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Abstract

The purpose of this paper is to provide improved complexity results for several classes
of structured convex optimization problems using to the theory of self-concordant func-
tions developed in [11]. We describe the classical short-step interior-point method and
optimize its parameters in order to provide the best possible iteration bound. We also
discuss the necessity of introducing two parameters in the definition of self-concordancy
and which one is the best to fix. A lemma from [3] is improved, which allows us to review
several classes of structured convex optimization problems and improve the corresponding
complexity results.
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1 Introduction

Convex optimization deals with the minimization of a convex function on a convex set, see
e.g. [15, 18]. It is well-known that a problem involving a nonlinear objective function can be
rewritten using a linear objective function, an additional constraint and one more variable,
so that one can consider without loss of generality the following formulation

inf
x∈Rn

cTx s.t. x ∈ C , (CL)

where the feasible set C ⊆ Rn is convex and vector c ∈ Rn defines the objective function.
We will also assume that C is full-dimensional, i.e. possesses a nonempty interior. This

can be again be done without loss of generality, since a suitable change of variables can make
the feasible set full-dimensional when the affine hull of C is a linear subspace different from
Rn (namely, supposing the dimension of the affine hull of the feasible set is equal to m < n,
one can use any affine transformation mapping aff C to Rm, see e.g. [15]).

Among the different types of algorithms that can be applied to solve problem (CL),
interior-point methods have gained a lot of popularity in the last two decades, mainly because
one can both give a polynomial bound on the number of arithmetic operations they need to
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reach a solution within a given accuracy and implement them to solve successfully real-world
problems, especially in the fields of linear [1] (where they compare favourably with the simplex
method on large-scale problems), quadratic and semidefinite optimization.

One traditional way to define C is to provide a list of convex constraints, i.e. C =
{
x ∈

Rn | fi(x) ≤ 0 ∀ 1 ≤ i ≤ m
}

where each of the m functions fi : Rn 7→ R is convex. However,
interior-point methods rely instead on the notion of barrier function for the feasible set C,
according to the following definition.

Definition 1.1. Let C be a full-dimensional convex subset of Rn. A function F : int C 7→ R
is a barrier function for the set C if and only if F is three times continuously differentiable,
strictly convex and F (x) tends to +∞ whenever x tends to ∂C, the boundary of C.

Note that it is often possible to provide a suitable barrier function for a convex set C
defined by convex constraints, using the logarithmic barrier [7] defined as

F : int C 7→ R : x 7→ F (x) = −
m∑

i=1

log(−fi(x)) .

We have however to make sure the resulting function satisfies all the properties of a barrier
function (for example, defining C = R+ with a single convex constraint using f1 : R+ 7→ R :
x 7→ −xx leads to F (x) = −x log x, which does not possess the barrier property).

Problem (CL) is thus replaced by a family of unconstrained minimization problems relying
on the barrier function

inf
x∈Rn

cTx

µ
+ F (x) , (CLµ)

parameterized by a barrier parameter µ ∈ R++ (see the classical monograph [6]). Most
interior-point methods then follow the so-called central path, i.e. the set of minimizers x(µ)
of each of these problems1, while decreasing µ to zero, which under some mild conditions
leads them to an optimal solution of (CL).

Interior-point methods rely on Newton’s method to compute these minimizers, so that the
following question becomes of interest: is it possible to choose a barrier function F such that
Newton’s method is provably efficient in solving subproblems (CLµ), leading to a polynomial
algorithm for problem (CL) ? This crucial question is thoroughly answered by the theory of
self-concordancy, first developed by Nesterov and Nemirovski [11], which we will introduce in
the next Section 2.

2 Self-concordancy and a polynomial short-step method

2.1 Equivalent definitions

Let us first present a definition of a self-concordant barrier2.
1Uniqueness of these minimizers is guaranteed by the strict convexity of F , while their existence requires

some additional assumptions, see [6].
2This definition does not exactly match the definition of a self-concordant barrier originally stated in [11],

but corresponds in fact to the notion of strongly non-degenerate κ−2-self-concordant barrier functional with
parameter ν. Our main restriction with respect to the original theory of [11] is the requirement that F be strictly
convex, equivalent to the notion of non-degeneracy in [11], which is essentially needed for technical reasons
and does not really reduce the generality of the approach (see the discussion at the end of [14, Chapter 2.5]).
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Definition 2.1. Let C be a full-dimensional convex subset of Rn. A function F : int C 7→ R
is called a (κ, ν)-self-concordant barrier for C if and only if F is a barrier function for C and
the following two conditions hold for all x ∈ int C and h ∈ Rn:

∇3F (x)[h, h, h] ≤ 2κ
(∇2F (x)[h, h]

) 3
2 , (2.1)

∇F (x)T(∇2F (x))−1∇F (x) ≤ ν (2.2)

(the square root in (2.1) is well defined because of the requirement that F is convex).
We point out that no absolute value is needed in the left-hand side of (2.1): the apparently

stronger condition ∣∣∇3F (x)[h, h, h]
∣∣ ≤ 2κ

(∇2F (x)[h, h]
)3/2 (2.3)

required by some authors is not needed since inequality (2.1) also has to hold in the direction
opposite to h, which gives (using the fact that the nth-order differential is homogeneous with
degree n)

∇3F (x)[−h,−h,−h] ≤ 2κ
(∇2F (x)[−h,−h]

) 3
2 ⇔ −∇3F (x)[h, h, h] ≤ 2κ

(∇2F (x)[h, h]
) 3

2

and shows that conditions (2.1) and (2.3) are equivalent.
Given a barrier function F and a point x belonging to its domain, it will be convenient to

introduce the Newton step n(x) and the intrinsic inner product 〈·, ·〉x3:

n(x) = −(∇2F (x))−1∇F (x) and 〈α, β〉x = 〈α,∇2F (x)β〉 .

The intrinsic norm ‖·‖x will also be used according to the usual definition ‖a‖x =
√
〈a, a〉x.

Conditions (2.1) and (2.2) admit several equivalent reformulations, sometimes easier to
work with, based on the restriction of F along a line. Let x ∈ int C and h ∈ Rn, defining the
line {x + th | t ∈ R} and let us introduce the one-dimensional function Fx,h : R 7→ R : t 7→
F (x + th).

Theorem 2.1. The following four conditions are equivalent:

∇3F (x)[h, h, h] ≤ 2κ
(∇2F (x)[h, h]

) 3
2 for all x ∈ int C and h ∈ Rn (2.4a)

F ′′′
x,h(0) ≤ 2κF ′′

x,h(0)
3
2 for all x ∈ int C and h ∈ Rn (2.4b)

F ′′′
x,h(t) ≤ 2κF ′′

x,h(t)
3
2 for all x + th ∈ int C and h ∈ Rn (2.4c)

(
− 1√

F ′′
x,h(t)

)′
≤ κ for all x + th ∈ int C and h ∈ Rn . (2.4d)

Proof. Since Fx,h(t) = F (x + th), we can write

F ′
x,h(t) = ∇F (x + th)[h], F ′′

x,h(t) = ∇2F (x + th)[h, h] and F ′′′
x,h(t) = ∇3F (x + th)[h, h, h] .

3Renegar [14] points out that while the gradient and Hessian of F , i.e. its first- and second-order differentials
do depend from the choice of reference inner product used in their definition, the intrinsic norm and inner
products as well as the Newton step are in fact independent from this choice, so that their use leads to an
essentially coordinate-free development of the theory.
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Condition (2.4b) is thus simply condition (2.4a) written differently. Moreover, condition (2.4c)
is equivalent to condition (2.4a) written for x + th instead of x. Finally, we note that

(
− 1√

F ′′
x,h(t)

)′
≤ κ ⇔ 1

2
F ′′

x,h(t)−
3
2 F ′′′

x,h(t) ≤ κ ⇔ F ′′′
x,h(t) ≤ 2κF ′′

x,h(t)
3
2 ,

which shows that (2.4d) and (2.4c) are equivalent.

Theorem 2.2. The following four conditions are equivalent:

∇F (x)T(∇2F (x))−1∇F (x) ≤ ν for all x ∈ int C (2.5a)
F ′

x,h(0)2 ≤ νF ′′
x,h(0) for all x ∈ int C and h ∈ Rn (2.5b)

F ′
x,h(t)2 ≤ νF ′′

x,h(t) for all x + th ∈ int C and h ∈ Rn (2.5c)
(
− 1

F ′
x,h(t)

)′
≥ 1

ν
for all x + th ∈ int C and h ∈ Rn . (2.5d)

Proof. We first show that condition (2.5b) implies condition (2.5a).

(∇F (x)T(∇2F (x))−1∇F (x)
)2 = F ′

x,n(x)(0)2

≤ νF ′′
x,n(x)(0) = ν∇F (x)T(∇2F (x))−1∇F (x) ,

which implies condition (2.5a). Considering now the reverse implication, we have

F ′
x,h(0)2 =

(∇F (x)Th
)2

=
(∇F (x)T(∇2F (x))−1∇2F (x)h

)2
= 〈n(x), h〉2x

≤ ‖(n(x)‖2
x ‖h‖2

x (using the Cauchy-Schwarz inequality)
=

(∇F (x)T(∇2F (x))−1∇F (x)
) (

hT∇2F (x)h
) ≤ νF ′′

x,h(0) .

Condition (2.5c) is condition (2.5b) written for x + th instead of x, and we finally note that

(
− 1

F ′
x,h(t)

)′
≥ 1

ν
⇔ F ′

x,h(t)−2F ′′
x,h(t) ≥ 1

ν
⇔ νF ′′

x,h(t) ≥ F ′
x,h(t)2 ,

which shows that (2.5d) and (2.5c) are equivalent.

The first three reformulations for each condition are well-known and can be found for
example in [11, 10, 14]. Conditions (2.4d) and (2.5d) are less commonly seen (they were
however mentioned in [2]).

2.2 Optimal complexity of a short-step method

Interior-point methods for convex optimization rely on a barrier function and the associated
central path to solve problem (CL). Iterates x(k) will be required to lie in a prescribed
neighbourhood of the central path (since computing points that lie exactly on the central is
too costly) while the barrier parameter µk will tend to zero.

A good measure of the proximity to the central path would be
∥∥x(k) − x(µk)

∥∥
x(k) , but the

fact it involves the unknown central point x(µk) makes it difficult to use in the analysis. We
will instead rely on the following elegant proximity measure: we define δ(x, µ), a measure of

4



the proximity of x to the central point x(µ), to be the intrinsic norm of nµ(x), the Newton
step trying to minimize the objective in problem (CLµ) (aiming thus at x(µk)), i.e.

nµ(x) = −(∇2F (x))−1(
c

µ
+∇F (x)) = − 1

µ
(∇2F (x))−1c + n(x) and δ(x, µ) = ‖nµ(x)‖x

(note that both nµ(x) and ‖nµ(x)‖x are independent of the coordinate system).
The principle lying behind a short-step interior-point method is to trace the central path

approximately, ensuring that the proximity δ(x(k), µk) at each iteration is kept below a pre-
defined bound. Given a problem of type (CL), a barrier function F for the feasible set C, an
upper bound on the proximity measure τ > 0, a decrease parameter 0 < θ < 1 and an initial
iterate x(0) such that δ(x(0), µ0) < τ , we set k ← 0 and perform the following main loop:

(1) µk+1 ← µk(1− θ) (decrease the barrier parameter)
(2) x(k+1) ← x(k) + nµk+1

(x(k)) (take a Newton step)
(3) k ← k + 1

The key is to choose parameters τ and θ such that δ(x(k), µk) < τ implies δ(x(k+1), µk+1) < τ ,
so that proximity to the central path is preserved at each iteration. Indeed, it is precisely
the self-concordancy of the barrier function that will guarantee that such a choice is possible.
Our goal now is to find optimal values for this pair of parameters, i.e. leading to a minimum
number of iterations.

In order to relate the two proximities δ(x(k), µk) and δ(x(k+1), µk+1), it is useful to intro-
duce an intermediate quantity δ(x(k), µk+1), the proximity from an iterate to its next target
on the central path. We have the following two properties:

Theorem 2.3. Let F be a barrier function satisfying (2.2), x ∈ domF and µ+ = (1 − θ)µ.
We have

δ(x, µ+) ≤ δ(x, µ) + θ
√

ν

1− θ
.

Proof. We have

µ+nµ+(x)− µ+n(x) = −(∇2F (x))−1c = µnµ(x)− µn(x)
(dividing by µ) ⇔ (1− θ)nµ+(x)− (1− θ)n(x) = nµ(x)− n(x)

⇒ (1− θ)
∥∥nµ+(x)

∥∥
x
≤ ‖nµ(x)‖x + θ ‖n(x)‖x

⇒ (1− θ)δ(x, µ+) ≤ δ(x, µ) + θ
√

ν ,

which implies the desired inequality, where the last implication used the fact that

‖n(x)‖x =
√
∇F (x)T(∇2F (x))−1∇F (x) ≤ √

ν ,

because of condition (2.2).

Theorem 2.4. Let F be a barrier function satisfying (2.1) and x ∈ domF . Let us suppose
δ(x, µ) < 1

κ . We have that x + nµ(x) ∈ domF and

δ(x + nµ(x), µ) ≤ κδ(x, µ)2

(1− κδ(x, µ))2
.
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(this proof is more technical and is omitted here ; it can be found in [10, 11, 14]).

Note 2.1. The reason why the self-concordancy property relies on two separate conditions be-
comes clear: one of them is responsible for the control of the increase of the proximity measure
when the target on the central path is updated (Theorem 2.3), while the other guarantees that
the proximity to the target can be restored, i.e. sufficiently decreased when taking a Newton
step (Theorem 2.4).

Assuming for the moment that τ and θ can be chosen such that the proximity to central
path is preserved at each iteration, we see that the number of iterations needed to attain a
certain value of the barrier parameter µe depends solely on the ratio µ0

µe
and the value of θ.

Namely, since µk = (1− θ)kµ0, it is readily seen that this number of iterations is equal to
⌈
log(1−θ)

µe

µ0

⌉
=

⌈
1

log(1− θ)
log

µe

µ0

⌉
. (2.6)

Given a (κ, ν)-self-concordant barrier, we are now going to find a suitable pair of pa-
rameters τ and θ providing the greatest reduction for the parameter µ at each iteration, in
other words maximizing θ in order to get the lowest possible total iteration count. Letting
δ = δ(x(k), µk), δ′ = δ(x(k), µk+1) and δ+ = δ(x(k+1), µk+1) and assuming δ ≤ τ , we have to
satisfy δ+ ≤ τ with the greatest possible value for θ.

Let us assume first that δ′ < 1
κ . Using Theorem 2.4, we find that

δ+ ≤ κδ′2

(1− κδ′)2
and therefore require that

κδ′2

(1− κδ′)2
≤ τ .

This is equivalent to
(

κδ′

1− κδ′

)2

≤ κτ ⇔
(

1
κδ′

− 1
)2

≥ 1
κτ

⇔ 1
κδ′

≥ 1 +
1√
κτ

(which also shows that the assumption κδ′ < 1 we made in the beginning was valid). Using
now Theorem 2.3, we know that

δ′ ≤ δ + θ
√

ν

1− θ
⇒ δ′ ≤ τ + θ

√
ν

1− θ
⇔ 1

κδ′
≥ 1− θ

κτ + θκ
√

ν

and thus require that
1− θ

κτ + θκ
√

ν
≥ 1 +

1√
κτ

.

Letting β =
√

κτ and Γ = κ
√

ν (we call this quantity the complexity value of the barrier since
it plays an important role in the complexity analysis), we have

1− θ

β2 + θΓ
≥ 1 +

1
β
⇔ 1− θ ≥ (1 +

1
β

)(β2 + Γθ) ⇔ 1− β − β2 ≥ θ

(
1 + Γ +

Γ
β

)
,

which finally means that maximum the value of θ that guarantees δ+ ≤ τ is given by

θ =
1− β − β2

1 + Γ + Γ
β

. (2.7)
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Computing the derivative of this quantity with respect to β shows that it is maximum when
β satisfies 2β3(1 + Γ) + β2(1 + 4Γ) + 2βΓ− Γ = 0 or equivalently when

Γ = − β2(2β + 1)
2β3 + 4β2 + 2β − 1

, (2.8)

the corresponding graph being depicted on Figure 1. Possible values for Γ ranging from
1 to +∞ (proof of the nontrivial fact that Γ is never less than 1 can be found in [11]),
straightforward computations show that the corresponding values of β range from β− ≈ 0.273
to β+ ≈ 0.297 (satisfying respectively 4β3−+5β2−+2β−−1 = 0 and 2β3

+ +4β2
+ +2β+−1 = 0).

Unfortunately, the corresponding explicit analytical expression β = h(Γ) is too complicated4

to be stated here. However, leaving β as a function of Γ, we can evaluate the maximal value of
θ as follows: plugging the value of Γ given by (2.8) into (2.7) gives after some manipulations
the simple expression θ = 1− 2β − 4β2 − 2β3, which using again (2.8) provides the equality

θ =
β2(2β + 1)

Γ
, (2.9)

which will prove useful later.

0.275 0.28 0.285 0.29 0.295
10

−1

10
0

10
1

10
2

10
3

β

Γ

Figure 1: Graph of the relation β = h(Γ).

Before we state our final complexity result, we have to discuss termination of the algorithm.
The most practical stopping criterion is a small target value µe for the barrier parameter,
which directly relates to the iteration bound given in (2.6). Our final iterate x(e) will thus
satisfy δ(x(e), µe) ≤ τ , which tells us it is not too far from x(µe), itself not too far from
the optimum since µe is small. Indeed, using again the self-concordancy property of F , it is
possible to derive the following bound on the accuracy of the final objective cTx(e), i.e. its
deviation from the optimal objective cTx∗

cTx(e) − cTx∗ ≤ µe

1− 3κτ
κ
√

ν (2.10)

4It is indeed the real root of a cubic equation and can be computed without effort for any value of Γ.
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(proof of this fact is omitted here and can easily be obtained combining Theorems 2.2.5 and
2.3.3 in [14]). We are now ready to state our final complexity result:

Theorem 2.5. Given a convex optimization problem (CL), a (κ, ν)-self-concordant barrier
F for C, a constant β = h(κ

√
ν) and an initial iterate x(0) such that δ(x(0), µ0) < β2

κ , one can
find a solution with accuracy ε in

⌈( κ
√

ν

β2(2β + 1)
− 1

2

)
log

µ0κ
√

ν

ε(1− 3β2)

⌉
iterations.

Proof. Using the optimal value β = h(κ
√

ν), the maximal value for θ given by (2.7), the fact
that κτ = β2 and the bound on the objective accuracy in (2.10), we find that the stopping
threshold on the barrier parameter µe must satisfy

µe

1− 3β2
κ
√

ν ≤ ε ⇔ µe ≤ ε(1− 3β2)
κ
√

ν
.

Plugging this value into (2.6) we find that the total number of iterations can be bounded by
(omitting the rounding bracket for clarity)

1
log(1− θ)

log
µe

µ0
≤ 1

log(1− θ)
log

ε(1− 3β2)
µ0κ

√
ν

= − 1
log(1− θ)

log
µ0κ

√
ν

ε(1− 3β2)

≤ (1
θ
− 1

2
)
log

µ0κ
√

ν

ε(1− 3β2)
=

( κ
√

ν

β2(2β + 1)
− 1

2

)
log

µ0κ
√

ν

ε(1− 3β2)
,

as announced (the second inequality uses the fact that 1
log(1−θ) ≥ 1

2 − 1
θ , which can be easily

derived using the Taylor series of log x around 1, while the equality uses equation (2.9)).

This result is not very explicit since it still involves the constant β. However, using the
fact that β is lower bounded by β− ≈ 0.273, one can easily derive the following corollary:

Corollary 2.1. Given a convex optimization problem (CL), a (κ, ν)-self-concordant barrier
F for C and an initial iterate x(0) such that δ(x(0), µ0) < 1

13.42κ , one can find a solution with
accuracy ε in ⌈(

8.68κ
√

ν − 1
2
)
log

1.29µ0κ
√

ν

ε

⌉
iterations.

It is also interesting to note that the value of the coefficient of κ
√

ν in the leading factor
of the number of iterations can be further lowered if a larger lower bound on κ

√
ν is assumed.

Indeed, coefficient 8.68 becomes 7.90 if κ
√

ν ≥ 2, 7.43 if κ
√

ν ≥ 5, 7.27 if κ
√

ν ≥ 10 and tends
to 7.10 when κ

√
ν tends to +∞. This improves several similar results from the literature,

e.g. 9κ
√

ν in [10] and 1 + 8κ
√

ν in [14].
Moreover, one can compare these values with the corresponding ones valid in the special

case of linear optimization. Recalling that κ
√

ν is equal to
√

n in the case of a linear optimiza-
tion problem involving n nonnegative variables and equipped with the standard logarithmic
barrier, we see that a similar short-step algorithm described in [17, Theorem II.24]5 achieves
an iteration bound featuring a leading factor equal to 3

√
n, noticeably lower than our result

for the general convex case.
5Using a primal-dual algorithm, [17, Remark II.54] further lowers this bound to achieve a leading factor

equal to
√

n as soon as n ≥ 8.
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3 Using self-concordancy

3.1 Barrier calculus

The previous section has made clear that the self-concordancy property of the barrier function
F is essential to derive a polynomial bound on the number of iterations of the short-step
method. Moreover, smaller values for parameters κ and ν imply a lower total complexity.
The next question we may ask ourselves is how to find self-concordant barriers (ideally with
low parameters).

An impressive result contained in [11] states that every convex set in Rn admits a (K, n)-
self-concordant barrier, where K is a universal constant (independent of n). However, the uni-
versal barrier exhibited in their proof is defined as a volume integral over an n-dimensional
convex body, and is therefore very difficult to evaluate in practice, even for simple sets in
low-dimensional spaces. Another potential problem with this approach is that evaluating this
barrier (and/or its gradient and Hessian) might very well take a number of arithmetic opera-
tions that grows exponentially with n, which would lead to an exponential total algorithmic
complexity for the short-step method, despite the polynomial iteration bound.

Another approach to find self-concordant barriers, termed barrier calculus in [11], consists
in combining basic self-concordant barriers using operations that are known to preserve self-
concordancy. We now proceed to briefly describe two of these self-concordancy preserving
operations, positive scaling and addition, and examine how the associated parameters are
affected in the process.

Let us start with positive scalar multiplication.

Theorem 3.1. Let F be a (κ, ν)-self-concordant barrier for C ⊆ Rn and λ ∈ R++ a positive
scalar. Then (λF ) is also a self-concordant barrier for C with parameters ( κ√

λ
, λν).

Proof. It is clear that (λF ) is also a barrier function (i.e. smoothness, strict convexity and
the barrier property are obviously preserved by scaling). Since F is (κ, ν)-self-concordant, we
have for all x ∈ int C and h ∈ Rn (using Theorems 2.1 and 2.2)

F ′′′
x,h(0) ≤ 2κF ′′

x,h(0)
3
2 and F ′

x,h(0)2 ≤ νF ′′
x,h(0)

which is clearly equivalent to

(λF )′′′x,h(0) ≤ 2
κ√
λ

(
(λF )′′x,h(0)

) 3
2 and

(
(λF )′x,h(0)

)2 ≤ λν(λF )′′x,h(0) ,

which is precisely stating that (λF ) is ( κ√
λ
, λν)-self-concordant.

This theorem show that self-concordancy is preserved by positive scalar multiplication, but
that parameters κ and ν are both modified. It is interesting to note that these parameters do
not occur individually in the iteration bound of Theorem 2.5 but are rather always appearing
together in the expression κ

√
ν. This quantity, which we call the complexity value of the

barrier, is solely responsible for the polynomial iteration bound. Looking at what happens to
it when F is scaled by λ, we find that the scaled complexity value is equal to κ√

ν

√
λν = κ

√
ν,

i.e. that the complexity value is invariant to scaling. This means in fine that scaling a self-
concordant barrier does not influence the algorithmic complexity of the associated short-step
method, a property than could reasonably be expected from the start.

Let us now examine what happens when two self-concordant barriers are added.
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Theorem 3.2. Let F be a (κ1, ν1)-self-concordant barrier for C1 ⊆ Rn and G be a (κ2, ν2)-
self-concordant barrier for C2 ⊆ Rn. Then (F + G) is a self-concordant barrier for C1 ∩ C2

(provided this intersection is nonempty) with parameters (max{κ1, κ2}, ν1 + ν2).

Proof. It is straightforward to see that (F + G) is a barrier function for C1 ∩ C2. We write

(F + G)′′′x,h ≤ 2κ1F
′′
x,h

3
2 + 2κ2G

′′
x,h

3
2

≤ 2max{κ1, κ2}(F ′′
x,h

3
2 + G′′

x,h

3
2 ) ≤ 2max{κ1, κ2}(F + G)′′x,h

3
2

and
∣∣(F + G)′x,h

∣∣ ≤ ∣∣F ′
x,h

∣∣ +
∣∣G′

x,h

∣∣ ≤ √
ν1

√
F ′′

x,h +
√

ν2

√
G′′

x,h ≤
√

ν1 + ν2

√
(F + G)′′x,h

which is exactly stating that (F + G) is (max{κ1, κ2}, ν1 + ν2)-self-concordant.

3.2 Fixing a parameter

As mentioned above, scaling a barrier function with a positive scalar does not affect its self-
concordancy, i.e. its suitability as a tool for convex optimization, and leaves its complexity
value unchanged. One can thus make the decision to fix one of the two parameters κ and ν
arbitrarily and only work with the corresponding subclass of barrier, without any real loss of
generality. We describe now two choices of this kind that have been made in the literature.

First choice. Some authors [3, 4, 9, 16] choose to work with the second parameter ν fixed
to one. However, this choice is not made explicitly but results from the particular structure of
the barrier functions that are considered. Indeed, these authors consider convex optimization
problems whose feasible sets are given by a list convex constraints and rely on the logarithmic
barrier described in the introduction. The following lemma will prove useful.

Lemma 3.1. Let f : Rn 7→ R ∪ {+∞} be a convex function, C = {x ∈ Rn | f(x) ≤ 0} and
define the logarithmic barrier F : int C 7→ R ∪ {+∞} : x 7→ − log(−f(x)). We have that F
satisfies the second condition of self-concordancy (2.2) with parameter ν = 1.

Proof. Using the equivalent condition (2.5b) of Theorem 2.2, we have to evaluate the following
quantities for x ∈ int C, h ∈ Rn and t = 0

F ′
x,h(t) = −∇f(x + th)[h]

f(x + th)
and F ′′

x,h(t) =
∇f(x + th)[h]2 −∇2f(x + th)[h, h]f(x + th)

f(x + th)2
,

which implies

F ′
x,h(0)2 =

∇f(x)[h]2

f(x)2
≤ ∇f(x)[h]2 −∇2f(x)[h, h]f(x)

f(x)2
= F ′′

x,h(0)

(where we have used the fact that ∇2f(x)[h, h] ≥ 0 because f is convex and f(x) ≤ 0 because
x belongs to the feasible set C), which states that F satisfies the second self-concordancy
condition (2.2) with ν = 1.
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Since the logarithmic barrier corresponding to a set defined by several convex constraints
is a sum of terms for which this lemma is applicable, we can use Theorem 3.2 to find that it
satisfies the same condition with ν = m, the number of constraints.

This means that we only have to check the first condition (2.1) involving κ to establish self-
concordancy for the logarithmic barrier. Assuming that each individual term − log(−fi(x))
can be shown to satisfy it with κ = κi, we have that the whole logarithmic barrier is
(maxi∈I{κi},m)-self-concordant, which leads to a complexity value equal to ‖κ‖∞

√
m, where

we have defined κ = (κ1, κ2, . . . , κm).

Second choice. Another arbitrary choice of self-concordance parameters that one encoun-
ters frequently in the literature consists in fixing κ = 1 in the first self-concordancy condi-
tion (2.1). This approach has been used increasingly in the recent years (see e.g. [10, 11, 14]),
and we give here a justification of its superiority over the alternative presented above.

Let us consider the same logarithmic barrier, and suppose again that each individual
term Fi : x 7→ − log(−fi(x)) has been shown to satisfy the first self-concordancy condi-
tion (2.1) with κ = κi. Our previous discussion implies thus that Fi is (κi, 1)-self-concordant.
Multiplying now Fi with κ2

i , Theorem 3.1 implies that κ2
i Fi is (1, κ2

i )-self-concordant. The
corresponding complete scaled logarithmic barrier

F̃ : x 7→ −
∑

i∈I

κ2
i log(−fi(x))

is then (1,
∑

i∈I κ2
i )-self-concordant by virtue of Theorem 3.2, which leads finally to a com-

plexity value equal to
√∑

i∈I κ2
i = ‖κ‖2. This quantity is always lower than the complexity

value for the standard logarithmic barrier considered above because of the well-known norm
inequality ‖κ‖2 ≤

√
m ‖κ‖∞, which proves the superiority of this second approach (the only

case where they are equivalent is when all parameters κi’s are equal).

Note 3.1. The fundamental reason why the first approach is less efficient is that it may
combine barriers with different κ parameters, with the consequence that only the largest value
maxi∈I{κi} appears in the final complexity value (the other smaller values becoming completely
irrelevant cannot influence the final complexity at all). The second approach avoids this
situation by ensuring that κ is always equal to one, which means that κ’s are equal for each
combination and that the final complexity is really depending on the parameters of all the
terms of the logarithmic barrier.

3.3 A useful lemma

We have seen so far how to construct self-concordant barrier by combining simpler functionals
but still have no tool to prove self-concordancy of these basic barriers. The purpose of this
section is to present a lemma that can help us in that regard. Let us first introduce two
auxiliary functions r1 and r2, whose graphs are depicted in Figure 2:

r1 : R 7→ R : γ 7→ max
{
1,

γ√
3− 2/γ

}
and r2 : R 7→ R : γ 7→ max

{
1,

γ + 1 + 1/γ√
3 + 4/γ + 2/γ2

}
.

Both of these functions are equal to 1 for γ ≤ 1 and strictly increasing for γ ≥ 1, with the
asymptotic approximations r1(γ) ≈ γ√

3
and r2(γ) ≈ γ+1√

3
when γ tends to +∞.
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Figure 2: Graphs of functions r1 and r2

Lemma 3.2. Let us suppose F is a convex function defined on int C ⊆ Rn
++ and that there

exists a constant γ such that

∇3F (x)[h, h, h] ≤ 3γ∇2F (x)[h, h]

√√√√
n∑

i=1

h2
i

x2
i

for all x ∈ int C and h ∈ Rn . (3.1)

We have that

F1 : int C 7→ R : x 7→ F (x)−
n∑

i=1

log xi

satisfies the first condition of self-concordancy (2.1) with parameter κ1 = r1(γ) on its domain
and, defining epi F = {(x, u) ∈ C × R | F (x) ≤ u}

F2 : int epiF 7→ R : (x, u) 7→ − log
(
u− F (x)

)−
n∑

i=1

log xi

satisfies the first condition of self-concordancy (2.1) with parameter κ2 = r2(γ) on its domain.

Note 3.2. This lemma originates from a similar result is proved in [3] with parameters κ1

and κ2 both equal to 1+ γ. The second result is improved in [10], with κ2 equal to max{1, γ},
as a special case of a more general compatibility theory developed in [11]. However, it is easy
to see that our result is better. Indeed, our parameters are strictly lower in all cases for F1

and as soon as γ > 1 for F2, with an asymptotical ratio of
√

3 when γ tends to +∞.

Proof. We follow the lines of [3] and start with F1: computing its second and third differentials
gives

∇2F1(x)[h, h] = ∇2F (x)[h, h] +
n∑

i=1

h2
i

x2
i

and ∇3F1(x)[h, h, h] = ∇3F (x)[h, h, h]− 2
n∑

i=1

h3
i

x3
i

.
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Introducing two auxiliary variables a ∈ R+ and b ∈ R+ such that

a2 = ∇2F [h, h] and b2 =
n∑

i=1

h2
i

x2
i

(convexity of F ensures that a is real), we rewrite condition (3.1) as ∇3F (x)[h, h, h] ≤ 3γa2b.
Combining it with the fact that

∣∣∣∣∣∣

(
n∑

i=1

h3
i

x3
i

) 1
3

∣∣∣∣∣∣
≤

(
n∑

i=1

|hi|3
|xi|3

) 1
3

≤
(

n∑

i=1

h2
i

x2
i

) 1
2

= b , (3.2)

where the second inequality comes from the well-known relation ‖·‖3 ≤ ‖·‖2 applied to vector
(h1

x1
, . . . , hn

xn
), we find that

∇3F1(x)[h, h, h]

2(∇2F1(x)[h, h])
3
2

≤ 3γa2b + 2b3

2(a2 + b2)
3
2

.

According to (2.1), finding the best parameter κ for F1 amounts to maximize this last quantity
depending on a and b. Since a ≥ 0 and b ≥ 0, we can write a = r cos θ and b = r sin θ with
r ≥ 0 and 0 ≤ θ ≤ π

2 , which gives

3γa2b + 2b3

2(a2 + b2)
3
2

=
3γ

2
cos2 θ sin θ + sin3 θ = h(θ) .

The derivative of h is

h′(θ) =
3γ

2
cos3 θ − 3γ sin2 θ cos θ + 3 cos θ sin2 θ = 3 cos θ

(γ

2
cos2 θ + (1− γ) sin2 θ

)
.

When γ ≤ 1, this derivative is clearly always nonnegative, which implies that the maximum
is attained for the largest value of θ, which gives hmax = h(π

2 ) = 1 = r1(γ). When γ > 1, we
easily see that h has a maximum when γ

2 cos2 θ + (1 − γ) sin2 θ = 0. This condition is easily
seen to imply sin2 θ = γ

3γ−2 , and hmax becomes

hmax = 3
γ

2
cos2 θ sin θ + sin3 θ =

(
3(γ − 1) + 1

)
sin3 θ

= (3γ − 2)
(

γ

3γ − 2

) 3
2

=
γ√

3− 2/γ
= r1(γ) .

A similar but slightly more technical proof holds for F2. Letting x̃ = (x, u), h̃ = (h, v) and
G(x̃) = F (x) − u, we have that F2(x̃) = − log(−G(x̃)) − ∑n

i=1 log xi. G is easily shown to
be convex and negative on int epiF , the domain of F2. Since F and G only differ by a linear
term, we also have that ∇2F (x)[h, h] = ∇2G(x̃)[h̃, h̃] and ∇3F (x)[h, h, h] = ∇3G(x̃)[h̃, h̃, h̃].
Looking now at the second differential of F2 we find

∇2F2(x̃)[h̃, h̃] =
∇G(x̃)[h]2

G(x̃)2
− ∇2G(x̃)[h̃, h̃]

G(x̃)
+

n∑

i=1

h2
i

x2
i

.
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Let us again define for convenience a ∈ R+, b ∈ R+ and c ∈ R with

a2 = −∇
2G(x̃)[h̃, h̃]

G(x̃)
, b2 =

n∑

i=1

h2
i

x2
i

and c = −∇G(x̃)[h]
G(x̃)

(convexity of G and the fact that it is negative on the domain of F2 guarantee that a is real),
which implies ∇2F2(x)[h̃, h̃] = a2 + b2 + c2. We can now evaluate the third differential

∇3F2(x̃)[h̃, h̃, h̃] = −∇
3G(x̃)[h̃, h̃, h̃]

G(x̃)
+ 3

∇2G(x̃)[h̃, h̃]∇G(x̃)[h̃]
G(x̃)2

− 2
∇G(x̃)[h̃]3

G(x̃)3
− 2

n∑

i=1

h3
i

x3
i

= −∇
3G(x̃)[h̃, h̃, h̃]

G(x̃)
+ 3a2c + 2c3 − 2

n∑

i=1

h3
i

x3
i

≤ −∇
3G(x̃)[h̃, h̃, h̃]
∇2G(x̃)[h̃, h̃]

∇2G(x̃)[h̃, h̃]
G(x̃)

+ 3a2c + 2c3 + 2b3 using again (3.2)

= −∇
3F (x)[h, h, h]
∇2F (x)[h, h]

∇2G(x̃)[h̃, h̃]
G(x̃)

+ 3a2c + 2c3 + 2b3

≤ 3γa2b + 3a2c + 2c3 + 2b3 using condition (3.1) .

According to (2.1), finding the best parameter κ for F2 amounts to maximize the following
ratio

∇3F2(x̃)

2(∇3F2(x̃))
3
2

≤ 3γa2b + 3a2c + 2c3 + 2b3

2(a2 + b2 + c2)
3
2

=
3γ
2 a2b + 3

2a2c + c3 + b3

(a2 + b2 + c2)
3
2

.

Since this last quantity is homogeneous of degree 0 with respect to variables a, b and c, we
can assume that a2 + b2 + c2 = 1, which gives

3γ

2
a2b +

3
2
a2c + c3 + b3 =

3
2
a2(γb + c) + c3 + b3 =

3
2
(1− b2 − c2)(γb + c) + b3 + c3 .

Calling this last quantity m(b, c), we can now compute its partial derivatives with respect to
b and c and find

∂m

∂b
= −3

2
(
(3γ − 2)b2 + γc2 + 2bc− γ

)
and

∂m

∂c
= −3

2
(
b2 + c2 + 2bcγ − 1

)
.

We have now to equate those two quantities to zero and solve the resulting system. We can
for example write ∂m

∂b − γ ∂m
∂c = 0, which gives (g − 1)b(b − c(γ + 1)) = 0, and explore the

resulting three cases. The solutions we find are

(b, c) = (0,±1) and (
γ + 1√

3γ2 + 4γ + 2
,

1√
3γ2 + 4γ + 2

)

with an additional special case b + c = 1 when γ = 1. Plugging these values into m(b, c), one
finds after some computations the following potential maximum values

±1 and
γ2 + γ + 1√
3γ2 + 4γ + 2

=
γ + 1 + 1/γ√

3 + +4/γ + 2/γ2

(and 1 in the special case γ = 1). One concludes that the maximum we seek is equal to r2(γ),
as announced.
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Because it does not involve a fractional power of the Hessian (namely ∇2F (x)[h, h]) to the
power 3

2), condition (3.1) is usually much easier to check than the original inequality (2.1), as
will be demonstrated in the next section. While the lemma we have just proved is useful to
tackle the first condition of self-concordancy (2.1), it does not say anything about the second
condition (2.2). The following Corollary about the second barrier F2 might prove useful in
this respect.

Corollary 3.1. Let F satisfy the assumptions of Lemma 3.2. Then the second barrier

F2 : int epiF 7→ R : (x, u) 7→ − log
(
u− F (x)

)−
n∑

i=1

log xi

is (r2(γ), n + 1)-self-concordant.

Proof. Since G(x, u) = F (x) − u is convex, − log(u − F (x)) = − log(−G(x, u)) is known
to satisfy the second self-concordancy condition (2.2) with ν = 1 by virtue of Lemma 3.1.
Moreover, it is straightforward to check that each term − log xi also satisfies that second
condition with parameter ν = 1. Using the addition Theorem 3.2 and combining with the
result of Lemma 3.2, we can conclude that F2 is (r2(γ), n + 1)-self-concordant.

Note 3.3. We would like to point out that no similar result can hold for the first function
F1, since we know nothing about the status of the second self-concordancy condition (2.2) on
its first term F (x). Indeed, taking the case of F : R+ 7→ R : x 7→ 1

x , we can check that
∇2F (x)[h, h] = 2h2

x3 and ∇3F (x)[h, h, h] = −6h3

x4 , which implies that condition (3.1) holds
with γ = 1 since

−6
h3

x4
≤ 3× 2

h2

x3

|h|
x
⇔ −h3 ≤ h2 |h|

is satisfied. On the other hand, the second self-concordancy condition (2.2) cannot hold for
F1 : R+ 7→ R : x 7→ 1

x − log x, since

∇F (x)T(∇2F (x))−1∇F (x) =
F ′

1(x)2

F ′′
1 (x)

=
(x+1)2

x4

(2+x)
x3

=
(x + 1)2

x(x + 2)

does not admit an upper bound (it tends to +∞ when x → 0).

We point out that since condition (3.1) is invariant with respect to positive scaling of F ,
the results from Lemma 3.2 hold for barriers Fλ,1(x) = λF (x)−∑n

i=1 log xi and Fλ,2(x, u) =
− log(u− λF (x))−∑n

i=1 log xi, where λ is a positive constant.
To conclude this section, we present an extension of Lemma 3.2.

Definition 3.1. A convex function F defined on int C ⊆ Rn
++ is called [γ; I]-compatible if

and only if there exists a constant γ and a set I ⊆ {1, 2, . . . , n} such that

∇3F (x)[h, h, h] ≤ 3γ∇2F (x)[h, h]

√√√√∑

i∈I

h2
i

x2
i

for all x ∈ int C and h ∈ Rn . (3.3)

This definition is a simple extension of the condition that was underlying Lemma 3.2,
where we only require a subset of the n variables to enter the sum under the square root. A
straightforward adaptation of Lemma 3.2 and Corollary 3.1 leads to the following:
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Lemma 3.3. Let F be a [γ; I]-compatible convex function defined on int C ⊆ Rn
++. We have

that
F1 : int C 7→ R : x 7→ F (x)−

∑

i∈I

log xi

satisfies the first condition of self-concordancy (2.1) with parameter κ1 = r1(γ) and

F2 : int epiF 7→ R : (x, u) 7→ − log
(
u− F (x)

)−
∑

i∈I

log xi

satisfies the first and second conditions of self-concordancy (2.1)-(2.2) with parameter (κ2, ν2) =
(r2(γ), |I|+ 1) on its domain.

An interesting property is that the sum of two [γ; I]-compatible functions is still [γ; I]-
compatible. More precisely, we have the following theorem.

Theorem 3.3. Let F1 be a [γ1; I1]-compatible convex function defined on int C1 ⊆ Rn
++ and

F2 be a [γ2; I2]-compatible convex function defined on int C2 ⊆ Rn
++. Then F1 + F2 is a

[max{γ1, γ2}; I1 ∪ I2]-compatible convex function on int C1 ∩ int C2.

Proof. Using the definition of [γ; I]-compatibility, we write for all x ∈ int C and h ∈ Rn

∇3(F1 + F2)(x)[h, h, h] ≤ 3γ1∇2F1(x)[h, h]
√∑

i∈I1

h2
i

x2
i

+ 3γ2∇2F2(x)[h, h]
√∑

i∈I2

h2
i

x2
i

≤ 3max{γ1, γ2}
(
∇2F1(x)[h, h]

√∑
i∈I1

h2
i

x2
i

+∇2F2(x)[h, h]
√∑

i∈I2

h2
i

x2
i

)

≤ 3max{γ1, γ2}∇2(F1 + F2)(x)[h, h]
√∑

i∈I1∪I2

h2
i

x2
i

,

which is the desired property.

4 Application to structured convex problems

In this section we rely on the work in [3], where several classes of structured convex optimiza-
tion problems are shown to admit a self-concordant logarithmic barrier. However, Lemma 3.2
will allow us to improve the self-concordancy parameters and lower the resulting complexity
values.

4.1 Extended entropy optimization

Let c ∈ Rn, b ∈ Rm and A ∈ Rm×n. We consider the following problem

inf
x∈Rn

cTx +
n∑

i=1

gi(xi) s.t. Ax = b and x ≥ 0 (EEO)

where scalar functions gi : R+ 7→ R : z 7→ gi(z) are required to satisfy

∣∣g′′′i (z)
∣∣ ≤ κi

g′′i (z)
z

∀z > 0 (4.1)
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(which by the way implies their convexity). This class of problems is studied in [8, 13].
Classical entropy optimization results as a special case when gi(z) = z ln z (in that case, it
is straightforward to see that condition (4.1) holds with κi = 1). Another simplex exam-
ple of problems in this class involve functions gi(z) = zli , which is easily shown to satisfy
condition (4.1) with κi = li − 2.

Let us use Lemma 3.2 with Fi : xi 7→ gi(xi) and γ = κi
3 . Indeed, checking condition (3.1)

amounts to write

h3g′′′i (x) ≤ 3
κi

3
h2g′′i (x)

|h|
x
⇔ h

|h|g
′′′
i (x) ≤ κi

g′′i (x)
x

,

which is guaranteed by condition (4.1). Using the second barrier and Corollary 3.1, we find
that

Fi : (xi, ui) 7→ − log
(
ui − gi(xi)

)− log xi

is (r2(κi
3 ), 2)-self-concordant6. However, in order to use this barrier to solve problem (EEO),

we need to reformulate it as

inf
x∈Rn, u∈Rn

cTx +
n∑

i=1

ui s.t. Ax = b, gi(xi) ≤ ui ∀1 ≤ i ≤ n and x ≥ 0 ,

which is clearly equivalent. We are now able to write the complete logarithmic barrier

F : (x, u) 7→ −
n∑

i=1

log
(
ui − gi(xi)

)−
n∑

i=1

log xi ,

which is (r2(
max{κi}

3 ), 2n)-self-concordant by virtue of Theorem 3.2. In light of Note 3.1, we
can even do better with a different scaling of each term, to get

F̃ : (x, u) 7→ −
n∑

i=1

r2(
κi

3
)2 log

(
ui − gi(xi)

)−
n∑

i=1

r2(
κi

3
)2 log xi

which is then (1, 2
∑n

i=1 r2(κi
3 )2)-self-concordant. In the case of classical entropy optimization,

these parameters become (1, 2n) , since r2(1
3) = 1.

4.2 Dual geometric optimization

Let {Ik}k=1,...,r be a partition of {1, 2, . . . , n}, c ∈ Rn, b ∈ Rm and A ∈ Rm×n. The dual
geometric optimization problem [5] is

inf
x∈Rn

cTx +
r∑

k=1


∑

i∈Ik

xi log(
xi∑

i∈Ik
xi

)




s.t. Ax = b and x ≥ 0 . (DGO)

It is shown in [3] that condition (3.1) holds for

Fk : (xi)i∈Ik
7→

∑

i∈Ik

xi log(
xi∑

i∈Ik
xi

)

6This corrects the statement in [3] where it is mentioned that gi(xi) − log xi, i.e. the first barrier in
Lemma 3.2, is self-concordant. As it is made clear in Note 3.3, this cannot be true in general.
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with γ = 1, so that the corresponding second barrier in Lemma 3.1 is (1, |Ik| + 1)-self-
concordant. Using the same trick as for problem (EEO), we introduce additional variables uk

to find that the following barrier

F : (x, u) 7→
r∑

k=1

− log
(
uk −

∑

i∈Ik

xi log(
xi∑

i∈Ik
xi

)
)
−

n∑

i=1

log xi

is a (1, n + r)-self-concordant barrier for a suitable reformulation of problem (DGO).

4.3 lp-norm optimization

Let {Ik}k=1,...,r be a partition of {1, 2, . . . , m}, η ∈ Rn, ai ∈ Rn for 1 ≤ i ≤ m, bk ∈ Rn for
1 ≤ k ≤ r, c ∈ Rm, d ∈ Rr and p ∈ Rm such that pi ≥ 1. The primal lp-norm optimization
problem [19] is

sup
x∈Rn

ηTx s.t. fk(x) ≤ 0 for all k = 1, . . . , r , (LPO)

where functions fk : Rn 7→ R are defined according to

fk : x 7→
∑

i∈Ik

1
pi

∣∣ai
Tx− ci

∣∣pi + bk
Tx− dk .

This problem can be reformulated as

sup
x∈Rn, s∈Rm, t∈Rm

ηTx s.t.





∣∣ai
Tx− ci

∣∣ ≤ si ∀i = 1, . . . , m

si ≤ t
1/pi

i ∀i = 1, . . . , m∑
i∈Ik

ti
pi

≤ dk − bk
Tx ∀k = 1, . . . , r

where each of the m constraints involving an absolute value is indeed equivalent to a pair of
linear constraints ai

Tx − ci ≤ si and ci − ai
Tx ≤ si. Once again, a self-concordant barrier

can be found for the difficult part of the constraints, i.e. the nonlinear inequality si ≤ t
1/pi

i .
Indeed, it is straightforward to check that function ti 7→ −t

1/pi

i satisfies condition (3.1) with
γ = 2pi−1

3pi
< 1, which implies in the same fashion as above that

− log
(
t
1/pi

i − si

)− log ti

is (1, 2)-self-concordant. Combining with the logarithmic barrier for the linear constraints,
we have that

−
m∑

i=1

log(si − ai
Tx + ci)−

m∑

i=1

log(si + ai
Tx− ci)−

m∑

i=1

log
(
t
1/pi

i − si

)
. . .

. . .−
m∑

i=1

log ti −
r∑

k=1

log
(
dk − bk

Tx−
∑

i∈Ik

ti
pi

)

is (1, 4m + r)-self-concordant for our reformulation of problem (LPO) (since each linear con-
straint is (1, 1)-self-concordant).

Let us mention that another reformulation is presented in [3], where Lemma 3.2 is appli-
cable to the nonlinear constraint with parameter γ = |pi−2|

3 , with the disadvantage of having
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a parameter that depends on pi (although r2(γ) will stay at its lowest value as long as pi ≤ 5).
We also mention that very similar results hold for the dual lp-norm optimization problem7.

5 Concluding remarks

In this paper, we recalled a few basic facts about the theory of self-concordant functions.
We would like to point out that this very powerful framework relies on two different condi-
tions (2.1) and (2.2) and the two corresponding parameters κ and ν, each with its own purpose
(see the discussion in Note 2.1). However, the important quantity is the resulting complexity
value κ

√
ν, which is of the same order as the number of iterations that is needed to reduce

the barrier parameter by a constant factor by the short-step interior-point algorithm.
It is possible to scale self-concordant barriers such that one of the parameters is arbitrarily

fixed without any real loss of generality. We have shown that this is best done fixing parameter
κ, considering the way the complexity value is affected when adding several self-concordant
barriers. However, it is in our opinion better to keep two parameters all the time, in order to
simplify the presentation (for example, Lemma 3.2 intrinsically deals with the κ parameter
and would need a rather awkward reformulation to be written for parameter ν with κ fixed
to 1).

Several important results help us prove self-concordancy of barrier functions: Lemma 3.1
deals with the second self-concordancy condition (2.2), while our improved Lemma 3.2 per-
tains to the first self-concordancy condition (2.1). They are indeed responsible for most of the
analysis carried out in Section 4, which is dedicated to several classes of structured convex
optimization problems. Namely, it is proved that nearly all the nonlinear (i.e. corresponding
to the nonlinear constraints) terms in the associated logarithmic barriers are self-concordant
with κ = 1 (the exception being extended entropy optimization, which encompasses a very
broad class of problems). We would also like to mention that since all the barriers that are
presented are polynomially computable, as well as their gradient and Hessian, the short-step
method applied to any of these problems would need to perform a polynomial number of
arithmetic operations to provide a solution with a given accuracy.

To conclude, we would like to speculate on the possibility of replacing the two self-
concordancy conditions by a single inequality. Indeed, since the complexity value κ

√
ν is

the only quantity that really matters in the final complexity result, one could imagine to
consider the following inequality

F ′′′
x,h(0)F ′

x,h(0)
F ′′

x,h(0)2
≤ 2Γ for all x ∈ int C and h ∈ Rn , (5.1)

which is satisfied with Γ = κ
√

ν for (κ, ν)-self-concordant barriers (to see that, simply multiply
condition (2.4b) by the square root of condition (2.5b)). We point out the following two
intriguing facts and leave their investigation for further research:

¦ Condition (5.1) appears to be central in the recent theory of self-regular functions [12],
an attempt at generalizing self-concordant barriers.

7However, we would like to point out that the nonlinear function involved in these developments is wrongly
stated to satisfy condition (3.1) with γ =

√
2(qi + 1)/(3qi), while the correct value is

p
5q2

i − 2qi + 2/(3qi).
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¦ Following the same principles as for (2.4d) and (2.5d), condition (5.1) can be reformu-
lated as (

−F ′
x,h(t)

F ′′
x,h(t)

)′
≤ 2Γ− 1 ,

where the quantity on the left-hand side is the derivative of the Newton step applied to
the restriction Fx,h.
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