.8

2.9

3

3.1

3.2

3.3

Figure A.3: A simple separation problem.

5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4

2.8

2.9

3

3.1

3.2

3.3

Figure A.4: A pair of ellipsoids with ρ equal to 3
2 .

198 A. An application to classification

5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4

2.8

2.9

3

3.1

3.2

3.3

Figure A.5: The optimal pair of separating ellipsoids.

5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4

2.8

2.9

3

3.1

3.2

3.3

Figure A.6: The final separating ellipsoid.

A.4 – Concluding remarks 199

space using an intermediate ellipsoid whose size is the mean size of our two ellipsoids, as
depicted on Figure A.6.

It is possible to use semidefinite optimization to model the problem of finding the pair
of ellipsoids with the best separation ratio. However, a straightforward formulation does not
work because it leads to non-convex constraints and a technique of homogenization has to
be introduced. We refer the reader to [Gli98b] for a thorough description of this formulation
featuring the relevant mathematical details.

A.4 Concluding remarks

We have sketched in this chapter the principles of pattern separation using ellipsoids. It
is obviously possible to enhance the basic method we presented in several different ways
(for example to handle the case where the patterns cannot be completely separated by an
ellipsoid). Three variants of this method are indeed described in [Gli98b] (minimum volume
method, maximum sum method and minimum squared sum method).

We also refer the reader to [Gli98b] for the presentation and analysis of extensive com-
putational results involving these methods on standard test sets. The main conclusion that
can be drawn from this study is that these methods provide a viable way to classify patterns.
As far as comparison with other classification procedures is concerned, it is fair to say that
separating patterns using ellipsoids with semidefinite optimization occasionally delivers ex-
cellent results (significantly better than any other existing procedure) and gives competitive
error rates on the majority of data sets.

To conclude this chapter, we mention that this approach has been recently applied to
the problem of predicting the success or failure of students at their final exams.

Indeed, using only the results of preliminary tests carried out by first-year undergraduate
students in late November, our separating ellipsoid is able to predict with a 11% error rate
which students are going to pass and be allowed to enter the second-year, a decision which in
fact depends on a series of exams that occur 2, 5 and even in some cases 7 months later (see
the forthcoming report [DG00] for a complete description of these experiments).

APPENDIX B

Source code

We provide here the source code of the main routines used in the linearizing scheme for
second-order cone optimization described in Chapter 9.

function Epsilon = Accuracy(Steps);
% Accuracy Compute the accuracy of a polyhedral SOC approximation
% Epsilon = Accuracy(Steps) returns the accuracy of a polyhedral
% approximation of a second-order cone using a pyramidal
% construction based on approximations of 3-dimensional SOC,
% where Steps contains the number of steps used for the
% approximation made at each level of the pyramidal construction.

Epsilon = 1/prod(cos(pi * (1/2) .^ Steps)) - 1;

function Levels = Levels(SizeCone)
% Levels Computes the size of each level in the pyramidal approximation.
% Levels = Levels(SizeCone) computes the number of cones
% needed at each level in the pyramidal construction leading
% to the polyhedral approximation of a second-order cone.

201

202 B. Source code

Levels = []; while SizeCone > 1
Half = floor(SizeCone/2);
Levels = [Levels Half];
SizeCone = SizeCone - Half;

end

function theSteps = Steps(Levels, Epsilon, Method)
% Steps Computes the number of steps for each level of the approximation
% theSteps = Steps(Levels, Epsilon, Method) computes the number of
% steps for each of the Levels in order to get accuracy equal to
% Epsilon with the specified Method:
% ’AllEqual’ -> number of steps is the same for each level
% ’Theory’ -> use formula with theoretical bound ’n log(1/e)’
% ’Optimal’ -> compute lowest possible total number of steps

if nargin < 3
Method = ’Optimal’;

end switch Method case ’AllEqual’
theSteps = ceil(log2(pi/acos((1+Epsilon)^(-1/length(Levels)))));
if length(Levels) > 1

D = Accuracy(theSteps);
theSteps = [Steps(Levels(1:end-1), (Epsilon-D)/(1+D), ’AllEqual’) theSteps];

end
case ’Theory’

theSteps = ceil(log2(sum(Levels)/Levels(end)*9/16*pi^2/log(1+Epsilon))/2);
if length(Levels) > 1

D = Accuracy(theSteps);
theSteps = [Steps(Levels(1:end-1), (Epsilon-D)/(1+D), ’Theory’) theSteps];

end
case ’Optimal’

if length(Levels) == 1
theSteps = Steps(1, Epsilon, ’AllEqual’);

else
AE = Steps(Levels, Epsilon, ’AllEqual’);
TH = Steps(Levels, Epsilon, ’Theory’);
UpperBound = floor(min(AE*Levels’, TH*Levels’)/sum(Levels));
LowerBound = Steps(1, Epsilon, ’AllEqual’);
theSteps = []; BestSize = inf;
index = LowerBound;
while index <= UpperBound

D = Accuracy(index);
S = [index Steps(Levels(2:end), (Epsilon-D)/(1+D), ’Optimal’)];
if S*Levels’ < BestSize

theSteps = S;
BestSize = theSteps*Levels’;
UpperBound = min(UpperBound, floor(BestSize/sum(Levels)));

end
index = index + 1;

203

end
end

otherwise
error(’Unknown method’);

end

function resLP = PolySOC2(Steps, SkipSteps)
% PolySOC2 Computes a polyhedral approximation of the 3-dimensional Lorentz cone
% resLP = PolySOC2(Steps, SkipSteps) computes a polyhedral approximation
% of the 3-dimensional SOC using the Ben-Tal/Nemirovski construction with
% a number of steps equal to Steps. A number of the first steps of the
% construction can be skipped using the optional parameter SkipSteps.
% The resulting approximation will have:
% n+2 variables (i.e. n-1 additional variables),
% 2n inequality constraints,
% where n is the total number of steps in the construction (i.e.
% Steps-SkipSteps). There are also two global options available:
% - useRestriction to use a restriction of the SOC instead of a
% relaxation,
% - doNotPivotOut to stop pivoting out variables from the equality
% constraints, which gives n more variables and n equality
% constraints but a more sparse constraint matrix.

% Global options
global doNotPivotOut useRestriction;
persistent PolySOC2Cache;
if nargin < 2

SkipSteps = 0;
else

Steps = Steps-SkipSteps;
end
if [Steps+1 SkipSteps+1] <= size(PolySOC2Cache) & ...

~isempty(PolySOC2Cache{Steps+1, SkipSteps+1})
resLP = PolySOC2Cache{Steps+1, SkipSteps+1};
return;

end
Angles = pi * (1/2).^(SkipSteps+(0:Steps))’;
indexX = repmat([1 1 1 2 2 2 3 3 3], Steps, 1) + repmat((0:3:3*(Steps-1))’, 1, 9);
indexY = repmat([1 2 3 1 2 4 1 2 4], Steps, 1) + repmat((1:2:2*(Steps)-1)’, 1, 9);
indexVal = [cos(Angles(1:end-1)) sin(Angles(1:end-1)) -ones(Steps, 1) ...

sin(Angles(1:end-1)) -cos(Angles(1:end-1)) -ones(Steps, 1) ...
-sin(Angles(1:end-1)) cos(Angles(1:end-1)) -ones(Steps, 1)];

if ~isempty(useRestriction) & useRestriction
rootCoef = cos(Angles(end));

else
rootCoef = 1;

end
A = sparse([indexX(:) ; 3*(Steps) + [1;1;1]], ...

204 B. Source code

[indexY(:) ; 2*(Steps) + [2;3] ; 1], ...
[indexVal(:) ; cos(Angles(end)) ; sin(Angles(end)) ; -rootCoef]);

if isempty(doNotPivotOut) | ~doNotPivotOut
for index = 1:Steps % alpha variables

A = A + A(:, 3+index) * A(2*index-1, :);
A(2*index-1, :) = [];
A(:, 3+index) = [];

end
A = A - 1/A(end,end) * A(:, end) * A(end, :); % last beta_k variable
A(end, :) = [];
A(:, end) = [];
resLP = lp([], A, [-inf*ones(2*Steps, 1)], zeros(2*(Steps), 1));

else
resLP = lp([], A, [repmat([0 ; -inf ; -inf], Steps, 1) ; 0], ...

zeros(3*(Steps)+1, 1));
end
PolySOC2Cache{Steps+1, SkipSteps+1} = resLP;

function [resLP, theAccuracy, theSteps] = PolySOCN(SizeCone, Epsilon)
% PolySOC2N Computes a polyhedral approximation of a second-order cone
% [resLP, theAccuracy, theSteps] = PolySOCN(SizeCone, Epsilon) computes
% a polyhedral approximation with accuracy Epsilon of SOC of dimension
% SizeCone (not counting the root) using a pyramidal construction
% involving (SizeCone-1) 3-dimensional SOC approximations. theAccuracy
% will contain the resulting accuracy (smaller or equal to Epsilon)
% while theSteps provides the number of steps used for the approximation
% at each level of the pyramidal construction.

switch SizeCone
case 0 % Special case: linear program, not handled by this construction

resLP = lp([], 1, 0);
theAccuracy = 0;
theSteps = [];

case 1 % Special case: linear program, not handled by this construction
resLP = lp([], [1 -1;1 1], [0 0]’);
theAccuracy = 0;
theSteps = [];

otherwise
theLevels = Levels(SizeCone);
theSteps = Steps(theLevels, Epsilon, ’Optimal’);
theAccuracy = Accuracy(theSteps);
CurrentVars = 1+(1:SizeCone);
resLP = lp([], zeros(0, SizeCone+1));
index = 1;
OddLeft = mod(SizeCone, 2);
for index = 1:length(theLevels)

if index == 1
addLP = PolySOC2(theSteps(index));

205

[addLP, baseVars, rootVars] = DupPolySOCN(addLP, 2, theLevels(index));
elseif OddLeft & theLevels(index-1) ~= 2*theLevels(index)

OddLeft = 0;
addLP = PolySOC2(theSteps(index), 2);
[addLP, baseVars, rootVars] = DupPolySOCN(addLP, 2, theLevels(index)-1);
oddLP = PolySOC2(theSteps(index), 1);
rootVars = [1 rootVars+dims(oddLP, 2)];
baseVars = [2 3 baseVars+dims(oddLP, 2)];
addLP = add(oddLP, addLP, []);

else
addLP = PolySOC2(theSteps(index), 2);
[addLP, baseVars, rootVars] = DupPolySOCN(addLP, 2, theLevels(index));

end
reOrder = NaN*ones(1, dims(addLP, 2));
reOrder(baseVars) = CurrentVars(end-theLevels(index)*2+1:end);
CurrentVars = [CurrentVars(1:end-theLevels(index)*2) dims(resLP, 2) + ...

rootVars-(0:2:2*theLevels(index)-2)];
if index == length(theLevels)

reOrder(1) = 1;
end
resLP = add(resLP, addLP, reOrder);

end
end

function [resLP, baseVars, rootVars] = DupPolySOCN(theLP, SizeCone, N);
% DupPolySOCN Concatenate polyhedral approximations of second-order cones.
% [resLP, baseVars, rootVars] = DupPolySOCN(theLP, SizeCone, N)
% computes a concatenation of N polyhedral approximations of
% a SizeCone-dimensional second-order cone contained in theLP.
% rootVars contains the indices of the N root cone variables, while
% baseVars contains the indices of the N*SizeCone other cone variables.

if N == 0
rootVars = [];
baseVars = [];
resLP = lp;

else
rootVars = 1;
baseVars = 2:SizeCone+1;
resLP = theLP;
nSteps = floor(log2(N));
N = N - 2^nSteps;
for index = nSteps-1:-1:0

Delta = dims(resLP, 2);
resLP = add(resLP, resLP, []);
baseVars = [baseVars Delta+baseVars];
rootVars = [rootVars Delta+rootVars];
if N >= 2^index

206 B. Source code

N = N - 2^index;
Delta = dims(resLP, 2);
resLP = add(resLP, theLP, []);
baseVars = [baseVars Delta+(2:SizeCone+1)];
rootVars = [rootVars Delta+1];

end
end

end

% Alternate recursive version :
% if N == 0
% rootVars = [];
% baseVars = [];
% resLP = lp;
% elseif N == 1
% rootVars = 1;
% baseVars = 2:SizeCone+1;
% resLP = theLP;
% elseif mod(N, 2) == 0
% [resLP baseVars rootVars] = DupPolySOCN(theLP, SizeCone, N/2);
% Delta = dims(resLP, 2);
% resLP = add(resLP, resLP, []);
% baseVars = [baseVars Delta+baseVars];
% rootVars = [rootVars Delta+rootVars];
% else
% [resLP baseVars rootVars] = DupPolySOCN(theLP, SizeCone, (N-1));
% Delta = dims(resLP, 2);
% resLP = add(resLP, theLP, []);
% baseVars = [baseVars Delta+(2:SizeCone+1)];
% rootVars = [rootVars Delta+1];
% end

function apxLP = PolySOCLP(theLP, coneInfo, Epsilon, printLevel)
%PolySOCLP Computes a polyhedral approximation of a second-ordre cone program.
% apxLP = PolySOCLP(theLP, coneInfo, Epsilon, printLevel) computes a
% polyhedral approximation with accuracy Epsilon of the second-order
% cone program described by theLP (objective and linear constraints)
% and coneInfo (list of second-order cones).
% Optional parameter printLevel = 0 => no output
% 1 => outputs a summary
% 2 => info for each cone (default)

if nargin < 4
printLevel = 2;

end if printLevel
disp(sprintf([’Approximating with %4.2g epsilon SOCP with %d cones, ’ ...

’%d variables and %d constraints.’], Epsilon, ...
size(coneInfo, 2), dims(theLP, 2), dims(theLP, 1)));

207

end

maxEpsilon = inf;
apxLP = theLP;
for indexCone = 1:length(coneInfo)

coneSize(indexCone) = length(coneInfo(indexCone).memb) - 1;
end
[Sorted Order] = sort([coneSize]);
indexCone = 1;
while indexCone <= length(coneInfo)

[coneLP theEpsilon theSteps] = PolySOCN(Sorted(indexCone), Epsilon);
if theEpsilon < maxEpsilon

maxEpsilon = theEpsilon;
end
nCones = max(find(Sorted == Sorted(indexCone))) - indexCone + 1;
if printLevel >= 2

disp([sprintf([’-> %d SOC of dimension %d : %g epsilon ’ ...
’with %d variables, %d constraints (’], nCones, ...
Sorted(indexCone), theEpsilon, dims(coneLP, 2), ...
dims(coneLP, 1)) mat2str(theSteps) ’ steps).’]);

end
[NconeLP, baseVars, rootVars] = DupPolySOCN(coneLP, Sorted(indexCone), nCones);
theCones = [coneInfo(Order(indexCone:indexCone+nCones-1)).memb];
reOrder = NaN*ones(1, max([baseVars rootVars]));
reOrder(rootVars) = theCones(1, :);
reOrder(baseVars) = theCones(2:end, :);
apxLP = add(apxLP, NconeLP, reOrder);
indexCone = indexCone + nCones;

end
if printLevel

disp(sprintf([’Final approximation has %4.2g epsilon with %d variables ’ ...
’and %d constraints.’], maxEpsilon, dims(apxLP, 2), ...
dims(apxLP, 1)));

end

Bibliography

[AA99] E. D. Andersen and K. D. Andersen, The MOSEK interior point optimizer for linear
programming: an implementation of the homogeneous algorithm, High Performance Op-
timization (H. Frenk, C. Roos, T. Terlaky, and S. Zhang, eds.), Applied optimization,
vol. 33, Kluwer Academic Publishers, 1999.

[AGMX96] E. D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu, Implementation of interior-point
methods for large scale linear programs, Interior Point Methods of Mathematical Program-
ming (T. Terlaky, ed.), Applied Optimization, vol. 5, Kluwer Academic Publishers, 1996,
pp. 189–252.

[Ans90] K. M. Anstreicher, On long step path following and SUMT for linear and quadratic pro-
gramming, Tech. report, Yale School of Management, Yale University, New Haven, CT,
1990.

[Ans96] , Potential reduction algorithms, Interior Point Methods of Mathematical Program-
ming (T. Terlaky, ed.), Applied Optimization, vol. 5, Kluwer Academic Publishers, 1996,
pp. 125–158.

[ART00] E. D. Andersen, C. Roos, and T. Terlaky, On implementing a primal-dual interior-point
method for conic quadratic optimization, in preparation, 2000.

[Bri00] J. Brinkhuis, Communication at the International Symposium on Mathematical Program-
ming, Atlanta, August 2000.

[BTN94] A. Ben-Tal and A. Nemirovski, Potential reduction polynomial-time method for truss topol-
ogy design, SIAM Journal of Optimization 4 (1994), 596–612.

[BTN98] , On polyhedral approximations of the second-order cone, Tech. report, Minerva
Optimization Center, Faculty of Industrial Engineering and Management, Technion - Is-
rael Institute of Technology, Haifa, Israel, 1998, to appear in Mathematics of Operations
Research.

[Dan63] G. B. Dantzig, Linear programming and extensions, Princeton University Press, Princeton,
N.J., 1963.

[DG00] B. Diricq and Fr. Glineur, Prédire la réussite en première candidature en sciences ap-
pliquées : mathématiques ou médiumnité ?, in preparation, 2000.

209

210 BIBLIOGRAPHY

[Dik67] I. I. Dikin, Iterative solution of problems of linear and quadratic programming, Doklady
Akademii Nauk SSSR 174 (1967), 747–748.

[dJRT95] D. den Hertog, F. Jarre, C. Roos, and T. Terlaky, A sufficient condition for self-
concordance with application to some classes of structured convex programming problems,
Mathematical Programming, Series B 69 (1995), no. 1, 75–88.

[DPZ67] R. J. Duffin, E. L. Peterson, and C. Zener, Geometric programming, John Wiley & Sons,
New York, 1967.

[dRT92] D. den Hertog, C. Roos, and T. Terlaky, On the classical logarithmic barrier method for
a class of smooth convex programming problems, Journal of Optimization Theory and
Applications 73 (1992), no. 1, 1–25.

[DS97] A. Dax and V. P. Sreedharan, On theorems of the alternative and duality, Journal of
Optimization Theory and Applications 94 (1997), no. 3, 561–590.

[ET76] I. Ekeland and R. Temam, Convex analysis and variational problems, Studies in mathemat-
ics and its applications, vol. 1, North-Holland publishing company, Amsterdam, Oxford,
1976.

[FM68] A. V. Fiacco and G. P. McCormick, Nonlinear programming: Sequential unconstrained
minimization techniques, John Wiley & Sons, New York, 1968, Reprinted in SIAM Classics
in Applied Mathematics, SIAM Publications, 1990.

[Fri55] K. R. Frisch, The logarithmic potential method of convex programming, Tech. report, Uni-
versity Institute of Economics, Oslo, Norway, 1955.

[Gli97] Fr. Glineur, Etude des méthodes de point intérieur appliquées à la programmation linéaire
et à la programmatiuon semidéfinie, Travail de fin d’études études, Faculté Polytechnique
de Mons, Mons, Belgium, June 1997.

[Gli98a] , Interior-point methods for linear programming: a guided tour, Belgian Journal of
Operations Research, Statistics and Computer Science 38 (1998), no. 1, 3–30.

[Gli98b] , Pattern separation via ellipsoids and conic programming, Mémoire de D.E.A.,
Faculté Polytechnique de Mons, Mons, Belgium, September 1998.

[Gli99] , Proving strong duality for geometric optimization using a conic formulation, IM-
AGE Technical Report 9903, Faculté Polytechnique de Mons, Mons, Belgium, October
1999, to appear in Annals of Operations Research.

[Gli00a] , Approximating geometric optimization with lp-norm optimization, IMAGE Tech-
nical Report 0008, Faculté Polytechnique de Mons, Mons, Belgium, November 2000, sub-
mitted to Operations Research Letters.

[Gli00b] , An extended conic formulation for geometric optimization, IMAGE Technical
Report 0006, Faculté Polytechnique de Mons, Mons, Belgium, May 2000, submitted to
Foundations of Computing and Decision Sciences.

[Gli00c] , Polyhedral approximation of the second-order cone: computational experiments,
IMAGE Technical Report 0001, Faculté Polytechnique de Mons, Mons, Belgium, January
2000, revised November 2000.

[Gli00d] , Self-concordant functions in structured convex optimization, IMAGE Technical
Report 0007, Faculté Polytechnique de Mons, Mons, Belgium, October 2000, submitted
to European Journal of Operations Research.

[GT56] A. J. Goldman and A. W. Tucker, Theory of linear programming, Linear Equalities and
Related Systems (H. W. Kuhn and A. W. Tucker, eds.), Annals of Mathematical Studies,
vol. 38, Princeton University Press, Princeton, New Jersey, 1956, pp. 53–97.

BIBLIOGRAPHY 211

[GT00] Fr. Glineur and T. Terlaky, A conic formulation for lp-norm optimization, IMAGE Tech-
nical Report 0005, Faculté Polytechnique de Mons, Mons, Belgium, May 2000, submitted
to Journal of Optimization Theory and Applications.

[GW95] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming, Journal of Association for
Computing Machinery 42 (1995), no. 6, 1115–1145.

[HPY92] C. Han, P. Pardalos, and Y. Ye, Implementation of interior-point algorithms for some
entropy optimization problems, Optimization Methods and Software 1 (1992), 71–80.

[Hua67] P. Huard, Resolution of mathematical programming with nonlinear constraints by the
method of centers, Nonlinear Programming (J. Abadie, ed.), North Holland, Amsterdam,
The Netherlands, 1967, pp. 207–219.

[HvM97] T. Terlaky H. van Maaren, Inverse barriers and ces-functions in linear programming,
Operations Research Letters 20 (1997), 15–20.

[Jar89] F. Jarre, The method of analytic centers for smooth convex programs, Dissertation, Institut
für Angewandte Mathematik und Statistik, Universität Wärzburg, Germany, 1989.

[Jar96] , Interior-point methods for classes of convex programs, Interior Point Methods
of Mathematical Programming (T. Terlaky, ed.), Applied Optimization, vol. 5, Kluwer
Academic Publishers, 1996, pp. 255–296.

[Kar84] N. K. Karmarkar, A new polynomial-time algorithm for linear programming, Combinator-
ica 4 (1984), 373–395.

[Kha79] L. G. Khachiyan, A polynomial algorithm in linear programming, Soviet Mathematics
Doklady 20 (1979), 191–194.

[Kla74] E. Klafszky, Geometric programming and some applications, Ph.D. thesis, Tanulmányok,
No. 8, 1974.

[Kla76] , Geometric programming, Seminar Notes, no. 11.976, Hungarian Committee for
Systems Analysis, Budapest, 1976.

[KM72] V. Klee and G. J. Minty, How good is the simplex algorithm ?, Inequalities, O. Shisha ed.,
pp. 159–175, Academic Press, New York, 1972.

[LVBL98] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Applications of second-order cone
programming, Linear Algebra and its Applications 284 (1998), 193–228.

[Mas93] W. F. Mascarenhas, The affine scaling algorithm fails for λ = 0.999, Tech. report, Uni-
versidade Estadual de Campinas, Campinas S. P., Brazil, October 1993.

[Meh92] S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM Journal
on Optimization 2 (1992), 575–601.

[MM99] I. Maros and Cs. Mészáros, A repository of convex quadratic programming problems, Op-
timization Methods and Software 11-12 (1999), 671–681, special issue on interior-point
methods (CD supplement with software), guest editors: Florian Potra, Cornelis Roos and
Tamás Terlaky.

[Nes96] Y. Nesterov, Nonlinear optimization, Notes from a lecture given at CORE, UCL, Belgium,
1996.

[NN94] Y. E. Nesterov and A. S. Nemirovski, Interior-point polynomial methods in convex pro-
gramming, SIAM Studies in Applied Mathematics, SIAM Publications, Philadelphia, 1994.

[PE67] E. L. Peterson and J. G. Ecker, Geometric programming: Duality in quadratic programming
and lp approximation II, SIAM Journal on Applied Mathematics 13 (1967), 317–340.

212 BIBLIOGRAPHY

[PE70a] , Geometric programming: Duality in quadratic programming and lp approximation
I, Proceedings of the International Symposium of Mathematical Programming (Princeton,
New Jersey) (H. W. Kuhn and A. W. Tucker, eds.), Princeton University Press, 1970.

[PE70b] , Geometric programming: Duality in quadratic programming and lp approximation
III, Journal on Mathematical Analysis and Applications 29 (1970), 365–383.

[PRT00] J. Peng, C. Roos, and T. Terlaky, Self-regular proximities and new search directions for
linear and semidefinite optimization, Technical report, Department of Computing and
Software, McMaster University, Hamilton, Ontario, Canada, March 2000, submitted to
Mathematical Programming.

[PY93] F. Potra and Y. Ye, A quadratically convergent polynomial interior-point algorithm for
solving entropy optimization problems, SIAM Journal on Optimization 3 (1993), 843–860.

[Ren00] J. Renegar, A mathematical view of interior-point methods in convex optimization, to be
published by in the MPS/SIAM Series on Optimization, SIAM, New York, 2000.

[Roc70a] R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton, N. J., 1970.

[Roc70b] , Some convex programs whose duals are linearly constrained, Non-linear Program-
ming (J. B. Rosen, ed.), Academic Press, 1970.

[RT98] C. Roos and T. Terlaky, Nonlinear optimization, Delft University of Technology, The
Netherlands, 1998, Course WI387.

[RTV97] C. Roos, T. Terlaky, and J.-Ph. Vial, Theory and algorithms for linear optimization. an
interior point approach, Wiley-Interscience Series in Discrete Mathematics and Optimiza-
tion, John Wiley & Sons, Chichester, UK, 1997.

[Sat75] K. Sato, Production functions and aggregation, North-Holland, Amsterdam, 1975.

[Sch86] A. Schrijver, Theory of linear and integer programming, Wiley-Interscience series in dis-
crete mathematics, John Wiley & sons, 1986.

[Sho70] N. Z. Shor, Utilization of the operation of space dilatation in the minimization of convex
functions, Kibernetika 1 (1970), 6–12.

[Stu97] J. F. Sturm, Primal-dual interior-point approach to semidefinite programming, Ph.D. the-
sis, Erasmus Universiteit Rotterdam, The Netherlands, 1997, published in [Stu99a].

[Stu99a] , Duality results, High Performance Optimization (H. Frenk, C. Roos, T. Terlaky,
and S. Zhang, eds.), Applied optimization, vol. 33, Kluwer Academic Publishers, 1999,
pp. 21–60.

[Stu99b] , Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,
Optimization Methods and Software 11-12 (1999), 625–653, special issue on interior-point
methods (CD supplement with software), guest editors: Florian Potra, Cornelis Roos and
Tamás Terlaky.

[SW70] J. Stoer and Ch. Witzgall, Convexity and optimization in finite dimensions I, Springer
Verlag, Berlin, 1970.

[Ter85] T. Terlaky, On lp programming, European Journal of Operations Research 22 (1985),
70–100.

[VB96] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review 38 (1996), 49–95.

[Wri97] S. J. Wright, Primal-dual interior-point methods, SIAM, Society for Industrial and Applied
Mathematics, Philadelphia, 1997.

[XY00] G. Xue and Y. Ye, An efficient algorithm for minimizing a sum of p-norms, SIAM Journal
on Optimization 10 (2000), no. 2, 551–579.

[Ye97] Y. Ye, Interior point algorithms, theory and analysis, John Wiley & Sons, Chichester, UK,
1997.

[YTM94] Y. Ye, M. J. Todd, and S. Mizuno, An O(
√

nL)-iteration homogeneous and self-dual linear
programming algorithm, Mathematics of Operations Research 19 (1994), 53–67.

Summary

Optimization is a scientific discipline that lies at the boundary between pure and applied
mathematics. Indeed, while on the one hand some of its developments involve rather theoret-
ical concepts, its most successful algorithms are on the other hand heavily used by numerous
companies to solve scheduling and design problems on a daily basis.

Our research started with the study of the conic formulation for convex optimization
problems. This approach was already studied in the seventies but has recently gained a lot of
interest due to development of a new class of algorithms called interior-point methods. This
setting is able to exploit the two most important characteristics of convexity:

¦ a very rich duality theory (existence of a dual problem that is strongly related to the
primal problem, with a very symmetric formulation),

¦ the ability to solve these problems efficiently, both from the theoretical (polynomial
algorithmic complexity) and practical (implementations allowing the resolution of large-
scale problems) point of views.

Most of the research in this area involved so-called self-dual cones, where the dual problem
has exactly the same structure as the primal: the most famous classes of convex optimization
problems (linear optimization, convex quadratic optimization and semidefinite optimization)
belong to this category. We brought some contributions in this field:

¦ a survey of interior-point methods for linear optimization, with an emphasis on the
fundamental principles that lie behind the design of these algorithms,

¦ a computational study of a method of linear approximation of convex quadratic opti-
mization (more precisely, the second-order cone that can be used in the formulation of

215

216 Summary

quadratic problems is replaced by a polyhedral approximation whose accuracy that can
be guaranteed a priori),

¦ an application of semidefinite optimization to classification, whose principle consists in
separating different classes of patterns using ellipsoids defined in the feature space (this
approach was successfully applied to the prediction of student grades).

However, our research focussed on a much less studied category of convex problems
which does not rely on self-dual cones, i.e. structured problems whose dual is formulated very
differently from the primal. We studied in particular

¦ geometric optimization, developed in the late sixties, which possesses numerous appli-
cation in the field of engineering (entropy optimization, used in information theory, also
belongs to this class of problems)

¦ lp-norm optimization, a generalization of linear and convex quadratic optimization,
which allows the formulation of constraints built around expressions of the form |ax + b|p
(where p is a fixed exponent strictly greater than 1).

For each of these classes of problems, we introduced a new type of convex cone that made their
formulation as standard conic problems possible. This allowed us to derive very simplified
proofs of the classical duality results pertaining to these problems, notably weak duality (a
mere consequence of convexity) and the absence of a duality gap (strong duality property
without any constraint qualification, which does not hold in the general convex case). We
also uncovered a very surprising result that stipulates that geometric optimization can be
viewed as a limit case of lp-norm optimization. Encouraged by the similarities we observed,
we developed a general framework that encompasses these two classes of problems and unifies
all the previously obtained conic formulations.

We also brought our attention to the design of interior-point methods to solve these
problems. The theory of polynomial algorithms for convex optimization developed by Nes-
terov and Nemirovsky asserts that the main ingredient for these methods is a computable
self-concordant barrier function for the corresponding cones. We were able to define such a
barrier function in the case of lp-norm optimization (whose parameter, which is the main de-
termining factor in the algorithmic complexity of the method, is proportional to the number
of variables in the formulation and independent from p) as well as in the case of the general
framework mentioned above.

Finally, we contributed a survey of the self-concordancy property, improving some useful
results about the value of the complexity parameter for certain categories of barrier functions
and providing some insight on the reason why the most commonly adopted definition for
self-concordant functions is the best possible.

About the cover

The drawing depicted on the cover and the variant that is presented on the next page are
meant to illustrate some of the topics presented in this thesis, namely the fundamental notions
of central path and barrier function for interior-point methods, as well as the existence of mul-
tiple types of convex constraints. Each of the small frames represents a convex optimization
problem involving two variables (x, y) and the following four constraints:

a. a first linear constraint 5y − 0.9x ≤ 4.5, which defines the upper left boundary of the
feasible zone,

b. a second hyperbolic constraint 32xy ≥ 1, which can be modelled as a second-order cone
constraint (see Example 3.1 in Chapter 3) and is responsible for the lower left boundary
of the feasible region,

c. a third lp-norm constraint |x|3/2 + |y|3/2 ≤ 0.9 (see Chapter 4), which defines the lower
right boundary of the feasible set,

d. and finally a fourth geometric constraint ex + ey ≤ 4.15 (see Chapter 5) to determine
the shape of the upper right boundary of the feasible area.

Although they share the same feasible region, the different problems represented in these
frames differ by their objective function: each of them has been endowed with a linear ob-
jective function pointing towards the direction of the relative position of the frame on the
page. For example, the objective functions in the first and second pictures on the cover point
towards the north-west and north-north-west directions.

We have drawn for each of these problems some level sets of a suitable barrier function
combined with the objective function (more precisely, it is the objective function of problem
(CLµ) from Chapter 2 with µ = 1) and the central path corresponding to this barrier function
(see again Chapter 2). The endpoints of this central path correspond to the minimum and
the maximum of the corresponding objective function on the feasible region.

One can notice that the level sets tend to be shifted in the direction of the objective
function, and that the central path can sometimes take surprising turns before reaching its
optimal endpoints.

217

218 About the cover

