
Linearization of Second-Order Cone Limit Analysis Problems •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Linearization of

Second-Order Cone Optimization Problems

and Application to

Limit Analysis in Mechanical Engineering

Etienne Loute and Frank Pastor , FUSL

Joseph Pastor , ESIGEC – Université de Savoie
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Introduction

Convex optimization

Let f0 : Rn 7→ R a convex function and C ⊆ Rn a convex set

inf
x∈Rn

f0(x) s.t. x ∈ C

Why ?

General nonlinear problems: too hard to solve

Linear optimization: efficiently solvable but limited modelling

⇒ Generalize linear optimization while keeping its good properties

� Local optima ⇒ global, form a convex optimal set

� Lagrange duality ⇒ related (asymmetric) dual problem

� Efficient interior-point methods (self-concordant barriers)
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Conic optimization

Let C ⊆ Rn a solid, pointed, closed convex cone :

inf
x∈Rn

cTx s.t. Ax = b and x ∈ C ⇒ Equivalent setting

Solved with interior-point methods with ε relative accuracy using

O
(√

ν log
1

ε

)
iterations where ν depends only on the structure of C [NN94].

Duality

Dual cone is also a solid pointed closed convex cone

C∗ =
{
x∗ ∈ Rn | xTx∗ ≥ 0 for all x ∈ C

}
⇒ pair of primal-dual problems
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Primal-dual pair

Similar conic structure for the dual

inf
x∈Rn

cTx s.t. Ax = b and x ∈ C

sup
(y,s)∈Rm+n

bTy s.t. ATy + s = c and s ∈ C∗

Weak duality holds – Strong duality holds with a Slater condition

Advantages over classical formulation

� Remarkable primal-dual symmetry

� Special handling of (easy) linear equality constraints
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Three special cases

� C = Rn
+ = C∗ ⇒ linear optimization

� C = Sn
+ = C∗ ⇒ semidefinite optimization

� C = Ln = C∗ ⇒ second-order cone optimization

Second-order (Lorentz) cone Ln:

Ln :=
{

(x0, x) ∈ R+ × Rn |
n∑

i=1

x2
i ≤ x2

0

}
These are self-scaled cones for which there are

� very efficient primal-dual interior-point algorithms

� that also perform very well in practice
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Second-Order Cone Optimization

General SOCO problem (equivalent to conic formulation):

min cTx s.t.

{ bl ≤ Ax ≤ bu,

xl ≤ x ≤ xu,

xIk
∈ Lnk ∀k

with x ∈ Rn, Ik ⊆ {1, · · · , n}, #Ik = nk + 1

Generalizes

� Linear optimization

� (Convex) Quadratic optimization

� (Convex) Quadratically constrained quadratic optimization

Many applications (robust LO, engineering, portfolio, etc.)
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Limit analysis

Objective: compute the ruin load of a mechanical structure

Here: metallic slab, constant section, sufficient length⇒ 2D problem

What’s the maximum load one can apply on its upper surface ?

Two approaches

� Kinematic approach: find a kinematically admissible velocity

field ≡ a failure mechanism satisfying the flow rule and velocity

boundary conditions ⇒ upper bound (not considered here)

� Static approach: find a stress field satisfying equilibrium, bound-

ary conditions and plasticity criterion ⇒ lower bound

This problem is nonlinear: model it as a second-order cone (quadratic)
optimization problem
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Flim

y
x
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Principle

Consider a stress field σ (three components σxx, σyy, σxy) that is both

� statically admissible: equilibrium equations, stress continuities,

boundary conditions, vertical load

� plastically admissible: Tresca-von Mises plasticity crit. f (σ) ≤ 0

and maximize the corresponding load

Discretization

� Solid is discretized (finite-element modeling) into a mesh com-

posed of right-angled triangles

� Variables ≡ stress field at each vertex (node) of each triangle

� Stress field is interpolated linearly within each triangle

� Vertex shared by two triangles ⇒ different stress fields values !
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Objective function

Load ≡
∫

upper surface σyy dS → linear function of the variables

Constraints

� Equilibrium: ∂σxx
∂x +

∂σxy

∂y = 0 and
∂σxy

∂x +
∂σyy

∂y = 0

� Continuity: if triangles (i) and (j) share a side with normal n:

σ(i)n = σ(j)n

� Boundary: σ(k)n = 0 for all lateral triangles (k) with normal n

� Plasticity: (σxx − σyy)
2 + (2σxy)

2 − 4k2 ≤ 0

All these constraints are linear except the plasticity constraints,

which can be modelled using a three-variable second-order cone:

(2k, σxx − σyy, 2σxy) ∈ L2
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Linearization schemes

Second-order cone constraint (k, u, v) ∈ L2 with constant k defines

a disc of radius k in the (u, v)-plane

Standard scheme

Use m linear constraints to define a regular m-sided polygon

Relative accuracy of the approximation is

ε = cos(
π

m
)−1 − 1 ≈ π2

2m2

⇒ very expensive (m > 2000 for ε = 10−6)

but it is possible to do much better ...
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Ben-Tal & Nemirovsky’s improved scheme

Key idea: use additional variables and project i.e.

(u, v) ∈ approximated disc in R2 ⇔ ∃y ∈ Rm | (u, v, y) ∈ P

where P is a polytope in the higher-dimensional space R2+m

Let q ≥ 1 a positive parameter and consider the following system{
αi+1 = αi cos π

2i + βi sin
π
2i

βi+1 ≥
∣∣−αi sin

π
2i + βi cos π

2i

∣∣ , 0 ≤ i < q{
βq ≤ 2 sin π

2q

1 = αq cos π
2q + βq sin π

2q

Its projection on (α0, β0) is a regular 2q-sided polygon!

ε = cos(
π

2q
)−1 − 1 ≈ π2

22q+1

at the cost of 2q + 1 inequalities and 2q additional variables
(q = 12 is enough to obtain ε < 10−6)
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Numerical experiments

Objective: compare the three different approaches

� Standard linearization of the second-order cone problem

� Ben-Tal & Nemirovsky’s improved linearization scheme

� Direct resolution using a second-order cone interior-point solver
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Standard vs. improved linearization schemes

Experiments with a 3528-triangle mesh on a Power Mac G4

Linear problems solved using XA interior-point solver

m=16 / q=4 m=64 / q=6 m=256 / q=8 m=1024 / q=10
Standard 3.7947 / 404s 3.7869 / 722s 3.7854 / 1430s
Row×Col 31,576 × 98,786 31,576 × 268,130 31,576 × 945,506 Out of memory
Nonzeros 374,502 1,051,428 3,760,932
B-T. & N. 3.7947 / 585s 3.7869 / 648s 3.7854 / 855s 3.78527 / 804s
Row×Col 70,562 × 74,091 91,730 × 88203 112,898 × 102,315 134,066 × 116,427
Nonzeros 308,701 372,205 435,709 499,213

� Both schemes give exactly the same maximum load

� B-T. & N. scheme solves problems faster

� B-T. & N. scheme uses less memory
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Improved linearization vs. direct resolution

Several refinements of a triangle mesh on a 500 MHz PC

Linear and second-order cone optimization problems solved using the

MOSEK interior-point solver developed by E. Andersen

Grid size SOCO B-T. & N. q = 5 q = 8

4-2 0.1s 0.2s 3k × 5k 0.4s

8-4 0.5s 1.2s 4k × 7k 2.1s

16-8 3.7s 9.8s 11k × 19k 13.5s

24-12 10.2s 30.4s 24k × 43k 42.0s

� Direct SOCO resolution is more accurate and

� Direct SOCO resolution solves problems faster

� B-T. & N. with simplex: ≈ 80× slowdown! → highly degenerate



Linearization of Second-Order Cone Limit Analysis Problems •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Concluding remarks

� Limit analysis problems in mechanical engineering can be suc-

cessfully modelled and solved as second-order cone optimization

problems

� Actual value of the stress field at the optimum can help under-

stand how the structure is likely to collapse under excessive load

� Ben-Tal & Nemirovsky’s improved linearization scheme is com-

putationally superior to the standard linearization scheme that

is traditionally used in the field, especially when high accuracy

is required ...

� ... but direct resolution using a second-order cone interior-point

solver is the fastest solution method currently available
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Analysis of 3D structures

� 3D plasticity criterion can still be modelled as a second-order

cone constraint using L3

� Resulting problems should be efficiently solvable using a second-

order cone solver (using 3D discretization of the stress field)

� Linearization leads to the approximation of a sphere in R3

� Standard linearization scheme requires a prohibitively high num-

ber of constraints, even for a modest accuracy

� Improved linearization scheme can still be used due to the fact

that a four-variable second-order cone L3 can be expressed as

the projection of two three-variable L2 second-order cones

(k, u, v, w) ∈ L3 ⇔ (γ, u, v) ∈ L2 and (k, γ, w) ∈ L2


