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Motivation Why convex optimization?

Convex optimization

Nonlinear optimization

min
x∈Rn

f0(x) such that fi(x) ≤ 0 for all i ∈ I and fi(x) = 0 for all i ∈ E

� Variables: finite-dimensional vector x ∈ Rn

� Constraints: finite number of (in)equalities, indexed by sets I and E

Problem is convex when

� objective function f0 is convex

� functions fi defining inequalities fi(x) ≤ 0 are convex for all i ∈ I

� functions fi defining equalities fi(x) = 0 are affine for all i ∈ E
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Motivation Why convex optimization?

Well-known classes of convex problems

min
x∈Rn

f0(x) such that fi(x) ≤ 0 for all i ∈ I and fi(x) = 0 for all i ∈ E

� Linear optimization (LO): f0 and fi are affine for all i ∈ E ∪ I

fi(x) = aT
i x− bi

� Quadratically constrained quadratic optimization (QCQO):
f0 and fi are convex quadratic for all i ∈ I

fi(x) = xTQix + rT
i x + si with Qi � 0

(equalities fi, if present, must still be affine for i ∈ E)

� Convex quadratic can be rewritten using composition of squared
Euclidean norm and linear (vector) function:

fi(x) = ‖Aix‖2 + (rT
i x + si) with Qi = AT

i Ai
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Motivation Why convex optimization?

More classes of convex problems

� Geometric optimization (GO):
f0 and fi are posynomials (in exponential form) for all i ∈ I

fi(x) = ci +
∑
j∈Mi

exp(aijx− bij)

Each term in the sum is the composition of exponential and affine
scalar function

� lp-norm optimization (lpO):
f0 linear, fi are affine plus sum of convex powers with affine scalar
arguments for all i ∈ I

fi(x) = ai0x− bi0 +
∑
j∈Mi

|aijx− bij |pij with pij ≥ 1
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Motivation Why convex optimization?

� Sum-of-norm optimization (SNO):
f0 (and fi for all i ∈ I, if any) are convex norms with affine arguments

fi(x) =
∑
j∈Mi

‖Aijx− bij‖pij
with pij ≥ 1

with ‖y‖p =
(
|x1|p + |x2|p + · · ·+ |xn|p

) 1
p

� Entropy optimization (EO):
f0 is a sum of entropy terms, fi are affine for all i ∈ E

f0(x) =
∑

i

xi log xi (implicitly implying x ≥ 0)

� Analytic centering (AC):
f0 is a sum of logarithmic terms, fi are affine for all i ∈ I ∪ E

f0(x) = −
∑

j∈Mj

log(aijx− bij)
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Motivation Why convex optimization?

A common formulation
All above-mentioned problems can be described as follows:

min
x∈Rn

f0(x) such that fi(x) ≤ 0 for all i ∈ I and fi(x) = 0 for all i ∈ E

with functional terms f0 and fi defined by

fi(x) =
∑
j∈Mi

gij(Aijx− bij)

where nonlinearity is confined to functions gij :

� x 7→ x (identity): for linear optimization and for all equalities

� x 7→ ‖x‖2: for quadratically constrained quadratic optimization

� x 7→ ex for geometric optimization

� x 7→ |x|p with p ≥ 1 for lp-norm optimization

� x 7→ ‖x‖p with p ≥ 1 for sum-of-norm optimization

� x 7→ − log x for analytic centering, x log x for entropy optimization

In summary: separable functions with every term being the composition of
a simple (often scalar) convex nonlinear function with an affine function
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Motivation Why convex optimization?

Properties of convex optimization

Why is it interesting to consider (or restrict yourself to) convex
optimization problems?

Passive features:

� every local minimum is a global minimum

� set of optimal solutions is convex

� optimality (KKT) conditions are sufficient (with regularity
assumption)

Any algorithm or solver applied to a convex problem will automatically
benefit from those features
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Motivation Why convex optimization?

Properties of convex optimization

Active features:

� possibility of writing down a dual problem strongly related to original
problem
(weak duality and, with regularity assumption, strong duality →
optimality certificates)

� possibility of designing dedicated algorithm with polynomial
algorithmic complexity
(in most of the cases: an interior-point method based on the theory
of self-concordant barriers)

� To use those, additional work is needed for each problem class!

� Need to exploit specific structure of each problem class

� Reward for additional work is better understanding and ability to solve
problems more efficiently (including large-scale)
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Motivation Why a conic formulation?

Overview

1. Motivation

� Why convex optimization?

� Why a conic formulation?

2. Unified conic formulation

� The power cone

� Modelling problems involving powers using the power cone

� Modelling problems involving exponentials using the power cone

3. Concluding remarks

� Future plans
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Motivation Why a conic formulation?

Conic optimization
Generalization of linear optimization (e.g. dual form)

max bTy such that ATy ≤ c

where a new ordering is used instead of ≤:

max bTy such that ATy �K c

� Ordering defined by a set K: a �K b ⇔ 0 �K b− a ⇔ b− a ∈ K

� Set K has to be a convex cone for useful properties of ordering to
hold (and also: closed, solid and pointed for technical reasons)

� Conic optimization problems are clearly convex

� Any convex problem can be cast as a conic optimization problem

� The point of a conic formulation is to make it easier to benefit from
active features of convex optimization (duality and algorithms)
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Motivation Why a conic formulation?

Combining several cones

Considering several conic constraints

AT
1 y �K1 c1 and AT

2 y �K2 c2

which are equivalent to

c1 −AT
1 y ∈ K1 and c2 −AT

2 y ∈ K2

one introduces the Cartesian product cone K = K1 ×K2 to write

(c1 −AT
1 y, c2 −AT

2 y) ∈ K1 ×K2(
c1

c2

)
−

(
AT

1

AT
2

)
�K1×K2 0 ⇔ ATy �K c

→ for theory, a single cone can be considered without loss of generality
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Motivation Why a conic formulation?

Algorithms for conic optimization

� Interior-point methods can easily be applied to conic optimization

� Main ingredient: a good barrier function for every cone K involved

� A good barrier is for example a self-concordant barrier, i.e.
F : int K 7→ R satisfying

I F is convex and three times differentiable
I F (x) → +∞ when x → ∂K
I the following two conditions hold

∇3F (x)[h, h, h] ≤ 2
(
∇2F (x)[h, h]

) 3
2

∇F (x)T(∇2F (x))−1∇F (x) ≤ ν

for all x ∈ intC and h ∈ Rn

� Once a good barrier is known, design of a polynomial-time algorithm
can be completely straightforward (e.g. using standard short or long
step path-following algorithm)
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Motivation Why a conic formulation?

Algorithms for conic optimization

� Interior-point methods can easily be applied to conic optimization

� Main ingredient: a good barrier function for every cone K involved

� A good barrier is for example a self-concordant barrier, i.e.
F : int K 7→ R satisfying

I F is convex and three times differentiable
I F (x) → +∞ when x → ∂K
I the following two conditions hold

∇3F (x)[h, h, h] ≤ 2
(
∇2F (x)[h, h]

) 3
2

∇F (x)T(∇2F (x))−1∇F (x) ≤ ν

for all x ∈ intC and h ∈ Rn

� Once a good barrier is known, design of a polynomial-time algorithm
can be completely straightforward (e.g. using standard short or long
step path-following algorithm)

CFG 07 Solving convex problems involving powers using conic optimization 12



Motivation Why a conic formulation?

Algorithms for conic optimization

� Interior-point methods can easily be applied to conic optimization

� Main ingredient: a good barrier function for every cone K involved

� A good barrier is for example a self-concordant barrier, i.e.
F : int K 7→ R satisfying

I F is convex and three times differentiable
I F (x) → +∞ when x → ∂K
I the following two conditions hold

∇3F (x)[h, h, h] ≤ 2
(
∇2F (x)[h, h]

) 3
2

∇F (x)T(∇2F (x))−1∇F (x) ≤ ν

for all x ∈ intC and h ∈ Rn

� Once a good barrier is known, design of a polynomial-time algorithm
can be completely straightforward (e.g. using standard short or long
step path-following algorithm)

CFG 07 Solving convex problems involving powers using conic optimization 12



Motivation Why a conic formulation?

Algorithms for conic optimization

� Interior-point methods can easily be applied to conic optimization

� Main ingredient: a good barrier function for every cone K involved

� A good barrier is for example a self-concordant barrier, i.e.
F : int K 7→ R satisfying

I F is convex and three times differentiable
I F (x) → +∞ when x → ∂K
I the following two conditions hold

∇3F (x)[h, h, h] ≤ 2
(
∇2F (x)[h, h]

) 3
2

∇F (x)T(∇2F (x))−1∇F (x) ≤ ν

for all x ∈ intC and h ∈ Rn

� Once a good barrier is known, design of a polynomial-time algorithm
can be completely straightforward (e.g. using standard short or long
step path-following algorithm)

CFG 07 Solving convex problems involving powers using conic optimization 12



Motivation Why a conic formulation?

Duality for conic optimization
Problem

max bTy such that ATy �K c

admits a nice symmetrical dual

min cTx such that Ax = b and x �K∗ 0

based on the notion of dual cone

K∗ = {z ∈ Rn such that xTz ≥ 0 ∀x ∈ K}

� Weak duality always holds, strong duality holds with regularity
assumption (existence of a strictly interior point)

� Only effort involved in determining a dual problem is computing the
dual cone

� Potentially allows design of (symmetrical) primal-dual algorithms
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Motivation Why a conic formulation?

Examples of conic optimization
Following 3 cones are (by far) most commonly used

1. K = R+ is the standard ordering, leading to linear optimization

2. K = Ln leads to second-order cone optimization (including QCQO)

Ln = {(x0, . . . , xn) ∈ Rn+1 |
√

x2
1 + · · ·+ x2

n ≤ x0}

3. K = Sn
+ (positive semidefinite matrices) for semidefinite optimization

� Those cones share additional theoretical properties (symmetric, i.e.
homogeneous and self-dual)

� A fourth cone (K = {0},K∗ = R) used for modelling convenience

� Many problems from various domains (e.g. mechanical and eletrical
engineering, finance) can be modelled using these cones

� Many solvers available for problems involving these cones

� However, no solver seems available (yet) for any other cone!
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Motivation Why a conic formulation?

Goal of this talk
How useful are those 3 cones with the convex problems mentioned earlier?

� Linear optimization is modelled using R+

� QCQO can be modelled using second-order cone Ln

� lp-norm and sum-of-norm optimization can be modelled directly with
Ln when p = 2

� lp-norm with rational p possible via construction involving several Ln

(size of model increases with ”complexity” of p)

� Geometric optimization can only be approximated using several Ln

(size of model increases with accuracy required)

� Missing: sum-of-norm with p 6= 2, analytic centering, entropy
optimization, irrational p (though some of these can probably be
approximated using several Ln)

� Missing: exact model for geometric optimization, simpler model for
lp-norm

Our aim: a single family of convex cones to model all of these exactly
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Unified conic formulation The power cone

Overview

1. Motivation

� Why convex optimization?

� Why a conic formulation?

2. Unified conic formulation

� The power cone

� Modelling problems involving powers using the power cone

� Modelling problems involving exponentials using the power cone

3. Concluding remarks

� Future plans
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Unified conic formulation The power cone

The power cone Pp

Let us consider the epigraph of the convex power function

z 7→ |z|p with p ≥ 1 → Ep = {(x, z) | |z|p ≤ x}

and take its conic hull: (x, y, z) ∈ KEp ⇔ 1
y (x, z) ∈ Ep

The resulting 3-dimensional cone will be called the power cone and
denoted

Pp = {(x, y, z) ∈ R+ × R+ × R | x
1
p y

1
q ≥ |z|}

(with the usual convention 1
p + 1

q = 1)

� Pp is equivalent to (rotated) L3 when p = q = 2
� Pp can be obtained from several Ln for rational values of p (number

of cones required increases with ”complexity” of p)
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Unified conic formulation The power cone

Duality

The dual of the power cone

Pp = {(x, y, z) ∈ R+ × R+ × R | x
1
p y

1
q ≥ |z|}

is . . . the power cone itself !
(up to a simple scaling of the variables/use of a different inner product)
Power cone is therefore self-dual (but not homogeneous), and actual dual
cone (for standard inner product) is

P∗p = {(x, y, z) ∈ R+ × R+ × R | (px)
1
p (qy)

1
q ≥ |z|}

Therefore the dual for any conic problem based on Pp

� is a conic problem also based on Pp

� can be derived in a completely mechanical way
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Unified conic formulation The power cone

Barrier function for Pp

� A self-concordant barrier for

Pp = {(x, y, z) ∈ R+ × R+ × R | x
1
p y

1
q ≥ |z|}

with parameter ν = 4 was proposed by Nesterov

Fp(x, y, z) = − log
(
x

2
p y

2
q − z2

)
− log x− log y

� This can be improved: the following barrier

Fp(x, y, z) = − log
(
x

2
p y

2
q − z2

)
− 1

q
log x− 1

p
log y

is self-concordant with lower parameter ν = 3
� This implies complexity of solving conic problems involving Pp

depends only the number of cones (not on parameter p)
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Unified conic formulation Modelling problems involving powers using the power cone

Overview

1. Motivation

� Why convex optimization?

� Why a conic formulation?

2. Unified conic formulation

� The power cone

� Modelling problems involving powers using the power cone

� Modelling problems involving exponentials using the power cone

3. Concluding remarks

� Future plans
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Unified conic formulation Modelling problems involving powers using the power cone

Modelling with the power cone

Pp = {(x, y, z) ∈ R+ × R+ × R | x
1
p y

1
q ≥ |z|}

� Linear optimization is OK, since Pp contains 2 copies of R+

� Epigraph of convex power {(x, z) | |z|p ≤ x} can be obtained by
fixing y = 1: in a dual conic formulation, this allows any lp-norm
optimization problem to be modelled

� For example, modelling the constraint

|u1 + u2|3 + |u1 − u2|4.5 ≤ 2u2 + 1

will be done with

0
1
0

−
 0 0 −1

0 0 0
−1 −1 0

 u1

u2

v

 ∈ P3,

1
1
0

−
 0 −2 1

0 0 0
−1 1 0

 u1

u2

v

 ∈ P4.5
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Unified conic formulation Modelling problems involving powers using the power cone

0
1
0

−

 0 0 −1
0 0 0
−1 −1 0

 u1

u2

v

 ∈ P3,

1
1
0

−

 0 −2 1
0 0 0
−1 1 0

 u1

u2

v

 ∈ P4.5

⇔ (v, 1, u1 + u2) ∈ P3 and (1 + 2u2 − v, 1, u1 − u2) ∈ P4.5

⇔ |u1 + u2|3 ≤ v and |u1 − u2|4.5 ≤ 1 + 2u2 − v

⇔ |u1 + u2|3 + |u1 − u2|4.5 ≤ v + (1 + 2u2 − v) = 2u2 + 1

� Those are examples of constraints where nonlinearity is additively
separable into scalar convex components
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Unified conic formulation Modelling problems involving powers using the power cone
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Unified conic formulation Modelling problems involving powers using the power cone

Modelling non-separable nonlinearity

� Norm constraint

‖z‖p ≤ t ⇔ |z1|p + |z2|p · · · |zn|p ≤ tp and t ≥ 0

(with p ≥ 1) is not separable and cannot be formulated using
epigraphs of convex powers |zi|p ≤ x

� We use the following trick:

|z1|p + |z2|p · · · |zn|p ≤ tp

⇔ |z1

t
|p + |z2

t
|p · · · |zn

t
|p ≤ 1

⇔ |z1

t
|p ≤ x1

t
, · · · , |zn

t
|p ≤ xn

t
and

x1

t
+ · · ·+ xn

t
= 1

⇔ (x1, t, y1) ∈ Pp, · · · , (xn, t, yn) ∈ Pp and x1 + · · ·+ xn = t

which can be modelled using conic optimization
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Unified conic formulation Modelling problems involving powers using the power cone

Norm constraints (continued)

� Using the previous construction, we can model any constraint
‖z‖p ≤ t for p ≥ 1

� We can therefore model sum-of-norm optimization problems

� When p = 2, this is the second-order cone: we can therefore also
model all second-order cone optimization problems, including QCQO
problems

� We can also model more complicated non-separable expressions, such
as

z2.5
1 z−4.5

2 z4
3 + 2z1z2 + z4

3 ≤ t2

(crucial condition for convexity is that degree of every term on l.h.s.
should be greater that degree of r.h.s.)

� This looks similar to posynomials involved in geometric optimization
but is completely different (no exponential transformation)
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Unified conic formulation Modelling problems involving powers using the power cone
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Unified conic formulation Modelling problems involving exponentials using the power cone

Overview

1. Motivation

� Why convex optimization?

� Why a conic formulation?

2. Unified conic formulation

� The power cone

� Modelling problems involving powers using the power cone

� Modelling problems involving exponentials using the power cone

3. Concluding remarks

� Future plans
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Unified conic formulation Modelling problems involving exponentials using the power cone

What about exponentials?

Some convex problem classes described earlier are still missing, among
which the exponential function seems to play a central role
We use the following well-known limit

lim
p→+∞

(1 +
x

p
)p = ex ,

valid for any real x, to obtain the exponential function. Letting z = y + z′

p
(a linear transformation), the definition of the power cone becomes:

x
1
p y

1
q ≥

∣∣∣∣y +
z′

p

∣∣∣∣ ⇔ x
1
p y

( 1
q
−1) ≥

∣∣∣∣1 +
z′/y

p

∣∣∣∣ ⇔ xy−1 ≥
∣∣∣∣1 +

1
p

z′

y

∣∣∣∣p
⇔

∣∣∣∣1 +
1
p

(z′

y

)∣∣∣∣p ≤ x

y
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Unified conic formulation Modelling problems involving exponentials using the power cone
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x

p
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Unified conic formulation Modelling problems involving exponentials using the power cone

Letting now p tend to +∞ we obtain∣∣∣∣1 +
1
p

(z′

y

)∣∣∣∣p ≤ x

y
−→p→∞ exp

(z′

y

)
≤ x

y

which defines the exponential cone:

Ep = {(x, y, z) ∈ R+ × R+ × R | exp
(z

y

)
≤ x

y
}

� We can now model the epigraph of exponential function (take y = 1)
and therefore geometric optimization

� We can also model the epigraph of minus logarithm:
(x, 1,−z) ∈ Ep ⇔ exp(−z) ≤ x ⇔ − log x ≤ z
and therefore analytic centering

� We can also model the epigraph of entropy: (1, y,−z) ∈ Ep ⇔
exp(−z/y) ≤ 1/y ⇔ −z/y ≤ − log y ⇔ y log y ≤ z and therefore
entropy optimization
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Unified conic formulation Modelling problems involving exponentials using the power cone

Barrier for exponential cone
Exponential cone is the limit of a suitably linearly transformed power cone
Since self-concordancy is preserved by linear transformations and limits, we
should be able to easily compute a self-concordant barrier for Ep

Fexp(x, y, z) = lim
p→+∞

Fp(x, y, y + z/p) = · · · = +∞

Is something wrong? Can be corrected by adding a missing constant term:

Fexp(x, y, z) = lim
p→+∞

(
Fp(x, y, y + z/p)− log

p

2

)
= · · · = − log

(
y log(x/y)− z

)
− log(x)− log(y)

Using this unified barrier, one can solve any conic problem involving
exponential cones Ep

(and recompute the standard barriers for exponential, minus logarithm and
entropy epigraphs)
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Unified conic formulation Modelling problems involving exponentials using the power cone

Combining different types of constraints

Part of the usefulness of this framework is that it allows combinations of
different types of constraints in a completely seamless way

An example: the Lambert W function, defined by W (x) expW (x) = x

From MathWorld: Banwell and Jayakumar (2000) showed that a W-function

describes the relation between voltage, current and resistance in a diode, and

Packel and Yuen (2004) applied the W-function to a ballistic projectile in the

presence of air resistance. Other applications have been discovered in statistical

mechanics, quantum chemistry, combinatorics, enzyme kinetics, the physiology of

vision, the engineering of thin films, hydrology, and the analysis of algorithms

(Hayes 2005).
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Unified conic formulation Modelling problems involving exponentials using the power cone

An example: the Lambert W function
W (x) is real for x ≥ 0, and concave on that domain ; therefore, we can
try to model the convex set defined by 0 ≤ y ≤ W (x) (intersection of its
hypograph with nonnegative orthant)

0 ≤ y ≤ W (x) ⇔ 0 ≤ y exp y ≤ W (x) expW (x) ⇔ 0 ≤ y exp y ≤ x

which can be obtained using

� a exponential constraint exp
(

z
y

)
≤ x

y and

� a quadratic constraint z ≥ y2

Indeed, we can check that

0 ≤ y exp y = y exp(y2/y) ≤ y exp(z/y) ≤ x

In summary, combining a quadratic and an exponential constraint, we have
shown that

0 ≤ y ≤ W (x) ⇔ (x, y, z) ∈ Ep and (z, 1, x) ∈ P2
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Concluding remarks

Overview

1. Motivation

� Why convex optimization?

� Why a conic formulation?

2. Unified conic formulation

� The power cone

� Modelling problems involving powers using the power cone

� Modelling problems involving exponentials using the power cone

3. Concluding remarks

� Future plans
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Concluding remarks

Concluding remarks

In conclusion, the single family of 3-dimensional cones Pp can

� model a very large class of structured convex problems (with the
notable exception of semidefinite optimization)

� enable their resolution with powerful interior-point methods

� allow the easy computation of their dual problems

Convex problems covered include linear, quadratic, second-order cone,
quadratically constrained, geometric, lp-norm, sum-of-norm, entropy
optimization and others, as well as any combinations of these

Potential drawback: conic modelling sometimes require the introduction of
a large number of additional variables (e.g. ‖x‖p ≤ t constraint)
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Concluding remarks

Conic solver
joint work with Robert Chares, CORE

� Our current (working) implementation relies on a dual long-step
path-following interior-point algorithm

� It currently handles the nonnegative cone Rn
+, the power cone Pp, the

exponential cone Ep and the Rn/{0} cones for better handling of
primal free variable/dual equality constraints

� In the future: take advantage of self-duality and implement a
primal-dual interior-point method
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Concluding remarks Future plans
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Concluding remarks Future plans

Modelling language

� Even if a large class of problems can be modelled with our cones,
writing down the equivalent formulation can be long and error-prone

� However, the procedure of converting a given problem problem into
its equivalent conic formulation is completely understood and can be
carried out completely automatically

� Our medium-term goal is to add an additional software layer around
our solver to handle automatically all known modelling tricks for
convex problems involving our cones (similar to current environments
such as YALMIP, CVX or CVXOPT, which currently work only with
standard cones Rn

+, Ln, Sn
+ and Rn)

� Stay tuned !

� If you have any problem that you think could be modelled in our
framework, please do not hesitate to contact us!
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Concluding remarks Future plans

Thank you for your attention!
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