

ECRYPT Workshop on Lightweight Cryptography.
November 28-29, 2011, Louvain-la-Neuve, Belgium.

Gregor Leander and François-Xavier Standaert (Ed.)

November 28 – 29, 2011.

Université catholique de Louvain.

Louvain-la-Neuve, Belgium.

Program Committee :

- Frederik Armknecht (Universität Mannheim, Germany).

- Jean-Philippe Aumasson (Nagravision, Switzerland).

- Gildas Avoine (Université catholique de Louvain, Belgium).

- Thomas Baignères (CryptoExperts, France).

- Lejla Batina (Radboud University Nijmegen, The Netherlands and KU Leuven, Belgium).

- Guido Bertoni (ST Microelectronics, Italy).

- Jean-Luc Beuchat (University of Tsukuba, Japan).

- Andrey Bogdanov (KU Leuven, Belgium).

- Christophe De Cannière (Google, Switzerland).

- Josep Domingo-Ferrer (Universitat Rovira i Virgili, Catalonia).

- Emmanuelle Dottax (Oberthur Technologies, France).

- Orr Dunkelman (University of Haifa, Israel).

- Benoît Gérard (Université catholique de Louvain, Belgium).

- Henri Gilbert (ANSSI, France).

- Thomas Gross (University of Newcastle, UK).

- Tim Güneysu (University of Bochum, Germany).

- Tanja Lange (Technische Universiteit Eindhoven, The Netherlands).

- Stefan Mangard (Infineon Technologies, Germany).

- María Naya-Plasencia (Université de Versailles, France).

- David Naccache (Ecole Normale Supérieure, France).

- Thomas Peyrin (Nanyang Technological University, Singapore).

- Axel Poschmann (Nanyang Technological University, Singapore).

- Francisco Rodriguez-Henriquez (Centro de inv. y de Estudios Avanzados del IPN, Mexico).

- Kazuo Sakiyama (University of Electro Communications, Japan).

- Serge Vaudenay (EPFL, Switzerland).

- Erik Zenner (Technical University of Denmark).

Program co-Chairs :

- Gregor Leander (Technical University of Denmark).

- François-Xavier Standaert (Université catholique de Louvain).

Preface.

This document contains the final versions of the papers accepted for presentation at the

ECRYPT Workshop on Lightweight Cryptgraphy, that was held in Louvain-la-Neuve,

Belgium, in November 2011. The focus of the workshop was on all aspects related to low-cost

cryptography, mixing symmetric and asymmetric techniques, algorithms and protocols, as

well as hardware and software implementation issues. As program co-chairs, we hope that

these proceedings will trigger further work towards the better understanding of solutions for

securing small embedded devices (such as smart cards, RFIDs, sensor nodes, ...), including

their underlying mathematical foundations and practical applications. We would also like to

acknowledge the people having helped making this workshop a successful event. In

particular, we thank authors who submitted their works, the program committee for very

professional reviews, and the attendees of the workshop. The assistance of Sylvie Baudine

(for the practical organization details) and Olivier Pereira (for maintaining the website) was

highly appreciated. Eventually, we are grateful to our three invited speakers who accepted to

share their experience about important topics, namely Joan Daemen (ST Microelectronics,

Belgium) for his talk on “Challenges in Embedded Cryptography”, Pascal Junod (HEIG-VD,

Switzerland) for his talk entitled “Bridging Theory and Practice in Cryptography” and Matt

Robshaw (Orange, France) for his talk on “Cryptography for RFIDs”.

November 2011.

Gregor Leander

François-Xavier Standaert

TABLE OF CONTENTS.

Session 1: Cryptanalysis.

 Differential Cryptanalysis of PUFFIN and PUFFIN2 1

Céline Blondeau and Benoît Gérard

Accelerated Key Search for the KATAN Family of Block Ciphers 25

Simon Knellwolf

Some Preliminary Studies on the Differential Behavior of the 35

Lightweight Block Cipher LBlock

Marine Minier and María Naya-Plasencia

Session 2: Implementation issues.

Compact Hardware Implementations of the Ultra-Lightweight Blockcipher Piccolo 49

Harunaga Hiwatari, Kyoji Shibutani, Takanori Isobe,

Atsushi Mitsuda, Toru Akishita and Taizo Shirai

Compact Implementation and Performance Evaluation of Block Ciphers in ATtiny Devices 71

Thomas Eisenbarth, Zheng Gong, Tim Güneysu, Stefan Heyse,

Sebastiaan Indesteege, Stéphanie Kerckhof, François Koeune,

Tomislav Nad, Thomas Plos, Francesco Regazzoni,

Francois-Xavier Standaert and Loic Van Oldeneel

High Speed Implementation of Authenticated Encryption for the MSP430X Microcontroller 87

Conrado P. L. Gouvea and Julio López

Session 3: LPN.

An Efficient Authentication Protocol Based on Ring-LPN 104

Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar and Krzysztof Pietrzak

The Cryptographic Power of Random Selection 122

Matthias Krause and Matthias Hamann

http://www.easychair.org/utils/wild.cgi?url=http://www.emsec.rub.de
http://www.easychair.org/utils/wild.cgi?url=http://www.dice.ucl.ac.be/~fstandae/
http://www.easychair.org/utils/wild.cgi?url=http://conradoplg.cryptoland.net
http://www.easychair.org/utils/wild.cgi?url=http://www.ic.unicamp.br/~jlopez
http://www.easychair.org/utils/wild.cgi?url=http://www.di.ens.fr/~lyubash

Session 4: New designs.

TWINE: A Lightweight, Versatile Block Cipher 146

Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka and Eita Kobayashi

SPONGENT: The Design Space of Lightweight Cryptographic Hashing 170

Andrey Bogdanov, Miroslav Knezevic, Gregor Leander,

Deniz Toz, Kerem Varici and Ingrid Verbauwhede

Session 5: Authentication.

A new generic protocol for authentication and key agreement in lightweight systems 192

Naïm Qachri, Olivier Markowitch and Frédéric Lafitte

Relation among the Security Models for RFID Authentication Protocol 211

Daisuke Moriyama, Shin'Ichiro Matsuo and Miyako Ohkubo

CANAuth: A Simple, Backward Compatible Broadcast Authentication Protocol for CAN bus 229

Anthony Van Herrewege, Dave Singelee and Ingrid Verbauwhede

Session 6: Implementation issues.

The Technology Dependence of Lightweight Hash Implementation Cost 236

Xu Guo and Patrick Schaumont

Enabling Standardized Cryptography on Ultra-Constrained 4-bit Microcontrollers 255

Tino Kaufmann and Axel Poschmann

Elliptic Curve Cryptography in JavaScript 277

Laurie Haustenne, Quentin De Neyer and Olivier Pereira

http://www.easychair.org/utils/wild.cgi?url=http://www.ulb.ac.be/di/scsi/markowitch
http://www.easychair.org/utils/wild.cgi?url=http://perso.uclouvain.be/olivier.pereira/

Differential Cryptanalysis of PUFFIN and
PUFFIN2

Céline Blondeau1 ? and Benôıt Gérard2??

1 Aalto University School of Science, Department of Information and Computer
Science

2 Université catholique de Louvain, UCL Crypto Group, ICTEAM Institute.
celine.blondeau@aalto.fi; ben.gerard@uclouvain.be

Abstract. A sound theoretical framework for analyzing multiple differ-
ential cryptanalysis was introduced and applied to reduced-round
PRESENT at FSE 2011. We propose here to apply it to the cryptanal-
ysis of another lightweight block cipher namely PUFFIN. This cipher
security has already been undermined by Leander for a quarter of the
keys. In this paper we claim that both PUFFIN and its patched version
PUFFIN2 can be broken by differential cryptanalysis faster than by ex-
haustive search and using less than the full code-book. We also improve
the complexities of these attacks using multiple differentials. Particu-
larly, we propose an attack on PUFFIN2 that recovers the 80-bit key in
274.78 operations using 252.3 chosen plaintexts.
Keywords: multiple differential cryptanalysis, lightweight cryptogra-
phy, PUFFIN.

1 Introduction

Security and privacy in constrained environment is a challenging topic in cryp-
tography. In this prospect many lightweight ciphers have been designed in the
last few years. The most studied one is PRESENT that was proposed at CHES
2007 [1]. The popularity of this cipher may come from its very simple structure
(the Substitution Permutation Network or SPN) together with the simplicity
of its permutation layer that only consists in wire crossings. This cipher has
been extensively studied and its security against statistical cryptanalyses has
not been threatened yet. Unfortunately, this is not the case of all proposed
lightweight ciphers. Indeed, some specifications include incorrect security analy-
sis claiming resistance against classical statistical attacks namely Matsui’s linear
cryptanalysis [2] and Biham and Shamir’s differential cryptanalysis [3]. A typi-
cal illustration is the PUFFIN cipher family. PUFFIN [4] and PUFFIN2 [5] are
two recently proposed ciphers operating on 64-bit messages with respective key
lengths 128 and 80. An extension of linear cryptanalysis has been applied to
PUFFIN by Leander [6] and we propose in this paper to consider the weakness
of both ciphers against differential cryptanalysis.

? This work was produced while at INRIA project-team SECRET, France
?? Postdoctoral researcher supported by Walloon region MIPSs project.

ECRYPT Workshop on Lightweight Cryptography - November 2011 1

The main source of incorrectness in the security analysis of PUFFIN and
PUFFIN2 comes from the fact that advances in both linear and differential
cryptanalysis have not been taken into account. For instance, at EUROCRYPT
2011, Leander [6] presented a new method to attack block ciphers considering
the linear hull effect. Applying this method to PUFFIN he obtained an attack
that recovers the master key with a data complexity of 258 for a quarter of
the keys while the designers claim that obtaining a gain over exhaustive search
at least requires 264 plaintext/ciphertext pairs. The same holds for differential
attacks since only attacks using one differential are considered and since the
probabilities of such differentials are underestimated by only looking at the most
probable differential trail. Moreover, it is implicitly considered that the classical
last-round attacks will use differentials on r − 1 rounds (that is 31 out of 32 for
PUFFIN and 33 out of 34 for PUFFIN2) while it turns out that we are able to
perform attacks with differentials for r− 4 and r− 5 rounds of the cipher due to
the slow diffusion of both the permutation layer and the key-schedule algorithm.

From a cryptanalytic point of view, the proposed attacks are very similar to
the multiple differential cryptanalyses of PRESENT [7, 8]. The main difference
comes from the fact that more than the two last rounds are partially inverted.
This implies that the key-schedule may be exploited when partially deciphering
samples to keep the time complexity small enough. This consideration is the
main contribution of this paper regarding the state of the art in differential
cryptanalysis. It also raises the question of using algebraic techniques at this
point of the attack. This problem is closely related to the use of an algebraic
wrong-pair detection as investigated in [9].

Using the theoretical framework presented in [8], we propose different attacks
on both ciphers. For instance, we propose parameters to attack PUFFIN which is
parametrisez by a 128-bit key with time complexity 2108.84 and data complexity
249.42. More importantly, we also propose an attack on the patched PUFFIN2
version that recovers the 80-bit key in time 274.78 using 252.3 chosen plaintexts
contradicting the security claims of the designers.

The remaining sections are organized as follows. First, in Section 2 we pro-
vide a detailed description of both PUFFIN and PUFFIN2 then, in Section 3
we discuss techniques for recovering key bits in a last-round attack. We also
discuss techniques for performing this key-recovery part of the attack efficiently
when many active S-boxes have to be considered and propose an estimate for
the resulting time complexity. In Section 4 we present tools we use to analyze
multiple differential attack complexities and provide some lower bounds for dif-
ferential probabilities on PUFFIN and PUFFIN2. Finally, we detail our choice of
parameters for the proposed attacks and provide the corresponding complexities
in Section 5 before concluding in Section 6.

ECRYPT Workshop on Lightweight Cryptography - November 2011 2

2 Description of PUFFIN and PUFFIN2

The lightweight cipher PUFFIN was introduced in [4] then upgraded to PUF-
FIN2 in [5]. Both ciphers are 64-bit SPN ciphers with round functions composed
of a key addition, an S-box layer and a permutation. The order of the different
components differs from a version to another but both the S-box and the permu-
tation are the same for PUFFIN and PUFFIN2. The particularity of this cipher
is that the permutation and the substitution layer are involutions, meaning that
the same primitive is used for both encryption and decription process.

The initial number of key bits in PUFFIN was 128, it has been reduced to
80 in PUFFIN2 while the number of rounds has been increased from 32 to 34.
The key-schedule also has been improved since it was linear in PUFFIN and is
now highly non-linear in PUFFIN2. Notice that in addition to the 32 rounds of
PUFFIN, a sub-key addition and a permutation are performed at the beginning.
In PUFFIN2, the S-box layer is applied at the end of the 34 rounds (see Fig. 1).
The round functions and key-schedules are detailed in the following subsections.

?

?

?
...

?

?

Add subkey 0

Permutation

Substitution

Add subkey 1

Permutation

Substitution

Add subkey 32

Permutation

}
Round 1

}
Round 32

?

?
...

?

?

?

Substitution

Permutation

Add subkey 1

Substitution

Permutation

Add subkey 34

Substitution

}
Round 1

}
Round 34

Fig. 1. PUFFIN (left) and PUFFIN2 (right) ciphers.

2.1 Round functions of PUFFIN and PUFFIN2

As mentioned earlier, the round functions are composed of a key addition, an
S-box layer and a permutation layer. While in both PUFFIN and PUFFIN2
the state first passes through the S-box layer, the state is exclusively-ORed to

ECRYPT Workshop on Lightweight Cryptography - November 2011 3

the round sub-key before being permuted in PUFFIN (SAP) when it is first
permuted in PUFFIN2 (SPA). Both ciphers are depicted in Fig. 1.

For both versions of the cipher, the substitution layer is composed of 16
applications of a 4x4 S-box given by Table 6 in Appendix B. The permutation
layer P is given by Table 7 in Appendix B. A round of PUFFIN is depicted in
Fig. 2.

S15 S14 S13 S12 S11 S10 S 9 S 8 S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

⊕⊕

Fig. 2. One round of PUFFIN.

2.2 PUFFIN key-schedule

The key-schedule of PUFFIN is linear and operates on 128-bit master keys to
generate 33 round-subkeys as follow.

1. First, a 128-bit state is initialized with the master key.
2. The 64-bit first-round subkey is extracted from the state using the selection

table given in Table 8.
3. Steps 4 to 6 are iterated to obtain the remaining subkeys.
4. The state is updated using the permutation given in Table 9.
5. Bits 0, 1, 2 and 4 are inverted excepted for rounds 2, 5, 6 and 8.
6. A 64-bit round subkey is extracted from the state using Table 8.

2.3 PUFFIN2 key-schedule

The key-schedule in PUFFIN2 is not linear anymore but nevertheless remains
simple since its structure follows the one of an SPN (without key addition of
course). The key-size has been reduced here from 128 in PUFFIN to 80 bits.
Then the state is processed as follows to generate 34 round sub-keys.

– First, an 80-bit state is initialized with the master key and passed through
an S-box layer which consist in an application of the cipher S-box to each
group of nibbles of the 80 bits.

– Then the following steps are iterated to obtain the 34 round-subkeys.

ECRYPT Workshop on Lightweight Cryptography - November 2011 4

1. A 64-bit subkey is extracted by selecting the 64 leftmost bits or the 64
rightmost bits of the state depending on the round number (see Table 1).

2. The 64 bits of the state used to generate the key are passed through
the cipher permutation P(64 leftmost or 64 rightmost depending on the
round number).

3. The whole 80-bit state is non-linearly transformed by passing through a
layer of S-boxes: adjacent bits are grouped by nibbles (4 bits) and the
cipher S-box is applied to each of the 20 groups.

Round numbers

64 leftmost bits 1,2,7,8,11,12,15,16,19,20,23,24,27,28,33,34
64 rightmost bits 3,4,5,6,9,10,13,14,17,18,21,22,25,26,29,30,31,32

Table 1. Bits of the state considered in the key-schedule.

3 Key-recovery in differential cryptanalysis

3.1 Last-round attacks: the differential case

Last-round attacks recover some key bits by peeling off one or more rounds (say
r′) of the cipher. The idea is to compute a statistic linked to the behavior of
the cipher over r rounds thus targeting r + r′ rounds. This is done by partially
deciphering some relevant part of the available ciphertexts over r′ rounds. Hence,
for each possible value of the key bits involved into this process, a statistic is
obtained. These statistics translate into probabilities or likelihood values that
induce at their turn an ordering of the subkey candidates from the most probable
value for the correct subkey to the least one.

The main novelty of the attacks proposed in this paper lies in the fact that,
by contrast with differential attacks on PRESENT, the number of peeled off
rounds is larger (r′ can be up to 5 rounds in the PUFFIN’s case while it is
equal to 2 in differentials attacks on PRESENT [7, 8]). The partial deciphering
hence has a huge cost in time if no trick is used to reduce it. The context of
differential cryptanalysis is particular in this prospect hence, as mentioned in
the title of the section, we will focus on this case. We are first going to briefly
recall the flow of differential cryptanalysis to clearly express the problem. To ease
the understanding, we restrict ourselves to the particular setting where only one
differential is used. The problem is quite similar when using more differentials
hence we will discuss the main differences later on.

The cipher is divided into two parts: Er+r′ = Er′ ◦ Er that is the first r
rounds Er that are considered when searching a good differential and the last r′

rounds Er′ that are partially inverted during the attack. The functions E have
two variables: the first is the key used and the second one the message/internal

ECRYPT Workshop on Lightweight Cryptography - November 2011 5

state. Pairs available to the attacker have been obtained using the correct key k∗
that the attacker aims at recovering: C = Er+r′(k∗, P). The partial decryption
using a candidate k is denoted by E−1r′ (k,C). For a given differential (δ0, δr), the
attack is detailed in Algorithm 1.

Algorithm 1: Last-round differential attack.

Input: a differential (δ0, δr), plaintext/ciphertext pairs (P,C = Er+r′(k∗, P))
Output: an ordered list of subkey candidates
Initialize a table D of size 2nk to 0, D(k) corresponds to the counter for the
subkey candidate k;
foreach plaintext pair (P, P ′) such that P ⊕ P ′ = δ0 do

foreach subkey candidate k do
if E−1

r′ (k, C)⊕ E−1
r′ (k, C′) = δr then

D(k)←− D(k) + 1;
return candidates ordered according to D(k);

3.2 PUFFIN permutation layer diffusion

The permutation layer of PUFFIN has been designed to be hardware efficient
(it uses only wire crossings) and to be an involution. This last point is the main
difference with the permutation layer of PRESENT and has a major counterpart
that is its slow diffusion. The full-diffusion of a cipher is reached when a bit-flip at
any position of the input will influence all output bits3. In general, the smaller the
number of rounds required to reach full-diffusion is, the more resistant the cipher
should be (particularly against last-round attacks and impossible differential
cryptanalysis). While using PRESENT permutation full-diffusion is reached after
3 rounds (which is optimal for a bit permutation and 16 4-bit S-boxes), 5 rounds
of PUFFIN are required to obtain this property (see Fig. 3 for an example).
The danger for last-round attacks is that a bad diffusion implies a small number
of active S-boxes when inverting the last rounds. Hence, the attacker is able to
increase r′ that is decreasing r for the same number of targeted rounds, which
in turns, implies the use of better statistical characteristics.

In this paper, we present attacks where only S-box S11 is active in the r +
1-th round. It turns out that best differentials are the ones having only one
active S-box in the last round. More particularly, output differences activating
S-boxes S3, S11 and S12 have pretty good probabilities. Then, we looked at
the corresponding diffusion patterns and chose S11 for the attack. The diffusion
pattern for S11 is depicted in Fig. 3.

We want to point out that the larger r′ is, the larger the differential proba-
bilities for the r-round part are (since covering less rounds) inducing a smaller

3 Notice that this does not mean that there is not any bias in the distribution of the
output differences.

ECRYPT Workshop on Lightweight Cryptography - November 2011 6

S11S11S11S11

S3S5S9S13

S0S4S4S4S8S10S10S10S11S11S11S11S12S13S14S14

S0S0S0S1S1S3S3S3S3S4S4S5S5S5S5S6S8S8S9S9S9S9S10S11S12S13S13S13S13S14S14S15

S0S0S0S0S1S1S1S2S2S2S3S3S3S3S4S4S4S4S5S5S5S5S6S6S7S7S8S8S8S8S9S9S9S9S10S10S10S10S11S11S11S11S12S12S12S12S13S13S13S13S14S14S14S14S15S15

Fig. 3. Diffusion of differences activating only S11 over 5 rounds of PUFFIN and
PUFFIN2.

data complexity. The counterpart of choosing a larger r′ is that the number of
key-bits involved increases. The partial decryption phase as presented in Algo-
rithm 1 has a time complexity of Θ (Ns 2nk) where Ns is the number of pairs
used and nk the number of involved key bits. Hence, r′ should be chosen such
that log2(Ns) + nk is smaller than the master-key length.

It is actually possible to speed up Algorithm 1. Many techniques can be
found in the literature but here we need to push them beyond their typical
use since the number of rounds we invert is large (and so is the number of
active S-boxes). Moreover, the analysis of the fastened Algorithm 1 becomes
really tricky when using such advanced techniques. Therefore, we propose to
look at key-recovery as a tree-traversal problem. Such representation will help in
both the understanding of the problem and the derivation of an estimate of the
complexity. This is precisely the two points we focus on in the next subsections.

3.3 Using a tree-based description for key-recovery

For a fixed pair of ciphertexts, the problem of incrementing the key-candidate
counters can be seen as a tree traversal. Using this expression of the problem
makes things clearer and might be helpful for the analysis of the attack com-
plexity.

ECRYPT Workshop on Lightweight Cryptography - November 2011 7

Counter incrementation as a tree traversal.
The attack uses a differential (δ0, δr) over r rounds of the cipher. For each cipher-
text pair (C,C ′) obtained from a plaintext pair having a difference δ0, we have
to increment by one each candidate counter corresponding to a value k such that
E−1r′ (k,C)⊕ E−1r′ (k,C ′) = δr. Not all the bits of E−1r′ are required to increment
the counters. Only active S-boxes (as depicted in Fig. 3) need to be inverted. Let
us denote by d the number of active S-boxes (maximal number of active S-boxes
on the r′ rounds for a pair of ciphertexts fulfilling E−1r′ (k,C)⊕E−1r′ (k,C ′) = δr.).
The tree TC,C′ corresponding to the problem is a tree of height d and branching
factor 24. This tree has 24d leaves corresponding to all the possible values for
the key-bits XORed before inverting active S-boxes. At some depth in the tree,
all the nodes are corresponding to the same active S-box. For each leave, there
is a difference δ that results from the partial decryption of C and C ′ using the
key-bits determined by the path of the leave. Note that not all the 4d-bit values
correspond to a master key. Indeed, these bits may be linked by the key-schedule
algorithm. Incrementing counters boils down to detecting the leaves for which
the 4d bits correspond to a real key (there are only 2nk such leaves) and for
which the difference after deciphering is equal to δr.

We propose to implement the key-recovery part of the attack as the traversal
of TC,C′ . Then, to be efficient, we have to take care of not wasting time traversing
useless branches. What we refer as a useless branch is a subtree that does contain
no leave leading to a counter incrementation. Such branches may be the result of
an inconsistence in the key-schedule (only 2nk out of 24d candidates correspond
to a real key) or may simply come from the fact that not all the candidates are
incremented by a given ciphertext pair.

Using a first filter.
An important remark here is that not all the 2nk leaves corresponding to valid
candidates will produce difference δr after decryption. Let us introduce some
formalism to express this. Let ϕδr be the function defined as follows where m is
the message-length.

ϕδr : Fm2 × Fnk2 → Fm2 × Fm2
(x, k) 7→ (y, y′) = (Er′(k, x), Er′(k, x⊕ δr))

The set Im(ϕ) is the set of ciphertext pairs that can be obtained after r′ rounds
of encryption when starting from a difference δr. The first main tool to speed
up Algorithm 1 is to use a filter that is a subset F ⊆ Fm2 × Fm2 such that
Im(ϕ) ⊆ F . Indeed, no candidate counter will be incremented by a ciphertext
pair not in Im(ϕ) thus processing such a pair is useless and time consuming.
Such filter F is optimal when equal to Im(ϕ). Typically, filters consist of a set of
reachable differences or potentially active key-bits obtained using techniques of
truncated differential cryptanalysis or impossible differential cryptanalysis. The
usefulness of algebraic techniques for this purpose is still an open question [10,
9].

ECRYPT Workshop on Lightweight Cryptography - November 2011 8

Using round filters.
In the attack on PRESENT proposed in [7] and where r′ is equal to 2, the author
proposed to use an intermediate filtering step. For a given pair of ciphertexts,
the attacker inverts the active S-boxes in the last round for all possible corre-
sponding round-key bit values. He goes on inverting the penultimate round only
if the difference obtained after the round inversion belongs to the set of possible
differences. Such an additional filtering step has an important impact on the
time complexity of the attack.

Using S-box filters.
The number of active S-boxes in the last round is too large in our context to use
only round filters. Indeed, inverting the last round for all pairs that have not
been discarded is far too time consuming. Hence, the natural idea is to apply a
filter after each S-box inversion. This is precisely what we propose in this paper
and we will see that it allows us to take large values for r′ (up to 5). Using
efficient filters drastically fastens the attack but is difficult to analyze. Indeed,
ad hoc techniques used up to now becomes more tricky to apply for many reasons
and particularly because dependencies between different filters may appear.

Invalid key values.
Considering S-boxes successively, we have to take care of detecting invalid values
for the 4d key-bits early in the traversal. In Algorithm 1, each of the 2nk can-
didate was expanded to a 4d-bit value then used for partial decryption. Using
S-box filters, we try to avoid decrypting using all the candidates and hence we
have to check for key-bit consistency during the traversal. This can be done by
using r′ states corresponding to round subkeys and by updating them relatively
to the key-schedule each time key-bits are guessed. Then, some key-bits of previ-
ous rounds will be fixed in advance reducing the number of children of the next
level of the tree.

Analyzing key-recovery complexity.
We presented techniques to speed up Algorithm 1 and we aim now at analyz-
ing the resulting complexity of the attack. We tried to use the same kind of
techniques that can be found in the literature but we faced many difficulties be-
cause of all the inherent dependencies between bits when considering more than
2 rounds of a cipher. A typical problem encountered is that the diffusion pattern
provides a list of potentially active S-boxes that have to be inverted but, for a
fixed ciphertext pair, some of these S-boxes may be inactive. We have to invert
them to perform the r′-round decryption but we should not start with them since
the corresponding filters will validate all the 4-bit values for the key. Hence, to
be efficient, the order of S-boxes may depend on the ciphertext pair. It is not
tractable to take this into account using aforementioned evaluation techniques
and fixing the same order for all pairs would result in very high complexity. That

ECRYPT Workshop on Lightweight Cryptography - November 2011 9

is the reason why we propose to analyze the complexity of this part of the attack
in an ideal context using the tree-representation of the problem.

3.4 Expected complexity of the fast counter incrementation

In this subsection, we derive an asymptotic estimate for the key-recovery com-
plexity under the strong assumption that we are able to detect all useless branches
as soon as possible (that is detecting a useless branch when reaching its root) in
constant time. This assumption is optimistic but we will discuss in Appendix A
the fact that techniques used to speed up Algorithm 1 take constant time at the
cost of table pre-computations and storage and that they allow a quasi-optimal
tree traversal.

Now assuming that this hypothesis holds, then the complexity of one tree
traversal is Θ (dα) where α is the number of counters incremented by the pro-
cessed pair. Let N be the number of available plaintext/ciphertext pairs, then
we can form Ns = N/2 plaintext pairs and obtain the corresponding ciphertext
pairs. We denote by A1, . . . , ANs the number of incremented counters corre-
sponding to the Ns ciphertext pairs. Then, we are interested in computing the
complexity of the attack:

∑Ns
i=1 dAi. Since we know very few about the distri-

bution of Ai, we propose to estimate the expected value of the time complexity
of the attack. Using the linearity of the expected value, we easily derive

E

(
Ns∑
i=1

dAi

)
= Ns · d · E (A) .

Supposing that ciphertext pairs are uniformly distributed4 over Fm2 × Fm2 , then,
the expected value of the cardinal of ϕ−1δr (y, y′) is the ratio of the input by the
output space cardinalities:

E
(
#ϕ−1δr (y, y′)

)
=

2m+nk

22m
= 2nk−m.

Hence, the expected value of the time complexity of the fastened version of
Algorithm 1 using the tree-based approach is

Θ(Ns d 2nk−m). (1)

Notice that the N available plaintexts have to be read to form the pairs.
Hence, it has to be taken into account when estimating the complexity of the
attack. Moreover, the first filter can be applied at the same time as forming pairs
using a hash table. The value provided by (1) may be smaller than N but this
is due to the fact that after the first filter only very few pairs remain.

We presented a new technique to estimate the complexity of a simple differ-
ential cryptanalysis. In the next section, we present tools for analyzing the use
of several differentials.
4 This assumption is realistic since they are obtained by using r + r′ rounds of the

cipher: if not true, it will induce an attack on r + r′ + 1 rounds of the cipher.

ECRYPT Workshop on Lightweight Cryptography - November 2011 10

4 Multiple differential cryptanalysis

In the previous section, we focused on techniques for incrementing candidate
counters for a given ciphertext pair. All the statements were instantiated in the
particular case of single differential cryptanalysis. Attacks presented here are
multiple differential cryptanalyses that is attacks using more than one differen-
tial. The optimal way for combining information from many differentials is a
work in progress and may hardly depend on the accuracy of differential proba-
bility estimates as it is the case for linear cryptanalysis [11–13]. Hence, we chose
here a classical approach that consists in combining counters obtained from dif-
ferent differentials using addition. Such attacks have been formalized and studied
in [8]. Before providing results on the differential probabilities of the best char-
acteristics on PUFFIN and PUFFIN2, we briefly discuss the influence of the use
of many differentials on the complexity given in (1) and recall the results given
in the aforementioned paper.

4.1 Time cost of the use of many differentials

The asymptotic time complexity of the key recovery part given by formula (1)
have been obtained for a single differential. In differential cryptanalysis, the
attacker uses a set ∆ of differentials. The set of input differences contained

in ∆ is denoted by ∆0. To a given input difference δ
(i)
0 in ∆0 corresponds a

set of differentials of the form (δ
(i)
0 , δ

(i,j)
r). We denote by ∆

(i)
r the set of output

differences corresponding to a given input difference δ
(i)
0 . Then, from well-chosen5

N plaintext/ciphertext pairs, the attacker can form N/2 couples of plaintext for

each input difference hence obtaining a total of Ns = |∆0|·N
2 samples.

Forming all the samples should have time complexity Θ(Ns) but it is possible
to combine the formation of plaintext pairs to the first filter using a hash table
(as mentioned in Section 3.4). It turns out that if the filter is efficient enough, the
number of remaining pairs will smaller than N . In the other case, forming pairs
will be more time consuming than Θ(N) but this complexity will be negligible
compared to the one of the corresponding key-recovery. Hence, it is not abusive
to consider than the time complexity of forming samples is the one of reading
available plaintext/ciphertext couples that is Θ(N).

Then, for a given ciphertext pair, the input difference δ
(i)
0 is fixed. This

difference has a corresponding set of output differences ∆
(i)
r . Since we combine

differentials by summing counters, the only difference with Algorithm 1 is that a
candidate counter will be incremented if the obtained difference belongs to the set

∆
(i)
r . Hence, for a fixed input difference, the number of incremented counters will

be multiplied by |∆(i)
r | influencing the complexity of a tree traversal. Summing

over all possible samples, we obtain a global complexity of

5 That is choosing plaintexts using the so-called structures.

ECRYPT Workshop on Lightweight Cryptography - November 2011 11

Θ

(
Ns d 2nk−m

∑|∆0|
i=1 |∆

(i)
r |

|∆0|

)
. (2)

Note that since Ns = |∆0|·N
2 , the term Ns

∑|∆0|
i=1 |∆(i)

r |
|∆0| actually corresponds to

2N |∆|.

4.2 Theoretical framework used

Let us first begin with the definition of some notation from the framework de-
veloped in [8].

Notation.
The attacker chooses a set ∆ of differentials with probabilities p(1), . . . , p(|∆|).
The output differences of the differentials determine the set of active S-boxes in-
volved in the partial deciphering process. The corresponding number of required
key bits is denoted by nk hence the attacker will have to distinguish the correct
subkey among 2nk .

The cornerstone of the theoretical analysis in [8] is an estimate for the subkey-
counter cumulative functions that is given in [8, Proposition 1]. This estimate
is denoted by G and is parameterized by the number of samples. We will hence
denote it by GNs . The function GNs(τ, p∗) is the estimate for the correct-key
counter distribution and GNs(τ, p) is the one for the wrong keys. Values for p∗
and p are equal to

p∗ =

∑
i p

(i)
∗

|∆0|
and p =

|∆|
264|∆0|

.

We now recall the main two results that can be found in [8]. The first one
is an estimate of the data complexity required for the correct key to be ranked
among the ` most likely candidates with probability close to one half.

Corollary 1. [8, Corollary1] Let ` be the size of the list of the remaining can-
didates and let nk be the number of bits of the key we want to recover. Using the
previous notations, the data complexity of a multiple differential cryptanalysis
with success probability close to 0.5 can be estimated by

N ′ = −2 · ln(2
√
π` 2−nk)

|∆0|D(p∗||p)
, (3)

where D(p∗||p) denote the Kullback-Leibler divergence:

D(p∗||p) = p∗ log

(
p∗
p

)
+ (1− p∗) log

(
1− p∗
1− p

)
In this result the statement “success probability close to 0.5” may seem un-

clear and imprecise6. The point is that the success probability corresponding to

6 For a complete understanding, to please refer to [14]

ECRYPT Workshop on Lightweight Cryptography - November 2011 12

the data complexity N ′ given in this Corollary may vary a bit around this value.
In the case of differential or multiple differential cryptanalysis, our experiments
show that using the value of N ′ given in Corollary 1 leads to a success probabil-
ity between 0.35 and 0.507. This formula provides an intuition on the impact of
the use of many differentials on the data complexity through the denominator
|∆0|D(p∗||p).

Then, to precisely adjust the number of samples to reach a given success
probability, another result of [8] should be use. This one, presented in Corollary 2,
is a tight formula for computing the success probability of an attack when only
the ` most likely keys are tested and when Ns samples are available.

Corollary 2. [8, Corollary2] Under the previous notations, the success proba-
bility, PS, of a multiple differential cryptanalysis is given by

PS ≈ 1−GNs
[
G−1Ns

(
1− `− 1

2nk − 2
, p

)
− 1, p∗

]
(4)

where the pseudo-inverse of GNs is defined by G−1Ns(y) = min{x|GNs(x) ≥ y}.

The tightness of formula (4) have been empirically tested on a reduced version
of PRESENT in [8] with very convincing results.

4.3 The differential probabilities

In the first analysis of the security of PUFFIN [4] authors claim that since the
best trail on 31 rounds (over the 32 rounds) has a probability equal to 2−62, the
cipher is secure against differential cryptanalysis. On the one hand and according
to PUFFIN design -i.e. similar to the one of PRESENT- a differential will be
composed of so many trails that the probability of a differential is dramatically
underestimated when only considering the best differential trail. On the other
hand, authors’ analysis of the cipher security is based on the assumption that
the attacker will only recover key bits from the last round (that is r′ = 1) while
attacks proposed in this paper actually use values for r′ up to 5.

Using a Branch and Bound algorithm (see [15–17] for instance), we are able
to compute the probabilities of the best differential trails. Combining these trails,
we obtain lower bounds on the probabilities of the best differentials. As men-
tioned in Section 3, we have observed that the best differential trails have a
single active S-box in the input and the output difference. Therefore we chose
to select differentials such than only one S-box is active in the output difference.
Diffusion properties of PUFFIN and PUFFIN2 suggest the use of S11 as active
S-box among those having good differential properties.

We now provide some results about the differential probabilities for PUFFIN
and PUFFIN2. The data complexity of the attack will depend on the number r

7 Experiments from [14] shown a range from 0.52 to 0.65 in differential settings.

ECRYPT Workshop on Lightweight Cryptography - November 2011 13

of rounds targeted by differentials, it will also depend on the differentials we will
use. Moreover, the estimation of these probabilities is a critical point since a too
pessimistic analysis will lead to the underestimation of the attack performances.
In order to compare the different values for r′ we looked for the best differentials
over r = 27, 28, 29, 30 and 31 rounds. According to Section 3.2, we focused on
r-round differentials (δ0, δr) such that

δr ∈ ∆out = {0x0000Y00000000000|Y ∈ {0x1, · · · , 0xF}}.

The best differentials - corresponding to our criteria - we found are given in
Table 2. Notice that we did not consider the additional operations performed
before the first round in PUFFIN and after the last round in PUFFIN2 since
they do not alter the probabilities of differentials.

Table 2. Best differentials on r rounds with output difference activating only S11 and
their probabilities.

r δ0 δr p∗
27 0x000000000000a000 0x0000400000000000 2−49.71

28 0x000b400000000000 0x0000400000000000 2−52.07

29 0x0000000000400000 0x0000400000000000 2−53.59

30 0x0000400000000000 0x0000400000000000 2−56.35

31 0x0000000000007000 0x0000400000000000 2−57.9

5 Parameters and performances of proposed attacks

Let us now move to the choice of parameters for the attacks we propose. We
want to precise that the attacks mentioned here are not claimed to be optimal
since some of our choices relied on heuristics (for instance the choice of S11 may
not lead to the best possible attack).

5.1 Formulas of the attack complexities

Simple formulas for complexities aim at easing the choice of parameters to bal-
ance them. More precisely, in the case of multiple differential cryptanalysis, there
are three different steps to consider for the time complexity.

1. Obtaining plaintext/ciphertext pairs: Θ(N).

2. The key-recovery part with complexity given by formula (2).

3. The final exhaustive search that takes Θ(` 2n−nk) where n is the master-key
length and ` the maximum number of candidates to test.

ECRYPT Workshop on Lightweight Cryptography - November 2011 14

Then, the time complexity of a multiple differential attack is

Θ

(
N + ` 2n−nk +Ns d 2nk−m

∑|∆0|
i=1 |∆

(i)
r |

|∆0|

)
(5)

For a given set ∆ of differentials, fixing r′ will determine the values for d
the number of active S-boxes and nk the number of involved key-bits. Then,
there are tight links between the data complexity N , the success probability PS
and the number of candidates to test `. This relationship is represented by the
formula (3). Since we aim at proposing attacks with success probabilities greater
than 0.5, we propose to multiply this formula by a factor 1.5. Experiments in
[14] show that for such a value, this probability gets around 0.8.

1.5 ·N ′ = −3 · ln(2
√
π` 2−nk)

|∆0|D(p∗||p)
. (6)

This is asymptotic in nature: the estimate is negative for values of ` close to 2nk

but it tends toward the correct value of N as `
2nk decreases.

This formula will be of great use since we can substitute it into the aforemen-
tioned complexities removing one parameter. Then, for a given set ∆ and a fixed
r′, the problem boils down to balance these complexities using the parameter `.

5.2 First approach: using a single differential

As both time and data complexity depend on the set of differentials, we chose,
as a first approach, to study the complexities of differential cryptanalyses using
a single differential. For the best differentials (δ0, δr) described in Table 2, we
propose to compute the complexities obtained for different values of r′ (r+ r′ =
32 for PUFFIN and 34 for PUFFIN2). Once ` is fixed, the success probability
will accurately be estimated using (4). As it is supposed to, it will vary in a
reasonable range around 0.5.

Table 3. PUFFIN: Parameters of simple differential cryptanalyses using the formula
for N given by (6).

r′ d nk p∗ ` N Time C. PS

3 13 43 2−53.59 200.1 257.49 285.10 0.75
4 27 81 2−52.07 224.6 256.04 276.84 0.79
5 43 109 2−49.71 278.6 252.45 2101.95 0.85

Results in Table 3 and Table 4 confirm the fact that the formula (6) leads
to a success probability close to 0.8. The parameters presented in Table 3 and
Table 4 show that a differential attack using a single differential is enough to
break both PUFFIN and PUFFIN2.

ECRYPT Workshop on Lightweight Cryptography - November 2011 15

Table 4. PUFFIN2: Parameters of simple differential cryptanalyses using the formula
for N given by (6).

r′ d nk p∗ ` N Time C. PS

3 13 35 2−57.90 212.4 261.25 261.35 0.75
4 27 59 2−56.35 235.0 259.47 260.07 0.63
5 43 74 2−53.59 261.1 255.60 270.21 0.87

One of the problems left as an open question for multiple differential crypt-
analysis is the optimal choice of the parameters of the attack (typically the set of
differences used). Results given here when using a single differential emphasize
the fact that this notion of optimal choice may hardly depend on the context (Is
the full code-book available?, Is the computational power the limiting factor?).
Indeed, when moving from r′ = 4 to r′ = 5, samples are exchanged for compu-
tational effort. Nevertheless, there are parameters that are clearly sub-optimal
as r′ = 3 that, here, leads to an attack outperformed in both time and data
complexities by other parameters.

5.3 Proposed attacks

Table 3 and Table 4 show that we can break both PUFFIN and PUFFIN2 using
simple differential cryptanalysis. Nevertheless, complexities of these attacks can
be improved using several differentials. The set of differential we propose for the
attacks is big, that we present in Appendix in Table 10 only the parameters for
the attacks with the smallest used differentials. We propose a multiple differential
attack on PUFFIN where r′ = 4 that outperforms the simple attack for r′ = 5
i.e. that have smaller complexities (for both time and data). We also propose a
multiple attack on PUFFIN2 with r′ = 4 and attacks on both versions for r′ = 5
to illustrate that the choice of differential sets and values for r′ allow trading
data complexity for time complexity.

The attacks proposed are summarized in Table 5 and detailed below.

Table 5. Attacks on the PUFFIN ciphers.

version key bits rounds Data C. Time C. Success P.

PUFFIN 128 32 258 2124 > 0.25 [6]
PUFFIN 128 32 252.16 295.40 0.77 this paper
PUFFIN 128 32 249.42 2108.84 0.59 this paper

PUFFIN2 80 34 255.58 264.66 0.58 this paper

PUFFIN2 80 34 252.30 274.78 0.78 this paper

Attacks on PUFFIN.
In the previous section, we presented a simple differential attack on PUFFIN with

ECRYPT Workshop on Lightweight Cryptography - November 2011 16

data complexity 252.45 and time complexity 2101.95 (case where r′ = 5). Using
a set of 830 differentials having |∆0| = 359 input differences on r = 28 rounds
(that is r′ = 4), we obtain a multiple differential cryptanalysis (p∗ = 2−56.7178)
which requires 252.16 chosen plaintexts that has a time complexity of 295.40 and
success probability of 0.77 (` = 248.40). Complexities of this attack outperform
the complexities of the simple differential cryptanalysis of PUFFIN we propose.

Nevertheless, if the bottleneck of the attacker resources is the data complexity
and not the computational power, then we may use another set of parameters.
For instance, there is a set of 954 differentials over 27 rounds (r′ = 5) such that
|∆0| = 318 and that provides a probability p∗ = 2−54.6862. Taking ` equal to
285.9, we obtain an attack that requires 249.42 chosen plaintexts and that can be
performed in time 2108.84 with a success probability of 0.59. If we compare this
attack to the simple differential attack described in Table 3, the data complexity
is divided by a factor 23.03 while the time complexity is multiplied by 26.89.

Examples of parameters we present show that depending on the attack re-
quirements, different trade-offs for the complexities are possible.

Attacks on PUFFIN2.
For PUFFIN2, we also propose two kinds of multiple differential attacks, one that
improves the data complexity with a small cost in time complexity (compared
to the simple differential attack proposed in Table 4) and another that tries to
minimize the data complexity of the attack.

We recall that in the case of r′ = 5, the simple differential attack proposed
in Table 4, can be performed using 255.60 plaintexts in 270.21 operations. Now,
using a set of 115 differentials over 30 rounds (that is r′ = 4) with |∆0| = 95
input differences, we propose a multiple differential cryptanalysis on PUFFIN2
with time complexity 264.66, data complexity 255.58 and success probability 0.58
(` = 244.60 and p∗ = 2−59.1178). Differentials used for this attack are given in
Table 10 for the interested reader to be able to check our results.

We can also perform a multiple differential attack on PUFFIN2 using differ-
entials on 29 rounds (r′ = 5). Using 210 differentials having |∆0| = 137 different
input differences, we obtain a probability p∗ = 2−57.7949 which lead to an attack
with data complexity 252.30, time complexity 274.78 and success probability 0.78
(` = 266.5).

6 Conclusion

This work aims at illustrating the impact of the flaws that can be found in the se-
curity analysis of recent ciphers. We propose attacks on PUFFIN and PUFFIN2
that are low-cost ciphers designed to be more efficient than PRESENT (and
particularly to be involutions). It turns out that they are also less secure since a
simple differential cryptanalysis allows to break them. Using a new approach to
estimate the cost of key-recovery in differential cryptanalyses, we proposed two
attacks on these ciphers. The attack on PUFFIN recovers the full 128-bit key in
295.40 operations with probability 0.77 when using 252.16 chosen plaintexts and

ECRYPT Workshop on Lightweight Cryptography - November 2011 17

the attack on PUFFIN2 recovers the full 80-bit key in 265.66 operations with
probability 0.58 when using 255.58 chosen plaintexts.

While PUFFIN and PRESENT are similar, these differential attacks and the
linear attack proposed by Leander[6] on PUFFIN and PUFFIN2 do not threaten
the security of PRESENT. Differences can be explained by both the substitution
and the permutation layers. Indeed, the fact that in PUFFIN, the S-box have
properties that allow one-bit input and output differences implies there exists
differential trails with one active S-box for each round what is not possible for
PRESENT (at least two active S-boxes for one out of two rounds). This property
can be removed using a linear transformation of the S-box.

Concerning the permutation layer, it turns out that the optimality of the
PRESENT bit-permutation cannot be obtained with an involution. The permu-
tation proposed in PUFFIN only reaches full diffusion after 5 rounds. This has
implications in both the trail probabilities and the number of rounds that can
be inverted by the attacker. Using involution permuation layer with diffusion on
4 rounds may improve the security of the cipher.

Impact of the use of “better” involutions as basic components for an SPN is
an interesting scope for further research.

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.H.: PRESENT: An ultra-lightweight block cipher.
In Paillier, P., Verbauwhede, I., eds.: Cryptographic Hardware and Embedded Sys-
tems - CHES 2007. Volume 4727 of LNCS., Springer (2007) 450–466

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In Helleseth, T., ed.:
Advances in Cryptology - EUROCRYPT 1993. Volume 765 of LNCS., Springer
(1994) 386–397

3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4 (1991) 3–72

4. Cheng, H., Heys, H.M., Wang, C.: PUFFIN: A novel compact block cipher tar-
geted to embedded. In Fanucci, L., ed.: Conference on Digital System Design:
ARchitectures, Methods and Tools - DSD 2008, IEEE (2008) 383–390

5. Wang, C., Heys, H.M.: An ultra compact block cipher for serialized architecture
implementations. In: Canadian Conference on Electrical and Computer Engineer-
ing - CCECE 2009, IEEE (2009) 1085–1090

6. Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a crypt-
analysis of PUFFIN. In Paterson, K., ed.: Advances in Cryptology - EUROCRYPT
2011. Volume 6632 of LNCS., Springer (2011) 303–322

7. Wang, M.: Differential cryptanalysis of reduced-round PRESENT. In Vaudenay,
S., ed.: Progress in Cryptology - AFRICACRYPT 2008. Volume 5023 of LNCS.,
Springer (2008) 40–49

8. Blondeau, C., Gérard, B.: Multiple differential cryptanalysis: Theory and practice.
In Joux, A., ed.: Fast Software Encryption - FSE 2011. Volume 6733 of LNCS.,
Springer (2011) 35–54

9. Wang, M., Sun, Y., Mouha, N., Preneel, B.: Algebraic techniques in differential
cryptanalysis revisited. In Parampalli, U., Hawkes, P., eds.: Information Security
and Privacy - ACISP 2011. Volume 6812 of LNCS., Springer (2011) 120–141

ECRYPT Workshop on Lightweight Cryptography - November 2011 18

10. Albrecht, M., Cid, C.: Algebraic techniques in differential cryptanalysis. In Dunkel-
man, O., ed.: Fast Software Encryption - FSE 2009. Volume 5665 of LNCS.,
Springer (2009) 193–208

11. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of Matsui’s
algorithm 2. In Dunkelman, O., ed.: Fast Software Encryption - FSE 2009. Volume
5665 of LNCS., Springer (2009) 209–227

12. Hermelin, M., Cho, J.Y., Nyberg, K.: Statistical tests for key recovery using mul-
tidimensional extension of Matsui’s algorithm 1. Advances in Cryptology - EU-
ROCRYPT 2009 POSTERSESSION (2009)

13. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In Pieprzyk, J.,
ed.: Topics in Cryptology - CT-RSA 2010. Volume 5985 of LNCS., Springer (2010)
302–317

14. Blondeau, C., Gérard, B., Tillich, J.P.: Accurate estimates of the data complexity
and success probability for various cryptanalyses. Design, Codes and Cryptography
59 (2011) 3–34

15. Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approximations.
In Desmedt, Y., ed.: Advances in Cryptology - CRYPTO 2004. Volume 3152 of
LNCS., Springer (2004) 1–22

16. Collard, B., Standaert, F.X., Quisquater, J.J.: Improved and multiple linear
cryptanalysis of reduced round Serpent. In: Inscrypt’07. Volume 4990 of LNCS.,
Springer–Verlag (2007) 51–65

17. Blondeau, C., Gérard, B.: Links between theoretical and effective dif-
ferential probabilities: Experiments on PRESENT. In: TOOLS’10. (2010)
http://eprint.iacr.org/2010/261.

A More details on the tree-traversal

In Section 3.3, we modeled the key-recovery part of a differential attack as a tree
traversal. Nodes at the same depth in the tree correspond to one of the active
S-boxes in the diffusion path. There are 24 children corresponding to the possible
values for the 4 key bits XORed to the output value of the S-box corresponding
to the node. When traversing the tree, passing along an edge refers to XORing
the corresponding 4-bit key value and inverting the S-box. When reaching a
node, it is essential to detect the current branch (this node and its descendants)
as useless if so. A useless branch is a branch where all leaves at depth d do not
correspond to counter incrementation. Such branches may appear for different
reasons. If the current node is inconsistent with the previous guessed key bits for
instance (this case is really easy to detect). The other source of useless branches
comes from the fact that the number of incremented counter is far smaller than
the 2nk candidates. Such branches are more difficult to detect even using many
filters.

When analyzing this tree traversal in Section 3.4 we made the strong hy-
pothesis that we were able to detect useless branches at the top level (that is as
soon as possible). This is a bit optimistic according to what has just been said
but using the tricks we are to detail, the proportion of non-discarded useless
branches can be kept small. A more precise study of the complexity taking this
proportion into account may be of interest here and is left as an open question
for further work.

ECRYPT Workshop on Lightweight Cryptography - November 2011 19

We detail here the algorithm we have in mind for constructing and traversing
the tree efficiently (that is detecting most of the useless branches in constant
time).

Constructing the tree.
Obviously we are not going to construct the tree since we aim at traverse the
tree avoiding useless branches. Nevertheless, there is one degree of freedom in the
definition we gave for the tree TC,C′ : the order of S-box inversions. Modifying the
order of S-boxes will not necessarily help in improving useless branch detection
technique but using an efficient S-box order, useless branches may be met earlier
in the tree traversal. This would reduce the constant hidden in the Θ notation
and hence may be carefully looked at when implementing a practical attack but
can be omitted for analyzing an attack.

Detecting key-bit inconsistency.
As already mentioned, this can be done by updating a 4d state following the
key-schedule algorithm. Then, when reaching a new node, the set of child nodes
considered is restricted if some key bits have already been guessed. In this context
changing S-box order may also be of interest. Indeed, for PUFFIN2, the only
non-linear part of the key-schedule is the application of the substitution layer
to 64 bits of the current key state. Hence, some key bits directly correspond
from one subkey to the other. Starting by guessing those bits may induce more
efficient filters at the top of the tree.

Round filtering.
The round filtering process as detail in [7] consist in detected some useless branch
after deciphering all active S-boxes in one round. This one may not be optimal
due to memory limitation. Hence, they may be reduced to a set of reachable
differentials. Applying such a filter can be done efficiently since it will consist in
at most 263 differences which can be stored in a relevant structure with search
cost logarithmic in its size. Such sieves will be applied only at some depth of
the tree hence it is not abusive to consider that this cost is constant in nature.
Notice that the first sieve as to be applied to all the Ns samples hence the total
cost of the key-recovery step may not be smaller than Ns.

S-box filtering.
An other kind of filters are S-box filters. Instead of applying such filters after
having inverted the S-box using all the possible values of key bits, it is more
efficient to pre-compute a 24×(24−1) table containing, for each pair of outputs,
the list of keys that lead to a correct input difference. The memory cost of
this technique for b-bit S-boxes is Θ(d 23b) hence is negligible compared to the
memory used for counters (2nk) when inverting a large number of S-boxes. Again,
the cost of such filtering is constant regarding parameters of the attack.

ECRYPT Workshop on Lightweight Cryptography - November 2011 20

B Components of PUFFIN

This appendix section contains the details for PUFFIN and PUFFIN2 specifica-
tion.

B.1 Common components

In Table 6 the S-box used in both PUFFIN and PUFFIN2 is given using hex-
adecimal values.

Table 6. PUFFIN/PUFFIN2 S-box in hexadecimal, S1(0x0) = 0xD.

input 0 1 2 3 4 5 6 7 8 9 A B C D E F

output D 7 3 2 9 A C 1 F 4 5 E 6 0 B 8

Then, Table 7 specifies the bit-permutation P . The table has to be read as:
the input bit at position a·8+b will be sent to the position given in the cell at line
a and column b in the output. For instance, the 19-th input bit will correspond
to the 21-th output bit. As shown in Fig. 3, we number S-boxes (hence bits)
from the right to the left (little endian representation).

Table 7. 64-bit permutation P : input = row · 8 + column.

a\b 0 1 2 3 4 5 6 7

0 12 1 59 49 50 26 9 35

1 24 6 31 60 0 48 46 18

2 33 52 15 21 56 19 47 40

3 8 51 5 30 61 29 27 10

4 36 16 57 7 32 43 45 58

5 23 54 62 37 55 38 14 22

6 13 3 4 25 17 53 41 44

7 20 34 39 2 11 28 42 63

B.2 Components used in PUFFIN key-schedule

As for Table 7, Table 9 and Table 8 have to be read in the following way. The
value in the row a and column b is the output position of the input bit number
16a+ b or 8a+ b depending on the table.

ECRYPT Workshop on Lightweight Cryptography - November 2011 21

Table 8. The 64-bit selection used in the PUFFIN key-schedule: input = row · 8 +
column.

0 1 2 3 4 5 6 7

0 2 122 14 57 88 35 97 51

1 56 62 99 69 45 70 93 50

2 82 13 3 21 31 113 83 100

3 11 22 30 64 40 95 119 49

4 44 53 111 121 28 80 29 120

5 96 54 25 63 23 116 18 8

6 110 17 43 85 15 94 41 71

7 1 90 117 123 37 47 42 38

Table 9. The 128-bit permutation used in the PUFFIN key-schedule: input = row ·
16 + column.

0 1 2 3 4 5 6 7

0 21 120 125 109 78 80 115 54

1 112 20 28 19 55 75 40 111

2 44 108 94 86 93 43 67 7

3 114 68 5 74 82 4 53 69

4 22 60 105 102 84 123 110 51

5 118 31 99 16 14 33 127 90

6 57 98 119 66 30 97 52 70

7 91 24 37 92 64 1 36 27

8 23 81 87 13 95 117 0 8

9 124 26 126 17 3 9 101 6

10 34 104 47 62 29 76 71 49

11 107 72 11 18 106 10 25 83

12 46 96 116 48 45 32 15 41

13 38 56 113 61 122 100 79 12

14 50 121 63 88 42 59 39 2

15 85 89 58 73 77 103 35 65

B.3 Differentials used to attack PUFFIN2

The following table contains differentials we use in the attack on PUFFIN2 with
r′ equal to 4. Since the only active box in the outpu difference is the 11-th one,
we only mention the corresponding 4-bit output difference in the column δr|S11.

ECRYPT Workshop on Lightweight Cryptography - November 2011 22

Table 10. Differentials used for attacking PUFFIN2 with r = 30 and r′ = 4.

δ0 δr|S11 p∗ δ0 δr|S11 p∗
0x0000000000040003 0x4 2−55.55 0x0000c00000000000 0x4 2−60.11

0x0000000000040003 0x8 2−58.28 0x000000000000000d 0x4 2−60.14

0x0000000000040003 0x6 2−58.39 0x0000000000090001 0x4 2−60.18

0x0000000000040003 0x2 2−58.52 0x0000000000040001 0x4 2−60.28

0x0000000000040003 0xa 2−59.69 0x00009a0000000000 0x4 2−60.29

0x0000000000040000 0x4 2−55.72 0x000100000000000d 0x4 2−60.29

0x0000000000040000 0x8 2−58.25 0x0001400000000000 0x4 2−60.33

0x0000000000040000 0x2 2−58.42 0x00000000000d0001 0x4 2−60.42

0x0000000000040000 0x6 2−58.55 0x0000400000040001 0x4 2−60.44

0x0000000000040000 0xa 2−59.65 0x000a000000000006 0x4 2−60.45

0x0003600000000000 0x4 2−56.79 0x00a0000000000000 0x4 2−60.56

0x0003600000000000 0x8 2−59.56 0x0001d00000000000 0x4 2−60.64

0x0003600000000000 0x2 2−59.72 0x0000100000050000 0x4 2−60.72

0x0003600000000000 0x6 2−59.83 0x0000c000000a0000 0x4 2−60.74

0x0000000000000001 0x4 2−57.96 0x0000000000003000 0x4 2−60.74

0x0000000000000001 0x8 2−60.77 0x0000500000000000 0x4 2−60.80

0x0000000000000001 0x2 2−60.95 0x0003400000040000 0x4 2−60.82

0x0000000000000001 0x6 2−60.97 0x000100000000000a 0x4 2−60.83

0x000d400000000000 0x4 2−58.11 0x000d000000000000 0x4 2−60.83

0x0003000000000006 0x4 2−58.40 0x00b0000000000000 0x4 2−60.87

0x000300000000000a 0x4 2−58.44 0x0000000000004000 0x4 2−60.94

0x000b000000000000 0x4 2−58.46 0x0000000000040006 0x4 2−60.96

0x000a000000000001 0x4 2−58.52 0x00001e0000000000 0x4 2−60.99

0x0000000000000008 0x4 2−58.63 0x0001300000000000 0x4 2−61.08

0x000a400000000000 0x4 2−58.74 0x0000800000000000 0x4 2−61.09

0x0000000000030000 0x4 2−58.78 0x0003000000000001 0x4 2−61.11

0x0006000000000001 0x4 2−58.88 0x0000000000030001 0x4 2−61.12

0x0000100000000000 0x4 2−58.92 0x0050000000000000 0x4 2−61.13

0x0000100000000000 0x8 2−61.62 0x00a00000000a0000 0x4 2−61.13

0x0000100000000000 0x2 2−61.75 0x0000000000060000 0x4 2−61.14

0x0000100000000000 0x6 2−61.95 0x0080900000000000 0x4 2−61.16

0x000a000000000003 0x4 2−58.99 0x0001000000040000 0x4 2−61.24

0x0001000000000003 0x4 2−59.18 0x0050100000000000 0x4 2−61.25

0x000100000000000b 0x4 2−59.22 0x0000000000000003 0x4 2−61.26

0x00000000000e0000 0x4 2−59.33 0x00a0300000000000 0x4 2−61.36

0x0000200000000000 0x4 2−59.38 0x00a0800000000000 0x4 2−61.39

0x0000200000000000 0x8 2−61.79 0x0000890000000000 0x4 2−61.40

0x0000200000000000 0x2 2−61.90 0x0000000000000006 0x4 2−61.40

0x0000200000000000 0x6 2−62.26 0x00d0000000000000 0x4 2−61.44

0x0000700000000000 0x4 2−59.54 0x0080800000000000 0x4 2−61.46

0x0000000000000004 0x4 2−59.61 0x0000400000000003 0x4 2−61.46

0x00006a0000000000 0x4 2−59.62 0x0000400000040003 0x4 2−61.50

0x000d000000000001 0x4 2−59.77 0x000d000000040000 0x4 2−61.51

0x0000000000090000 0x4 2−59.85 0x000b000000000001 0x4 2−61.60

0x0006400000000000 0x4 2−59.95 0x0000000900000000 0x4 2−61.63

ECRYPT Workshop on Lightweight Cryptography - November 2011 23

δ0 δr|S11 p∗ δ0 δr|S11 p∗
0x0000030000000000 0x4 2−61.64 0x0001000000030000 0x4 2−61.89

0x0000d00000080000 0x4 2−61.65 0x0000a000000a0000 0x4 2−61.92

0x00004000000a0000 0x4 2−61.67 0x000600000000000a 0x4 2−61.94

0x0001000000000001 0x4 2−61.70 0x0008000000000006 0x4 2−61.99

0x0000ba0000000000 0x4 2−61.71 0x0001400000030000 0x4 2−62.00

0x0001300000040000 0x4 2−61.72 0x000b000000040001 0x4 2−62.01

0x0300000000090000 0x4 2−61.73 0x00a0900000000000 0x4 2−62.01

0x0050200000000000 0x4 2−61.78 0x0005000000000004 0x4 2−62.01

0x0000680000000000 0x4 2−61.80 0x0000c80000000000 0x4 2−62.05

0x0003100000000000 0x4 2−61.83 0x00008a0000000000 0x4 2−62.05

0x0000600000050000 0x4 2−61.84 0x0000000000003001 0x4 2−62.05

0x0000000600000000 0x4 2−61.85 0x0000600000040003 0x4 2−62.08

0x0000400000060000 0x4 2−61.87

ECRYPT Workshop on Lightweight Cryptography - November 2011 24

Accelerated Key Search for the KATAN Family

of Block Ciphers

Simon Knellwolf

ETH Zurich, Switzerland
FHNW, Switzerland

Abstract. The lightweight block cipher family KTANTAN has been
shown vulnerable to meet-in-the-middle key recovery attacks. Its sis-
ter family KATAN has a different, notably linear, key expansion, which
prevents a straightforward application of the attacks. In this paper, we
adapt the meet-in-the-middle strategy to the linear key expansion. As a
result we show that KATAN does neither provide ideal security against
meet-in-the-middle attacks. For the full KATAN32, the key space can be
searched at the cost of 279.3 instead of the expected 280 cipher evalua-
tions. For round-reduced variants, more significant speed-up factors are
obtained. For example for 127 (of 254) rounds, the complexity is 278.1.
The best previous attack in the single-key scenario was for 78 rounds.

Keywords: KATAN, key recovery, meet-in-the-middle

1 Introduction

In the last few years a number of lightweight cryptographic primitives have been
proposed. A prominent example is the KATAN / KTANTAN family of hardware-
oriented block ciphers designed by De Cannière, Dunkelman, and Knežević in
2009. The family consists of six ciphers with block sizes n = 32, 48, and 64, each
variant coming in two flavours that only differ by the key expansion algorithm.
For implementations on constrained devices they provide a very attractive al-
ternative to dedicated stream ciphers such as Grain and Trivium. Additionally,
they benefit from a vast number of well established techniques for evaluating the
security of block ciphers.

The security against differential cryptanalysis has been studied in [10] and
all the six ciphers have shown a comfortable security margin in the single-key
scenario. For KATAN this seems also to be true in the related-key scenario [11],
whereas for KTANTAN surprisingly effective key recovery attacks have been
reported [2]. The latter attacks are based on an unexpected weakness in the
key expansion algorithm which was already exploited for meet-in-the-middle
attacks in [6,13]. The key expansion of KTANTAN is an irregular hardwired se-
quence of the original key bits. It was designed to minimize the number of gates
for hardware implementations. In contrast, KATAN uses a linear recursion for
the key expansion. This prevents a straightforward application of the technique
from [6,13], but in this paper we show that the linear key expansion does neither

ECRYPT Workshop on Lightweight Cryptography - November 2011 25

provide ideal security against meet-in-the-middle key recovery attacks. Our anal-
ysis focuses on KATAN, but it applies to other ciphers with linear key expansion
as well.

Table 1 provides an overview of known results complemented by the results
presented in this paper.

Table 1. Cryptanalytic results for KATAN / KTANTAN. All attacks recover at least
parts of the key. Data complexities are given as the number of known or chosen plain-
text / ciphertext pairs. Time complexities are given as the number of cipher evaluations.
If no time complexity is indicated it is essentially dominated by the query complexity.
Memory complexities are very small for all attacks. The full number of rounds is 254
for all ciphers.

Scenario Cipher n Rounds Data Time Reference

single-key KATAN / 32 78 222 - [10]
KTANTAN 48 70 234 -

48 68 235 -

single-key KATAN 32 127 3 278.1 this paper
32 127 232 277.6

32 full 3 279.3

48/64 127 2 278.8

48/64 full 2 279.5

single-key KTANTAN 32 full 4 272.9 [13]
48 full 4 273.8

64 full 4 274.4

related-key KATAN 32 120 231 - [11]
48 103 225 -
64 90 227 -

related-key KTANTAN 32 full 30 228.5 [2]
48 full 35 231.8

64 full 30 232.8

The first use of a meet in the middle technique in a cryptanalytic context
was given by Diffie and Hellman [8]. Only recently, meet in the middle became
the main technique for preimage attacks on hash functions. Starting with Aoki
and Sasaki [4] it has been improved and refined in a series of papers. Important
refinements that we use in this paper are partial matching [4], indirect partial
matching [3], splice and cut [4], and initial structure [12] resp. bicliques [9]. Our
analysis is based on ideas introduced in [1] and has similarities with the recent
key recovery attacks on AES [5].

The paper is organized as follows. Section 2 describes KATAN. Section 3
introduces the accelerated key search. The technique is optimized in Section 4
by exploiting properties of the round function. Finally, Section 5 concludes the
paper.

ECRYPT Workshop on Lightweight Cryptography - November 2011 26

2 Description of KATAN

KATAN is a family of lightweight block ciphers designed by De Cannière, Dunkel-
man, and Knežević. A full specification can be found in [7]. The family consists
of three ciphers denoted by KATANn for n = 32, 48, 64 indicating the block size.
All instances accept a 80-bit key. KATANn has a state of n bits consisting of
two non-linear feedback shift registers. For n = 32, the registers have lengths 13
and 19, respectively. They are initialized with the plaintext:

(s0, . . . , s18)← (p0, . . . , p18)

(s19, . . . , s31)← (p19, . . . , p31).

The key is expanded to 508 bits according to the linear recursion

ki+80 = ki + ki+19 + ki+30 + ki+67, 0 ≤ i < 428,

where k0, . . . , k79 are the bits of k. At each round of the encryption process
two consecutive bits of the expanded key are used. The round updates further
depend on a bit ci. The sequence of ci is produced by an 8-bit linear feedback shift
register which is used as a counter. It is initialized by (c0, . . . , c7) = (1, . . . , 1, 0)
and expanded according to ci+8 = ci + ci+1 + ci+3 + ci+5.

Round i corresponds to the following transformation of the state:

t1 ← s31 + s26 + s27s24 + s22ci + k2i

t2 ← s18 + s7 + s12s10 + s8s3 + k2i+1

(s0, . . . , s18)← (t1, s0, . . . , s17)

(s19, . . . , s31)← (t2, s19, . . . , s30)

After 254 rounds, the state is output as the ciphertext. All three members of the
KATAN family use the same key expansion and the same sequence of ci. The
algebraic structure of the non-linear update functions is the same. They differ
in the length of the registers and the tap positions. All members perform 254
rounds, but for KATAN48 the non-linear registers are updated twice per round
and for KATAN64 even thrice (using the same ci and ki for all updates at the
same round).

3 Accelerated Key Search

In this section we describe a technique that exploits the linear key expansion
based on a meet in the middle strategy. It provides a (typically small) speed-up
of the naive exhaustive search by not recomputing large parts of the cipher for
specifically related keys. The key space is partitioned into affine subsets of size
22d such that each set can be tested at a cost lower than 22d cipher evaluations.

The technique is derived from accelerated preimage search introduced in [1].
A similar idea underlies the technique matching with precomputation recently
used for key recovery attacks on AES [5].

ECRYPT Workshop on Lightweight Cryptography - November 2011 27

3.1 Partitioning the Key Space

Let f : {0, 1}80 → {0, 1}2N , for 0 ≤ N ≤ 254, be the linear map describing
the key expansion algorithm of KATAN, where N is the number of rounds.
K = im(f) is a vector space of dimension 80 which is naturally identified with
the key space. For s ≤ N , we define two linear subspaces U, V ⊂ K as follows:

U = {k ∈ K | k0 = 0, . . . , k2s−1 = 0},

V = {k ∈ K | k2N−2s = 0, . . . , k2N−1 = 0}.

Both subspaces have dimension d = 80− 2s, and respective bases can be easily
computed by forward and backward computation or by Gaussian elimination. It
turns out that U ∩ V = {0} if N ≥ 40 and s < N . Hence, K can be partitioned
into affine sets of the form

k ⊕ U ⊕ V = {k ⊕ u⊕ v | u ∈ U, v ∈ V }.

Each subset has size 22d. We call k the base key of the set. The partition can be
described by set of 280−2d base keys that are different modulo U ∪V . Such a set
can be easily enumerated.

3.2 Attack Procedure

Let us see how to test the 22d keys in k⊕U⊕V faster than 22d cipher evaluations.
The main observation is that all keys in k⊕u⊕V , for u ∈ U fixed, have identical
round keys at the last s rounds. In the same way, the keys in k ⊕ U ⊕ v, for
v ∈ V fixed, have the same round keys at the first s rounds. Given a plaintext /
ciphertext pair (p, c) an attacker proceeds as follows:

1. Compute a list of 2d values qv obtained by encrypting p through the rounds
0 to s− 1 under key k ⊕ v for v ∈ V .

2. Compute a list of 2d values qu obtained by decrypting c through the rounds
N − 1 to N − s under the key k ⊕ u for u ∈ U .

3. For each pair (qu, qv) check if qu decrypts to qv through the rounds N−s+1
to s under key k ⊕ u⊕ v. If yes, save k ⊕ u⊕ v as a candidate key.

4. Check candidate keys with one or two additional text pairs.

3.3 Complexity Analysis

The procedure works for any variant with N ≥ 40 rounds. It has to be repeated
280−2d times to test the entire key space. This results in a total cost of

280−d(C1 + C2) + 280C3 + 280−n + 280−2n,

where C1, C2 = s/N are the costs for the partial encryptions resp. decryptions
at the steps 1 and 2, and C3 = (N − 2s)/N is for the checking at step 3. The
last two summands are for checking the candidates. For block sizes n = 48, 64
only one additional text pair must be used and the last summand disappears.
The cost essentially depends on the choice of s. Figure 1 shows that a cost of
79.5 is obtained with s = 37± 1.

ECRYPT Workshop on Lightweight Cryptography - November 2011 28

79.4

79.6

79.8

80

0 5 10 15 20 25 30 35

C
o
m
p
le
x
it
y
(l
o
g
)

s

+ +

+

Fig. 1. Complexity of accelerated search depending on the parameter s. Here, N = 254,
but the curve is qualitatively the same for reduced variants.

4 Optimizations Specific to the Round Transformation

The procedure as described so far applies to all members of the KATAN family
and can be translated to other ciphers that use only a small part of a linearly
expanded key at each round. The method is completely independent of the round
transformation. Exploiting specific properties of the latter allows some improve-
ments.

We are combining partial matching and biclique techniques with accelerated
search, still aiming for a method that applies to all number of rounds. The details
are described for block size n = 32, but a similar analysis applies to the other
block sizes.

4.1 Partial Matching

For the following analysis s = 37 is fixed (based on Fig. 1). The state of
KATAN32 consists of two non-linear shift registers of length 13 and 19, respec-
tively. At each round only one bit per register is updated, and the corresponding
round key is added linearly. As a consequence, the bits s14, . . . , s18, and s31 af-
ter round 57 depend only linearly on k74, . . . , k79. This leads to the following
modification of the procedure:

– At step 1, we encrypt until round 57, but we also store the intermediate
states after round 36. Step 2 is not modified.

ECRYPT Workshop on Lightweight Cryptography - November 2011 29

– At step 3, we decrypt until round 58, apply a linear correction (depending
on u) to the bits s14, . . . , s18, s31 and compare them with the corresponding
bits computed at step 1. For each match, we check the remaining state after
round 57 by encrypting the intermediate state from step 1 under the key
k⊕ u⊕ v. If the whole state matches, we save k⊕ u⊕ v as a candidate right
key.

The average cost of the modified procedure is given by

280−d(C1 + C2) + 280C3 + 280−rC4 + 280−n + 280−2n,

where C1 = 58/N , C2 = 37/N , C3 = (N − 58 − 37)/N , and C4 = (58 − 37)/N
is the cost for checking candidate keys (those who match on the r = 6 bits after
round 57).

4.2 Splice and Cut

The idea of the splice and cut technique is to start the computations at an
intermediate round. This gives some freedom for the choice of the subspaces U
and V . One of them is not required to have zero differences at at consecutive
rounds, but on two consecutive parts at the beginning and at the end. Let s′

be the total number of rounds covered in both parts. Splice and cut provides
an advantage if ∆s = s′ − s > 0. Then, the total cost can be reduced by about
∆s/N · 280. We computed ∆s for all d = {4, 6, 8}, N ∈ {128, . . . , 254}, and
starting points t ∈ {0, . . . , N} (see Appendix A). In most cases, ∆s is 0, and it
is never larger than 4.

We conclude that there is a very small benefit from the splice and cut tech-
nique for variants with a particular number of rounds. However, the technique
significantly increases the data complexity, because each time when computing
through round 0, the cipher must be queried. If the starting point is not very
close to 0, the search essentially requires the whole codebook.

4.3 Bicliques

Bicliques are a formalization of initial structures. The idea is to precompute two
sets of 2d states {xu | u ∈ U} and {yv | v ∈ V } for each base key k such that the
following holds: for all (u, v) ∈ U × V , xu encrypts to yv through the rounds i
to i+ ℓ− 1 under key k ⊕ u⊕ v. Then, during the key search phase, encryption
with k ⊕ v starts from yv, and decryption with k ⊕ u starts from xu. We call ℓ
the length of the biclique and d its dimension. The use of bicliques can decrease
the total cost of the attack by about ℓ/N · 280 if the following conditions are
satisfied:

– For each base key of the partition a suitable biclique exists.
– The total cost for finding the bicliques is negligible compared to the total

cost of the attack.

ECRYPT Workshop on Lightweight Cryptography - November 2011 30

The second condition is not a concern if the bicliques are shorter than 40
rounds. Then, 80 − 2ℓ key bits can be chosen independently from the biclique
and the cost for finding bicliques can be amortized. The first condition is more
restrictive.

In combination with the splice and cut technique, the position of the biclique
can be freely chosen. It turns out that the position is not very important, and we
focus on bicliques from round 0 to round ℓ− 1. For different ℓ we analyzed the
propagation of single bit differences through these rounds. For 0 ≤ i < 80, let δi
denote the key difference with a 1 at position i and 0’s otherwise. We say that
δi and δj propagate independently if ∆p = p⊕ p′′ = 0, where p and p′′ satisfy

p
enc
−−→

k
c

dec
−−−→
k⊕δi

p′
enc

−−−−−→
k⊕δi⊕δj

c′
dec
−−−→
k⊕δj

p′′.

Here, encryption and decryption is only from round 0 to ℓ− 1. It turns out that
all single bit differences propagate independently from each other for ℓ ≤ 10.
This implies that bicliques up to length 10 always exist and can be easily found.
For ℓ = 11, the differences δ1 and δ20 influence each other. Careful analysis shows
that ∆p25 = 1, ∆p29 = p22, and ∆p30 = 1. A biclique only exists for U and V
with zero differences either at position 1 or at position 20. This can be satisfied
at the cost of a lower dimension d or smaller s. In both cases, the benefit of
having a longer biclique is lost.

For larger ℓ, the number of conditions grows very quickly. Considering other
parameters N or bicliques starting at some intermediate round, bicliques of
length 11, 12, or even 13 can be found in some very specific cases (where U and
V satisfy the conditions automatically). Longer bicliques have not been found
with d ≥ 4.

The complexity illustrated in Fig. 2 considers a biclique of length 10 com-
bined with partial matching. It is compared to accelerated search and accelerated
search with partial matching. For the latter, the data complexity is very low,
but when using bicliques, essentially the whole codebook is required.

5 Conclusion

We presented an accelerated key search technique for the KATAN family of
lightweight block ciphers. The entire key space can be searched at the cost of
279.5 cipher evaluations instead of the expected 280. Exploiting specific properties
of the round function, the complexity can be lowered to 279.3 for KATAN32 using
the partial matching technique. Similar improvements are possible for KATAN48
and KATAN64. The technique requires no more than two or three known plain-
text / ciphertext pairs. It applies the other block ciphers with linear key expan-
sion as well.

The applicability of splice and cut and biclique techniques have been studied.
For the full cipher variants they do not provide a significant speed-up, but require
the whole codebook to be known.

ECRYPT Workshop on Lightweight Cryptography - November 2011 31

77

78

79

80

125 150 175 200 225 250

C
o
m
p
le
x
it
y
(l
o
g
)

Rounds (N)

partial matching + biclique
partial matching

not optimized

Fig. 2. Performance of accelerated search and its optimizations.

For the KATAN family, the speed-up factor is too small for considering our
results as an attack on the full ciphers. To the contrary, we confirm that the
designer’s choice for 254 rounds was very appropriate, lying on the edge between
speed and security. For example, with only 192 rounds, the accelerated key search
would provide a speed-up factor 2 over the naive exhaustive search.

Acknowledgements. We thank the reviewers of the ECRYPT workshop on
lightweight cryptography for their very helpful comments. This work was sup-
ported by the European Commission through the ICT programme under contract
ICT-2007-216676 ECRYPT II.

References

1. On the Preimage Resistance of SHA-1 (2011), In submission.

2. Ågren, M.: Some Instant- and Practical-Time Related-Key Attacks on KTAN-
TAN32/48/64. In: Miri, A., Vaudenay, S. (eds.) Selected Areas in Cryptography
(2011)

3. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-
Reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT. Lecture Notes in Computer
Science, vol. 5912, pp. 578–597. Springer (2009)

4. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) Selected Areas in Cryptography.
Lecture Notes in Computer Science, vol. 5381, pp. 103–119. Springer (2008)

ECRYPT Workshop on Lightweight Cryptography - November 2011 32

5. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
aes. Cryptology ePrint Archive, Report 2011/449 (2011), http://eprint.iacr.org/,
Accepted for publication at ASIACRYPT.

6. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanal-
ysis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) Selected Areas in Cryptography. Lecture Notes in Computer
Science, vol. 6544, pp. 229–240. Springer (2010)

7. Cannière, C.D., Dunkelman, O., Knežević, M.: KATAN and KTANTAN - A Fam-
ily of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K.
(eds.) CHES. Lecture Notes in Computer Science, vol. 5747, pp. 272–288. Springer
(2009)

8. Diffie, W., Hellman, M.: Special Feature Exhaustive Cryptanalysis of the NBS
Data Encryption Standard. Computer 10, 74–84 (1977)

9. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks
on Skein-512 and the SHA-2 family. Cryptology ePrint Archive, Report 2011/286
(2011), http://eprint.iacr.org/

10. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanaly-
sis of NLFSR-Based Cryptosystems. In: Abe, M. (ed.) ASIACRYPT. Lecture Notes
in Computer Science, vol. 6477, pp. 130–145. Springer (2010)

11. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanal-
ysis of Trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) Selected Areas in
Cryptography (2011)

12. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol.
5479, pp. 134–152. Springer (2009)

13. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved Meet-in-
the-Middle Cryptanalysis of KTANTAN (Poster). In: Parampalli, U., Hawkes, P.
(eds.) ACISP. Lecture Notes in Computer Science, vol. 6812, pp. 433–438. Springer
(2011)

ECRYPT Workshop on Lightweight Cryptography - November 2011 33

A Splice and Cut Analysis

For N ∈ {128, . . . , 254} and d ∈ {4, 6, 8}, Table 2 shows the maximal benefit
∆s = s′ − s over all starting points t ∈ {0, . . . , N} using the splice and cut
technique (see Section 4).

Table 2. Maximal values for ∆s.

N d N d N d N d

4 6 8 4 6 8 4 6 8 4 6 8

128 1 1 0 129 2 1 0 130 2 1 0 131 2 0 0
132 1 1 1 133 2 2 0 134 3 0 0 135 1 0 0
136 0 0 0 137 0 0 0 138 0 0 0 139 1 1 0
140 2 0 0 141 0 0 0 142 0 0 0 143 0 0 0
144 1 0 0 145 1 0 0 146 1 1 0 147 2 1 1
148 2 2 2 149 3 3 0 150 4 0 0 151 1 0 0
152 0 0 0 153 0 0 0 154 1 1 0 155 2 0 0
156 0 0 0 157 0 0 0 158 0 0 0 159 1 0 0
160 1 0 0 161 0 0 0 162 1 1 1 163 2 2 2
164 3 3 0 165 4 0 0 166 1 0 0 167 1 0 0
168 0 0 0 169 0 0 0 170 0 0 0 171 1 1 0
172 2 0 0 173 1 1 0 174 2 0 0 175 1 1 0
176 2 0 0 177 0 0 0 178 0 0 0 179 1 0 0
180 0 0 0 181 0 0 0 182 0 0 0 183 0 0 0
184 0 0 0 185 0 0 0 186 1 0 0 187 0 0 0
188 0 0 0 189 1 0 0 190 1 0 0 191 0 0 0
192 0 0 0 193 1 0 0 194 1 0 0 195 1 0 0
196 1 0 0 197 0 0 0 198 1 0 0 199 1 0 0
200 1 0 0 201 1 0 0 202 0 0 0 203 0 0 0
204 0 0 0 205 0 0 0 206 1 0 0 207 0 0 0
208 1 1 0 209 2 0 0 210 0 0 0 211 1 0 0
212 1 1 0 213 2 0 0 214 1 0 0 215 0 0 0
216 1 0 0 217 1 0 0 218 0 0 0 219 0 0 0
220 0 0 0 221 0 0 0 222 1 0 0 223 0 0 0
224 1 0 0 225 1 1 0 226 2 0 0 227 0 0 0
228 1 0 0 229 0 0 0 230 0 0 0 231 0 0 0
232 1 0 0 233 1 1 0 234 2 0 0 235 1 0 0
236 1 0 0 237 1 0 0 238 1 0 0 239 1 0 0
240 1 0 0 241 0 0 0 242 1 0 0 243 0 0 0
244 1 0 0 245 1 1 1 246 2 2 0 247 3 0 0
248 1 0 0 249 0 0 0 250 1 1 0 251 2 0 0
252 1 0 0 253 1 0 0 254 1 1 0

ECRYPT Workshop on Lightweight Cryptography - November 2011 34

Some preliminary studies on the differential
behavior of the lightweight block cipher LBlock

Marine Minier1 and Maŕıa Naya-Plasencia2

1 Université de Lyon, INRIA, CITI, F-69621, France
2 University of Versailles, France

Abstract. LBlock is a new lightweight block cipher proposed by Wu
and Zhang at ACNS 2011 [16]. It is based on a modified 32-round Feistel
structure. It uses keys of length 80 bits and message blocks of length 64
bits.
In this paper, we examine the security arguments given in the original
articles and show that the bounds given for differential attacks on 12
and 13 rounds can be improved. In the same way, we can improve the
impossible differential attack given in the original article on 20 rounds
by constructing a 22-round related key impossible differential attack that
relies on intrinsic weaknesses of the key schedule.

1 Introduction

During the last five years, many lightweight block ciphers for constrained envi-
ronments have been proposed. We could cite: PRESENT [1], HIGH [7], mCryp-
ton [11], DESL [10], CGEN [13], MIBS [8], KATAN & KTANTAN [3], TWIS [12],
SEA [15], LED [6], KLEIN [5], Piccolo [14] and LBlock [16].

Even if some cryptanalytic results (see [4, 2, 9] for example) have already
appeared concerning the security of those particular block ciphers, it still remains
necessary to intensively study their security and their efficiency. Moreover, when
designing lightweight block ciphers, a particular care must be taken to the design
of the key schedule. The reason is that it is not always possible to store the
round-keys generated by the key schedule on small platforms due to their limited
memory. In that case, the round-keys must be generated “on the fly”. This
problem has been carefully addressed in the case of CGEN [13].

In this paper, we focus on the security evaluation of the new lightweight
block cipher LBlock [16]. We essentially show that the bounds given in the
original article for differential cryptanalysis applied on 12 and 13 rounds can be
improved and we show how the original impossible differential attack proposed in
the LBlock article can be extended by two rounds using a related key impossible
differential attack.

This paper is organized as follows: Section 2 gives a brief description of
the LBlock lightweight block cipher, Section 3 gives some results concerning
the differential distinguishers and attacks whereas in Section 4 we describe the
related key impossible differential attack on 21 and 22 rounds of LBlock. Finally,
Section 5 concludes this paper.

ECRYPT Workshop on Lightweight Cryptography - November 2011 35

2 Description of LBlock

LBlock is a new lightweight block cipher presented by Wu and Zhang at ACNS
2011 [16]. It uses 80-bit keys and 64-bit blocks and is based on a modified 32-
round Feistel structure (see Fig. 1).

Fig. 1. Overview of one modified Feistel round of LBlock (the numbering corresponds
with the nibble ordering notation).

The round function F first computes Xi ⊕ ki and then applies a transforma-
tion S (composed of 8 parallel applications of 8 different 4-bit bijective S-boxes)
and a permutation P (that exchanges the places of the nibbles as shown on
Fig. 2).

Fig. 2. The permutation P seen as nibble level.

The key schedule takes as input a master key K seen as a key register denoted
at bit level as K = K79K78 · · ·K0 and outputs 32 round subkeys ki. It repeats
the following steps for i = 1 to 31 knowing that k1 is initialized with the 32
leftmost bits of the key register K:

1. K <<< 29
2. [K79K78K77K76] = S9[K79K78K77K76] where S9 is the ninth S-box.
3. [K75K74K73K72] = S8[K75K74K73K72] where S8 is the eighth S-box.
4. [K50K49K48K47] = [K50K49K48K47]⊕ [i]2
5. ki+1 is selected as the leftmost 32 bits of the key register K.

ECRYPT Workshop on Lightweight Cryptography - November 2011 36

3 Improved Differential Analysis

In [16], a reduced differential analysis of the cipher is performed, where only the
maximal number of active Sboxes per number of rounds is given. The authors
conclude that no useful characteristic for 15 rounds exists as the probability of
such a path would be smaller than 2−64, being 264 the size of the code book.

We have performed a more detailed analysis, and considered truncated adap-
tive differentials. We have found the characteristic represented in Fig. 3 that we
use in our analysis. The initial states are 0 and 1. After i rounds, state i is the
right half of the feistel state and state i + 1 the left one. In the figure, X repre-
sents a nibble with a difference, while the remaining nibbles have no difference
(we denote this by 0). The colored nibbles represented by a, b and c in Fig. 3 are
the words that we will use for sampling and generating more pairs that verify
the path with a lower cost. The colored active nibbles (in yellow and gray) are
the ones that will impose the conditions that define the probability of the path.
In the right side of the figure we can see the instant where the nibble conditions
are imposed and the number of them (2 each time). Each 4-bit condition has a
probability of 1/15 ≈ 2−3.9 of being satisfied. In total the probability of verifying
the path, that has 2×6 4-bit conditions, will be 2−3.9×12 = 2−46.88. We will first
consider a distinguisher on the first 12 rounds. We will then extend the attack
on 13 rounds to recover few bits of information on the key.

3.1 Distinguisher for 12 Rounds

After 12 rounds, we can see in Fig. 3 that the right-most 32-bit half of the state
will have a XX000000 difference, and the left-most 32-bit half of the state will
have a XXX0X0XX difference. That is 8 nibbles won’t have any difference.
For 64-bit values, this happens in the random case with a probability of 2−32

while it will happen due to our path with a probability of 2−46.88.
This means that if we try 246.88 input pairs, we will find 214.88 pairs that have

the wanted difference in the output, but only one that satisfies the differential
path. For finding out which is the pair that satisfies the differential path, we will
use the colored nibbles.

If we have a pair of inputs verifying the differential path, and we make all
the 4 × 4 = 16 input nibbles marked with an a, b or c to take different values
(while keeping the same ones for the remaining nibbles), the probability for each
of them to satisfy again the differential path will be of 2−3.9×(2×2) = 2−15.6, as
the first 4× 2 nibble conditions are still assured. As we have 216 pairs to try, if
we find that one of them provides the wanted output difference, this will mean
that the original input pair that we tried verifies the differential path. Otherwise
it won’t, as in the random case this will happen with a probability of 2−32.

This can be used to distinguish 12 rounds of LBlock with an a priori com-
plexity of 246.88 + 214.88+15.6 ' 246.88.

This complexity can be reduced by considering the fact that we do not need
to compute all the 246.88 pairs, but we can store one ordered list of size 224.
With 224 elements we can build

(
224

2

)
= 246.99 pairs, which is slightly more than

ECRYPT Workshop on Lightweight Cryptography - November 2011 37

State: a b
0.- c c X X X X X X

(initial right) <<<8
a b

X X X X X X c c
1.- X X

(initial left) F <<<8
X X

X X
2.- X a X X b X c c

F <<<8
a X X X X c b c

X X b X c c X a
3.- a X X c b c

F <<<8
a X c c X b

X X c b c
4.- X X b c c b

F <<<8
X X b c b c

c c X X
5.- c c c c

F <<<8
c c c c

c c c c c c
6.- c c c c X X

F c <<<8
X X

X X
7.- X X

F <<<8
X X

X X
8.-

F <<<8

9.- X X
F <<<8

X X
X X

10.- X X
F <<<8
X X

X X
11.- X X X X

F <<<8
X X X X

X X X X
12.- X X

F <<<8
X X

(final right) X X
13.- X X X X X X

F
X X X X X X

(final left)
14.- X X X X X X

2 nibble conditions (2-7.8)

2 nibble conditions (2-7.8)

2 nibble conditions (2-7.8)

2 nibble conditions (2-7.8)

2 nibble conditions (2-7.8)

2 nibble conditions (2-7.8)

Fig. 3. Differential path used in our analysis. The X nibbles represent differences.

what we need to perform our analysis. In this list we will store the inputs and
outputs associated to the 224 input values in state 0 : AABBBBBB and in

ECRYPT Workshop on Lightweight Cryptography - November 2011 38

state 1 : AAABABAA, where the nibbles at positions A represent the words
fixed to some random values that are the same for all the 224 elements of the
list. The words represented by B will take different values for each element in
the list. The list will be ordered by the values of the 8 nibbles in the output
where we will look for a 0 difference when performing the distinguisher. Then,
for each element in the list we will check if there exists another element that has
the same value in the 8 corresponding nibbles. As the verification can be done
with a cost of about 1 in an ordered list (or better, with the help of a hash table),
the cost of this step will then be the maximum between the size of the list and
the number of matches that we expect to find, so 224 + 214.88. To compute the
overall complexity of this attack we also need to add the one of the final step
that remains unchanged and that becomes now the bottleneck. We have then a
distinguisher on 12 rounds with a total complexity of 214.88+15.6 = 230.48.

Let us remark here that the best differential attack presented in [16] for 12
rounds had a complexity of 224×2 = 248 compared to the 230.48 that we have
just proposed.

3.2 Recovering some bits of information on the key for 13 Rounds

Exploiting the distinguisher on 12 rounds, we can recover some information on
the key when considering 13 rounds. As we can see in Fig. 3, after 13 rounds the
most left half of the state has two non-active nibbles, and the right half of the
state has also two non-active nibbles.

This means that the initial crible is less effective as, out of all the 246.48 pairs
that we will consider, 230.48 will pass this first test. In addition, we consider that
on average, to one input difference of the LBlock S-boxes, we can associate half
of the possible output differences, and that each of these transitions can be done,
on average, by two values.

This means that for each of the 230.48 pairs kept we have to check if they also
verify that the four most-left words with differences in the left-side state of the
output have difference that could have been generated from the corresponding
nibbles from the right-side state. As we just said, on average, this will happen
with a probability of 2−4. Then, out of the 230.48 pairs, we will just keep 226.48

pairs. The cost so far has been determined by the number of pairs to keep during
the first crible, that is 230.48.

For each of the 226.48 pairs kept so far, we have to check if for the different
values of the nibbles marked by a, b or c in the initial state, as done in the 12-
round distinguisher, we will also find a pair that will satisfy the path. We then try
215.6 different values for these nibbles, leaving the remaining values unchanged.
With a probability of 2−15.6 we will find pairs that have words without difference
in the same 4 positions of the output as before, keeping 226.48 double pairs. Then,
for each of the 24 possible values of the 4 nibbles of the subkey determined by
the previous crible, we check if the state 12 after the inversion will have the
differences as wanted in our path for the new pair obtained. This will happen
with a probability of 2−16, as there are 4 additional words with a 0 difference.

ECRYPT Workshop on Lightweight Cryptography - November 2011 39

In total we will keep 226.48+4−16 = 214.48 pairs, and for each of these pairs, the
values of 16 bits of the key are already fixed and determined.

This means that we only have 214.48 possibilities for 16 bits of the key, mean-
ing that we have recovered 21.52 bits of information, or that we have reduced the
exhaustive search by that factor.

The bottleneck of this analysis is 226.48+15.6 = 242.08. Let us recall that in [16]
the best proposed differential analysis on 13 rounds has a complexity of 256.

4 Related Key Impossible differential Attacks on 21 and
22 rounds of LBlock

The attack described in this section is a related key impossible differential at-
tack. This analysis takes advantage of a similar 14-round impossible differential
path than the one presented in the original paper [16] and of some weaknesses
of the key schedule. In this section, we first introduce the used related key dif-
ferential sets and the impossible differential path. We then provide the complete
description of the attack.

4.1 Related Key sets

The details of the related key sets are given in Appendix A. The main properties
of those related keys come from some intrinsic properties of the key schedule.
First, when a low weight difference is introduced in a pair of keys, those differ-
ences do not cross the S-boxes every round but in average only every 9 rounds
(among 32). Moreover, an injected difference will appear in average only every
three subkeys, creating low weight differential paths. Thus, we are able to con-
struct related keys differential paths with a very low general weight (the ones
presented in Appendix A have only between 12 and 15 active nibbles on all the
32 subkeys). In summary, the diffusion is not sufficient to correctly spread the
differences in the LBlock key-schedule.

However, the four related key differential paths given in Appendix A do not
work for all possible values of the bits K75,K74,K73,K72 of the key. But, from
those four related key paths, we are able to have a complete partition of all
possible values. This is due to the small size of the S-boxes that work on nibbles.
Moreover, those differentials cross almost always the same S-box s8 leading to
produce always the same differences.

Thus, it will be always possible according to the value of 5 bits (see details
on Appendix A) of the master key K to build a second key K ′ = K ⊕∆K with
∆K equal to 0 everywhere except on the nibble K75,K74,K73,K72 which takes
the value 2 or 4.

4.2 Impossible differential path

In the original paper describing LBlock, the authors give the following 14-round
impossible differential:

(00000000, 00α00000) after 14 rounds could not give (0β000000, 00000000)

ECRYPT Workshop on Lightweight Cryptography - November 2011 40

As the differences injected through the subkey additions in our related key sets
have really low weight, we are able to continue to construct 14-round impossible
differentials even taking into account the differences coming from the subkeys.
For example, the following 14-round impossible differential (starting at the be-
ginning of round 5 and ending after round 18) can not happen:

(00000000, 0000000α) after 14 rounds can not give (00000000, 00000000).

This impossible differential works for all the related key paths presented in Ap-
pendix A. As we just said, this impossible differential is taken from the fifth
round until the 19th round and combined with the first four rounds at the be-
ginning as shown on Fig. 4 and with the last three rounds (four for analysing 22
rounds) in the end as shown on Fig. 5.

4.3 The attack description for 21 rounds

If we consider Fig. 4 and Fig. 5 we see which differences will have the extended
impossible differential path in the first and in the last round. In Fig. 4 we show
a case that works for 2 out of the 4 possible differential paths, being similar for
the other two.

The procedure of our attack is as follows:

– For each one of the 4 possible differential paths in the key schedule, we find
m good pairs of input messages that satisfy the extended differential path.
This can be done by the limited-birthday approach with a complexity of
about m28232−15 = m225. As the partial keybits will be determined only in
a second step, we need to build the m set and repeat the following procedure
for all the 4 possibilities of the differential path in the key schedule.

– For each of the m good pairs (and for the 4 possible differential paths) we
check if the conditions of getting from the input pair to the beginning of
the impossible differential, and from the output to the end of the impossible
differential, can be verified by some values of the keybits that intervene in
these conditions. In total, we have 45 keybits involved.

– The keybits that make both transitions possible for at least one of the m
good pairs will be filtered out of the possible key guesses as otherwise they
would imply that the impossible differential had occured. We will compute
next which size must m have so that we filter all the wrong key guesses.

– From Fig. 4 we can see that there are 7 nibble conditions for errasing the
active nibbles and obtaining the differential configuration at the input of the
impossible differential. The keybits involved are K77 to K68, K63 to K48,
K46 to K41, K34 to K31, K26 to K19 (44 in total).

– From Fig. 5 we can see that there exist 2 nibble conditions for obtaining
from the output, the differential configuration of the end of the impossible
differential. They involve keybits K77 to K74, K55 to K52, K47 to K44 (12
in total and just one not included in the previous set).

ECRYPT Workshop on Lightweight Cryptography - November 2011 41

<<<8

F

<<<8

F
<<<8

F

<<<8

F
<<<8

F

k1

k2

k3

X1 X0

X2 X1

X3 X2

X3X4
<<<8

F
<<<8

Fk4

X5 X4 Difference

Value to know

3 nibble conditions

2 nibble conditions

1 nibble conditions

1 nibble conditions

Fig. 4. The initial rounds.

– As the probability that for a good pair, the 7 + 2 = 9 nibble conditions are
verified is 2−36, for each key guess the probability that none of the m good
pairs verifies all the conditions is

P = (1− 2−36)m.

– We have 245 possibilities for the involved keybits, which means that if we
choose m = 242, and so P ≈ 2−92.33, we will filter out all the wrong key
guesses but the correct one.

The complexity of the attack, where we recover 45 keybits (and then the
remaining ones with much lower complexity) is then

4 ∗ 242+25 + 4 ∗ 242245−36 ≈ 269,

where the first term represents the complexity of obtaining the 242 pairs
with the wanted input-outut differences for the 4 differential paths of the key
schedule, and the second term comes from the fact that, for each of the 242 pairs
of messages, and for the 4 possible key schedule paths, we filter out all the partial
keys that verify the conditions. For each one of the m pairs, we have on average

ECRYPT Workshop on Lightweight Cryptography - November 2011 42

Fig. 5. The final rounds.

245−36 = 29 such values that verify the 9 nibble conditions for the 45 keybits:
we can determine directly, from a given good pair, the values of the involved
keybits that will verify the conditions, but this will have the same result as if
we performed an exhaustive search on the 45 involved bits, to check for which
ones the conditions are verified. As the probability of verifying the conditions is
2−36, for each one of the m pairs we will find about 245−36 = 29 different values
verifying the conditions for the 45 keybits.

4.4 Extending the attack to 22 rounds

We can extend the attack by considering one more round in the end. In this
case, the procedure is similar as the one described in the previous section. Now,
we have 4 active nibbles in the output after 22 rounds.

Now, the cost of finding the m pairs of messages will be m212232−23 = m221,
as now the size of differences in the output is of 12 bits.

Adding the last round we add one extra condition in one nibble plus we
involve 12 additional keybits (57 in total): K30 to K27, K18 to K15 and K6 to
K3. The probability is given now by P = (1− 2−40)m. Choosing m = 247 makes
that P ≈ 2−184.66, so we can expect that 2−184.66+57 = 2−127.66 wrong guesses
remain, so we find the correct key guess with a very high probability.

ECRYPT Workshop on Lightweight Cryptography - November 2011 43

The complexity in this case for recovering key is

4 ∗ 247+21 + 4 ∗ 247257−40 ≈ 270.

5 Conclusion

We have provided in this article a more detailed analysis of differential and
related key impossible differential behaviors of the new lightweight block cipher
LBlock. We also show that the bounds originally given in the LBlock article
could be improved.

In the differential case, we have shown that assuming that no attack can be
build on 15 rounds because the number of active S-boxes is at least 32 is a bit
premature, as attacks with smaller complexities than the ones bounded by the
authors have been shown here (though they are more evolved). In the same way,
we take advantage in the proposed related key impossible differential attack of
some particular weaknesses of the key-schedule that could produce differential
paths with really low weight for an initial difference carefully chosen.

Finally, we have been able to give the best attack known on LBlock, that
works up to 22-rounds, while the analysis for the biggest number of rounds in
the original article worked on 20 rounds. We believe that our analysis can still
be improved.

References

1. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Cryptographic Hardware and
Embedded Systems - CHES 2007, Lecture Notes in Computer Science 4727, pages
450–466. Springer Verlag, 2007.

2. Andrey Bogdanov and Christian Rechberger. A 3-subset meet-in-the-middle at-
tack: Cryptanalysis of the lightweight block cipher ktantan. In Selected Areas in
Cryptography - SAC 2010, volume 6544 of Lecture Notes in Computer Science,
pages 229–240. Springer, 2010.

3. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers.
In Cryptographic Hardware and Embedded Systems - CHES 2009, Lecture Notes
in Computer Science 5747, pages 272–288. Springer Verlag, 2009.

4. Baudoin Collard and François-Xavier Standaert. A Statistical Saturation Attack
against the Block Cipher PRESENT. In Topics in Cryptology - CT-RSA 2009,
Lecture Notes in Computer Science 5473, pages 195–210. Springer Verlag, 2009.

5. Zhen Gong, Svetla Nikova, and Yee-Wei Law. KLEIN: a new family of lightweight
block ciphers. In RFIDSec, 2011.

6. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The led block
cipher. In Workshop on Cryptographic Hardware and Embedded Systems 2011 -
CHES 2011, volume to appear of Lecture Notes in Computer Science. Springer,
2011.

ECRYPT Workshop on Lightweight Cryptography - November 2011 44

7. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok
Koo, Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim,
Jongsung Kim, and Seongtaek Chee. HIGHT: A New Block Cipher Suitable for
Low-Resource Device. In Cryptographic Hardware and Embedded Systems - CHES
2006, Lecture Notes in Computer Science 4249, pages 46–59. Springer Verlag, 2006.

8. Maryam Izadi, Babak Sadeghiyan, Seyed Saeed Sadeghian, and Hossein Arab-
nezhad Khanooki. MIBS: A New Lightweight Block Cipher. In Cryptology and
Network Security - CANS 2009, Lecture Notes in Computer Science 5888, pages
334–348, 2009.

9. Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik Zen-
ner. A cryptanalysis of printcipher: The invariant subspace attack. In Advances in
Cryptology - CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,
pages 206–221. Springer, 2011.

10. Gregor Leander, Christof Paar, Axel Poschmann, and Kai Schramm. New
lightweight des variants. In Fast Software Encryption - FSE 2007, Lecture Notes
in Computer Science 4593, pages 196–210. Springer Verlag, 2007.

11. Chae Hoon Lim and Tymur Korkishko. mCrypton - A Lightweight Block Cipher
for Security of Low-Cost RFID Tags and Sensors. In Workshop on Information
Security Applications - WISA 2005, Lecture Notes in Computer Science 3786, pages
243–258. Springer Verlqg, 2005.

12. Shrikant Ojha, Naveen Kumar, Kritika Jain, and Sangeeta Lal. TWIS - a
lightweight block cipher. In ICISS, pages 280–291, 2009.

13. Matthew J. B. Robshaw. Searching for compact algorithms: cgen. In VIETCRYPT,
pages 37–49, 2006.

14. Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Ak-
ishita, and Taizo Shirai. Piccolo: An ultra-lightweight blockcipher. In CHES,
volume 6917 of Lecture Notes in Computer Science, pages 342–357. Springer, 2011.

15. François-Xavier Standaert, Gilles Piret, Neil Gershenfeld, and Jean-Jacques
Quisquater. Sea: A scalable encryption algorithm for small embedded applica-
tions. In CARDIS, pages 222–236, 2006.

16. Wenling Wu and Lei Zhang. Lblock: A lightweight block cipher. In Applied Cryp-
tography and Network Security - ACNS 2011, volume 6715 of Lecture Notes in
Computer Science, pages 327–344. Springer, 2011.

A Related key differences used in the related key
impossible differential attack

There are four cases of related key differentials that depend on the value of the
five bits K76 and (K75,K74,K73,K72). According to the values of those bits,
the difference that must be injected in the key is 2 or 4 on K18. The Tables 1
and 2 give those differentials on the keys and on the subkeys. We then obtain 4
related key differentials that could be used whatever the 5 bits values are. The
four differences are chosen according to:

– If the key bits (K75,K74,K73,K72) take the values 0, 1, 4 and 5 and if
K76 = 0, then the good related key differential is the right one given in
Tab. 2, else if K76 = 1, the good related key differential is the right one
given in Tab. 1.

ECRYPT Workshop on Lightweight Cryptography - November 2011 45

– If the key bits (K75,K74,K73,K72) take the values 2, 3, 6 and 7 and if
K76 = 0, then the related key differential is the right one given in Tab. 1,
else if K76 = 1, the good related key differential is the right one given in
Tab. 2.

– If the key bits (K75,K74,K73,K72) take the values 8, 9, 10 and 11 and if
K76 = 0, then the related key differential is the left one given in Tab. 2, else
if K76 = 1, the good related key differential is the left one given in Tab. 1.

– If the key bits (K75,K74,K73,K72) take the values 12, 13, 14 and 15 and if
K76 = 0, then the related key differential is the left one given in Tab. 1, else
if K76 = 1, the good related key differential is the left one given in Tab. 2.

As Shown on Tab. 1, the key schedule algorithm does not provide a sufficient
diffusion of differences.

ECRYPT Workshop on Lightweight Cryptography - November 2011 46

Diff Key: 0 2 0 0 0 0 0 0 0 0 Diff Key: 0 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Diff SubKey1: 0 2 0 0 0 0 0 0 Diff SubKey1: 0 4 0 0 0 0 0 0
Diff SubKey2: 0 0 0 0 0 0 0 0 Diff SubKey2: 0 0 0 0 0 0 0 0
Diff SubKey3: 0 0 0 0 0 0 0 8 Diff SubKey3: 0 0 0 0 0 0 1 0
Diff SubKey4: 0 0 0 0 0 0 0 0 Diff SubKey4: 0 0 0 0 0 0 0 0
Diff SubKey5: 0 0 0 0 0 0 0 0 Diff SubKey5: 0 0 0 0 0 0 0 0
Diff SubKey6: 0 0 0 0 0 4 0 0 Diff SubKey6: 0 0 0 0 0 8 0 0
Diff SubKey7: 0 0 0 0 0 0 0 0 Diff SubKey7: 0 0 0 0 0 0 0 0
Diff SubKey8: 0 0 0 0 0 0 0 0 Diff SubKey8: 0 0 0 0 0 0 0 0
Diff SubKey9: 0 0 0 2 0 0 0 0 Diff SubKey9: 0 0 0 4 0 0 0 0
Diff SubKey10: 0 0 0 0 0 0 0 0 Diff SubKey10: 0 0 0 0 0 0 0 0
Diff SubKey11: 0 0 0 0 0 0 0 0 Diff SubKey11: 0 0 0 0 0 0 0 0
Diff SubKey12: 0 6 0 0 0 0 0 0 Diff SubKey12: 0 2 0 0 0 0 0 0
Diff SubKey13: 0 0 0 0 0 0 0 0 Diff SubKey13: 0 0 0 0 0 0 0 0
Diff SubKey14: 0 0 0 0 0 0 1 8 Diff SubKey14: 0 0 0 0 0 0 0 8
Diff SubKey15: 0 0 0 0 0 0 0 0 Diff SubKey15: 0 0 0 0 0 0 0 0
Diff SubKey16: 0 0 0 0 0 0 0 0 Diff SubKey16: 0 0 0 0 0 0 0 0
Diff SubKey17: 0 0 0 0 0 c 0 0 Diff SubKey17: 0 0 0 0 0 4 0 0
Diff SubKey18: 0 0 0 0 0 0 0 0 Diff SubKey18: 0 0 0 0 0 0 0 0
Diff SubKey19: 0 0 0 0 0 0 0 0 Diff SubKey19: 0 0 0 0 0 0 0 0
Diff SubKey20: 0 0 0 6 0 0 0 0 Diff SubKey20: 0 0 0 2 0 0 0 0
Diff SubKey21: 0 0 0 0 0 0 0 0 Diff SubKey21: 0 0 0 0 0 0 0 0
Diff SubKey22: 0 0 0 0 0 0 0 0 Diff SubKey22: 0 0 0 0 0 0 0 0
Diff SubKey23: 0 5 0 0 0 0 0 0 Diff SubKey23: 0 3 0 0 0 0 0 0
Diff SubKey24: 0 0 0 0 0 0 0 0 Diff SubKey24: 0 0 0 0 0 0 0 0
Diff SubKey25: 0 0 0 0 0 0 1 4 Diff SubKey25: 0 0 0 0 0 0 0 c
Diff SubKey26: 0 0 0 0 0 0 0 0 Diff SubKey26: c 0 0 0 0 0 0 0
Diff SubKey27: 0 0 0 0 0 0 0 0 Diff SubKey27: 0 0 0 0 0 0 0 0
Diff SubKey28: 0 0 0 0 0 b 4 0 Diff SubKey28: 0 0 0 0 0 7 0 0
Diff SubKey29: 0 0 0 0 0 0 0 0 Diff SubKey29: 0 0 0 0 0 0 0 0
Diff SubKey30: 0 0 0 0 0 0 0 0 Diff SubKey30: 0 0 0 0 0 0 0 0
Diff SubKey31: 0 0 0 5 a 0 0 0 Diff SubKey31: 0 0 0 3 8 0 0 0
Diff SubKey32: 0 0 0 0 0 0 0 0 Diff SubKey32: 0 0 0 0 0 0 0 0

Table 1. The two first related key differentials used in the attack presented in Section
4. Note that the differential trails from Subkey23 and Subkey26 respectively could have
different values from the ones given here.

ECRYPT Workshop on Lightweight Cryptography - November 2011 47

Diff Key: 0 2 0 0 0 0 0 0 0 0 Diff Key: 0 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Diff SubKey1: 0 2 0 0 0 0 0 0 Diff SubKey1: 0 4 0 0 0 0 0 0
Diff SubKey2: 0 0 0 0 0 0 0 0 Diff SubKey2: 0 0 0 0 0 0 0 0
Diff SubKey3: 0 0 0 0 0 0 0 8 Diff SubKey3: 0 0 0 0 0 0 1 0
Diff SubKey4: 0 0 0 0 0 0 0 0 Diff SubKey4: 0 0 0 0 0 0 0 0
Diff SubKey5: 0 0 0 0 0 0 0 0 Diff SubKey5: 0 0 0 0 0 0 0 0
Diff SubKey6: 0 0 0 0 0 4 0 0 Diff SubKey6: 0 0 0 0 0 8 0 0
Diff SubKey7: 0 0 0 0 0 0 0 0 Diff SubKey7: 0 0 0 0 0 0 0 0
Diff SubKey8: 0 0 0 0 0 0 0 0 Diff SubKey8: 0 0 0 0 0 0 0 0
Diff SubKey9: 0 0 0 2 0 0 0 0 Diff SubKey9: 0 0 0 4 0 0 0 0
Diff SubKey10: 0 0 0 0 0 0 0 0 Diff SubKey10: 0 0 0 0 0 0 0 0
Diff SubKey11: 0 0 0 0 0 0 0 0 Diff SubKey11: 0 0 0 0 0 0 0 0
Diff SubKey12: 0 2 0 0 0 0 0 0 Diff SubKey12: 0 6 0 0 0 0 0 0
Diff SubKey13: 0 0 0 0 0 0 0 0 Diff SubKey13: 0 0 0 0 0 0 0 0
Diff SubKey14: 0 0 0 0 0 0 0 8 Diff SubKey14: 0 0 0 0 0 0 1 8
Diff SubKey15: 0 0 0 0 0 0 0 0 Diff SubKey15: 0 0 0 0 0 0 0 0
Diff SubKey16: 0 0 0 0 0 0 0 0 Diff SubKey16: 0 0 0 0 0 0 0 0
Diff SubKey17: 0 0 0 0 0 4 0 0 Diff SubKey17: 0 0 0 0 0 c 0 0
Diff SubKey18: 0 0 0 0 0 0 0 0 Diff SubKey18: 0 0 0 0 0 0 0 0
Diff SubKey19: 0 0 0 0 0 0 0 0 Diff SubKey19: 0 0 0 0 0 0 0 0
Diff SubKey20: 0 0 0 2 0 0 0 0 Diff SubKey20: 0 0 0 6 0 0 0 0
Diff SubKey21: 0 0 0 0 0 0 0 0 Diff SubKey21: 0 0 0 0 0 0 0 0
Diff SubKey22: 0 0 0 0 0 0 0 0 Diff SubKey22: 0 0 0 0 0 0 0 0
Diff SubKey23: 0 2 0 0 0 0 0 0 Diff SubKey23: 0 1 0 0 0 0 0 0
Diff SubKey24: 0 0 0 0 0 0 0 0 Diff SubKey24: 0 0 0 0 0 0 0 0
Diff SubKey25: 0 0 0 0 0 0 0 8 Diff SubKey25: 0 0 0 0 0 0 0 4
Diff SubKey26: 0 0 0 0 0 0 0 0 Diff SubKey26: c 0 0 0 0 0 0 0
Diff SubKey27: 0 0 0 0 0 0 0 0 Diff SubKey27: 0 0 0 0 0 0 0 0
Diff SubKey28: 0 0 0 0 0 4 0 0 Diff SubKey28: 0 0 0 0 0 2 c 0
Diff SubKey29: 0 0 0 0 0 0 0 0 Diff SubKey29: 0 0 0 0 0 0 0 0
Diff SubKey30: 0 0 0 0 0 0 0 0 Diff SubKey30: 0 0 0 0 0 0 0 0
Diff SubKey31: 0 0 0 2 0 0 0 0 Diff SubKey31: 0 0 0 1 6 0 0 0
Diff SubKey32: 0 0 0 0 0 0 0 0 Diff SubKey32: 0 0 0 0 0 0 0 0

Table 2. The two other related key differentials used in the attack presented in Section
4 that provide a complete partition on all possible key values.

ECRYPT Workshop on Lightweight Cryptography - November 2011 48

Compact Hardware Implementations of the

Ultra-Lightweight Block Cipher Piccolo

Harunaga Hiwatari, Kyoji Shibutani, Takanori Isobe, Atsushi Mitsuda,
Toru Akishita, and Taizo Shirai

Sony Corporation
1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan

{Harunaga.Hiwatari,Kyoji.Shibutani,Takanori.Isobe,Atsushi.Mitsuda,
Toru.Akishita,Taizo.Shirai}@jp.sony.com

Abstract. In CHES 2011, a 64-bit lightweight block cipher Piccolo sup-
porting key lengths of 80 and 128 bits has been proposed. Piccolo has a
variant of a generalized Feistel structure with an SPS-type F-function, a
half-word based round permutation and permutation-based key schedul-
ing. The authors claimed that Piccolo achieves both high security and
compact implementations. In this paper, we show the detailed descrip-
tions of hardware implementations of Piccolo. We make efficient use of
equivalent transformations to reduce area requirements for key schedul-
ing including key whitening. Moreover, we show the novel technique
for serialized architectures using the inverse of S-box. Our technique
can avoid the use of additional registers for intermediate values of F-
functions. In addition, we compare the implementation results of Piccolo

with other lightweight block ciphers in both flexible and fixed-key set-
tings, and show that Piccolo is very competitive in both settings.

Key words: block cipher, Piccolo, compact hardware implementation,
ASIC

1 Introduction

Block ciphers are essential primitives for cryptographic applications such as data
integrity, confidentiality, and protection of privacy. At the same time, with the
large deployment of low resource devices such as RFID tags and sensor nodes
and increasing need to provide security among devices, lightweight cryptogra-
phy has become a hot topic. Hence, recently, research on designing and ana-
lyzing lightweight block ciphers has received a lot of attention. In fact, many
ultra-lightweight block ciphers have been designed for use in small embedded
devices such as mCrypton [18], HIGHT [13], DESL/DESXL [17], PRESENT [5],
KATAN/KTANTAN [8], PRINTcipher [15] and LED [11].

Recently, a 64-bit block cipher Piccolo [27] supporting key lengths of 80 and
128 bits has been proposed in CHES 2011. Piccolo has a variant of a generalized
Feistel structure with a SPS-type F-function, a half-word based round permu-
tation and permutation-based key scheduling. Piccolo is designed to achieve

ECRYPT Workshop on Lightweight Cryptography - November 2011 49

enough immunity against known attacks including recent related-key differen-
tial attacks [3, 2] and meet-in-the-middle attacks [6]. From the view of hardware
implementations, Piccolo achieves both very small requirements on an area foot-
print and high efficiency on energy consumption. Moreover, Piccolo requires
relatively small additional area requirements to support decryption due to its
Feistel-type structure and permutation-based key scheduling.

In this paper, we show the detailed descriptions of hardware implementations
of Piccolo. We designed two types of implementations to achieve high efficiency
and small area requirements: a round-based implementation and a serialized
implementation. While one round function is processed within one cycle in a
round-based implementation, only a fraction of one round is treated in a cycle
in a serialized implementation. As for round-based implementations, XOR oper-
ations with round keys are moved by an equivalent transformation into the data
lines where key whitening operations are processed. Thus, XOR gates for round
keys and whitening keys area merged, and then 176 GE in total can be saved.

As for serialized implementations, we utilize a novel technique to implement
a generalized Feistel structure with SPS-type F-functions. In SAC 2011, compact
hardware architectures of the block cipher CLEFIA [28] have been proposed [1].
The authors introduced the serialized implementations of Maximum Distance
Separable (MDS) matrices without additional registers in a generalized Feistel
structure with SP-type F-functions. However, their technique cannot be applied
to Piccolo that employs SPS-type F-functions. In our technique, we utilize the in-
verse of S-box to avoid additional registers for intermediate values of F-functions,
which leads to savings of 60 GE. Our technique is also applicable to a Feistel
structure and SPSP-type F-functions. Moreover, we show detailed data flow of
serialized implementations including how to implement the round permutation
efficiently.

We compare the implementation result of Piccolo with other lightweight block
ciphers in consideration of the difference between the two key input settings:
flexible and fixed-key setting. The difference strongly affects the area require-
ments. We discuss the influence to implementation results from the difference.
We also mention the good feature of permutation-based key scheduling part in
the flexible-key setting. As a result, it is shown that Piccolo is very competitive
to other lightweight block ciphers in both key settings.

The rest of the paper is organized as follows. Sect. 2 gives the description of
Piccolo. Sect. 3 and Sect. 4 describe our implementation techniques for Piccolo

about round-based and serialized implementation, respectively. In Sect. 5, we
discuss the difference between the two key input settings and provide evaluation
results for our implementation, compared with the previous results of lightweight
block ciphers. Finally, we conclude in Sect. 6.

ECRYPT Workshop on Lightweight Cryptography - November 2011 50

F

P0

wk0

P1 P2 P3
16

rk0

16

wk1

16

rk1

16

RP

F

F rk2 rk3F

RP

F rk2r-4 F

RP

rk2r-3

F rk2r-2 F rk2r-1

wk2 wk3
16 16 16 16

C0 C1 C2 C3

RP

Fig. 1. Encryption function ENCr

S

S

S

S

4

4

4

4

M

S

S

S

S

4

4

4

4

1616
M

Fig. 2. F-function F

1

1

1

1

1

1

1

1

4 4

MSB

LSB

Fig. 3. S-box S

8 8 8 8

16 16

8 8 8 8

16 16

8 8 8 8

16 16

8 8 8 8

16 16

Fig. 4. Round permutation RP

2 Algorithm Description of Piccolo

Piccolo [27] is a 64-bit block cipher supporting 80-bit and 128-bit keys, denoted
as Piccolo-80 and Piccolo-128, respectively. Piccolo is divided into two parts: the
data processing part and the key scheduling part.

The data processing part employs a 4-branch Type-2 generalized Feistel net-
work with a 16-bit F-function F and a 64-bit round permutation RP . The num-
ber of rounds r is 25 an 31 for Piccolo-80 and -128, respectively. The encryption
function ENCr takes a 64-bit plaintext P = P0|P1|P2|P3, 16-bit whitening keys
wki (0 ≤ i < 4), and 16-bit round keys rkj (0 ≤ j < 2r) as inputs, and outputs
a 64-bit ciphertext C = C0|C1|C2|C3 as shown in Fig. 1.

The F-function F consists of two S-box layers between which a diffusion layer
is sandwiched (See Fig. 2). The S-box layer consists of four 4-bit bijective S-boxes
S, which can be constructed by 4 NOR gates, 3 XOR gates and 1 XNOR gate
as shown in Fig. 3. The diffusion matrix M is defined as

M =

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

.

ECRYPT Workshop on Lightweight Cryptography - November 2011 51

The multiplication between the matrix and a vector is performed in GF(24)
defined by a primitive polynomial z4+z+1. The round permutation RP permutes
eight 8-bit data as shown in Fig. 4.

The key scheduling part of Piccolo-80 takes a 80-bit key K = k0|k1|k2|k3|k4

as input and outputs 16-bit whitening keys wki (0 ≤ i < 4) and 16-bit round
keys rkj (0 ≤ j < 50). wki and rkj are defined as

wk0 ← kL
0 |k

R
1 , wk1 ← kL

1 |k
R
0 , wk2 ← kL

4 |k
R
3 , wk3 ← kL

3 |k
R
4

(rk2j , rk2j+1)← (con80
2j , con

80
2j+1)⊕ (sk2j , sk2j+1)

(sk2j , sk2j+1)←

(k2, k3) (j mod 5 = 0, 2)

(k0, k1) (j mod 5 = 1, 3)

(k4, k4) (j mod 5 = 4),

where kL
i and kR

i indicate left and right half 8 bits of ki, respectively, and
con80

j (0 ≤ j < 50) are constant values for Piccolo-80.
For Piccolo-128, 16-bit whitening key wki (0 ≤ i < 4) and 16-bit round keys

rkj (0 ≤ j < 62) are generated from a 128-bit key K = k0|k1|k2|k3|k4|k5|k6|k7

and constant values con128
j (0 ≤ j < 62) as follows:

wk0 ← kL
0 |k

R
1 , wk1 ← kL

1 |k
R
0 , wk2 ← kL

4 |k
R
7 , wk3 ← kL

7 |k
R
4

(rk2j , rk2j+1)← (con128
2j , con128

2j+1)⊕ (sk2j , sk2j+1)

sk2j ←

k0 (j mod 16 = 5, 10, 12, 15)

k2 (j mod 16 = 0, 3, 9, 14)

k4 (j mod 16 = 1, 6, 8, 11)

k6 (j mod 16 = 2, 4, 7, 13)

sk2j+1 ←

k1 (j mod 4 = 3)

k3 (j mod 12 = 0, 5, 10)

k5 (j mod 12 = 1, 6, 8)

k7 (j mod 12 = 2, 4, 9).

3 Round-Based Implementation

Since it is only necessary to implement a whole round function, a round-based
implementation is usually done straightforwardly. However, in this section, we
present a novel technique to reduce the area requirement of round-based archi-
tecture.

The key scheduling part of Piccolo can be implemented by using multiplexers
in a way similar to the implementation of GOST and KTANTAN [23, 8]. Since
our technique focuses on the data processing part, we omit the detail descrip-
tion about the key scheduling part. Moreover, for ease of explanation, we omit
constant values included in key scheduling part for Piccolo; we only consider
(sk2j , sk2j+1) for round keys (rk2j , rk2j+1).

ECRYPT Workshop on Lightweight Cryptography - November 2011 52

F

P0
L

8

wk0
L

D1
L

8

2:1

R00

en1

P0
R

8

wk0
R

D3
R

8

2:1

R01

en1

P1
L

8

D2
L

8

2:1

R10

sk2j
L

D0
R

8

2:1

R11

sk2j
R

P1
R

8

wk2
L

en2
wk2

R

en2

D0
L

C1
L

D0
R

C3
R

D1
R

C0
R

D1
L

C2
L

F

P2
L

8

wk1
L

D3
L

8

2:1

R20

en1

P2
R

8

wk1
R

D1
R

8

2:1

R21

en1

P3
L

8

D0
L

8

2:1

R30

sk2j+1
L

D2
R

8

2:1

R31

sk2j+1
R

P3
R

8

wk3
L

en2
wk3

R

en2

D2
L

C3
L

D2
R

C1
R

D3
R

C2
R

D3
L

C0
L

Fig. 5. Straightforward data path of round-based architecture

3.1 Sharing XOR between Round Key and Whitening Key

Piccolo has key whitening operations which are XOR operations with whitening
keys at initial and final rounds. The key whitening operations are important
from a viewpoint of security. However, the area overhead is not negligible.

We describe a straightforward data path of Piccolo in Fig. 5. Note that XL

and XR indicate left and half 8 bits of a 16-bit X. When inputing a 64-bit
plaintext P = P0|P1|P2|P3, the key whitening operations are done by setting
an enable signal to high. Then, the intermediate results DL

i , DR
i (0 ≤ i ≤

3) are calculated and stored in the registers Rij (0 ≤ i ≤ 3, 0 ≤ j ≤ 1)
according to the round permutation RP . In the process of the final round, the
key whitening operations are executed by setting an enable signal en2 to high
before a ciphertext is output. Fig. 5 shows that we require additional eight 8-bit
XORs and eight 8-bit ANDs for the key whitening operations. Those additional
gates cost totally 192 GE in the library we use. Note that we actually use negative
logic to reduce the area requirement in the logic synthesis, although we describe
the architecture by using positive logic.

In order to minimize additional gates for the key whitening operations, we
propose a new implementation technique. We move the XOR operations with
round keys into next round beyond the round permutation by an equivalent
transformation as shown in Fig. 6. The inverse permutation of round permutation
RP is denoted as RP−1. The encryption process in Fig. 6 (b) executes XOR
operations with the round keys and the whitening keys at only two lines: the
1st line and the 3rd line from left. According to the encryption process, we can
construct a data path shown in Fig. 7. In the data path, a plaintext is XORed
with whitening key before stored in the register Rij (0 ≤ i ≤ 3, 0 ≤ j ≤ 1). After
that, the intermediate results DL

i , DR
i (0 ≤ i ≤ 3) are calculated and stored in

the registers Rij according to the round permutation RP . In the process of the
final round, the data path executes not the key whitening operations for the
output but the round permutation. Finally, the contents of the registers Rij

is permuted through the inversion of round permutation RP−1. Then, the key

ECRYPT Workshop on Lightweight Cryptography - November 2011 53

F

P0
L|P0

R

16

sk0
L|sk0

R

16 16 16

RP

F

F F

RP

RP

F F

16 16 16 16

RP

wk0
L|wk0

R wk1
L|wk1

R

sk2
L|sk2

R

sk1
L|sk1

R

sk3
L|sk3

R

F F

sk2r-2
L|sk2r-2

R sk2r-1
L|sk2r-1

R

sk5
L|sk5

Rsk4
L|sk4

R

wk2
L|wk2

R wk3
L|wk3

R

P1
L|P1

R P2
L|P2

R P3
L|P3

R

C0
L|C0

R C1
L|C1

R C2
L|C2

R C3
L|C3

R

F

P0
L|P0

R

16

sk0
L|sk1

R

16 16 16

RP

F

F F

RP

RP

F F

16 16 16 16

RP

wk0
L|wk0

R wk1
L|wk1

R

sk2
L|sk3

R

sk1
L|sk0

R

sk3
L|sk2

R

F F

sk2r-2
L|sk2r-1

R

sk2r-3
L|sk2r-4

R

wk2
L|wk2

R wk3
L|wk3

R

P1
L|P1

R P2
L|P2

R P3
L|P3

R

C0
L|C0

R C1
L|C1

R C2
L|C2

R C3
L|C3

R

RP

RP-1

sk2r-4
L|sk2r-3

R

sk2r-1
L|sk2r-2

R

(a) (b)

Fig. 6. (a) Encryption process, (b) Optimized encryption process. XOR operations
with the part of round keys are moved by an equivalent transformation.

whitening operations at the final round are executed by XORing the whitening
keys with LL

1 , LR
1 , LL

3 and LR
3

In contrast to the straightforward implementation Fig. 5, we can reduce the
area requirements of eight 8-bit XORs and eight 8-bit ANDs, although four
8-bit 3-to-1 MUXes is added instead of four 8-bit 2-to-1 MUXes. If a library
includes a 3-to-1 MUX which has low area requirement, the additional cost for
key whitening operation becomes smaller. In fact, we can reduce 176 GE from
the straightforward implementation in our library.

4 Serialized Implementation

In this section, we propose compact hardware implementation techniques of the
serialized hardware architectures. Especially, we focus on how to implement an
MDS matrix in the structure of a generalized Feistel network.

ECRYPT Workshop on Lightweight Cryptography - November 2011 54

F

P0
L

8

D1
L

8

3:1

R00 R01

P1
L

8

D2
L

8

2:1

R10

sk2j
L,

wk0
L,

or wk2
L

D0
R

8

2:1

R11

P1
R

8

D0
L

C1
L

D0
R

C3
R

D1
RD1

L

L3
L

8

sk2j+1
R,

wk0
R,

or wk2
R

C0
L C0

R

P0
R

8

D3
R

8

3:1

L1
R

8

L1
L L1

R

F

P2
L

8

D3
L

8

3:1

R20 R21

P3
L

8

D0
L

8

2:1

R30

sk2j+1
L,

wk1
L,

or wk3
L

D2
R

8

2:1

R31

P3
R

8

D2
L

C3
L

D2
R

C1
R

D3
RD3

L

L1
L

8

sk2j
R,

wk1
R,

or wk3
R

C2
L C2

R

P2
R

8

D1
R

8

3:1

L3
R

8

L3
L L3

R

Fig. 7. Our data path of round-based architecture

4.1 Serialized Architecture of SP-type F-functions

Several proposals about implementation techniques for MDS matrices in an SPN
structure have been reported in [11, 10, 20, 12, 9]. The techniques used in [12, 9]
implement only a fraction of an MDS matrix with additional three 8-bit registers.
On the other hand, in [20], a whole MDS matrix is implemented in a serialized
architecture to avoid the additional registers and complexity of control logic.
Recently, another approach was proposed in [11, 10]. The authors construct new
MDS matrices suitable for serialized implementation. This MDS matrices have
a feature that enables low-area implementation of the MDS matrices without
additional registers in a serialized architecture.

MDS matrices are also adopted in a generalized Feistel network. In [1], a
compact matrix multiplier was proposed by using a feature of the generalized
Feistel network which has an SP-type F-function as shown in Fig. 8 (a). We
assume that the matrix in the SP-type F-function is the same as the matrix
described in Sect. 2. The technique proposed in [1] allows us to construct the
matrix multiplier without additional registers for the SP-type F-function in a
generalized Feistel network as shown in Fig. 8 (b). Fig. 8 (c) presents the contents
of the registers Ri (0 ≤ i ≤ 3) at the l-th cycle (1 ≤ l ≤ 8). For the duration of
first four cycles, the enable signal en is set to low and the data zi (0 ≤ i ≤ 3)
are stored in the four registers Rj . At 5-th cycle, the output a0 of S-box is
calculated, fed to the multiplier and multiplied by {2}, {3}, {1}, and {1}. The
data stored in the four registers Rj is updated by XORing with the products.
As the same multiplier coefficients are used for each column in the matrix, we
can perform the matrix operation at the following cycle by adding xi (1 ≤ i ≤ 3)
and cyclically shifting the intermediate results included in the four registers Rj .

ECRYPT Workshop on Lightweight Cryptography - November 2011 55

�
�
�
�

���
���
���
���

	

 �

 �

 �

 �

��� ��� �� ���

��� ��� ��������
�

���

� ���
���

���

���
 ! "#��

$%�

& (')

& * ')

+-,�.

/(0

l 1 2 3 4 5 6 7 8
R0 z0 z1⊕a0 z2⊕a0⊕a1 z3⊕3·a0⊕a1⊕a2 z0⊕2·a0⊕3·a1⊕a2⊕a3

R1 z0 z1 z2⊕a0 z3⊕3·a0⊕a1 z0⊕2·a0⊕3·a1⊕a2 z1⊕a0⊕2·a1⊕3·a2⊕a3

R2 z0 z1 z2 z3⊕3·a0 z0⊕2·a0⊕3·a1 z1⊕a0⊕2·a1⊕3·a2 z2⊕a0⊕a1⊕2·a2⊕3·a3

R3 z0 z1 z2 z3 z0⊕2·a0 z1⊕a0⊕2·a1 z2⊕a0⊕a1⊕2·a2 z3⊕3·a0⊕a1⊕a2⊕2·a3

(c)

Fig. 8. Matrix multiplier proposed in [1]: (a) SP-type F-function, (b) Data path, (c)
Contents of registers Rj (0 ≤ j ≤ 3) at the l-th cycle

The above technique uses the equivalent transformation described below,

w0 = 2 · S(x0) + 3 · S(x1) + S(x2) + S(x3) + z0

= [2 · S(x0) + z0]
︸ ︷︷ ︸

5th cycle

+ [3 · S(x1)]
︸ ︷︷ ︸

6th cycle

+ [S(x2)]
︸ ︷︷ ︸

7th cycle

+ [S(x3)]
︸ ︷︷ ︸

8th cycle

.

Since calculations relevant to zi (0 ≤ i ≤ 3) are processed prior to calculations
relevant to xi (1 ≤ i ≤ 3), wi can be calculated using the register where zi for
the newly processing F-function is stored. Thus, we can design a compact matrix
multiplier without additional registers for the generalized Feistel network which
has an SP-type F-function.

4.2 Introducing Inverse of S-box for SPS-type F-functions

Next, we discuss the implementation of an MDS matrix for the generalized Feistel
network which has an SPS-type F-function as shown in Fig. 9. Since the results
of the matrix operation are input to S-boxes, calculations relevant to zi cannot
be processed prior to calculations relevant to xi (1 ≤ i ≤ 3) as well as in the case
of an SP-type F-function. Thus, we cannot apply the technique in [1] to design a
matrix multiplier without addtional registers. In addition to registers to store xi

and zi, the matrix multiplier requires four additional registers for intermediate
values of the matrix calculation. We present a trivial construction of the matrix
multiplier with additional four registers in Fig. 10 (a). Fig. 10 (b) presents the
contents of the registers Ri (0 ≤ i ≤ 3) at the l-th cycle (1 ≤ l ≤ 8). During the
first four cycles, the outputs ai (0 ≤ i ≤ 3) of S-boxes are stored in the register

ECRYPT Workshop on Lightweight Cryptography - November 2011 56

�

�
�

�

���

���
���

���

	

 �

 �

 �

 �

��� � � ��� ��

��� ��� � � � �

�

�

�
�

Fig. 9. SPS-type F-function

��� ������ ��� ���

� �

��� �
�

� �

 !#"$ � "$

�%� �

�& ��' ��(��)

*,+%-

.0/214365

l 1 2 3 4 5 6 7 8
R0 a0 a1 a2 a3 a0

R1 a0 a1 a2 a3 a0 a1

R2 a0 a1 a2 a3 a0 a1 a2

R3 a0 a1 a2 a3 a0 a1 a2 a3

(b)

Fig. 10. Trivial construction for SPS-type F-function: (a) Data path, (b) Contents of
registers Rj (0 ≤ j ≤ 3) at the l-th cycle

Rj (0 ≤ j ≤ 3). At the same time, the inputs xi (0 ≤ i ≤ 3) of S-boxes are
also stored in other registers Rj (4 ≤ j ≤ 7) since this value is necessary in the
next round. At 5-th cycle, a0, a1, a2 and a3 is multiplied by {2}, {3}, {1} and
{1}, respectively, and the sum of the products is calculated. Then, the sum are
input to the S-box through path A described in Fig. 10 and w0 is obtained by
XORing the output of S-box with z0. As we assume that the matrix is circulant,
wi (1 ≤ i ≤ 3) is processed by rotating the data stored in the four registers Rj

(0 ≤ j ≤ 3).

In the above trivial construction, we use the four additional registers for stor-
ing intermediate values of the F-function. However, flip-flops require relatively
high area requirements. We propose new implementation technique of an MDS
matrix without additional registers. Our technique introduces the inverse func-
tion of S-box which is usually unnecessary to process both an encryption and
decryption in a generalized Feistel network. We describe a new data path for

ECRYPT Workshop on Lightweight Cryptography - November 2011 57

��� ������ ��� ��	

 �

�� ���� � �

� �

� ����� � ��

� � ��� �

Fig. 11. Data path for SPS-type F-function without additional registers

�

�

�

�

���

���

���

��

!

" �

" �

" �

"

#� # � #�� #$

%&� %'� % � %

�

�

�

�

!

(�
(�
(�
(

Fig. 12. SPSP-type F-function

SPS-type F-function in Fig. 11. Although we obtain wi (0 ≤ i ≤ 3) in the same
way as the process of trivial construction described in Fig. 10, we do not store xi

(0 ≤ i ≤ 3) in other registers during the calculation of wi. After the calculation
of wi, we recover xi through S−1 which is the inversion of S-box. Note that the
required number of cycles for calculation of F-function is the same as the cycle
in the trivial construction, since we can set a next input of F-function in order
during recovering xi.

In contrast to the trivial construction, our implementation requires the circuit
of S−1 instead of additional registers. If the area requirements of additional
registers are larger than that of S−1, our technique contributes to the compact
implementation. In fact, the area requirement of S−1 in Piccolo is very small
and it costs 12 GE in our library. On the other hand, in the trivial construction,
it costs 72 GE in our library to use 16-bit additional registers. Therefore, we can
save 60 GE in the implementation of Piccolo.

Combined with the technique in [1], our technique can be applied to imple-
mentation of an SPSP-type F-function described in Fig. 12 without additional
registers. In [7], it is reported that the SPSP-type F-function has a good property
from the aspect of a proportion of active S-boxes. However, additional registers
is necessary to construct a serialized architecture if we use only one of tech-
nique in [1] and our proposal above technique. We combine the two techniques
to implement the SPSP-type F-function without additional registers. We pro-
vide the construction in Fig. 13. Fig. 14 presents the contents of the registers
Rj (0 ≤ j ≤ 3) at the l-th cycle (1 ≤ l ≤ 8). During the first four cycles, ai and
zi (0 ≤ i ≤ 3) are stored in the register Ri (0 ≤ i ≤ 7) described in Fig. 14. At

ECRYPT Workshop on Lightweight Cryptography - November 2011 58

���

���

���

���

�
	 �
��

�

� ����

� � ��

���
��

��� ��� ��� �
	 ���� � �

� � ��� ����

�� �
	 �

���! #"%$

&�'

Fig. 13. Data path for SPSP-type F-function without additional registers

l 1 2 3 4 5 6 7 8
R0 a0 a1 a2 a3 a0

R1 a0 a1 a2 a3 a0 a1

R2 a0 a1 a2 a3 a0 a1 a2

R3 a0 a1 a2 a3 a0 a1 a2 a3

R4 z0 z1⊕b0 z2⊕b0⊕b1 z3⊕3·b0⊕b1⊕b2 z0⊕2·b0⊕3·b1⊕b2⊕b3
R5 z0 z1 z2⊕b0 z3⊕3·b0⊕b1 z0⊕2·b0⊕3·b1⊕b2 z1⊕b0⊕2·b1⊕3·b2⊕b3
R6 z0 z1 z2 z3⊕3·b0 z0⊕2·b0⊕3·b1 z1⊕b0⊕2·b1⊕3·b2 z2⊕b0⊕b1⊕2·b2⊕3·b3
R7 z0 z1 z2 z3 z0⊕2·b0 z1⊕b0⊕2·b1 z2⊕b0⊕b1⊕2·b2 z3⊕3·b0⊕b1⊕b2⊕2·b3

Fig. 14. Contents of registers Rj (0 ≤ j < 4) at the l-th cycle

5-th cycle, the output b0 of second S-box is calculated through path A described
in Fig. 13 and the data stored in the four registers Ri (4 ≤ i ≤ 7) is updated
by XORing with b0. At the following cycle, since bi (1 ≤ i ≤ 3) is obtained by
rotating the data stored in the four registers Rj (0 ≤ j ≤ 3), wi is evaluated as
the contents of the four register Ri (4 ≤ i ≤ 7) by the same procedure as Fig. 8.

4.3 Serialized Architecture of Piccolo

In this section, we propose two serialized architectures for Piccolo.
First, we present the data path of a serialized architecture of Piccolo support-

ing both encryption and decryption in Fig. 15, where the width of data path is
4 bit except those written in the figure. In Appendix, we show the detailed data
flow of the data registers Ri (0 ≤ i ≤ 15) described in Fig. 15. The data flow of
both encryption and decryption is similar. We roughly explain the data flow as
follows. We set most significant four nibble of a plaintext into the four registers
Ri (0 ≤ i ≤ 3) through an S-box during the input of a plaintext. At the first four
cycles for calculating round function, the output of F-function are computed by
using technique described in Sect. 4.2 and are XORed with a content of the reg-
ister R4 and chunks of constant value CON and secret key. Then, the calculated
values are stored in the four register Ri (12 ≤ i ≤ 15). In the next four cycle,
the input of F-function are recovered through S−1 and are stored in the four
register Ri (12 ≤ i ≤ 15). At the same time, the input for a calculation of the
other F-function in the round function is set the four registers Ri (0 ≤ i ≤ 3)

ECRYPT Workshop on Lightweight Cryptography - November 2011 59

��� ��� ��� ��� �
	 ��� � �

� ����� � ��

�
	 �

��� � ��� � ��� � ��� � ����� ��� � ��� ��� ��	 � ��� ��� ��� ����
	 �
� 	 �

���! "�!#�$ %

���! "�!#'&�()
*,+.-

/ 	 �
0 �
0 �
0 �
0 �
0 �

1
1
1
1

243
243
243
243
243

5 �6 4798

: % �: % � ; 	 � ��	 �

: % �

Fig. 15. Data path of serialized architecture supporting both encryption and decryp-
tion

through an S-box. Although there are some differences about the data flow, the
other output of the round function are calculated in the same manner as the
above flow in the next eight cycles. After the calculation of the final round, a
ciphertext is output nibble by nibble from data out described in Fig. 15 in 16
cycles. In the ciphertext output phase, we need 4-bit 2-to-1 MUX and XOR due
to the alignment of a content of the register Ri (0 ≤ i ≤ 15) and key whitening
operation, respectively.

Next, we propose a implementation technique to construct the data path
supporting only encryption. We move the XOR operations with the related a
chunk of secret key into the lines before round permutation by an equivalent
transformation as shown in Fig. 16. In Fig. 16 (b), each XOR operation of con-
stant values and a chunk of secret key are set in the different lines except the
first round key. By doing so, we can construct a serialized architecture which one
of the XOR operations of constant values and a chunk of secret key can be pro-
cessed every cycle. Since it is unnecessary to calculate the two XOR operations
in one cycle, the two XOR operations can be shared. Furthermore, while key
whitening operations in the final round is done at the ciphertext output phase
in Fig. 15, key whitening operations can be calculated before the ciphertext out-
put phase. This indicate a possibility of reduction of the XOR operation in front
of data out in Fig. 15. Moreover, we can change the data flow in the final round
computation so that it is unnecessary to align data after the final round. We also
reduce 2-to-1 MUX from Fig. 15. We describe a data path in Fig. 17 constructed
from the equivalent transformation. Since the data flow of Fig. 17 is similar to
that of Fig. 15, we roughly explain the data flow as follows. In addition to key
whitening operations, we calculate XOR operation of the part of first round key

ECRYPT Workshop on Lightweight Cryptography - November 2011 60

F

P0
L|P0

R

16

sk0
L|sk0

R

16 16 16

RP

F

F F

RP

RP

F F

16 16 16 16

wk0
L|wk0

R wk1
L|wk1

R

sk2
L|sk2

R

sk1
L|sk1

R

sk3
L|sk3

R

sk2r-2
L|sk2r-2

R sk2r-1
L|sk2r-1

R

wk2
L|wk2

R wk3
L|wk3

R

P1
L|P1

R P2
L|P2

R P3
L|P3

R

C0
L|C0

R C1
L|C1

R C2
L|C2

R C3
L|C3

R

(a) (b)

con0 con1

con2 con3

con2r-2 con2r-1

F

P0
L|P0

R

16 16 16 16

RP

F

F F

RP

RP

F F

16 16 16 16

wk0
L|wk0

R wk1
L|wk1

R

wk2
L|wk2

R wk3
L|wk3

R

P1
L|P1

R P2
L|P2

R P3
L|P3

R

C0
L|C0

R C1
L|C1

R C2
L|C2

R C3
L|C3

R

con0 con1

con2 con3

con2r-2 con2r-1

sk3
L|sk2

R

sk0
L|sk0

R

sk2
L|sk3

R

sk5
L|sk4

R sk4
L|sk5

R

sk1
L|sk1

R

Fig. 16. (a) Encryption process, (b) Optimized encryption process. XOR operations
with the part of round keys are moved by an equivalent transformation.

related to secret key, during the input of a plaintext. Then, the round function
is calculated in the same manner as the data flow of Fig. 15, except calculat-
ing XOR operations alternately with a chunk of constant value CON and secret
key every four cycles. In the final round, instead of round permutation RP , we
execute the round function by 16-bit cyclic shift so that a ciphertext is output
nibble by nibble from data out described in Fig. 17 in 16 cycles.

5 Implementation Results

5.1 Evaluation Environment

We design and evaluate the hardware implementation presented in Sect. 3 and 4.
The environment of our hardware design and evaluation is as follows:

Language Verilog-HDL
Design library 0.13 µm CMOS ASIC library
Simulator VCS version 2006.06
Logic synthesis Design Compiler version 2007.03-SP3

In order to compare the area requirements independently of the technology used,
it is common to state the area as Gate Equivalents (GE). One GE is equivalent
to the area of a 2-way NAND with the lowest drive strength. For synthesis, we

ECRYPT Workshop on Lightweight Cryptography - November 2011 61

��� ��� ��� ��� �
	 ��� � � �
	 �

��� � ��� � ��� � ��� � ����� ��� � ��� ��� ��	 � ��� ��� ��� ����
	 �� 	 �
���������� !

�"���#���%$�&��

��	 �

')(+* , 	 �
- �
- �
- �
- �
- �

.
.
.
.

/10
/10
/10
/10
/10

2 ���1354

6 �8796 � 79

: 	 �

Fig. 17. Data path of serialized architecture supporting only encryption

X
Y

X
Y

4-input AND-NOR gate
with 2 inputs inverted

4-input OR-NAND gate
with 2 inputs inverted

X
Y

X
Y

Fig. 18. 4-input AND-NOR and 4-input OR-NAND gate with 2 inputs inverted, which
correspond to XOR and XNOR gate

use a clock frequency of 100 KHz, which is widely used operating frequency for
RFID applications to lower power consumption.

In a recent trend, the implementation of lightweight block ciphers uses a scan
flip-flop instead of a combination of a D flip-flop and 2-to-1 MUX [25, 8, 23, 20]
to reduce the gate requirement. In our evaluation, a D flip-flop and a 2-to-1
MUX cost 4.5 and 2.0 GE, respectively, while a scan flip-flop costs 6.25 GE.
Thus, we can save 0.25 GE per bit of storage. Moreover, the library we used
has the 4-input AND-NOR and 4-input OR-NAND gates with 2 inputs inverted
described in Fig. 18. The outputs of these cells are corresponding to those of
XOR or XNOR gates when the inputs X, Y are set as shown in Fig. 18. Since
these cells cost 2 GE instead of 2.25 GE required for XOR or XNOR cell, we can
save 0.25 GE per XOR or XNOR gate. We also use clock gating logics. Clock
gating is a power-saving technique used in synchronous circuits. For hardware
implementations of block ciphers, it was firstly introduced in [25] as a technique
to reduce gate counts and power, and have been applied to KATAN family [8],

ECRYPT Workshop on Lightweight Cryptography - November 2011 62

AES [20], and CLEFIA [1]. Clock gating works by taking the enable conditions
attached to registers. It can remove feedback MUXes to hold their present state
and replace them with clock gating logic. In the case that several bits of registers
take the same enable conditions, their gate counts will be saved by applying clock
gating.

5.2 Key Input Setting

Depending on whether an application needs to update a key, implementation of
key scheduling part may be changed. If the application is allowed to update a
key, implementation of the key scheduling part requires the key-length flip-flops.
On the other hand, if the application does not need to update a key, the key
scheduling part may be designed by using a hard-wired key. The hard-wired
key can reduce the area requirements in some structures of key scheduling part.
Especially, permutation-based key scheduling part such as that of GOST allows
to be designed without flip-flops by using the hard-wired key and multiplexers.
In [23], GOST with a key-length of 256 bits requires less than 100 GE for the
key scheduling part without 256-bit flip-flops. Since the difference of applica-
tion changes the area requirements of key scheduling part, we compare the area
requirements under the same key input conditions.

As noted above, there are two key input setting: flexible-key and fixed-key
setting. Next, we discuss a good feature of permutation-based key scheduling part
in the flexible-key setting. In practice, before an execution of data encryption,
a key usually needs to be loaded into registers from a memory through a bus.
If the values of the registers change during the execution, the key needs to be
restored from the memory or reconstructed from the updated registers before
next execution. Since a bus width is generally smaller than key length, several
cycles may be necessary for reloading the key. When reconstructing the key
from the registers, additional circuit and cycles for it are required. Depending
on a situation, throughput is important in addition to area requirements. In
case of the permutation-based key scheduling part, it is not necessary to change
values of the registers during the execution, since multiplexers select certain
chunk from a key. Therefore, an encryption algorithm is continuously executed
without restoring or reconstructing the key. From the view point of the above
discussion, we consider that the permutation-based key scheduling has desirable
property in the flexible-key setting.

5.3 Comparative Results

Table 1 and Table 2 show the comparative results regarding the hardware effi-
ciency for lightweight block ciphers in flexible and fixed-key setting, respectively.
These tables show Piccolo achieves very small area requirements in both the flex-
ible and fixed-key settings. The energy efficiency of Piccolo in both settings is
very high in terms of energy per bit that is a metric for energy consumption pro-
posed by [27]. Moreover, Piccolo requires only about 60 additional GE to support
decryption function in the serialized architecture. As a result, we consider that

ECRYPT Workshop on Lightweight Cryptography - November 2011 63

Table 1. Comparative results in hardware implementations in flexible-key setting

block key serialized arch. round-based arch.
Algorithm size size type area cycles/ area cycles/ energy/∗2

[bit] [bit] [GE] block [GE] block bit
DESXL [17] 64 184 Feistel 2,168 144 - - -

†HIGHT [13]∗1 64 128 GFN - - 3,048 34 1,620
mCrypton-96 [18] 64 96 SPN - - 2,681 13 545
mCrypton-128 [18] 64 128 SPN - - 2,949 13 600

PRESENT-80 [5, 25] 64 80 SPN 1,000 547 1,570 32 785
KATAN64 [8] 64 80 stream 1,054 254 - - -
LED-64 [11] 64 64 SPN 966 1,248 2,695 32 1,347
LED-80 [11] 64 80 SPN 1,040 1,872 2,780 48 2,085
LED-128 [11] 64 128 SPN 1,265 1,872 3,036 48 2,277
Piccolo-80 64 80 GFN 1,048 432 1,499 27 633

Piccolo-128 64 128 GFN 1,338 528 1,776 33 916

Piccolo-80∗1 64 80 GFN 1,109 432 1,638 27 692

Piccolo-128
∗1 64 128 GFN 1,397 528 1,942 33 1,002

AES-128 [20],[26]∗1 128 128 SPN 2,400 226 12, 454∗3 11 1,071

CLEFIA-128 [1],[28]∗1 128 128 GFN 2,678 176 5,979 18 841
∗1: Including decryption function. The others support encryption-mode only.
∗2: energy / bit = (area [GE] × required cycles for one block process [cycle]) / block size [bit].
∗3: This implementation is not intended to be high efficiency but high throughput.

Piccolo is the competitive general purpose ultra-lightweight block cipher suitable
for extremely constrained environments under any situation.

6 Conclusion

In this paper, we have presented the detailed descriptions of hardware imple-
mentations of Piccolo. We proposed a new technique to implement a generalized
Feistel structure with SPS-type F-functions in serialized architectures. Moreover,
We designed round-based architecture to reduce additional area requirements for
key whitening operation. As a result, it was shown that Piccolo is very compet-
itive to other lightweight block ciphers in both flexible and fixed-key setting

Future work will include the application of side-channel countermeasures such
as threshold implementations [21, 22] and software implementations of Piccolo.

References

1. Toru Akishita and Harunaga Hiwatari. Very compact hardware implementations
of block cipher CLEFIA. In Selected Areas in Cryptography, 2011. Available at
http://sac2011.ryerson.ca/SAC2011/AH.pdf.

2. Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and rect-
angle attacks. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture
Notes in Computer Science, pages 507–525. Springer, 2005.

3. Eli Biham, Orr Dunkelman, and Nathan Keller. A unified approach to related-key
attacks. In Kaisa Nyberg, editor, FSE, volume 5086 of Lecture Notes in Computer
Science, pages 73–96. Springer, 2008.

4. Alex Biryukov, editor. Fast Software Encryption, 14th International Workshop,
FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers,
volume 4593 of Lecture Notes in Computer Science. Springer, 2007.

ECRYPT Workshop on Lightweight Cryptography - November 2011 64

Table 2. Comparative results in hardware implementations in fixed-key setting

block key serialized arch. round-based arch.
Algorithm size size type area cycles/ area cycles/ energy/

[bit] [bit] [GE] block [GE] block bit
‡KTANTAN64 [8] 64 80 stream 688 254 - - -
‡GOST-PS [23] 64 256 Feistel 651 264 1,017 32 509
‡GOST-FB [23] 64 256 Feistel 800 264 1,000 32 500

LED-64 [11] 64 64 SPN 688 1,248 2,354 32 1,177
LED-80 [11] 64 80 SPN 690 1,872 2,354 48 1,765
LED-128 [11] 64 128 SPN 700 1,872 2,354 48 1,765

Piccolo-80 64 80 GFN 616∗2 432 1,051∗3 27 444

Piccolo-128 64 128 GFN 654∗2 528 1,083∗3 33 559

Piccolo-80∗1 64 80 GFN 675∗2 432 1,199∗3 27 506

Piccolo-128∗1 64 128 GFN 721∗2 528 1,249∗3 33 645

PRINTcipher-48 [15] 48 80 SPN 402 768 503 48 503
PRINTcipher-96 [15] 96 160 SPN 726 3,072 967 96 967
†: Theoretically broken under related-key setting [16].
‡: Theoretically broken under single-key setting [6, 14].
∗1: Including decryption function. The others support encryption-mode only.
∗2: These values are based on average area requirement of ten key randomly chosen.
∗3: We estimate these values stochastically.

5. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science,
pages 450–466. Springer, 2007.

6. Andrey Bogdanov and Christian Rechberger. A 3-subset meet-in-the-middle at-
tack: Cryptanalysis of the lightweight block cipher ktantan. In Alex Biryukov,
Guang Gong, and Douglas R. Stinson, editors, Selected Areas in Cryptography,
volume 6544 of Lecture Notes in Computer Science, pages 229–240. Springer, 2010.

7. Andrey Bogdanov and Kyoji Shibutani. Double SP-functions: Enhanced general-
ized feistel networks - extended abstract. In Udaya Parampalli and Philip Hawkes,
editors, ACISP, volume 6812 of Lecture Notes in Computer Science, pages 106–119.
Springer, 2011.

8. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - a family of small and efficient hardware-oriented block ciphers. In
Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes in
Computer Science, pages 272–288. Springer, 2009.

9. Martin Feldhofer, Johannes Wolkerstorfer, and Vincent Rijmen. AES implemen-
tation on a grain of sand. IEE proceedings / information security, 152:13 – 20,
2005.

10. Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of
lightweight hash functions. In Phillip Rogaway, editor, CRYPTO, volume 6841
of Lecture Notes in Computer Science, pages 222–239. Springer, 2011.

11. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. In Preneel and Takagi [24], pages 326–341.

12. Panu Hämäläinen, Timo Alho, Marko Hännikäinen, and Timo D. Hämäläinen.
Design and implementation of low-area and low-power AES encryption hardware
core. In DSD, pages 577–583. IEEE Computer Society, 2006.

13. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok
Koo, Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim,
Jongsung Kim, and Seongtaek Chee. HIGHT: A new block cipher suitable for

ECRYPT Workshop on Lightweight Cryptography - November 2011 65

low-resource device. In Louis Goubin and Mitsuru Matsui, editors, CHES, volume
4249 of Lecture Notes in Computer Science, pages 46–59. Springer, 2006.

14. Takanori Isobe. A single-key attack on the full gost block cipher. In Antoine Joux,
editor, FSE, volume 6733 of Lecture Notes in Computer Science, pages 290–305.
Springer, 2011.

15. Lars R. Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B. Robshaw.
PRINTcipher: A block cipher for IC-printing. In Mangard and Standaert [19],
pages 16–32.

16. Bonwook Koo, Deukjo Hong, and Daesung Kwon. Related-key attack on the full
hight. In Kyung Hyune Rhee and DaeHun Nyang, editors, ICISC, volume 6829 of
Lecture Notes in Computer Science, pages 49–67. Springer, 2010.

17. Gregor Leander, Christof Paar, Axel Poschmann, and Kai Schramm. New
lightweight DES variants. In Biryukov [4], pages 196–210.

18. Chae Hoon Lim and Tymur Korkishko. mCrypton - a lightweight block cipher for
security of low-cost RFID tags and sensors. In JooSeok Song, Taekyoung Kwon,
and Moti Yung, editors, WISA, volume 3786 of Lecture Notes in Computer Science,
pages 243–258. Springer, 2005.

19. Stefan Mangard and François-Xavier Standaert, editors. Cryptographic Hardware
and Embedded Systems, CHES 2010, 12th International Workshop, Santa Bar-
bara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of Lecture Notes in
Computer Science. Springer, 2010.

20. Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES. In
Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in
Computer Science, pages 69–88. Springer, 2011.

21. Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implemen-
tations against side-channel attacks and glitches. In Peng Ning, Sihan Qing, and
Ninghui Li, editors, ICICS, volume 4307 of Lecture Notes in Computer Science,
pages 529–545. Springer, 2006.

22. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware imple-
mentation of non-linear functions in the presence of glitches. In Pil Joong Lee
and Jung Hee Cheon, editors, ICISC, volume 5461 of Lecture Notes in Computer
Science, pages 218–234. Springer, 2008.

23. Axel Poschmann, San Ling, and Huaxiong Wang. 256 bit standardized crypto for
650 ge - GOST revisited. In Mangard and Standaert [19], pages 219–233.

24. Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28
- October 1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer Science.
Springer, 2011.

25. Carsten Rolfes, Axel Poschmann, Gregor Leander, and Christof Paar. Ultra-
lightweight implementations for smart devices - security for 1000 gate equivalents.
In Gilles Grimaud and François-Xavier Standaert, editors, CARDIS, volume 5189
of Lecture Notes in Computer Science, pages 89–103. Springer, 2008.

26. Akashi Satoh and Sumio Morioka. Hardware-focused performance comparison for
the standard block ciphers aes, camellia, and triple-des. In Colin Boyd and Wenbo
Mao, editors, ISC, volume 2851 of Lecture Notes in Computer Science, pages 252–
266. Springer, 2003.

27. Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Ak-
ishita, and Taizo Shirai. Piccolo: An ultra-lightweight blockcipher. In Preneel and
Takagi [24], pages 342–357.

ECRYPT Workshop on Lightweight Cryptography - November 2011 66

28. Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The
128-bit blockcipher CLEFIA (extended abstract). In Biryukov [4], pages 181–195.

Appendix

�
�
�
�

�

���
���
���
�	�

�
�
�
�

�� ��
�� ��
�� �
�� �

�	��� � �

�
�
�
�

�

� �
� �
� �
� �

�
�
�
�

�� ��
�� ��
�� �
�� �

����� � � � �

��� �� ������ ��� �� ����� � � �� � � �� � � �� � � � ������ ������ ��� �� ����� ������ ������ �� �� �� ��

!"� �� !"���� !#� �� !#��� ! � �� ! � �� ! � �� ! � � !����� !����� !"� �� !"��� !����� !����� !" �� !" ��

Fig. 19. A round of encryption process

ECRYPT Workshop on Lightweight Cryptography - November 2011 67

Table 3. Contents of registers Rij (0 ≤ i, j < 4) at the l-th cycle during encryption
mode

l 0 1 2 3 4 5 6 7 8
R0 S(x0) (= a0) a1 a2 a3 a0 a1 a2 a3 S(x40) (= b0)
R1 S(x1) (= a1) a2 a3 a0 a1 a2 a3 S(x40) S(x41) (= b1)
R2 S(x2) (= a2) a3 a0 a1 a2 a3 S(x40) S(x41) S(x50) (= b2)
R3 S(x3) (= a3) a0 a1 a2 a3 S(x40) S(x41) S(x50) S(x51) (= b3)
R4 x20 x21 x30 x31 x40 x41 x50 x51 x60

R5 x21 x30 x31 x40 x41 x50 x51 x60 x61

R6 x30 x31 x40 x41 x50 x51 x60 x61 x70

R7 x31 x40 x41 x50 x51 x60 x61 x70 x71

R8 x40 x41 x50 x51 x60 x61 x70 x71 y00

R9 x41 x50 x51 x60 x61 x70 x71 y00 y01

R10 x50 x51 x60 x61 x70 x71 y00 y01 y50

R11 x51 x60 x61 x70 x71 y00 y01 y50 y51

R12 x60 x61 x70 x71 y00 y01 y50 y51 x00 (= y60)
R13 x61 x70 x71 y00 y01 y50 y51 x00 x01 (= y61)
R14 x70 x71 y00 y01 y50 y51 x00 x01 x10 (= y30)
R15 x71 y00 y01 y50 y51 x00 x01 x10 x11 (= y31)

l 8 9 10 11 12 13 14 15 16
R0 b0 b1 b2 b3 b0 b1 b2 b3 S(y00) (= a′

0
)

R1 b1 b2 b3 b0 b1 b2 b3 S(y00) S(y01) (= a′
1
)

R2 b2 b3 b0 b1 b2 b3 S(y00) S(y01) S(y10) (= a′
2
)

R3 b3 b0 b1 b2 b3 S(y00) S(y01) S(y10) S(y11) (= a′
3
)

R4 x60 x61 x70 x71 y00 y01 y10 y11 x40 (= y20)
R5 x61 x70 x71 y00 y01 y10 y11 x40 x41 (= y21)
R6 x70 x71 y00 y01 y10 y11 x40 x41 y30

R7 x71 y00 y01 y10 y11 x40 x41 y30 y31

R8 y00 y01 y50 y51 y60 y61 y30 y31 y40

R9 y01 y50 y51 y60 y61 y30 y31 y40 y41

R10 y50 y51 y60 y61 y30 y31 y40 y41 y50

R11 y51 y60 y61 y30 y31 y40 y41 y50 y51

R12 y60 y61 y30 y31 y40 y41 y50 y51 y60

R13 y61 y30 y31 y40 y41 y50 y51 y60 y61

R14 y30 y31 y40 y41 y50 y51 y60 y61 x50 (= y70)
R15 y31 y40 y41 y50 y51 y60 y61 x50 x51 (= y71)

ECRYPT Workshop on Lightweight Cryptography - November 2011 68

�
�
�
�

�

���
���
���
�	�

�
�
�
�

�� ��
�� ��
�� ��
�� �

�	����� �

�
�
�
�

�

� �
� �
� �
� �

�
�
�
�

�� ��
�� ��
�� ��
�� �

������� � ���

��� � ����� ��� � ����� � � �� � ���� � � �� � ��� ��� �� ��� �� ��� �� ��� � �� �� �� �� ��! � ��!��

"�� � "���� "#� � "#��� " � �� " ���� " � �� " ��� "�� �� "�� �� "�� �� "�� � "� �� "� �� "�! � "�!��

Fig. 20. A round of decryption process

ECRYPT Workshop on Lightweight Cryptography - November 2011 69

Table 4. Contents of registers Rij (0 ≤ i, j < 4) at the l-th cycle during decryption
mode

l 0 1 2 3 4 5 6 7 8
R0 S(x0) (= a0) a1 a2 a3 a0 a1 a2 a3 S(x40) (= b0)
R1 S(x1) (= a1) a2 a3 a0 a1 a2 a3 S(x40) S(x41) (= b1)
R2 S(x2) (= a2) a3 a0 a1 a2 a3 S(x40) S(x41) S(x50) (= b2)
R3 S(x3) (= a3) a0 a1 a2 a3 S(x40) S(x41) S(x50) S(x51) (= b3)
R4 x20 x21 x30 x31 x40 x41 x50 x51 x60

R5 x21 x30 x31 x40 x41 x50 x51 x60 x61

R6 x30 x31 x40 x41 x50 x51 x60 x61 x70

R7 x31 x40 x41 x50 x51 x60 x61 x70 x71

R8 x40 x41 x50 x51 x60 x61 x70 x71 y40

R9 x41 x50 x51 x60 x61 x70 x71 y40 y41

R10 x50 x51 x60 x61 x70 x71 y40 y41 y10

R11 x51 x60 x61 x70 x71 y40 y41 y10 y11

R12 x60 x61 x70 x71 y40 y41 y10 y11 x00 (= y20)
R13 x61 x70 x71 y40 y41 y10 y11 x00 x01 (= y21)
R14 x70 x71 y40 y41 y10 y11 x00 x01 x10 (= y70)
R15 x71 y40 y41 y10 y11 x00 x01 x10 x11 (= y71)

l 8 9 10 11 12 13 14 15 16
R0 b0 b1 b2 b3 b0 b1 b2 b3 S(y00) (= a′

0
)

R1 b1 b2 b3 b0 b1 b2 b3 S(y00) S(y01) (= a′
1
)

R2 b2 b3 b0 b1 b2 b3 S(y00) S(y01) S(y10) (= a′
2
)

R3 b3 b0 b1 b2 b3 S(y00) S(y01) S(y10) S(y11) (= a′
3
)

R4 x60 x61 x70 x71 y00 y01 y10 y11 y20

R5 x61 x70 x71 y00 y01 y10 y11 y20 y21

R6 x70 x71 y00 y01 y10 y11 y20 y21 x50 (= y30)
R7 x71 y00 y01 y10 y11 y20 y21 x50 x51 (= y31)
R8 y40 y41 y10 y11 y20 y21 y70 y71 y40

R9 y41 y10 y11 y20 y21 y70 y71 y40 y41

R10 y10 y11 y20 y21 y70 y71 y40 y41 y50

R11 y11 y20 y21 y70 y71 y40 y41 y50 y51

R12 y20 y21 y70 y71 y40 y41 y50 y51 x40 (= y60)
R13 y21 y70 y71 y40 y41 y50 y51 x40 x41 (= y61)
R14 y70 y71 y40 y41 y50 y51 x40 x41 y70

R15 y71 y40 y41 y50 y51 x40 x41 y70 y71

ECRYPT Workshop on Lightweight Cryptography - November 2011 70

Compact Implementation and Performance
Evaluation of Block Ciphers in ATtiny Devices

Thomas Eisenbarth1, Zheng Gong2, Tim Güneysu3, Stefan Heyse3,
Sebastiaan Indesteege4,5, Stéphanie Kerckhof6, François Koeune6,

Tomislav Nad7, Thomas Plos7, Francesco Regazzoni6,8,
François-Xavier Standaert6, Loic van Oldeneel tot Oldenzeel6.

1 Department of Mathematical Sciences, Florida Atlantic University, FL, USA.
2 School of Computer Science, South China Normal University.

3 Horst Görtz Institute for IT Security, Ruhr-Universität, Bochum, Germany.
4 Department of Electrical Engineering ESAT/COSIC, KULeuven, Belgium.

5 Interdisciplinary Institute for BroadBand Technology (IBBT), Ghent, Belgium.
6 UCL Crypto Group, Université catholique de Louvain, Belgium.

7 Institute for Applied Information Processing and
Communications (IAIK), Graz University of Technology, Austria.

8 ALaRI Institute, University of Lugano, Switzerland.

Abstract. The design of lightweight block ciphers has been a very ac-
tive research topic over the last years. However, the lack of comparative
source codes generally makes it hard to evaluate the extent to which dif-
ferent ciphers actually reach their low-cost goals, on different platforms.
This paper reports on an initiative aimed to partially relax this issue.
First, we implemented 12 block ciphers on an ATMEL ATtiny45 device,
and made the corresponding source code available on a webpage, with an
open-source license. Common design goals and interface have been sent to
all designers in order to enhance the comparability of the implementation
results. Second, we evaluated the performances of these implementations
according to different metrics, including energy-consumption measure-
ments. Although inherently limited by slightly different design choices,
we hope this initiative can trigger more work in this direction, e.g. by
extending the list of implemented ciphers, or adding countermeasures
against physical attacks in the future.

1 Introduction

Small embedded devices (including smart cards, RFIDs, sensor nodes) are now
deployed in many applications. They are usually characterized by strong cost
constraints. Yet, as they may manipulate sensitive data, they also require cryp-
tographic protection. As a result, many lightweight ciphers have been proposed
in order to allow strong security guarantees at a lower cost than standard so-
lutions. Quite naturally, the very idea of “low-cost” is highly dependent on the
target technology. Some operations that are extremely low cost in hardware (e.g.
wire crossings) may turn out to be annoyingly expensive in software. Even within

ECRYPT Workshop on Lightweight Cryptography - November 2011 71

a class of similar devices (e.g. software), the presence or absence of some options
(such as hardware multipliers) may cause strong variations in the performance
analysis of different algorithms. As a result, it is sometimes difficult to have a
good understanding of which algorithms are actually lightweight on which de-
vice. Also, the lack of comparative studies prevents a good understanding of the
cost vs. performance tradeoff for these algorithms.

In this paper, we consider this issue of performance evaluation for low-
cost block ciphers, and investigate their implementation in ATMEL ATtiny de-
vices [4], i.e. small microcontrollers, with limited memory and instruction set.
Despite the relatively frequent use of such devices in different applications, little
work has been done in benchmarking cryptographic algorithms in this context.
Notable exceptions include B. Poettering’s open-source codes for the AES Rijn-
dael [2], the XBX frameworks from CHES 2010 [20] and an interesting survey of
lightweight cryptography implementations [10]. Unfortunately, these references
are still limited by the number of ciphers under investigation and the fact that
their source code is not always available for evaluation.

Following, the goal of our work is to extend the benchmarking of 12 lightweight
and standard ciphers, and to make their implementation available under an open-
source license. The ciphers were chosen according to three criteria: all selected
candidates should (a) give no indication of flawed security, (b) be freely usable
without patent restrictions and (c) likely result in lightweight implementations
with a footprint of less than 256 bytes of RAM and 4 KB of code size for a
combined encryption and decryption function.

In order to make comparisons as meaningful as possible, we tried to adapt
the guidelines proposed in [11] for the evaluation of hardware implementations to
our software context. Yet, as the project was involving 12 different designers, we
also acknowledge that some biases can appear in our conclusions, due to slightly
different implementation choices. Hence, as usual for performance evaluations,
looking at the source codes is essential in order to properly understand the
reasons of different performance figures. Overall, we hope that this initiative can
be used as a first step in better analyzing the performances of block ciphers in
a specific but meaningful class of devices. We also hope that it can be used as
a germ to further develop cryptographic libraries for embedded platforms and,
in the long term, add security against physical attacks (e.g. based on faults or
side-channel leakage) as another evaluation criteria.

The rest of the paper is structured as follows. Section 2 contains a brief
specification of the implemented ciphers. Section 3 establishes our evaluation
methodology and metrics, followed by Section 4 that gives details about the AT-
tiny45 microcontroller. Section 5 provides succinct descriptions and motivation
of the implementation choices made by our 12 designers. Finally, our perfor-
mance evaluations are in Section 6 and conclusions are drawn in Section 7. The
webpage containing all our open-source codes is given here [1].

ECRYPT Workshop on Lightweight Cryptography - November 2011 72

2 List of Investigated Ciphers

AES Rijndael [8] is the new encryption standard selected in 2002 as a replace-
ment of the DES. It supports key sizes of 128, 192 or 256 bits, and block size of
128 bits. The encryption iterates a round function a number of times, depending
on the key size. The round is composed of four transformations: SubBytes (that
applies a non-linear S-box to the bytes of the states), ShiftRows (a wire crossing),
MixColumns (a linear diffusion layer), and finally AddRoundKey (a bitwise XOR
of the round key). The round keys are generated from the secret key by means
of an expansion routine that re-uses the S-box used in SubBytes. For low-cost
application, the typical choice is to support only the key size of 128 bits.

DESL, DESX, and DESXL [15] are lightweight variants of the DES cipher.
For the L-variant, all eight DES S-boxes are replaced by a single S-Box with
well chosen characteristics to resist known attacks against DES. Additionally
the initial permutation (IP) and its inverse (IP−1) are omitted, because they
do not provide additional cryptographic strength. The X-variant includes an
additional key whitening of the form: DESXk,k1,k2(x) = k2 ⊕ DESk(k1 ⊕ x).
DESXL is the combination of both variants. The main goal of the developer was
a low gate count in hardware implementations as for the original DES.

HIGHT [13] is a hardware-oriented block cipher designed for low-cost and low-
power applications. It uses 64-bit blocks and 128-bit keys. HIGHT is a variant
of the generalized Feistel network and is only composed of simple operations:
XOR, mod 28 additions and bitwise rotations. Its key schedule consists of two
algorithms: one generating whitening key bytes for initial and final transforma-
tions; the other one for generating subkeys for the 32 rounds. Each subkey byte
is the result of a mod 28 addition between a master key byte and a constant
generated using a linear feedback shift register.

IDEA [14] is a patented cipher whose patent expired in May 2011 (in all coun-
tries with a 20 year term of patent filing). Its underlying Lai-Massey construction
does not involve an S-box or a permutation network such as in other Feistel or
common SPN ciphers. Instead, it interleaves mathematical operations from three
different groups to establish security, such as addition modulo 216, multiplication
modulo 216 + 1 and addition in GF(216) (XOR). IDEA has a 128-bit key and
64-bit input and output. A major drawback of its construction is the inverse
key schedule that requires the complex extended Euclidean algorithm during
decryption. For efficient implementation, this complex key schedule needs to be
precomputed and stored in memory.

KASUMI [3] is a block cipher derived from MISTY1 [18]. It is used as a
keystream generator in the UMTS, GSM, and GPRS mobile communications
systems. It has a 128-bit key and 64-bit input and output. The core of KASUMI is
an eight-round Feistel network. The round functions in the main Feistel network
are irreversible Feistel-like network transformations. The key scheduling is done
by bitwise rotating the 16-bit subkeys or XORing them with a constant. There
are two S-boxes, one 7 bit and the other 9 bit.

ECRYPT Workshop on Lightweight Cryptography - November 2011 73

KATAN and KTANTAN [6] are two families of hardware-oriented block
ciphers. They have 80-bit keys and a block size of either 32, 48 or 64 bits. The
cipher structure resembles that of a stream cipher, consisting of shift registers
and non-linear feedback functions. A LFSR counter is used to protect against
slide attacks. The difference between KATAN and KTANTAN lies in the key
schedule. KTANTAN is intended to be used with a single key per device, which
can then be burnt into the device. This allows KTANTAN to achieve a smaller
footprint in a hardware implementation. In the following, we considered the
implementation of KATAN with 64-bit block size.

KLEIN [12] is a family of lightweight software oriented block ciphers with
64-bit plaintexts and variable key length (64, 80 or 96 bits - our performance
evaluations focus on the 80-bit version). It is primarily designed for software im-
plementations in resource-constrained devices such as wireless sensors and RFID
tags, but its hardware implementation can be compact as well. The structure
of KLEIN is a typical Substitution-Permutation Network (SPN) with 12/16/20
rounds for KLEIN-64/80/96 respectively. One round transformation consists of
four operations AddRoundKey, SubNibbles (4-bit involutive S-box), RotateNib-
bles and MixNibbles (borrowed from AES MixColumns). The key schedule of
KLEIN has a Feistel-like structure. It is agile even if keys are frequently changed
and is designed to avoid potential related-key attacks.

mCrypton [16] is another block cipher designed for resource-constrained de-
vices such as RFID tags and sensors. It uses a block length of 64 bits and a
variable key length of 64, 96 and 128 bits. In this paper, we implemented the
variant with a 96-bit key. mCrypton consists of an AES-like round transforma-
tion (12 rounds) and a key schedule. The round transformation operates on a
4×4 nibble array and consists of a nibble-wise non-linear substitution, a column-
wise bit permutation, a transposition and a key-addition step. The substitution
step uses four 4-bit S-boxes. Encryption and decryption have almost the same
form. The key scheduling algorithm generates round keys using non-linear S-box
transformations, word-wise rotations, bit-wise rotations and a round constant.
The same S-boxes are used for the round transformation and key scheduling.

NOEKEON [7] is a block cipher with a key length and a block size of 128
bits. The block cipher consists of a simple round function based only on bit-wise
Boolean operations and cyclic shifts. The round function is iterated 16 times for
both encryption and decryption. Within each round, a working key is XORed
with the data. The working key is fixed during all rounds and is either the cipher
key itself (direct mode) or the cipher key encrypted with a null string. The self-
inverse structure of NOEKEON allows to efficiently combine the implementation
of encryption and decryption operation with only little overhead.

PRESENT [5] is a hardware-oriented lightweight block cipher designed to
meet tight area and power restrictions. It features a 64-bit block size and 80-bit
or 128-bit key size (we focus on the 80-bit variant). PRESENT implements a
substitution-permutation network and iterates 31 rounds. The permutation layer

ECRYPT Workshop on Lightweight Cryptography - November 2011 74

consists only of bit permutations (i.e. wire crossings). Together with the tiny 4-
bit S-box, the design enables minimalistic hardware implementations. The key
scheduling consists of a single S-box lookup, a counter addition and a rotation.

SEA [19] is a scalable family of encryption algorithms, defined for low-cost
embedded devices, with variable bus sizes and block/key lengths. In this paper,
we implemented SEA96,8, i.e. a version of the cipher with 96-bit blocks and keys.
SEA is a Feistel cipher that exploits rounds with 3-bit S-boxes, a diffusion layer
made of bit and word rotations and a mod 2n key addition. Its key scheduling
is based on rounds similar to the encryption ones and is designed such that keys
can be derived “on-the-fly” both in encryption and decryption.

TEA [21] is a 64-bit block cipher using 128-bit keys (although equivalent keys
effectively reduce the key space to 2126) . TEA stands for Tiny Encryption Al-
gorithm and, as the name says, this algorithm was built with simplicity and ease
of implementation in mind. A C implementation of the algorithm corresponds
to about 20 lines of code, and involves no S-box. TEA has a 64-round Feistel
structure, each round being based on XOR, 32-bit addition and rotation. The
key schedule is also very simple, alternating the two halves of the key at each
round. TEA is sensitive to related-key attacks using 223 chosen plaintexts and
one related-key query, with a time complexity of 232.

3 Methodology and Metrics

In order to be able to compare the performances of the different ciphers in terms
of speed, memory space and energy, the developers were asked to respect a list
of common constraints, detailed hereunder.

1. The code has to be written in assembly, in a single file. It has to be com-
mented and easily readable, for example, giving the functions the name they
have in their original specifications.

2. The cipher has to be implemented in a low-cost way, minimizing the code
size and the data-memory use.

3. Both encryption and decryption routines have to be implemented.
4. Whenever possible, and in order to minimize the data-memory use, the key

schedule has to be computed “on-the-fly”. The computation of the key sched-
ule is always included in the algorithm evaluations.

5. The encryption process should start with plaintext and key in data memory.
The ciphertext should overwrite the plaintext at the end of this process (and
vice versa for decryption).

6. The target device is an 8-bit microcontroller from the ATMEL AVR device
family, more precisely the ATtiny45. It has a reduced set of instructions and,
e.g. has no hardware multiplier.

7. The encryption and decryption routines are called by a common interface.

The SEA reference code was sent as an example to all designers, together with
the common interface (also provided on [1]).

ECRYPT Workshop on Lightweight Cryptography - November 2011 75

The basic metrics considered for evaluation are code size, number of RAM
words, cycle count in encryption and decryption and energy consumption. From
these basic metrics, a combined metric was extracted (see Section 6). For the
energy-consumption evaluations, each cipher has been flashed in an ATtiny45
mounted on a power-measurement board. A 22 Ohms shunt resistor was inserted
between the Vdd pin and the 5V power supply, in order to measure the current
consumed by the controller while encrypting. The common interface generates
a trigger at the beginning of each encryption, and a second one at the end of
each of them. The power traces were measured between those two triggers by our
oscilloscope through a differential probe. The plaintexts and keys were generated
randomly for each encryption. One hundred encryption traces were averaged for
each energy evaluation. The average energy consumed by an encryption has been
deduced afterwards, by integrating the measured current.

Note finally that, as mentioned in introduction, the 12 ciphers were imple-
mented by 12 different designers, with slightly different interpretations of the
low-cost optimizations. As a result, some of the guidelines were not always fol-
lowed, because of the cipher specifications making them less relevant. In particu-
lar, the following exceptions deserve to be mentioned. (1) The key scheduling of
IDEA is not computed “on-the-fly” but precomputed (as explained in Section 2).
(2) The key in KATAN has to be restored externally for subsequent invocations.
(3) The 4-bit S-boxes of KLEIN, mCrypton, PRESENT were implemented as
8-bit tables (because of a better memory vs. speed tradeoff).

4 Description of the ATtiny45 Microcontroller

The ATtiny45 is an 8-bit RISC microcontroller from ATMEL’s AVR series. The
microcontroller uses a Harvard architecture with separate instruction and data
memory. Instructions are stored in a 4 kB Flash memory (2048× 16 bits). Data
memory involves the 256-byte static RAM, a register file with 32 8-bit general-
purpose registers, and special I/O memory for peripherals like timer, analog-
to-digital converter or serial interface. Different direct and indirect addressing
methods are available to access data in RAM. Especially indirect addressing
allows accessing data in RAM with very compact code size. Moreover, the AT-
tiny45 has integrated a 256-bytes EEPROM for non-volatile data storage.

The instruction-set of the microcontroller contains 120 instructions which
are typically 16-bits wide. Instructions can be divided into arithmetic logic unit
(ALU) operations (arithmetic, logical, and bit operations) and conditional and
unconditional jump and call operations. The instructions are processed within
a two-stage pipeline with a pre-fetch and an execute phase. Most instructions
are executed within a single clock cycle, leading to a good instructions-per-
cycle ratio. Compared to other microcontrollers from ATMEL’s AVR series such
as the ATmega devices, the ATtiny45 has a reduced instruction set (e.g. no
multiply instruction), smaller memories (Flash, RAM, EEPROM), no in-system
debug capability, and less peripherals. However, the ATtiny45 has lower power
consumption and is cheaper in price.

ECRYPT Workshop on Lightweight Cryptography - November 2011 76

5 Implementation Details

AES Rijndael. The code was written following the standard specification and
operates on a state matrix of 16 bytes. In order to improve performance, the
state is stored into 16 registers, while the key is stored in RAM. Also, 5 tempo-
rary registers are used to implement the MixColumn steps. The S-box and the
round constants were implemented as simple look-up tables. The multiplication
operation needed in the MixColums is computed with shift and XOR instructions.

DESXL. In order to keep code size small, we wrote a function which can com-
pute all permutations and expansions depending on the calling parameters. This
function is also capable of writing six bit outputs for direct usage as S-box in-
put. Because of the bit-oriented structure of the permutations which are slow
in software, this function is the performance bottleneck of the implementation.
The rest of the code is straightforward and is written according to the specifi-
cation. Beside the storage for plain/ciphertext and the keys k, k1, k2, additional
16 bytes of RAM for the round key and the state are required. The S-box and
all permutation and expansion tables are stored in Flash memory and processed
directly from there.

HIGHT. The implementation choices were oriented in order to limit the code
size. First, the intermediate states are stored in RAM at each round, and only
two bytes of text and one byte of key are loaded at a time. This way, it is possible
to re-use the same code fragment four times per round. Next, the byte rotation
at the output of the round function is integrated in the memory accesses of the
surrounding functions, in order to save temporary storage and gain cycles. Eight
bytes of the subkeys are generated once every two rounds, and are stored in
RAM. Finally, excepted for the mod 28 additions that are replaced by mod 28

subtractions and some other minor changes, decryption uses the same functions
as encryption.

IDEA. This cipher was implemented including a precomputed key schedule
performed by separate functions for encryption and decryption, respectively,
prior the actual cipher operation. During cipher execution the precomputed key
(104 bytes) is then read byte by byte from the RAM. The plaintext/ciphertext
and the internal state are kept completely in registers (using 16 registers) and
9 additional registers are used for temporary computations and counters. IDEA
requires a 16-bit modular multiplication as basic operation. However, in the
AVR device used in this work, no dedicated hardware multiplier unit is available.
Multiplication was therefore emulated in software resulting in a data-dependent
execution time of the cipher operation and an increased cycle count (about
a factor of 4) compared to an implementation for a device with a hardware
multiplier. Note that IDEA’s multiplication is special and maps zero as any
input to 216 (which is equivalent to −1 mod 216 + 1). Therefore, whenever a
zero is detected as input to the multiplication, our implementations returns the
additive inverse of the other input, reduced modulo 216 + 1.

ECRYPT Workshop on Lightweight Cryptography - November 2011 77

KASUMI. The code was written following the functions described in the cipher
specifications. During the execution, the 16-byte key remains stored in the RAM,
as well as the 8-byte running state. This allows using only 12 registers and
24 bytes of RAM. Some rearrangements were done to skip unnecessary moves
between registers. The 9-bit S-box was implemented in an 8-bit table, with the
MSBs concatenated in a secondary 8-bit table. The 7-bit S-box was implemented
in an 8-bit table, wasting the MSBs in the memory. The round keys are derived
“on-the-fly”. Decryption is very similar to encryption, as usual for a Feistel
structure.

KATAN-641. The main optimization goal was to limit the code size. The en-
tire state of the cipher is kept in registers during operation. To avoid excessive
register pressure, the in- and outputs are stored in RAM, and this RAM space
is used to backup the register contents during operation. Only three additional
registers need to be stored on the stack. The fact that three rounds of KATAN
can be run in parallel was not used in this implementation. Doing so would re-
quire more complicated shifting and masking to extract bits from the state, and
thus significantly increase the code size, for little or no performance gain. As the
KATAN key schedule is computed “on-the-fly”, the key in RAM is clobbered and
needs to be restored externally for subsequent invocations. Keeping the master
key in RAM would require 10 additional words (note that the KTANTAN key
schedule does not modify the key, so it does not have this limitation). In order
to implement the non-linear functions efficiently, addition instructions were used
to compute several logical AND’s and XOR’s in parallel through carefully posi-
tioning the input bits and using masking to avoid undesired carry propagation.

KLEIN-80. Despite the goal of small memory footprint, the 4-bit involutive
S-box is stored as an 8-bit table for saving clock cycles. As it can be used in
both encryption and decryption, this corresponds to a natural tradeoff between
code size and processing speed (a similar choice is made for mCrypton and
PRESENT, see the next paragraphs). To save memory usage during processing,
the MixNibbles step (borrowed from AES MixColumns) is implemented by a
single function without using lookup tables. Overall, 29 registers are used during
the computations. Among them, 8 registers correspond to the intermediate state,
10 to the key scheduling, 9 registers are used for temporary storage and two for
the round counter.

mCrypton. The reference code directly follows the cipher specification. The
implementation aims for a limited code size. Therefore, we tried to reuse as
much code as possible for decryption and encryption. In addition, we used up
to 20 registers during the computations to reduce the cycle count. 12 registers
are used to compute the intermediate state and the key scheduling, 6 registers
for temporary storage, one for the current key scheduling constant and one for
the round counter. After each round the modified state and key scheduling state

1 All six variants of the KATAN/KTANTAN family are supported via conditional
assembly. Our performance evaluations only focus on the 64-bit version of KATAN.

ECRYPT Workshop on Lightweight Cryptography - November 2011 78

are stored in RAM. The round key is derived from the key scheduling state and
is temporarily stored in RAM. The four 4-bit S-boxes are stored in four 8-bit
tables, wasting the 4 most significant bits of each entry, but saving cycle counts.
The constants used in the key scheduling algorithm are stored in an 8-bit table.

NOEKEON. The implementation aims to minimize the code size and the num-
ber of utilized registers. During execution of the block cipher, input data and
cipher key are stored in the RAM (32 bytes are required). In that way, only 4
registers are used for the running state, one register for the round counter, and
three registers for temporary computations. The X-register is used for indirect
addressing of the data in the RAM. Similar to the implementation of SEA (de-
tailed below), using more registers for the running state will decrease the cycle
count, but will also increase the code size because of a less generic program-
ming. For decrypting data, the execution sequence of the computation functions
is changed, which leads only to a very small increase in code size.

PRESENT. The implementation is optimized in order to limit the code size
with throughput as secondary criteria. State and round key are stored in the
registers to minimize accesses to RAM. The S-boxes are stored as two 256-byte
tables, one for encryption and one for decryption. This allows for two S-box
lookups in parallel. However, code size can easily be reduced if only encryption
or decryption is performed. A single 16-byte table for the S-boxes could halve
the overall code size, but would significantly impact encryption times. The code
for permutation, which is the true performance bottleneck, can be used for both
encryption and decryption.

SEA. The reference code was written following directly the cipher specifications.
During its execution, plaintexts and keys are stored in RAM (accounting for a
total of 24 bytes), limiting the register consumption to 6 registers for the running
state, one register for the round counter and three registers of temporary storage.
Note that higher register consumption would allow decreasing the cycle count
at the cost of a less generic programming. The S-box was implemented using
its bitslice representation. Decryption uses exactly the same code as encryption,
with “on-the-fly” key derivation in both cases.

TEA. Implementing TEA is almost straightforward due to the simplicity of
the algorithm. The implementation was optimized to limit the RAM usage and
code size. As far as RAM is concerned, we only use the 24 bytes needed for
plaintext and key storage, with the ciphertext overwriting the plaintext in RAM
at the end of the process. The only notable issue regarding implementing TEA
concerns rotations. TEA was optimized for a 32-bit architecture and the fact that
only 1-position shift and rotations are available on the ATtiny, plus the need to
propagate carries, made these operations slightly more complex. In particular,
5-position shifts were optimized by replacing them by a 3-position shift in the
opposite direction and recovering boundary carries. Nonetheless, TEA proved to
be very easy to implement, resulting in a compact code of 648 bytes.

ECRYPT Workshop on Lightweight Cryptography - November 2011 79

6 Performance Evaluation

We considered 6 different metrics: code size (in bytes), RAM use (in bytes),
cycle count in encryption and decryption, energy consumption and a combined
metric, namely the code size × cycle count product, normalized by the block
size. The results for our different implementations are given in Figures 2, 3, 4,
5, 6, 7 (all given in appendix). We detail a few meaningful observations below.

First, as our primary goal was to consider compact implementations, we
compared our code sizes with the ones listed in [10]. As illustrated in Figure 1,
we reduced the memory footprint for most investigated ciphers, with specially
strong improvements for DESXL, HIGHT and SEA.

Next, the code sizes of our new implementations are in Figure 2. The fron-
trunners are HIGHT, NOEKEON, SEA and KATAN (all take less than 500
bytes of ROM). One can notice the relatively poor performances of mCrypton,
PRESENT and KLEIN. This can in part be explained by the hardware-oriented
flavor of these ciphers (e.g. the use of bit permutations or manipulation of 4-bit
nibbles is not optimal in 8-bit microcontrollers). As expected, standard ciphers
such as the AES and KASUMI are more expensive, but only up to a limited
extent (both are implemented in less than 2000 bytes of ROM).

The RAM use in Figure 3 first exhibits the large needs of IDEA regarding this
metric (232 words) that are essentially due to the need to store a precomputed
key schedule for this cipher. Besides, and following our design guidelines, this
metric essentially reflects the size of the intermediate state that has to be stored
during the execution of the algorithms. Note that for the AES, this is in contrast
with the “Furious” implementation in [2], that uses 192 bytes of RAM (it also
explains our slightly reduced performances for this cipher).

The cycle count in Figure 4 clearly illustrates the performance loss that
is implied by the use of simple round functions in most lightweight ciphers.
This loss is critical for DESXL and KATAN where the large number of round
iterations lead to cycle counts beyond 50,000 cycles. It is also large for SEA,
NOEKEON and HIGHT. By contrast, these metrics show the excellent efficiency
of the AES Rijndael. Cycle count for decryption (Figure 5) shows similar results,
with noticeable changes. Most visibly, IDEA decryption is much less efficient
than its encryption. The AES also shows non-negligible overhead to decrypt. By
contrast, a number of ciphers behave identically in encryption and decryption,
e.g. SEA where the two routines are almost identical.

As expected, the energy consumption of all the implemented ciphers (Fig-
ure 6) is strongly correlated with the cycle count, confirming the experimental
results in [9]. However, slight code dependencies can be noticed. It is an interest-
ing scope for research to investigate whether different coding styles can further
impact the energy consumption and to what extent.

Eventually, the combined metric in Figure 7 first shows the excellent size vs.
performance tradeoff offered by the AES Rijndael. Among the low-cost ciphers,
NOEKEON and TEA exhibit excellent figures as well, probably due to their
very simple key scheduling. This comes at the cost of possible security concerns

ECRYPT Workshop on Lightweight Cryptography - November 2011 80

regarding related-key attacks. HIGHT and KLEIN provide a good tradeoff be-
tween code size and cycle count. A similar comment applies to SEA, where parts
of the overhead comes from a complex key scheduling algorithm (key rounds
are as complex as the rounds for this cipher). Despite their hardware-oriented
nature, PRESENT and mCrypton offer decent performance in 8-bit devices as
well. KATAN falls a bit behind, mainly because of its very large cycle count.
Only DESXL appears not suitable for such an implementation context.

7 Conclusion

This paper reported on an initiative to evaluate the performance of different
standard and lightweight block ciphers on a low cost micro-controller. 12 different
ciphers have been implemented with compactness as main optimization criteria.
Their source code is available on a webpage, under an open-source license. Our
results improve most prior work obtained for similar devices. They highlight the
different tradeoffs between code size and cycle count that is offered by different
algorithms. They also put forward the weaker performances of ciphers that were
specifically designed with hardware performance in mind. Scopes for further
research include the extension of this work towards more algorithms and the
addition of countermeasures against physical attacks.

Acknowledgements. This work has been funded in part by the European Com-
mission’s ECRYPT-II NoE (ICT-2007-216676), by the Belgian State’s IAP pro-
gram P6/26 BCRYPT, by the ERC project 280141 (acronym CRASH), by the
7th framework European project TAMPRES, by the Walloon region’s S@T Sky-
win, MIPSs and NANOTIC-COSMOS projects. Stéphanie Kerckhof is a PhD
student funded by a FRIA grant, Belgium. F.-X. Standaert is a Research As-
sociate of the Belgian Fund for Scientific Research (FNRS-F.R.S). Zheng Gong
is supported by NSFC (No. 61100201). The authors would like to thank Svetla
Nikova for her help regarding the implementation of the block cipher KLEIN.

References

1. http://perso.uclouvain.be/fstandae/lightweight ciphers/.
2. http://point-at-infinity.org/avraes/.
3. 3rd Generation Partnership Project. Technical specification group services and

system aspects, 3g security, specification of the 3gpp confidentiality and integrity
algorithms, document 2: Kasumi specification (release 10), 2011.

4. ATMEL. Avr 8-bit microcontrollers, http://www.atmel.com/products/avr/.
5. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-

shaw, Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block cipher.
In P. Paillier and I. Verbauwhede, editors, CHES, volume 4727 of LNCS, pages
450–466. Springer, 2007.

6. C. D. Cannière, O. Dunkelman, and M. Knezevic. Katan and ktantan - a family
of small and efficient hardware-oriented block ciphers. In C. Clavier and K. Gaj,
editors, CHES, volume 5747 of LNCS, pages 272–288. Springer, 2009.

ECRYPT Workshop on Lightweight Cryptography - November 2011 81

7. J. Daemen, M. Peeters, G. V. Assche, and V. Rijmen. Nessie proposal: NOEKEON,
2000. Available online at http://gro.noekeon.org/Noekeon-spec.pdf.

8. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer, 2002.

9. G. de Meulenaer, F. Gosset, F.-X. Standaert, and O. Pereira. On the energy cost
of communication and cryptography in wireless sensor networks. In WiMob, pages
580–585. IEEE, 2008.

10. T. Eisenbarth, S. S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel. A survey
of lightweight-cryptography implementations. IEEE Design & Test of Computers,
24(6):522–533, 2007.

11. K. Gaj, E. Homsirikamol, and M. Rogawski. Fair and comprehensive methodology
for comparing hardware performance of fourteen round two sha-3 candidates using
fpgas. In Mangard and Standaert [17], pages 264–278.

12. Z. Gong, S. Nikova, and Y.-W. Law. Klein: A new family of lightweight block
ciphers. to appear in the proceedings of RFIDsec 2011.

13. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee,
K. Jeong, H. Kim, J. Kim, and S. Chee. Hight: A new block cipher suitable for
low-resource device. In L. Goubin and M. Matsui, editors, CHES, volume 4249 of
LNCS, pages 46–59. Springer, 2006.

14. X. Lai and J. L. Massey. A proposal for a new block encryption standard. In
EUROCRYPT, pages 389–404, 1990.

15. G. Leander, C. Paar, A. Poschmann, and K. Schramm. New lightweight des vari-
ants. In A. Biryukov, editor, FSE, volume 4593 of LNCS, pages 196–210. Springer,
2007.

16. C. H. Lim and T. Korkishko. mcrypton - a lightweight block cipher for security of
low-cost rfid tags and sensors. In J. Song, T. Kwon, and M. Yung, editors, WISA,
volume 3786 of LNCS, pages 243–258. Springer, 2005.

17. S. Mangard and F.-X. Standaert, editors. Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA,
August 17-20, 2010. Proceedings, volume 6225 of LNCS. Springer, 2010.

18. M. Matsui. New block encryption algorithm misty. In E. Biham, editor, FSE,
volume 1267 of LNCS, pages 54–68. Springer, 1997.

19. F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater. Sea: A scal-
able encryption algorithm for small embedded applications. In J. Domingo-Ferrer,
J. Posegga, and D. Schreckling, editors, CARDIS, volume 3928 of LNCS, pages
222–236. Springer, 2006.

20. C. Wenzel-Benner and J. Gräf. Xbx: external benchmarking extension for the
supercop crypto benchmarking framework. In Mangard and Standaert [17], pages
294–305.

21. D. J. Wheeler and R. M. Needham. Tea, a tiny encryption algorithm. In B. Preneel,
editor, FSE, volume 1008 of LNCS, pages 363–366. Springer, 1994.

ECRYPT Workshop on Lightweight Cryptography - November 2011 82

Fig. 1. Code size: comparison with previous work [10].

Fig. 2. Performance evaluation: code size.

ECRYPT Workshop on Lightweight Cryptography - November 2011 83

Fig. 3. Performance evaluation: RAM use.

Fig. 4. Performance evaluation: cycle count (encryption).

ECRYPT Workshop on Lightweight Cryptography - November 2011 84

Fig. 5. Performance evaluation: cycle count (decryption).

Fig. 6. Performance evaluation: energy consumption.

ECRYPT Workshop on Lightweight Cryptography - November 2011 85

Fig. 7. Performance evaluation: combined metric.

ECRYPT Workshop on Lightweight Cryptography - November 2011 86

High Speed Implementation of Authenticated
Encryption for the MSP430X Microcontroller

Conrado P. L. Gouvêa?, Julio López

University of Campinas (Unicamp),
{conradoplg,jlopez}@ic.unicamp.br

Abstract. Authenticated encryption is a symmetric cryptography algo-
rithm that provides both confidentiality and authentication in a single
scheme. In this work we describe an optimized implementation of au-
thenticated encryption for the MSP430X family of microcontrollers. The
CCM, GCM, SGCM, OCB3 and Hummingbird-2 modes of authenticated
encryption were implemented in the 128-bit level of security and their
performance was compared. The AES accelerator present in some models
of the MSP430X family is also studied and we explore its characteristics
to improve the performance of the implemented modes, achieving up to
13 times of speedup.

1 Introduction

Constrained platforms such as sensor nodes, smart cards and radio-frequency
identification (RFID) devices have a great number of applications, many of which
with security requirements that require cryptographic schemes. The implemen-
tation of such schemes in these devices is very challenging since it must provide
high speed while consuming a small amount of resources (energy, code size and
RAM).

In this scenario, symmetric cryptography becomes an essential tool in the
development of security solutions, since it can provide both confidentiality and
authenticity after being bootstrapped by some protocol for key agreement or
distribution (for example, with public key cryptography using elliptic curves [7],
or identity-based cryptography using pairings [13]). Encryption and authenti-
cation can be done through generic composition of separate methods; however,
the study of an alternative approach named authenticated encryption (AE) has
gained popularity.

Authenticated encryption provides both confidentiality and authenticity
within a single algorithm. It is often more efficient than using separate methods
and usually consumes a smaller amount of resources. It also prevents common
critical mistakes when combining encryption and authentication such as not
using separate keys for each task, applying the methods in the wrong order
(encrypt-then-authenticate is the only order proven to work with any underly-
ing secure schemes [1]), or not authenticating the initialization vector used for
encryption.

? Supported by FAPESP, grant 2010/15340-3.

ECRYPT Workshop on Lightweight Cryptography - November 2011 87

There are many AE modes; see e.g. [9] for a non-exhaustive list. In this
work, we follow the approach from [9] and compare the Counter with CBC-
MAC (CCM) mode [20], the Galois/Counter Mode (GCM) [12] and the Offset
Codebook (OCB3) mode [9]. We have also implemented the Sophie Germain
Counter Mode [16] and the Hummingbird-2 cipher [4]. The CCM mode and GCM
have been standardized by the National Institute of Standards and Technology
(NIST); CCM is used for Wi-Fi WPA2 security (IEEE 802.11i) while GCM is
used in TLS, IPSec and NSA Suite B, for example. The recently proposed OCB3
mode is the third iteration of the OCB mode and appears to be very efficient
in multiple platforms. The SGCM is a variant of GCM and was proposed to be
resistant against some existing attacks against GCM while being equally or more
efficient; we have implemented it in order to check this claim and compare it to
GCM. The Hummingbird-2 (which may be referred to as HB2 in this work) is
specially suited for 16-bit platforms and was implemented in order to compare
it to the other non-specially suited modes.

The main goal of this work is to provide an efficient implementation and
comparison of the aforementioned AE modes (CCM, GCM, SGCM, OCB3 and
Hummingbird-2) for the MSP430X microcontroller family from Texas Instru-
ments. This family is an extension of the MSP430 which have been used in
multiple scenarios such as wireless sensor networks [8,19]; furthermore, some
microcontrollers of this family feature an AES accelerator module which can
encrypt and decrypt using 128-bit keys. Our contributions are: to study (for
the first time, to the best of our knowledge) the efficient usage and impact of
this AES accelerator module in the implemented AE modes; to describe a high
speed implementation of those AE modes for the MSP430X, achieving perfor-
mance more than 13 times faster for CCM using the AES accelerator instead of
AES in software; to show that CCM is the fastest of those modes whenever a
non-parallel AES accelerator is available; and to provide a comparison of the five
AE modes, with and without the AES accelerator. We remark that the results
regarding the efficient usage of the AES accelerator can probably be applied to
other devices featuring analogue accelerators, such as the AVR XMEGA.

This paper is organized as follows. In Section 2, the MSP430X microcon-
troller family is described. Section 3 offers an introduction to AE, along with
a description and comparison of the implemented modes. Our implementation
is described in Section 4, and the obtained results are detailed in Section 5.
Section 6 provides concluding remarks.

2 The MSP430X Family

The MSP430X family is composed by many microcontrollers which share the
same instruction set and 12 general purpose registers. Although it is essentially a
16-bit architecture, its registers have 20 bits, supporting up to 1 MB of addressing
space. Each microcontroller model has distinct clock frequency, RAM and ROM
(flash) size.

ECRYPT Workshop on Lightweight Cryptography - November 2011 88

Some MSP430X microcontrollers (namely the CC430 series) have an inte-
grated radio frequency transceiver, making them very suitable for wireless sen-
sors. These models also feature an AES accelerator module that supports en-
cryption and decryption with 128-bit keys only. The study of this accelerator is
one key aspect of this study and for this reason we describe its basic usage as
follows. In order to encrypt a block of 16 bytes, a flag must be set in a control
register to specify encryption and the key must be written sequentially (in bytes
or words) in a specific memory address. The input block must then be written,
also sequentially, in another memory address. After 167 clock cycles, the result
is ready and must be read sequentially from a third address. It is possible to poll
a control register to check if the result is ready. Further blocks can be encrypted
with the same key without writing the key again. The decryption follows the
same procedure, but it requires 214 clock cycles of processing. It is worth noting
that these memory read and writes are just like regular reads and writes to the
RAM, and take the same time to be performed.

3 Authenticated Encryption Modes

An authenticated encryption mode is composed of two algorithms: authenticated
encryption and decryption-verification (of integrity). The authenticated encryp-
tion algorithm is denoted by the function EK(N,M,A) that returns (C, T), where
K ∈ {0, 1}k is the k-bit key, N ∈ {0, 1}n is the n-bit nonce, M ∈ {0, 1}∗ is the
message, A ∈ {0, 1}∗ is the associated data, C ∈ {0, 1}∗ is the ciphertext and
T ∈ {0, 1}t is the authentication tag. The nonce is a non-secret value that must
be unique for each message and prevents the same plaintext being always en-
crypted to the same ciphertext. (Some modes support variable-length nonces, but
we have fixed its size to simplify the exposition. The same applies to the tag.)
The associated data (AD) is authenticated by the algorithm, but not encrypted;
this can be useful if some header must be sent in plaintext along with the en-
crypted message, for example, in an internet packet. The decryption-verification
algorithm is denoted by the function DK(N,C,A, T) that returns (M,V) where
K,N,C,A, T,M are as above and V is a boolean value indicating if the given
tag is valid (i.e. if the decrypted message and associated data are authentic).

Most AE modes are built using a block cipher such as AES. Let EK(B)
denote the block cipher, where the key K is usually the same used in the AE
mode and B ∈ {0, 1}b is a b-bit message (a block). The inverse (decryption)
function is denoted DK(B).

It is possible to identify several properties of AE modes; we offer a non-
exhaustive list. The number of block cipher calls used in the mode is an impor-
tant metric related to performance. A mode is considered online if it is able to
encrypt a message with unknown length using constant memory (this is useful,
for example, if the end of the data is indicated by a null terminator or a spe-
cial packet). Some modes only use the forward function of the underlying block
cipher (EK), which reduces the size of software and hardware implementations.
A mode supports preprocessing of static AD if the authentication of the AD de-

ECRYPT Workshop on Lightweight Cryptography - November 2011 89

pends only on the key and can be cached between different messages being sent
(this is useful for a header that does not change). Some modes are covered by
patents, which usually discourages its use. A mode is parallelizable if it is possi-
ble to process multiple blocks (or partially process them) in a parallel manner.
Some modes support processing regular messages and AD in any order, while
some modes require the processing of AD before the message, for example. The
properties of the AE modes implemented in this work are compared in Table 1.

The following notation is used in the description of the algorithms. Let A⊕B
denote the logical xor of the bit strings A and B (if the strings have different
sizes, align them to left and discard the excess from the larger string) and let
A | B denote the logical or in the same fashion. Let A[i..j] denote the substring
of the bit string A starting in the i-th bit and ending in the j-th bit, inclusive.
The same slicing notation is used for array of words in Algorithm 4. Let [i]n
denote the n-bit representation of the integer i (endianess will be made explicit
in the description of the algorithm). Write A || B for the concatenation of the
bit strings A and B. Write 0128 for the block of 128 bits filled with zeros. The
AE algorithms will be presented in a simplified manner, omitting details in the
handling of incomplete blocks (i.e. with size smaller than the block size) and the
decryption-verification algorithms. We refer the reader to the original papers for
their complete description.

Table 1. Comparison of implemented AE modes

Property CCM (S)GCM OCB3 HB2

Block cipher calls? 2m + a + 2† m m + a + 1† —
. . . in key setup 0 1 1 —
Online No Yes Yes Yes‡

Uses only EK Yes Yes No —
Preprocessing of static AD No Yes Yes No
Patent-free Yes Yes No No
Parallelizable No Yes Yes No
Standardized Yes (No) Yes No No
Order of message and AD AD first AD first Any AD last
?m,a are the number of message and AD blocks, respectively
†May have an additional block cipher call
‡AD size must be fixed

3.1 CCM

The CCM (Counter with CBC-MAC) mode [20] essentially combines the CTR
mode of encryption with the CBC-MAC authentication scheme. It requires two
cipher block calls for each block to be encrypted. Algorithm 1 presents CCM,

ECRYPT Workshop on Lightweight Cryptography - November 2011 90

where the function format computes a header block B0 (which encodes the
tag length, message length and nonce), the blocks A1, . . . , Aa (which encode
the length of the associated data along with the data itself) and the blocks
M1, . . . ,Mm which represent the original message. The function init ctr re-
turns the initial counter based on the nonce. The function inc increments the
counter.

Properties. CCM is not online since the message length is encoded in the header
block, which is the first to be processed. It is not very well parallelizable since
the authentication requires the result of the previous block cipher call in order
to authenticate the current block. It is not possible to preprocess static AD since
the authentication depends on B0, which is based on the nonce. CCM has also
been criticized for disrupting word alignment (among other reasons [14]), since
the header attached to the AD can have 2, 6 or 10 bytes (this also requires
copying chunks of the AD to a buffer before xoring it and sending it to the block
cipher).

Endianess issues. The encoding of the lengths and counters must be in big
endian format; otherwise, CCM is not affected by endianess issues.

Algorithm 1 CCM encryption

Input: Message M , additional data A, nonce N , key K
Output: Ciphertext C, authentication tag T with t bits
1: B0, A1, . . . , Aa,M1, . . . ,Mm ← format(N,A,M)
2: Y ← EK(B0)
3: for i← 1 to a do
4: Y ← EK(Ai ⊕ Y)
5: end for
6: J ← init ctr(N)
7: S0 ← EK(J)
8: J ← inc(J)
9: for i← 1 to m do

10: U ← EK(J)
11: J ← inc(J) {delay slot}
12: S ←Mi ⊕ Y {delay slot}
13: Y ← EK(S)
14: Ci ←Mi ⊕ U {delay slot}
15: end for
16: T ← Y [0..t− 1]⊕ S0[0..t− 1]

3.2 GCM

The GCM (Galois/Counter Mode) [12] employs the arithmetic of the finite field
(Galois field) F2128 for authentication and the CTR mode for encryption. It re-
quires a single block cipher call for each block to be encrypted. Algorithm 2

ECRYPT Workshop on Lightweight Cryptography - November 2011 91

describes GCM, where the function init ctr initializes the counter and the
function inc ctr increments the counter. The operation A ·B denotes the mul-
tiplication of A and B in F2128 . The mode benefits from precomputed lookup
tables since the second operand is fixed for all multiplications (lines 6, 15 and 18
from Algorithm 1).

Properties. GCM is online and parallelizable. In fact, it has most of the “good”
properties from Table 1. It is possible to employ different sizes for the precompu-
tation lookup table as a speed/space tradeoff, varying from 256 bytes to 64 KB.

Endianess issues. In order to interpret a string of bytes as a F2128 element, GCM
chooses to view the bytes in a little endian fashion. More peculiarly, it treats the
bits inside a byte in a reversed manner: the first bit (i.e. obtained with c & 1 in
the C language) is the most significant bit. Therefore, the element a(z) = 1 is
represented as the byte string 80 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00.

Algorithm 2 GCM encryption

Input: Message M , additional data A, nonce N , key K
Output: Ciphertext C, authentication tag T with t bits
1: A1, . . . , Aa ← A
2: M1, . . . ,Mm ←M
3: H ← EK(0128)
4: Y ← 0128

5: for i← 1 to a do
6: Y ← (Ai ⊕ Y) ·H
7: end for
8: J ← init ctr(N)
9: S0 ← EK(J)

10: J ← inc(J)
11: for i← 1 to m do
12: U ← EK(J)
13: J ← inc(J) {delay slot}
14: Ci ←Mi ⊕ U
15: Y ← (Ci ⊕ Y) ·H
16: end for
17: L← [len(A)]64 || [len(M)]64
18: S ← (L⊕ Y) ·H
19: T ← (S ⊕ S0)[0..t− 1]

3.3 SGCM

The SGCM (Sophie Germain Counter Mode) [16] is a variant of GCM that is
not susceptible to weak key attacks that exist against GCM. While these attacks

ECRYPT Workshop on Lightweight Cryptography - November 2011 92

are of limited nature, the author claims that they should be avoided. It has the
same structure as GCM, but instead of the F2128 arithmetic, it uses the prime
field Fp with p = 2128 + 12451.

Properties. The same as GCM.

Endianess issues. Elements of Fp are represented by little-endian byte arrays.
However, unlike GCM, the bits inside a byte are viewed in the usual manner:
the first bit (i.e. obtained with c & 1 in the C language) is the least significant
bit. Therefore, the element 1 is represented as the byte string 01 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00.

3.4 OCB3

The OCB3 (Offset Codebook) mode [9] also employs the F2128 arithmetic (using
the same reduction polynomial from GCM), but in a simplified manner: it does
not require full multiplication, but only multiplication by powers of z (the vari-
able used in the polynomial representation of the field elements). It also requires
a single block cipher call for each block being encrypted. It is described in Algo-
rithm 3, where the function init delta derives a value from the nonce and it
may require a block cipher call, as explained later. The function ntz(i) returns
the number of trailing zeros in the binary representation of i (e.g. ntz(1) = 0,
ntz(2) = 1). The function getL(L0, x) computes the field element L0 · zx and
can benefit from a precomputed lookup table. Notice that the multiplication by z
is simply a left shift of the operand by one bit, discarding the last bit and xoring
the last byte of the result with 135 (which is the representation of z7+z2+z1+1)
if the discarded bit was 1. The function hash authenticates the additional data
and is omitted for brevity.

Properties. OCB3 is also online and parallelizable, but uses both EK and DK

and is covered by patents [15]. There is an interesting feature in the init delta

function: it requires a block cipher call whose input is the nonce, padded to the
left with zeros to fill a block, and with the lower 6 bits set to zero. Therefore,
when the nonce is a counter (which is often the case), the block cipher result
can be cached between messages, saving a block cipher call 98% of the time.

Endianess issues. In order to interpret a string of bytes as a F2128 element,
OCB3 chooses to view the bytes in a big endian fashion. The bits inside a byte
are viewed in the usual manner: the first bit (c & 1) is the least significant bit.
Therefore, the field element a(z) = 1 is represented as the byte string 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 01.

3.5 Hummingbird-2 (HB2)

The Hummingbird-2 [4] is an authenticated encryption algorithm which is not
built upon a block cipher. It processes 16-bit blocks and was specially designed

ECRYPT Workshop on Lightweight Cryptography - November 2011 93

Algorithm 3 OCB3 mode encryption

Input: Message M , additional data A, nonce N , key K
Output: Ciphertext C, authentication tag T with t bits
1: A1, . . . , Aa ← A
2: M1, . . . ,Mm ←M
3: L∗ ← EK(0128)
4: L$ ← L∗ · z
5: L0 ← L$ · z
6: Y ← 0128

7: ∆← init delta(N,K)
8: for i← 1 to m do
9: ∆← ∆⊕ getL(L0, ntz(i))

10: U ← EK(Mi ⊕∆)
11: Y ← Y ⊕Mi {delay slot}
12: Ci ← U ⊕∆
13: end for
14: ∆← ∆⊕ L$

15: F ← EK(Y ⊕∆)
16: G← hash(K,A)
17: T ← (F ⊕G)[0..t− 1]

for resource-constrained platforms. The small block size is achieved by main-
taining an 128-bit internal state that is updated with each block processed.
Authenticated data is processed after the confidential data by simply processing
the blocks and discarding the ciphertext generated. The algorithm is built upon
the following functions for encryption:

S(x) = S4(x[0..3]) | (S3(x[4..7])� 4)

| (S2(x[8..11])� 8) | (S1(x[12..15])� 12)

L(x) = x⊕ (x ≪ 6)⊕ (x ≪ 10)

f(x) = L(S(x))

WD16(x, a, b, c, d) = f(f(f(f(x⊕ a)⊕ b)⊕ c)⊕ d) ;

and their inverses for decryption:

S−1(x) = S−14 (x[0..3]) | (S−13 (x[4..7])� 4)

| (S−12 (x[8..11])� 8) | (S−11 (x[12..15])� 12)

L−1(x) = x⊕ (x ≪ 2)⊕ (x ≪ 4)⊕ (x ≪ 12)⊕ (x ≪ 14)

f−1(x) = S−1(L−1(x))

WD16−1(x, a, b, c, d) = f−1(f−1(f−1(f−1(x)⊕ d)⊕ c)⊕ b)⊕ a ;

where S1, S2, S3, S4 are S-boxes and ≪ denotes the circular left shift of a 16-bit
word. The function WD16 is called four times for each block, therefore f is called
16 times for each block. We refer to [4] for further details.

ECRYPT Workshop on Lightweight Cryptography - November 2011 94

Properties. Hummingbird-2 is patented. The AD must have fixed size, and must
be processed after the confidential data.

Endianess issues. The algorithm uses the addition of 16-bit words, which must
be viewed in little-endian fashion.

4 Efficient Implementation

We have written a fast software implementation of the AE modes in the C
language, with critical functions written in assembly. The target chip was a
CC430F6137 with 20 MHz clock, 32 KB flash for code and 4 KB RAM. The
compiler used was the IAR Embedded Workbench version 5.20.

The interface to the AES accelerator was written in assembly, along with
a function to xor two blocks and another to increment a block. In order to
speed up the GCM mode, polynomial multiplication was implemented in unrolled
assembly with the López-Dahab (LD) [11] algorithm using 4-bit window and two
lookup tables, as described in Algorithm 4. The first precomputation lookup
table holds the product of H and all 4-bit polynomials. Each of the 16 lines of
the table has 132 bits, which take 9 words. This leads to a table with 288 bytes.
The additional lookup table (which can be computed from the first one, shifting
each line 4 bits to the left) allows the switch from three 4-bit shifts of 256-bit
blocks to a single 8-bit shift of a 256-bit block, which can be computed efficiently
with the swpb (swap bytes) instruction of the MSP430.

For SGCM, arithmetic in Fp can be carried with known algorithms such
as Comba multiplication. We follow the approach in [6] which takes advantage
of the multiply-and-accumulate operation present in the hardware multiplier of
the MSP430 family. However, it must be noted that the CC430 series has a
32-bit multiplier; we have used it to improve even more the performance of the
multiplication. The special form of the prime p allows fast modular reduction
by taking advantage of the congruence 2128x ≡ −12451 (mod p) — that is, to
reduce a 256-bit value module p, multiply the higher 128 bits by −12451 and
add it to the lower 128 bits, repeating until a 128-bit value is obtained.

In the OCB3 mode, a lookup table with 8 entries (128 bytes) was used to
speed up the getL function. Two functions were implemented in assembly: dou-
bling (using left shifts) and the ntz function (using right shifts).

For Hummingbird-2, we have unrolled the WD16 function. The function f
is critical since it is called 16 times per block and must be very efficient; our
approach is to use two precomputed lookup tables fL, fH each one with 256
2-byte elements, such that f(x) = fL[x & 0xFF]⊕ fH [(x & 0xFF00)� 8]. These
tables are generated by computing fL[x]← L(S4(x[0..3]) | (S3(x[4..7])� 4)) for
every byte x and fH [x] ← L((S2(x[8..11]) � 8) | (S1(x[12..15]) � 12)) also for
every byte x. This optimization does not apply for f−1(x) since the inverse S-
boxes are applied after the shifts in L−1(x) (this is the reason why decryption is
slower than encryption, as will be shown). In this case, we have used precomputed
lookup tables LL, LH such that L(x) = LL[x & 0xFF]⊕ LH [(x & 0xFF00)� 8].

ECRYPT Workshop on Lightweight Cryptography - November 2011 95

These are computed as fL[x] ← L(x[0..7]), fH [x] ← L(x[8..15] � 8) for every
byte x. The four 4-bit inverse S-boxes have been merged in two 8-bit inverse
S-boxes S−1L , S−1H such that S−1(x) = S−1L (x[0..7]) | (S−1H (x[8..15])� 8).

In order to perform comparisons, we have used a software implementation of
AES from [5] (the byte-oriented version, with the VERSION 1 option disabled).
It uses approximately 2 KB of precomputed lookup tables to improve speed.

Algorithm 4 López-Dahab multiplication in F2128 for 16-bit words and 4-bit
window, using 2 lookup tables.

Input: a(z) = a[0..7], b(z) = b[0..7]
Output: c(z) = c[0..15]
1: Compute T0(u) = u(z)b(z) for all polynomials u(z) of degree lower than 4.
2: Compute T1(u) = u(z)b(z)z4 for all polynomials u(z) of degree lower than 4.
3: c[0..15]← 0
4: for k ← 1 down to 0 do
5: for i← 0 to 7 do
6: u0 ← (a[i]� (8k)) mod 24

7: u1 ← (a[i]� (8k + 4)) mod 24

8: for j ← 0 to 8 do
9: c[i+ j]← c[i+ j]⊕ T0(u0)[j]⊕ T1(u1)[j]

10: end for
11: end for
12: if k > 0 then
13: c(z)← c(z)z8

14: end if
15: end for
16: return c

4.1 Using the AES accelerator

As previously mentioned, the AES encryption and decryption using the AES
hardware accelerator requires waiting for 167 and 214 cycles, respectively, before
reading the results. The key to a efficient implementation using the module is
to use this “delay slot” to carry other operations that do not depend on the
result of the encryption/decryption. In the listed algorithms, we have ordered
the steps as they were implemented in order to take advantage of the delay slot.
Take CCM as example (Algorithm 1). In line 10, J is written as input to the
AES accelerator. Then, lines 11 and 12 can be executed in the delay slot. Finally,
before line 13, EK(J) can be read from the AES accelerator (waiting until it is
ready).

In CCM, the first delay slot is used to compute an increment and a xor (lines
11 and 12 in Algorithm 1) and the second delay slot is used for a xor (line 14 in
Algorithm 1). In GCM, the increment in the line 13 of Algorithm 2 is computed
in the delay slot. In OCB3, the delay slot is used to compute the xor in the line 3
of Algorithm 3.

ECRYPT Workshop on Lightweight Cryptography - November 2011 96

5 Results

The performance of the implemented AE modes was measured for the authenti-
cated encryption and decryption-verification of messages with 16 bytes and 4 KB,
along with the Internet Performance Index (IPI) [12], which is a weighted tim-
ing for messages with 44 bytes (5%), 552 bytes (15%), 576 bytes (20%), and
1500 bytes (60%). For each message size, we have measured the time to com-
pute all nonce-dependent values along with time for authenticated encryption /
decryption-verification with 128-bit tags. The derivation of key-dependent values
is not included. For OCB3, it was assumed that the block cipher call in init ctr

was cached.

The timings were obtained using a development board with a CC430F6137
chip and are reported on Table 2. The number of cycles taken by the algorithms
was measured using the built-in cycle counter present in the CC430 models,
which can be read in the IAR debugger. Stack usage was also measured using the
debugger. Code size was determined from the reports produced by the compiler,
adding the size for text (code) and constants.

Table 2. Timings of implemented AE modes for different message
lengths, in cycles per byte

Using AES accelerator Using AES in software?

Mode 16 bytes IPI 4 KB 16 bytes IPI 4 KB

Encryption
CTR† 26 23 23 248 246 245
CCM 131 38 36 1 600 493 479
GCM 426 183 180 863 403 396
SGCM 242 89 87 674 306 301
OCB3 144 39 38 621 261 257
HB2‡ 569 200 196

Decryption
CTR† 26 23 23 248 246 245
CCM 144 47 46 1 603 493 479
GCM 429 183 180 862 404 397
SGCM 243 89 87 675 307 302
OCB3 217 48 46 749 385 382
HB2‡ 669 297 292
? Based on the software AES implementation from [5]
†Non-authenticated encryption mode included for comparison
‡ It does not use AES

ECRYPT Workshop on Lightweight Cryptography - November 2011 97

Using the AES accelerator. First, we analyze the results using the AES acceler-
ator, for IPI and 4 KB messages. The GCM performance is more than 5 times
slower than the other modes; this is due to the complexity of the full binary
field multiplication. The SGCM is more than 50% faster than GCM, since the
prime field arithmetic is much faster on this platform, specially using the 32-bit
hardware multiplier. Still, it is slower than the other modes. Both CCM and
OCB3 have almost the same speed, with CCM being around 5% faster. This is
surprising, since that OCB3 essentially outperforms CCM in many platforms [9].
It is explained by the combination of two facts: the hardware support for AES,
which reduces the overhead of an extra block cipher call in CCM; and the fact
that the AES accelerator does not support parallelism, which prevents OCB3
from taking advantage of its support for it. We have measured that the delay
slot optimization improves the encryption speed of GCM, SGCM and OCB3 by
around 12% and CCM by around 24%.

Using the AES in software. We now consider the performance using the software
AES implementation, for large messages. For reference, the block cipher takes
231 cycles per byte to encrypt and 356 cycles per byte to decrypt. The CCM
mode becomes slower due to the larger overhead of the extra block cipher call.
The GCM is still slower than OCB3 due to its expensive field multiplication. The
SGCM is also faster than GCM, but the improvement is diluted to 25% with the
software AES. The Hummingbird-2 cipher outperforms the other modes and is
the most efficient if the AES accelerator is not available.

AES accelerator vs. AES in software. Using the AES accelerator, it is possible
to encrypt in the CTR mode approximately 10.5 times faster than using AES
in software; and it is possible to encrypt with CCM approximately 13 times
faster for encryption and 10.6 times faster for decryption. The AES accelerator
speedup for GCM and OCB3 is smaller (around 2.2 and 6.6, respectively), due
to the larger software overhead of both.

Encryption vs. decryption. When considering the usage of the AES accelerator,
GCM has roughly the same performance in encryption and decryption, since
the algorithm for both is almost equal; the same applies for SGCM. For both
CCM and OCB3, decryption is around 25% and 20% slower, respectively. This
is explained by the differences in the data dependencies of the decryption, which
prevents the useful use of the delay slot, and that DK (used by OCB3) is slower
than EK in the AES accelerator. Considering now the usage of the AES in
software, encryption and decryption have the same performance in CCM and
GCM (since there is no delay slot now) but decryption is almost 50% slower
for OCB3, since the underlying block cipher decryption is also slower than the
encryption. This results in the OCB3 decryption being slower than SGCM. The
decryption in Hummingbird-2 is almost 50% slower due to the f−1(x) function
not being able to be fully precomputed, in contrast to f(x). It is interesting to
note that the decryption timings are often omitted in the literature, even though
they may be substantially different from the encryption timings.

ECRYPT Workshop on Lightweight Cryptography - November 2011 98

Fig. 1. Encryption throughput in Kbps of CTR and AE modes for 4 KB messages at
20 MHz

Performance for small messages. The timings for 16-byte messages are usually
dominated by the computation of nonce-dependent values. The CCM has the
worst performance using software AES since all of its initialization is nonce-
dependent (almost nothing is exclusively key-dependent) and it includes two
block cipher calls. When using the AES accelerator, this overhead mostly van-
ishes. The nonce setup of GCM is very cheap (just a padding of the nonce) while
the nonce setup of OCB3 requires the left shift of an 192-bit block by 0–63 bits.
Still, the GCM performance for 16-byte messages is worse than OCB3 since it is
still dominated by the block processing. Comparing with the other modes using
software AES, the Hummingbird-2 cipher is the fastest for small messages due
to its small block size. It is also worth mentioning that, when using smaller tags,
Hummingbird-2 is even faster since its tag is generated in 16-bit words at a time
while the other algorithms generate a 128-bit tag which can then be truncated.

Further analysis. Figures 1 and 2 present the throughput of encryption and
decryption in the CTR and AE modes, considering the 20 MHz clock of
the CC430F6137. For comparison, consider the AES software implementation
from [3] (also based on [5]) which achieved 286 Kbps at 8 MHz in the ECB
mode. Scaling this to 20 MHz we get 716 Kbps, while our ECB implementation
achieved 691 Kbps. This is 3.5% slower (probably since we have not spent much
time fine-tuning it), but is good enough for our purposes (comparing the perfor-
mance to the AES accelerator). In [3], it is also claimed that since the maximum
throughput of the transceiver is 250 Kbps, it is not needed to encrypt faster than
this. This may be true, but a faster (authenticated) encryption uses less energy
and may free the controller for other data processing.

Table 3 lists the ROM and RAM usage for programs implementing AE modes
for both encryption and decryption, using the AES accelerator. We recall that
the MSP430X model we have used features 32 KB of flash for code and 4 KB
RAM. The code for GCM is the largest due to the unrolled F2128 multiplier, while

ECRYPT Workshop on Lightweight Cryptography - November 2011 99

Fig. 2. Decryption throughput in Kbps of CTR and AE modes for 4 KB messages at
20 MHz

the code for CCM is the smallest since it mostly relies on the block cipher. The
RAM usage follows the same pattern: GCM has the largest usage, since it has
the largest precomputation table; the Hummingbird-2 cipher (followed by CCM)
has the smallest RAM usage since it requires no runtime precomputation at all.
When using the software AES implementation, 1 564 additional ROM bytes are
required for CCM, GCM and SGCM (which use EK only) and 3 668 additional
ROM bytes are required for OCB3.

Table 3. ROM and RAM (stack) usage of AE modes, in bytes. When using software
AES, 1 564 additional ROM bytes are required for CCM, GCM and SGCM and 3 668
bytes for OCB3

Mode ROM RAM

CTR 688 124
CCM 1 684 250
GCM 5 602 884
SGCM 2 874 322
OCB3 2 382 538
HB2 3 674 196

5.1 Related work

Unfortunately, we are not aware of any works describing implementations of
these modes for the MSP430X (except Hummingbird-2), which prevents further
comparisons. However, it is still possible to draw some comparisons with related
works, as follows.

ECRYPT Workshop on Lightweight Cryptography - November 2011 100

In [3], the encryption performance using the AES module present in the
CC2420 transceiver is studied, achieving 110 cycles per byte. This is still 5 times
slower than our results for the CTR mode, probably because the CC2420 is a
peripheral and communicating with it is more expensive.

The Dragon-MAC [10] is based on the Dragon stream cipher. Its authors
describe an implementation for the MSP430 that achieves 21.4 cycles per byte
for authenticated encryption (applying Dragon then Dragon-MAC), which is
faster than all timings in this work. However, it requires 18.9 KB of code. Our
CCM implementation using the AES accelerator is 1.7 times slower, but 11 times
smaller.

The Hummingbird-2 timings reported for the MSP430 in its paper [4] are
about 10% faster than the timings we have obtained. However, its authors do
not describe their optimization techniques, nor the exact MSP430 model used
and their timing methodology, making it difficult to explain their achieved speed.
However, we believe that our implementation is good enough for comparisons.

The work [9], whose approach we have followed, provides timings for CTR,
CCM, GCM and OCB3 for many platforms, but not for the MSP430. In order
to make a comparison, consider the performance relative to the CTR timings.
For the x86-64 platform with AES New Instructions, they obtain a performance
of 3.28, 2.94 and 1.16 for CCM, GCM and OCB3 respectively; while our results
using the AES accelerator are 1.62, 7.87 and 1.71 (notice that our CCM is much
faster); using software AES, they are 2.01, 1.64, 1.06 (notice the same ordering
of performance).

6 Conclusion

Authenticated encryption modes are a very useful tool in the development of
security solutions for constrained platforms. In this work, we have presented
an efficient implementation for the MSP430X family of microcontrollers of two
popular and standardized AE modes, CCM and GCM, along with the SGCM
and OCB3 modes and the Hummingbird-2 cipher. We have also described how
to take full advantage of the AES accelerator present in some MSP430X models,
achieving a speedup of around 10 times for CTR encryption and CCM compared
to the best known timings for a software implementation.

The CCM and OCB3 modes were found to provide similar speed results
using the AES accelerator, with CCM being around 5% faster. While OCB3
is the fastest mode in many platforms, we expect CCM to be faster whenever
a non-parallel AES accelerator is available. This is the case for the MSP430X
models studied and is also the case for other platforms, for example, the AVR
XMEGA microcontroller with has an AES module analogue to the MSP430X
AES accelerator.

The CCM appears to be the best choice for MSP430X models with AES ac-
celerator considering that it also consumes less code space and less stack RAM.
If one of the undesirable properties of CCM must be avoided (not being online,
lack of support for preprocessing of static AD), a good alternative is the EAX

ECRYPT Workshop on Lightweight Cryptography - November 2011 101

mode [2] which is described as a “cleaned-up CCM” by one of its authors and
should have performance similar to CCM. The GCM mode, even though it has
many good properties, does not appear to be adequate in software implementa-
tion for resource-constrained platforms since it requires very large lookup tables
in order to offer performance comparable to other modes.

Some other relevant facts we have found are that Hummingbird-2 provided
the fastest performance compared to the other modes using AES in software;
that SGCM is 50% faster than GCM when using the AES accelerator and 25%
when not; and that OCB3 and Hummingbird-2 in particular have a decryption
performance remarkably slower than encryption (up to 50%).

Future work. It would be interesting to implement and compare lightweight
encrypt-and-authenticate or authenticated encryption schemes such as Letter-
Soup [17] and Rabbit-MAC [18] for the MSP430X. Another possible venue for
research is to study the efficient implementation of authenticated encryption us-
ing the AES accelerator featured in other platforms such as the AVR XMEGA
and n devices based on the ARM Cortex such as the EFM32 Gecko, STM32 and
LPC1800.

References

1. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Advances in Cryptology —
ASIACRYPT 2000, Lecture Notes in Computer Science, vol. 1976, pp. 531–545.
Springer Berlin / Heidelberg (2000)

2. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Fast Soft-
ware Encryption, Lecture Notes in Computer Science, vol. 3017, pp. 389–407.
Springer Berlin / Heidelberg (2004)

3. Didla, S., Ault, A., Bagchi, S.: Optimizing AES for embedded devices and wire-
less sensor networks. In: Proceedings of the 4th International ICST Conference
on Testbeds and Research Infrastructures for the Development of Networks and
Communities. pp. 4:1–4:10 (2008)

4. Engels, D., Saarinen, M.J.O., Smith, E.M.: The Hummingbird-2 lightweight au-
thenticated encryption algorithm. Cryptology ePrint Archive, Report 2011/126
(2011), http://eprint.iacr.org/

5. Gladman, B.: AES and combined encryption/authentication modes. http://

gladman.plushost.co.uk/oldsite/AES/ (2008)
6. Gouvêa, C.P.L., López, J.: Software implementation of pairing-based cryptography

on sensor networks using the MSP430 microcontroller. In: Progress in Cryptology
— INDOCRYPT 2009. Lecture Notes in Computer Science, vol. 5922, pp. 248–262.
Springer Berlin / Heidelberg (2009)

7. Großschädl, J., Szekely, A., Tillich, S.: The energy cost of cryptographic key estab-
lishment in wireless sensor networks. In: Proceedings of the 2nd ACM symposium
on information, computer and communications security. pp. 380–382. ASIACCS
’07, ACM, New York, NY, USA (2007)

8. Jovanov, E., Milenkovic, A.: Body area networks for ubiquitous healthcare appli-
cations: Opportunities and challenges. Journal of Medical Systems pp. 1–10 (2011)

ECRYPT Workshop on Lightweight Cryptography - November 2011 102

http://eprint.iacr.org/
http://gladman.plushost.co.uk/oldsite/AES/
http://gladman.plushost.co.uk/oldsite/AES/

9. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Fast Software Encryption, Lecture Notes in Computer Science, vol.
6733, pp. 306–327. Springer Berlin / Heidelberg (2011)

10. Lim, S.Y., Pu, C.C., Lim, H.T., Lee, H.J.: Dragon-MAC: Securing wireless sen-
sor networks with authenticated encryption. Cryptology ePrint Archive, Report
2007/204 (2007), http://eprint.iacr.org/

11. López, J., Dahab, R.: High-speed software multiplication in F2m . In: Progress in
Cryptology — INDOCRYPT 2000. Lecture Notes in Computer Science, vol. 1977,
pp. 93–102. Springer Berlin / Heidelberg (2000)

12. McGrew, D., Viega, J.: The security and performance of the Galois/Counter Mode
(GCM) of operation. In: Progress in Cryptology — INDOCRYPT 2004, Lecture
Notes in Computer Science, vol. 3348, pp. 377–413. Springer Berlin / Heidelberg
(2005)

13. Oliveira, L.B., Aranha, D.F., Gouvêa, C.P.L., Scott, M., Câmara, D.F., López, J.,
Dahab, R.: TinyPBC: Pairings for authenticated identity-based non-interactive key
distribution in sensor networks. Computer Communications 34(3), 485–493 (2010)

14. Rogaway, P., Wagner, D.: A critique of CCM. Cryptology ePrint Archive, Report
2003/070 (2003), http://eprint.iacr.org/

15. Rogaway, P.: Method and apparatus for facilitating efficient authenticated encryp-
tion (2007), US patent 7200227

16. Saarinen, M.J.O.: SGCM: The Sophie Germain counter mode. Cryptology ePrint
Archive, Report 2011/326 (2011), http://eprint.iacr.org/

17. Simplicio Jr, M.A., Barbuda, P.F.F.S., Barreto, P.S.L.M., Carvalho, T.C.M.B.,
Margi, C.B.: The MARVIN message authentication code and the LETTERSOUP
authenticated encryption scheme. Security and Communication Networks 2(2),
165–180 (2009)

18. Tahir, R., Javed, M., Cheema, A.: Rabbit-MAC: Lightweight authenticated en-
cryption in wireless sensor networks. In: Information and Automation, 2008. ICIA
2008. International Conference on. pp. 573–577 (2008)

19. Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M.,
Lees, J.: Deploying a wireless sensor network on an active volcano. IEEE Internet
Computing 10, 18–25 (2006)

20. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM) (2002),
http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html

ECRYPT Workshop on Lightweight Cryptography - November 2011 103

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html

An Efficient Authentication Protocol Based on Ring-LPN

Stefan Heyse∗ Eike Kiltz† Vadim Lyubashesvky‡ Christof Paar§

Krzysztof Pietrzak¶

Abstract

We propose a new Hopper-Blum (HB) style authentication protocol that is provably secure
based on a ring variant of the learning parity with noise (LPN) problem. Our protocol is secure
against active attacks, consists of only two rounds, has small communication complexity, and
has a very small footprint which makes it very applicable in scenarios that involve low-cost,
resource-constrained devices.

Performance-wise, our protocol is the most efficient of the HB family of protocols and our
implementation results show that it is even comparable to the standard challenge-and-response
protocols based on the AES block-cipher. Our basic protocol is roughly 20 times slower than
AES, but with the advantage of having 10 times smaller code size. Furthermore, if a few hundred
bytes of non-volatile memory are available to allow the storage of some off-line pre-computations,
then the online phase of our protocols is only twice as slow as AES.

1 Introduction

Lightweight shared-key authentication protocols, in which a tag authenticates itself to a reader, are
extensively used in resource-constrained devices such as radio-frequency identification (RFID) tags
or smart cards. The straight-forward approach for constructing secure authentications schemes is
to use low-level symmetric primitives such as block-ciphers, e.g. AES [DR02]. In their most basic
form, the protocols consist of the reader sending a short challenge c and the tag responding with
AESK(c), where K is the shared secret key. The protocol is secure if AES fulfills a strong, interactive
security assumption, namely that it behaves like a strong pseudo-random function.

Authentication schemes based on AES have some very appealing features: they are extremely
fast, consist of only 2 rounds, and have very small communication complexities. In certain scenarios,
however, such as when low-cost and resource-constrained devices are involved, the relatively large
gate-count and code size used to implement AES may pose a problem. One approach to overcome
the restrictions presented by low-weight devices is to construct a low-weight block cipher (e.g.
PRESENT [BKL+07]), while another approach has been to deviate entirely from block-cipher
based constructions and build a provably-secure authentication scheme based on the hardness of
some mathematical problem. In this work, we concentrate on this second approach.

∗Ruhr-Universität Bochum; stefan.heyse@rub.de
†Ruhr-Universität Bochum; eike.kiltz@rub.de
‡INRIA / ENS, Paris; lyubash@di.ens.fr
§Ruhr-Universität Bochum; christof.paar@rub.de
¶IST Austria; krzpie@gmail.com

1

ECRYPT Workshop on Lightweight Cryptography - November 2011 104

Ideally, one would like to construct a scheme that incorporates all the beneficial properties of
AES-type protocols, while also acquiring the additional provable security and smaller code descrip-
tion characteristics. In the past decade, there have been proposals that achieved some, but not
all, of these criteria. The most notable of these proposals fall into the Hopper-Blum (HB) line of
protocols, which we will survey in detail below. Our proposal can be seen as a continuation of this
line of research that contains all the advantages enjoyed by HB-type protocols, while at the same
time, getting even closer to enjoying the benefits of AES-type schemes.

Overview of our Results. In this work we present a new symmetric authentication protocol
which (i) is provably-secure against active attacks (as defined in [JW05]) based on the Ring-LPN
assumption, a natural variant of the standard LPN (learning parity with noise) assumption; (ii)
consists of 2 rounds; (iii) has small communication complexity (approximately 1300 bits); (iv) has
efficiency comparable to AES-based challenge-response protocols (depending on the scenario), but
with a much smaller code size. To demonstrate the latter we implemented the tag part of our
new protocol in a setting of high practical relevance – a low-cost 8-bit microcontroller which is a
typical representative of a CPU to be found on lightweight authentication tokens, and compared
its performance (code size and running time) with an AES implementation on the same platform.

Previous Works. Hopper and Blum [HB00, HB01] proposed a 2-round authentication protocol
that is secure against passive adversaries based on the hardness of the LPN problem (we remind
the reader of the definition of the LPN problem in Section 1.2). The characteristic feature of this
protocol is that it requires very little workload on the part of the tag and the reader. Indeed,
both parties only need to compute vector inner products and additions over F2, which makes this
protocol (thereafter named HB) a good candidate for lightweight applications.

Following this initial work, Juels and Weis constructed a protocol called HB+ [JW05] which
they proved to be secure against more realistic, so called active attacks. Subsequently, Katz et
al. [KS06a, KS06b, KSS10] provided a simpler security proof for HB+ as well as showed that it
remains secure when executed in parallel. Unlike the HB protocol, however, HB+ requires three
rounds of communication between tag and reader. From a practical aspect, 2 round authentication
protocols are often advantageous over 3 round protocols. They often show a lower latency which is
especially pronounced on platforms where the establishment of a communication in every directions
is accompanied by a fixed initial delay. An additional drawback of both HB and HB+ is that their
communication complexity is on the order of hundreds of thousands of bits, which makes them
almost entirely impractical for lightweight authentication tokens because of timing and energy
constraints. (The contactless transmission of data on RFIDs or smart cards typically requires
considerably more energy than the processing of the same data.)

To remedy the overwhelming communication requirement of HB+, Gilbert et al. proposed the
three-round HB] protocol [GRS08a]. A particularly practical instantiation of this protocol requires
fewer than two thousand bits of communication, but is no longer based on the hardness of the LPN
problem. Rather than using independent randomness, the HB] protocol utilized a Toeplitz matrix,
and is thus based on a plausible assumption that the LPN problem is still hard in this particular
scenario.

A feature that the HB,HB+, and HB] protocols have in common is that at some point the reader
sends a random string r to the tag, which then must reply with 〈r, s〉 + e, the inner product of r
with the secret s plus some small noise e. The recent work of Kiltz et al. [KPC+11] broke with
this approach, and they were able to construct the first 2-round LPN-based authentication protocol
(thereafter named HB2) that is secure against active attacks. In their challenge-response protocol,

2

ECRYPT Workshop on Lightweight Cryptography - November 2011 105

the reader sends some challenge bit-string c to the tag, who then answers with a noisy inner product
of a random r (which the tag chooses itself) and a session-key K(c), where K(c) selects (depending
on c) half of the bits from the secret s. Unfortunately, the HB2 protocol still inherits the large
communication requirement of HB and HB+. Furthermore, since the session key K(c) is computed
using bit operations, it does not seem to be possible to securely instantiate HB2 over structured
(and hence more compact) objects such as Toeplitz matrices (as used in HB] [GRS08a]).

1.1 Our contributions

Protocol. In this paper we propose a variant of the HB2 protocol from [KPC+11] which uses an
“algebraic” derivation of the session key K(c), thereby allowing to be instantiated over a carefully
chosen ring R = F2[X]/(f). Our scheme is no longer based on the hardness of LPN, but rather
on the hardness of a natural generalization of the problem to rings, which we call Ring-LPN(see
Section 3 for the definition of the problem.) The general overview of our protocol is quite simple.
Given a challenge c from the reader, the tag answers with (r, z = r · K(c) + e) ∈ R × R, where
r is a random ring element, e is a low-weight ring element, and K(c) = sc + s′ is the session key
that depends on the shared secret key K = (s, s′) ∈ R2 and the challenge c. The reader accepts if
e′ = r ·K(c)− z is a polynomial of low weight, cf. Figure 1 in Section 4. Compared to the HB and
HB+ protocols, ours has one less round and a dramatically lower communication complexity. Our
protocol has essentially the same communication complexity as HB], but still retains the advantage
of one fewer round. And compared to the two-round HB2 protocol, ours again has the large savings
in the communication complexity. Furthermore, it inherits from HB2 the simple and tight security
proof that, unlike three-round protocols, does not use rewinding.

We remark that while our protocol is provably secure against active attacks, we do not have
a proof of security against man-in-the-middle ones. Still, as argued in [KSS10], security against
active attacks is sufficient for many use scenarios (see also [JW05, KW05, KW06]). We would like to
mention that despite man-in-the-middle attacks being outside our “security model”, we think that
it is still worthwhile investigating whether such attacks do in fact exist, because it presently seems
that all previous man-in-the middle attacks against HB-type schemes along the lines of Gilbert et
al. [GRS05] and of Ouafi et al. [OOV08] do not apply to our scheme. In Appendix A, however,
we do present a man-in-the-middle attack that works in time approximately n1.5 · 2λ/2 (where n
is the dimension of the secret and λ is the security parameter) when the adversary can influence
on the order of n1.5 · 2λ/2 interactions between the reader and the tag. To resist this attack, one
could simply double the security parameter, but we believe that even for λ = 80 (and n > 512, as
it is currently set in our scheme) this attack is already impractical because of the extremely large
number of interactions that the adversary will have to observe and modify.

Implementation. We demonstrate that our protocol is indeed practical by providing a lightweight
implementation of the tag part of the protocol. (The reader is typically not run on a constrained
device and therefore we do not consider its performance.) The target platform was an AVR AT-
mega163 [Atm] based smart card. The ATmega163 is a small 8-bit microcontroller which is a typical
representative of a CPU to be found on lightweight authentication tokens. The main metrics we
consider are run time and code size. We compare our results with a challenge-response protocol
using an AES implementation optimized for the target platform. A major advantage of our protocol
is its very small code size. The most compact implementation requires only about 460 bytes of
code, which is an improvement by factor of about 10 over AES-based authentication. Given that

3

ECRYPT Workshop on Lightweight Cryptography - November 2011 106

Table 1: Summary of implementation results
Protocol Time (cycles) Code size

online offline (bytes)

Ours: reducible f (§5.1) 30, 000 82, 500 1, 356
Ours: irreducible f (§5.2) 21, 000 174, 000 459
AES-based [LLS09, Tik] 10, 121 0 4, 644

EEPROM or FLASH memory is often one of the most precious resources on constrained devices,
our protocol can be attractive in certain situations. The drawback of our protocol over AES on
the target platform is an increase in clock cycles for one round of authentication. However, if we
have access to a few hundred bytes of non-volatile data memory, our protocol allows precomputa-
tions which make the on-line phase only a factor two or three slower than AES. But even without
precomputations, the protocol can still be executed in a few 100 msec, which will be sufficient
for many real-world applications, e.g. remote keyless entry systems or authentication for financial
transactions. Table 1 gives a summary of the results, see Section 5 for details.

We would like to stress at this point that our protocol is targeting lightweight tags that are
equipped with (small) CPUs. For ultra constrained tokens (such as RFIDs in the price range of
a few cents targeting the EPC market) which consist nowadays of a small integrated circuit, even
compact AES implementations are often considered too costly. (We note that virtually all current
commercially available low-end RFIDs do not have any crypto implemented.) However, tokens
which use small microcontrollers are far more common, e.g., low-cost smart cards, and they do
often require strong authentication. Also, it can be speculated that computational RFIDs such as
the WISP [Wik] will become more common in the future, and hence software-friendly authentication
methods that are highly efficient such as the protocol provided here will be needed.

1.2 LPN, Ring-LPN, and Related Problems

The security of our protocols relies on the new Ring Learning Parity with Noise (Ring-LPN) problem
which is a natural extension of the standard Learning Parity with Noise (LPN) problem to rings.
It can also be seen as a particular instantiation of the Ring-LWE (Learning with Errors over Rings)
problem that was recently shown to have a strong connection to lattices [LPR10]. We will now
briefly describe and compare these hardness assumptions, and we direct the reader to Section 3 for
a formal definition of the Ring-LPN problem.

The decision versions of these problems require us to distinguish between two possible oracles
to which we have black-box access. The first oracle has a randomly generated secret vector s ∈ Fn2
which it uses to produce its responses. In the LPN problem, each query to the oracle produces a
uniformly random matrix1 A ∈ Fn×n2 and a vector As+ e = t ∈ Fn2 where e is a vector in Fn2 each of
whose entries is an independently generated Bernoulli random variable with probability of 1 being
some public parameter τ between 0 and 1/2. The second oracle in the LPN problem outputs a
uniformly-random matrix A ∈ Fn×n2 and a uniformly random vector t ∈ Fn2 .

The only difference between LPN and Ring-LPN is in the way the matrix A is generated (both by
the first and second oracle). While in the LPN problem, all its entries are uniform and independent,

1In the more common description of the LPN problem, each query to the oracle produces one random sample in
Fn2 . For comparing LPN to Ring-LPN, however, it is helpful to consider the oracle as returning a matrix of n random
independent samples on each query.

4

ECRYPT Workshop on Lightweight Cryptography - November 2011 107

in the Ring-LPN problem, only its first column is generated uniformly at random in Fn2 . The
remaining n columns of A depend on the first column and the underlying ring R = F2[X]/(f(X)).
If we view the first column of A as a polynomial r ∈ R, then the ith column (for 0 ≤ i ≤ n− 1) of
A is just the vector representation of rXi in the ring R. Thus when the oracle returns As+ e, this
corresponds to it returning the polynomial r · s+ e where the multiplication of polynomials r and
s (and the addition of e) is done in the ring R. The Ring-LPNR assumption states that it is hard
to distinguish between the outputs of the first and the second oracle described above. In Section
3, we discuss how the choice of the ring R affects the security of the problem.

While the standard Learning Parity with Noise (LPN) problem has found extensive use as a
cryptographic hardness assumption (e.g., [HB01, JW05, GRS08b, GRS08a, ACPS09, KSS10]), we
are not aware of any constructions that employed the Ring-LPN problem. There have been some
previous works that considered some relatively similar “structured” versions of LPN. The HB]

authentication protocol of Gilbert et al. [GRS08a] made the assumption that for a random Toeplitz
matrix S ∈ Fm×n2 , a uniformly random vector a ∈ Fn2 , and a vector e ∈ Fm2 whose coefficients are
distributed as Berτ , the output (a, Sa+ e) is computationally indistinguishable from (a, t) where t
is uniform over Fm2 .

Another related work, as mentioned above, is the recent result of Lyubashevsky et al. [LPR10],
where it is shown that solving the decisional Ring-LWE (Learning with Errors over Rings) problem
is as hard as quantumly solving the worst case instances of the shortest vector problem in ideal
lattices. The Ring-LWE problem is quite similar to Ring-LPN, with the main difference being that
the ring R is defined as Fq[X]/(f(X)) where f(X) is a cyclotomic polynomial and q is a prime such
that f(X) splits completely into deg(f(X)) distinct factors over Fq.

Unfortunately, the security proof of our authentication scheme does not allow us to use a
polynomial f(X) that splits into low-degree factors, and so we cannot base our scheme on lattice
problems. For a similar reason (see the proof of our scheme in Section 4 for more details), we cannot
use samples that come from a Toeplitz matrix as in [GRS08a]. Nevertheless, we believe that the
Ring-LPN assumption is very natural and will find further cryptographic applications, especially
for constructions of schemes for low-cost devices.

2 Definitions

2.1 Rings and Polynomials

For a polynomial f(X) over F2, we will often omit the indeterminate X and simply write f . The
degree of f is denoted by deg(f). For two polynomials a, f in F2[X], a mod f is defined to be the
unique polynomial r of degree less than deg(f) such that a = fg+r for some polynomial g ∈ F2[X].
The elements of the ring F2[X]/(f) will be represented by polynomials in F2[X] of maximum degree
deg(f) − 1. In this paper, we will only be considering rings R = F2[X]/(f) where the polynomial
f factors into distinct irreducible factors over F2. For an element a in the ring F2[X]/(f), we will
denote by â, the CRT (Chinese Remainder Theorem) representation of a with respect to the factors
of f . In other words, if f = f1 . . . fm where all fi are irreducible, then

â
.
= (a mod f1, . . . , a mod fm).

If f is itself an irreducible polynomial, then â = a. Note that an element â ∈ R has a multiplicative
inverse iff, for all 1 ≤ i ≤ m, a 6= 0 mod fi. We denote by R∗ the set of elements in R that have a
multiplicative inverse.

5

ECRYPT Workshop on Lightweight Cryptography - November 2011 108

2.2 Distributions

For a distribution D over some domain, we write r
$← D to denote that r is chosen according to

the distribution D. For a domain Y , we write U(Y) to denote the uniform distribution over Y . Let
Berτ be the Bernoulli distribution over F2 with parameter (bias) τ ∈]0, 1/2[(i.e., Pr[x = 1] = τ if
x← Berτ). For a polynomial ring R = F2[X]/(f), the distribution BerRτ denotes the distribution over
the polynomials of R, where each of the deg(f) coefficients of the polynomial is drawn independently

from Berτ . For a ring R and a polynomial s ∈ R, we write ΛR,s
τ to be the distribution over R × R

whose samples are obtained by choosing a polynomial r
$← U(R) and another polynomial e

$← BerRτ ,
and outputting (r, rs+ e).

2.3 Authentication Protocols

An authentication protocol Π is an interactive protocol executed between a Tag T and a reader
R, both PPT algorithms. Both hold a secret x (generated using a key-generation algorithm KG
executed on the security parameter λ in unary) that has been shared in an initial phase. After
the execution of the authentication protocol, R outputs either accept or reject. We say that the
protocol has completeness error εc if for all λ ∈ N, all secret keys x generated by KG(1λ), the
honestly executed protocol returns reject with probability at most εc. We now define different
security notions of an authentication protocol.

Passive attacks. An authentication protocol is secure against passive attacks, if there exists no
PPT adversary A that can make the reader R return accept with non-negligible probability after
(passively) observing any number of interactions between reader and tag.

Active attacks. A stronger notion for authentication protocols is security against active attacks.
Here the adversary A runs in two stages. First, she can interact with the honest tag a polynomial
number of times (with concurrent executions allowed). In the second phase A interacts with the
reader only, and wins if the reader returns accept. Here we only give the adversary one shot to
convince the verifier.2 An authentication protocol is (t, q, ε)-secure against active adversaries if
every PPT A, running in time at most t and making q queries to the honest reader, has probability
at most ε to win the above game.

3 Ring-LPN and its Hardness

The decisional Ring-LPNR (Ring Learning Parity with Noise in ring R) assumption, formally defined
below, states that it is hard to distinguish uniformly random samples in R×R from those sampled
from ΛR,s

τ for a uniformly chosen s ∈ R.

Definition 3.1 (Ring-LPNR). The (decisional) Ring-LPNR
τ problem is (t, Q, ε)-hard if for every

distinguisher D running in time t and making Q queries,∣∣∣Pr
[
s

$← R : DΛR,s
τ = 1

]
− Pr

[
DU(R×R) = 1

]∣∣∣ ≤ ε.
2By using a hybrid argument one can show that this implies security even if the adversary can interact in k ≥ 1

independent instances concurrently (and wins if the verifier accepts in at least one instance). The use of the hybrid
argument looses a factor of k in the security reduction.

6

ECRYPT Workshop on Lightweight Cryptography - November 2011 109

3.1 Hardness of LPN and Ring-LPN

One can attempt to solve Ring-LPN using standard algorithms for LPN, or by specialized algorithms
that possibly take advantage of Ring-LPN’s additional structure. Some work towards constructing
the latter type of algorithm has recently been done by Hanrot et al. [HLPS11], who show that
in certain cases, the algebraic structure of the Ring-LPN and Ring-LWE problems makes them
vulnerable to certain attacks. These attacks essentially utilize a particular relationship between
the factorization of the polynomial f(X) and the distribution of the noise.

3.1.1 Ring-LPN with an irreducible f(X)

When f(X) is irreducible over F2, the ring F2[X]/(f) is a field. For such rings, the algorithm of
Hanrot et al. does not apply, and we do not know of any other algorithm that takes advantage
of the added algebraic structure of this particular Ring-LPN instance. Thus to the best of our
knowledge, the most efficient algorithms for solving this problem are the same ones that are used
to solve LPN, which we will now very briefly recount.

The computational complexity of the LPN problem depends on the length of the secret n and the
noise distribution Berτ . Intuitively, the larger the n and the closer τ is to 1/2, the harder the problem
becomes. Usually the LPN problem is considered for constant values of τ somewhere between 0.05
and 0.25. For such constant τ , the fastest asymptotic algorithm for the LPN problem, due to Blum
et al. [BKW03], takes time 2Ω(n/ logn) and requires approximately 2Ω(n/ logn) samples from the LPN
oracle. If one has access to fewer samples, then the algorithm will perform somewhat worse. For
example, if one limits the number of samples to only polynomially-many, then the algorithm has an
asymptotic complexity of 2Ω(n/ log logn) [Lyu05]. In our scenario, the number of samples available to
the adversary is limited to n times the number of executions of the authentication protocol, and so
it is reasonable to assume that the adversary will be somewhat limited in the number of samples he
is able to obtain (perhaps at most 240 samples), which should make our protocols harder to break
than solving the Ring-LPN problem. Levieil and Fouque [LF06] made some optimizations to the
algorithm of Blum et al. and analyzed its precise complexity. To the best of our knowledge, their
algorithm is currently the most efficient one and we will refer to their results when analyzing the
security of our instantiations.

In Section 5, we base our scheme on the hardness of the Ring-LPNR problem where R =
F2[X]/(X532 + X + 1) and τ = 1/8. According to the analysis of [LF06], an LPN problem of
dimension 512 with τ = 1/8 would require 277 memory (and thus at least that much time) to solve
when given access to approximately as many samples (see [LF06, Section 5.1]). Since our dimension
is somewhat larger and the number of samples will be limited in practice, it is reasonable to assume
that this instantiation has 80-bit security.

3.1.2 Ring-LPN with a reducible f(X)

For efficiency purposes, it is sometimes useful to consider using a polynomial f(X) that is not
irreducible over F2. This will allow us to use the CRT representation of the elements of F2[X]/(f)
to perform multiplications, which in practice turns out to be more efficient. Ideally, we would like
the polynomial f to split into as many small-degree polynomials fi as possible, but there are some
constraints that are placed on the factorization of f both by the security proof, and the possible
weaknesses that a splittable polynomial introduces into the Ring-LPN problem.

7

ECRYPT Workshop on Lightweight Cryptography - November 2011 110

If the polynomial f splits into f =
∏m
i=1 fi, then it may be possible to try and solve the Ring-LPN

problem modulo some fi rather than modulo f . Since the degree of fi is smaller than the degree
of f , the resulting Ring-LPN problem may end up being easier. In particular, when we receive a
sample (r, rs+ e) from the distribution ΛR,s

τ , we can rewrite it in CRT form as

(r̂, r̂s+ e) = ((r mod f1, rs+ e mod f1), . . . ,

(r mod fm, rs+ e mod fm)),

and thus for every fi, we have a sample

(r mod fi, (r mod fi)(s mod fi) + e mod fi),

where all the operations are in the ring (or field) F2[X]/(fi). Thus solving the (decision) Ring-LPN
problem in F2[X]/(f) reduces to solving the problem in F2[X]/(fi). The latter problem is in a
smaller dimension, since deg(s) > deg(s mod fi), but the error distribution of (e mod fi) is quite
different than that of e. While each coefficient of e is distributed independently as Berτ , each
coefficient of (e mod fi) is distributed as the distribution of a sum of certain coefficients of e, and
therefore the new error is larger.3 Exactly which coefficients of e, and more importantly, how
many of them, combine to form every particular coefficient of e′ depends on the polynomial fi. For
example, if

f(X) = (X3 +X + 1)(X3 +X2 + 1)

and e =
5∑
i=0

eiX
i, then,

e′ = e mod (X3 +X + 1) = (e0 + e3 + e5) + (e1 + e3 + e4 + e5)X + (e2 + e4 + e5)X2,

and thus every coefficient of the error e′ is comprised of at least 3 coefficients of the error vector e,

and thus τ ′ > 1
2 −

(1−2τ)3

2 .
In our instantiation of the scheme with a reducible f(X) in Section 5, we used the f(X) such

that it factors into fi’s that make the operations in CRT form relatively fast, while making sure
that the resulting Ring-LPN problem modulo each fi is still around 280-hard.

4 Authentication Protocol

In this section we describe our new 2-round authentication protocol and prove its active security
under the hardness of the Ring-LPN problem. Detailed implementation details will be given in
Section 5.

4.1 The Protocol

Our authentication protocol is defined over the ring R = F2[X]/(f) and involves a “suitable”
mapping π : {0, 1}λ → R. We call π suitable for ring R if for all c, c′ ∈ {0, 1}λ, π(c)− π(c′) ∈ R \R∗
iff c = c′. We will discuss the necessity and existence of such mappings after the proof of Theorem 4.1

3If we have k elements e1, . . . , ek
$← Berτ , then the element e′ = e1 + . . . + ek is distributed as Berτ ′ where

τ ′ = 1
2
− (1−2τ)k

2
.

8

ECRYPT Workshop on Lightweight Cryptography - November 2011 111

Public parameters: R, π : {0, 1}λ → R, τ, τ ′

Secret key: s, s′ ∈ R

Tag T Reader R
c←− c

$← {0, 1}λ

r
$← R∗; e

$← BerRτ ∈ R

z := r · (s · π(c) + s′) + e
(r,z)−−→

if r 6∈ R∗ reject
e′ := z − r · (s · π(c) + s′)
if wt(e′) > n · τ ′ reject
else accept

Figure 1: Two-round authentication protocol with active security from the Ring-LPNR assumption.

• Public parameters. The authentication protocol has the following public parameters, where
τ, τ ′ are constants and n depend on the security parameter λ.
R, n ring R = F2[X]/(f), deg(f) = n
π : {0, 1}λ → R mapping
τ ∈ {0, . . . 1/2} parameter of Bernoulli distribution
τ ′ ∈ {τ, . . . 1/2} acceptance threshold

• Key Generation. Algorithm KG(1λ) samples s, s′
$← R and returns s, s′ as the secret key.

• Authentication Protocol. The Reader R and the Tag T share secret value s, s′ ∈ R. To be
authenticated by a Reader, the Tag and the Reader execute the authentication protocol from
Figure 1.

4.2 Analysis

For our analysis we define for x, y ∈]0, 1[the following constant:

c(x, y) :=

(
x

y

)x(1− x
1− y

)1−x
.

We now state that our protocol is secure against active adversaries. Recall that active adversaries
can arbitrarily interact with a Tag oracle in the first phase and tries to impersonate the Reader in
the 2nd phase.

Theorem 4.1. If ring mapping π is suitable for ring R and the Ring-LPNR problem is (t, q, ε)-hard
then the authentication protocol from Figure 1 is (t′, q, ε′)-secure against active adversaries, where

t′ = t− q · exp(R) ε′ = ε+ q · 2−λ + c(τ ′, 1/2)−n (4.1)

and exp(R) is the time to perform O(1) exponentiations in R. Furthermore, the protocol has
completeness error εc(τ, τ

′, n) ≈ c(τ ′, τ)−n.

9

ECRYPT Workshop on Lightweight Cryptography - November 2011 112

Proof. The completeness error εc(τ, τ
′, n) is (an upper bound on) the probability that an honestly

generated Tag gets rejected. In our protocol this is exactly the case when the error e has weight
≥ n · τ ′, i.e.

εc(τ, τ
′, n) = Pr[wt(e) > n · τ ′ : e

$← BerRτ]

Levieil and Fouque [LF06] show that one can approximate this probability as εc ≈ c(τ ′, τ)−n.
To prove the security of the protocol against acitve attacks we proceed in sequences of games.

Game0 is the security experiment describing an active attack on our scheme by an adversary A
making q queries and running in time t′, i.e.

• Sample the secret key s, s′
$← R.

• (1st phase of active attack) A queries the tag T on c ∈ {0, 1}λ and receives (r, z) computed
as illustrated in Figure 1.

• (2nd phase of active attack) A gets a random challange c∗
$← {0, 1}λ and outputs (r, z). A

wins if the reader R accepts, i.e. wt(z − r · (s · π(c∗) + s′)) ≤ n · τ ′.

By definition we have Pr[A wins in Game0] ≤ ε′.
Game1 is as Game0, except that all the values (r, z) returned by the Tag oracle in the first phase

(in return to a query c ∈ {0, 1}λ) are uniform random elements (r, z) ∈ R2. We now show that if A
is successful against Game0, then it will also be successful against Game1.

Claim 4.2. |Pr[A wins in Game1]− Pr[A wins in Game0]| ≤ ε+ q · 2−λ

To prove this claim, we construct an adversary D (distinguisher) against the Ring-LPN problem
which runs in time t = t′ + exp(R) and has advantage

ε ≥ |Pr[A wins in Game1]− Pr[A wins in Game0]| − q · 2−λ

D has access to a Ring-LPN oracle O and has to distinguish between O = ΛR,s
τ for some secret

s ∈ R and O = U(R× R).

• D picks a random challenge c∗
$← {0, 1}λ and a

$← R. Next, it runs A and simulates its
view with the unknown secret s, s′, where s ∈ R comes from the oracle O and s′ is implicitly
defined as s′ := −π(c∗) · s+ a ∈ R.

• In the 1st phase, A can make q (polynomial many) queries to the Tag oracle. On query
c ∈ {0, 1}λ to the Tag oracle, D proceeds as follows. If π(c) − π(c∗) 6∈ R∗, then abort.
Otherwise, D queries its oracle O() to obtain (r′, z′) ∈ R2. Finally, D returns (r, z) to A,
where

r := r′ · (π(c)− π(c∗))−1, z := z′ + ra. (4.2)

• In the 2nd phase, D uses c∗ ∈ {0, 1}λ to challenge A. On answer (r, z), D returns 0 to the
Ring-LPN game if wt(z − r · a) > n · τ ′ or r 6∈ R∗, and 1 otherwise. Note that sπ(c∗) + s′ =
(π(c∗)−π(c∗))s+a = a and hence the above check correctly simulates the output of a reader
with the simulated secret s, s′.

10

ECRYPT Workshop on Lightweight Cryptography - November 2011 113

Note that the running time of D is that of A plus O(q) exponentiations in R.
Let bad be the event that for at least one query c made by A to the Tag oracle, we have that

π(c)− π(c∗) 6∈ R∗. Since c∗ is uniform random in R and hidden from A’s view in the first phase we
have by the union bound over the q queries

Pr[bad] ≤ q · Pr
c∗∈{0,1}λ

[π(c)− π(c∗) ∈ R \ R∗]

= q · 2−λ. (4.3)

The latter inequality holds because π is suitable for R.
Let us now assume bad does not happen. If O = ΛR,s

τ is the real oracle (i.e., it returns (r′, z′)
with z′ = r′s+ e) then by the definition of (r, z) from (4.2),

z = (r′s+ e) + ra = r(π(c)− π(c∗) + a)s+ e = r(sπ(c) + s′) + e.

Hence the simulation perfectly simulates A’s view in Game0. If O = U(R×R) is the random oracle
then (r, z) are uniformly distributed, as in Game1. That concludes the proof of Claim 4.2.

We next upper bound the probability that A can be successful in Game1. This bound will
be information theoretic and even holds if A is computationally unbounded and can make an
unbounded number of queries in the 1st phase. To this end we introduce the minimal soundness
error, εms, which is an upper bound on the probability that a tag (r, z) chosen independently of
the secert key is valid, i.e.

εms(τ
′, n) := max

(z,r)∈R×R∗
Pr

s,s′
$←R

[wt(z − r · (s · π(c∗) + s′)︸ ︷︷ ︸
e′

) ≤ nτ ′]

As r ∈ R∗ and s′ ∈ R is uniform, also e′ = z − r · (s · π(c∗) + s′ is uniform, thus εms is simply

εms(τ
′, n) := Pr

e′
$←R

[wt(e′) ≤ nτ ′]

Again, it was shown in [LF06] that this probability can be approximated as

εms(τ
′, n) ≈ c(τ ′, 1/2)−n. (4.4)

Clearly, εms is a trivial lower bound on the advantage of A in forging a valid tag, by the following
claim in Game1 one cannot do any better than this.

Claim 4.3. Pr[A wins in Game1] = εms(τ
′, n)

To see that this claim holds one must just observe that the answers A gets in the first phase of
the active attack in Game1 are independent of the secret s, s′. Hence A’s advantage is εms(τ

′, n) by
definition.

Claims 4.2 and 4.3 imply (4.1) and conclude the proof of Theorem 4.1.

We require the mapping π : {0, 1}λ → R used in the protocol to be suitable for R, i.e. for all
c, c′ ∈ {0, 1}λ, π(c) − π(c′) ∈ R \ R∗ iff c = c′. In Section 5 we describe efficient suitable maps for
any R = F2[X]/(f) where f has no factor of degree ≤ λ. This condition is necessary, as no suitable
mapping exists if f has a factor fi of degree ≤ λ: in this case, by the pigeonhole principle, there
exist distinct c, c′ ∈ {0, 1}λ such that π(c) = π(c′) mod fi, and thus π(c)− π(c′) ∈ R \ R∗.

11

ECRYPT Workshop on Lightweight Cryptography - November 2011 114

We stress that for our security proof we need π to be suitable for R, since otherwise (4.3) is
no longer guaranteed to hold. It is an interesting question if this is inherent, or if the security
of our protocol can be reduced to the Ring-LPNR problem for arbitrary rings R = F2[X]/(f),
or even R = Fq[X]/(f) (This is interesting since, if f has factors of degree � λ, the protocol
could be implemented more efficiently and even become based on the worst-case hardness of lattice
problems). Similarly, it is unclear how to prove security of our protocol instantiated with Toeplitz
matrices.

5 Implementation

There are two objectives that we pursue with the implementation of our protocol. First, we will show
that the protocol is in fact practical with concrete parameters, even on extremely constrained CPUs.
Second, we investigate possible application scenarios where the protocol might have additional
advantages. From a practical point of view, we are particularly interested in comparing our protocol
to classical symmetric challenge-response schemes employing AES. Possible advantages of the
protocol at hand are (i) the security properties and (ii) improved implementation properties. With
respect to the former aspect, our protocol has the obvious advantage of being provably secure
under a reasonable and static hardness assumption. Even though AES is arguably the most trusted
symmetric cipher, it is “merely” computationally secure with respect to known attacks.

In order to investigate implementation properties, constrained microprocessors are particularly
relevant. We chose an 8-bit AVR ATmega163 [Atm] based smartcard, which is widely used in myri-
ads of embedded applications. It can be viewed as a typical representative of a CPU used in tokens
that are in need for an authentication protocol, e.g., computational RFID tags or (contactless)
smart cards. The main metrics we consider for the implementation are run-time and code size.
We note at this point that in many lightweight crypto applications, code size is the most precious
resource once the run-time constraints are fulfilled. This is due to the fact that EEPROM or flash
memory is often heavily constrained. For instance, the WISP, a computational RFID tag, has only
8 kBytes of program memory [Wik, MSP].

We implemented two variants of the protocol described in Section 4. The first variant uses
a ring R = F2[X]/(f), where f splits into five irreducible polynomials; the second variant uses a
field, i.e., f is irreducible. For both implementations, we chose parameters which provide a security
level of λ = 80 bits, i.e., the parameters are chosen such that ε′ in (4.1) is bounded by 2−80 and
the completeness εc is bounded by 2−40. This security level is appropriate for the lightweight
applications which we are targeting.

5.1 Implementation with a Reducible Polynomial

From an implementation standpoint, the case of reducible polynomial is interesting since one can
take advantage of arithmetic based on the Chinese Remainder Theorem.

Parameters. To define the ring R = F2[X]/(f), we chose the reducible polynomial f to be the
product of the m = 5 irreducible pentanomials specified by the following powers with non-zero
coefficients: (127, 8, 7, 3, 0), (126, 9, 6, 5, 0), (125, 9, 7, 4, 0), (122, 7, 4, 3, 0), (121, 8, 5, 1, 0)4. Hence f
is a polynomial of degree n = 621. We chose τ = 1/6 and τ ′ = .29 to obtain minimal soundness
error εms ≈ c(τ ′, 1/2)−n ≤ 2−82 and completeness error εc ≤ 2−42. From the discussion of Section

4(127, 8, 7, 3, 0) refers to the polynomial X127 +X8 +X7 +X3 + 1.

12

ECRYPT Workshop on Lightweight Cryptography - November 2011 115

3 the best known attack on Ring-LPNR
τ with the above parameters has complexity > 280. The

mapping π : {0, 1}80 → R is defined as follows. On input c ∈ {0, 1}80, for each 1 ≤ i ≤ 5, pad
c ∈ {0, 1}80 with deg(fi)−80 zeros and view the result as coefficients of an element vi ∈ F2[X]/(fi).
This defines π(c) = (v1, . . . , v5) in CRT representation. Note that, for fixed c, c∗ ∈ {0, 1}80, we have
that π(c)− π(c∗) ∈ R \ R∗ iff c = c∗ and hence π is suitable for R.

Implementation Details. The main operations are multiplications and additions of polynomials
that are represented by 16 bytes. We view the CRT-based multiplication in three stages. In the first
stage, the operands are reduced modulo each of the five irreducible polynomials. This part has a low
computational complexity. Note that only the error e has to be chosen in the ring and afterwards
transformed to CRT representation. It is possible to save the secret key (s, s′) and to generate r
directly in the CRT representation. This is not possible for e because e has to come from BerRτ .
In the second stage, one multiplication in each of the finite fields defined by the five pentanomials
has to be performed. We used the right-to-left comb multiplication algorithm from [HMV03]. For
the multiplication with π(c) we exploit the fact that only the first 80 coefficients can be non-zero.
Hence we wrote one function for normal multiplication and one for sparse multiplication. The
latter is more than twice as fast as the former. The subsequent reduction takes care of the special
properties of the pentanomials, thus code reuse is not possible for the different fields. The third
stage, constructing the product polynomial in the ring, is shifted to the prover (RFID reader)
which normally has more computational power than the tag T . Hence the response (r, z) is sent in
CRT form to the reader. If non-volatile storage — in our case we need 2 · 5 · 16 = 160 bytes — is
available we can heavily reduce the response time of the tag. At an arbitrary point in time, choose
e and r according to their distribution and precompute tmp1 = r · s and tmp2 = r · s′ + e. When
a challenge c is received afterwards, tag T only has to compute z = tmp1 · π(c) + tmp2. Because
π(c) is sparse, the tag can use the sparse multiplication and response very quickly. The results of
the implementation are shown in Table 2 in Section 5.3. Note that all multiplication timings given
already include the necessary reductions and addition of a value according to Figure 1.

5.2 Implementation with an Irreducible Polynomial

Parameters. To define the field F = F2[X]/(f), we chose the irreducible trinomial f(X) =
X532 +X + 1 of degree n = 532. We chose τ = 1/8 and τ ′ = .27 to obtain minimal soundness error
εms ≈ c(τ ′, 1/2)−n ≤ 2−80 and completeness error εc ≈ 2−55. From the discussion in Section 3 the
best known attack on Ring-LPNF

τ with the above parameters has complexity > 280. The mapping
π : {0, 1}80 → F is defined as follows. View c ∈ {0, 1}80 as c = (c1, . . . , c16) where ci is a number
between 1 and 32. Define the coefficients of the polynomial v = π(c) ∈ F as zero except all positions
i of the form i = 16 · (j − 1) + cj , for some j = 1, . . . , 16. Hence π(c) is sparse, i.e., it has exactly
16 non-zero coefficients. Since π is injective and F is a field, the mapping π is suitable for F.

Implementation Details. The main operation for the protocol is now a 67-byte multiplication.
Again we used the right-to-left comb multiplication algorithm from [HMV03] and an optimized
reduction algorithm. Like in the reducible case, the tag can do similar precomputations if 2·67 = 134
bytes non-volatile storage are available. Because of the special type of the mapping v = π(c), the
gain of the sparse multiplication is even larger than in the reducible case. Here we are a factor of
7 faster, making the response time with precomputations faster, although the field is larger. The
results are shown in Table 3 in Section 5.3.

13

ECRYPT Workshop on Lightweight Cryptography - November 2011 116

5.3 Implementation Results

All results presented in this section consider only the clock cycles of the actual arithmetic functions.
The communication overhead and the generation of random bytes is excluded because they occur in
every authentication scheme, independent of the underlying cryptographic functions. The time for
building e from BerRτ out of the random bytes and converting it to CRT form is included in Overhead.
Table 2 and Table 3 shows the results for the ring based and field based variant, respectively.

Table 2: Results for the ring based variant w/o precomputation
Aspect time code size

in cycles in bytes

Overhead 17, 500 264
Mul 5× 13, 000 164
sparse Mul 5× 6, 000 170

total 112, 500 1356

The overall code size is not the sum of the other values because, as mentioned before, the
same multiplication code is used for all normal and sparse multiplications, respectively, while the
reduction code is different for every field (≈ 134 byte each). The same code for reduction is used
independently of the type of the multiplication for the same field. If precomputation is acceptable,
the tag can answer the challenge after approximately 30, 000 clock cycles, which corresponds to a
15 msec if the CPU is clocked at 2 MHz.

Table 3: Results for the field based variant w/o precomputation
Aspect time code size

in cycles in bytes

Overhead 3, 000 150
Mul 150, 000 161
sparse Mul 21, 000 148

total 174, 000 459

For the field-based protocol, the overall performance is slower due to the large operands used in
the multiplication routine. But due to the special mapping v = π(c), here the tag can do a sparse
multiplications in only 21, 000 clocks cycles. This allows the tag to respond in 10.5 msec at 2 MHz
clock rate if non-volatile storage is available.

As mentioned in the introduction, we want to compare our scheme with a conventional challenge-
response authentication protocol based on AES. The tag’s main operation in this case is one AES
encryption. The implementation in [LLS09] states 8, 980 clock cycles for one encryption on a similar
platform, but unfortunately no code size is given; [Tik] reports 10121 cycles per encryption and
a code size of 4644 bytes.5 In comparison with these highly optimized AES implementations, our
scheme is around eleven times slower when using the ring based variant without precomputations.
If non-volatile storage allows precomputations, the ring based variant is only three times slower
than AES. But the code size is by a factor of two to three smaller, making it attractive for Flash

5 An internet source [Poe] claims to encrypt in 3126 cycles with code size of 3098 bytes but since this is unpublished
material we do not consider it in our comparison.

14

ECRYPT Workshop on Lightweight Cryptography - November 2011 117

constrained devices. The field based variant without precomputations is 17 to 19 times slower than
AES, but with precompuations it is only twice as slow as AES, while only consuming one tenths
of the code size. From a practical point of view, it is important to note that even our slowest
implementation is executed in less than 100 msec if the CPU is clocked at 2 MHz. This response
time is sufficient in many application scenarios. (For authentications involving humans, a delay of
1 sec is often considered acceptable.)

The performance drawback compared to AES is not surprising, but it is considerably less dra-
matic compared to asymmetric schemes like RSA or ECC [GPW+04]. But exploiting the special
structure of the multiplications in our scheme and using only a small amount of non-volatile data
memory provides a response time in the same order of magnitude as AES, while keeping the code
size much smaller.

6 Conclusions and open Problems

We proposed a new HB-style authentication protocol with provable security against active attacks
based on the Ring-LPN assumption, consisting of only two rounds, and having small communica-
tion complexity. Furthermore, our implementations on an 8-bit AVR ATmega163 based smartcard
demonstrated that it has very small code size and its efficiency can be of the same order as tra-
ditional AES-based authentication protocols. Overall, we think that its features make it very
applicable in scenarios that involve low-cost, resource-constrained devices.

A number of open problems remain. Our protocol cannot be proved secure against man-in-
the-middle attacks. It is possible to apply the techniques from [KPC+11] to secure it against
such attacks, but the resulting protocol would lose its practical appeal in terms of code size and
performance. Finding a truly practical authentication protocol, provably secure against man-in-
the-middle attacks from the Ring-LPN assumption (or something comparable) remains a challenging
open problem.

We believe that the Ring-LPN assumption is very natural and will find further cryptographic
applications, especially for constructions of schemes for low-cost devices. In particular, we think
that if the HB line of research is to lead to a practical protocol in the future, then the security of
this protocol will be based on a hardness assumption with some “extra algebraic structure”, such
as Ring-LPN in this work, or LPN with Toeplitz matrices in the work of Gilbert et al. [GRS08a].
More research, however, needs to be done on understanding these problems and their computational
complexity. In terms of Ring-LPN, it would be particularly interesting to find out whether there
exists an equivalence between the decision and the search versions of the problem similar to the
reductions that exist for LPN [BFKL93, Reg09, KS06a] and Ring-LWE [LPR10].

7 Acknowledgements.

We would like to thank the anonymous referees for very useful comments, and in particular for
the suggestion that the scheme is vulnerable to a man-in-the-middle attack whenever an adversary
observes two reader challenges that are the same. We hope that the attack we described in Appendix
A corresponds to what the reviewer had in mind.

15

ECRYPT Workshop on Lightweight Cryptography - November 2011 118

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai, Fast crypto-
graphic primitives and circular-secure encryption based on hard learning problems,
CRYPTO 2009 (Shai Halevi, ed.), LNCS, vol. 5677, Springer, August 2009, pp. 595–
618.

[Atm] Atmel, ATmega163 datasheet, ”www.atmel.com/atmel/acrobat/doc1142.pdf”.

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton, Cryptographic
primitives based on hard learning problems, CRYPTO, 1993, pp. 278–291.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe, PRESENT: An ultra-
lightweight block cipher, CHES 2007 (Pascal Paillier and Ingrid Verbauwhede, eds.),
LNCS, vol. 4727, Springer, September 2007, pp. 450–466.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman, Noise-tolerant learning, the parity
problem, and the statistical query model, J. ACM 50 (2003), no. 4, 506–519.

[DR02] Joan Daemen and Vincent Rijmen, The design of rijndael: AES - the advanced encryp-
tion standard, Springer, 2002.

[GPW+04] Nils Gura, Arun Patel, Arvinderpal W, Hans Eberle, and Sheueling Chang Shantz,
Comparing elliptic curve cryptography and RSA on 8-bit CPUs, Cryptographic Hard-
ware and Embedded Systems - CHES 2004, 2004, pp. 119–132.

[GRS05] Henri Gilbert, Matt Robshaw, and Herve Sibert, An active attack against HB+ – a
provably secure lightweight authentication protocol, Cryptology ePrint Archive, Report
2005/237, 2005, http://eprint.iacr.org/.

[GRS08a] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin, HB]: Increasing the se-
curity and efficiency of HB+, EUROCRYPT 2008 (Nigel P. Smart, ed.), LNCS, vol.
4965, Springer, April 2008, pp. 361–378.

[GRS08b] , How to encrypt with the LPN problem, ICALP 2008, Part II (Luca Aceto, Ivan
Damgard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, eds.), LNCS, vol. 5126, Springer, July 2008, pp. 679–690.

[HB00] N. Hopper and M. Blum, A secure human-computer authentication scheme, Tech. Re-
port CMU-CS-00-139, Carnegie Mellon University, 2000.

[HB01] Nicholas J. Hopper and Manuel Blum, Secure human identification protocols, ASI-
ACRYPT 2001 (Colin Boyd, ed.), LNCS, vol. 2248, Springer, December 2001, pp. 52–
66.

[HLPS11] Guillaume Hanrot, Vadim Lyubashevsky, Chris Peikert, and Damien Stehlé, Personal
communication, 2011.

[HMV03] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone, Guide to elliptic curve cryp-
tography, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

16

ECRYPT Workshop on Lightweight Cryptography - November 2011 119

www.atmel.com/atmel/acrobat/doc1142.pdf
http://eprint.iacr.org/

[JW05] Ari Juels and Stephen A. Weis, Authenticating pervasive devices with human protocols,
CRYPTO 2005 (Victor Shoup, ed.), LNCS, vol. 3621, Springer, August 2005, pp. 293–
308.

[KPC+11] Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi, Effi-
cient authentication from hard learning problems, EUROCRYPT, 2011, pp. 7–26.

[KS06a] Jonathan Katz and Ji Sun Shin, Parallel and concurrent security of the HB and
HB+ protocols, EUROCRYPT 2006 (Serge Vaudenay, ed.), LNCS, vol. 4004, Springer,
May / June 2006, pp. 73–87.

[KS06b] Jonathan Katz and Adam Smith, Analyzing the HB and HB+ protocols in the “large
error” case, Cryptology ePrint Archive, Report 2006/326, 2006, http://eprint.iacr.
org/.

[KSS10] Jonathan Katz, Ji Sun Shin, and Adam Smith, Parallel and concurrent security of the
HB and HB+ protocols, Journal of Cryptology 23 (2010), no. 3, 402–421.

[KW05] Ziv Kfir and Avishai Wool, Picking virtual pockets using relay attacks on contactless
smartcard, Security and Privacy for Emerging Areas in Communications Networks,
International Conference on 0 (2005), 47–58.

[KW06] Ilan Kirschenbaum and Avishai Wool, How to build a low-cost, extended-range RFID
skimmer, Proceedings of the 15th USENIX Security Symposium (SECURITY 2006),
USENIX Association, August 2006, pp. 43–57.

[LF06] Éric Levieil and Pierre-Alain Fouque, An improved LPN algorithm, SCN 06(Roberto De
Prisco and Moti Yung, eds.), LNCS, vol. 4116, Springer, September 2006, pp. 348–359.

[LLS09] Hyubgun Lee, Kyounghwa Lee, and Yongtae Shin, AES implementation and perfor-
mance evaluation on 8-bit microcontrollers, CoRR abs/0911.0482 (2009).

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev, On ideal lattices and learning
with errors over rings, EUROCRYPT 2010 (Henri Gilbert, ed.), LNCS, vol. 6110,
Springer, May 2010, pp. 1–23.

[Lyu05] Vadim Lyubashevsky, The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem, APPROX-RANDOM, 2005, pp. 378–389.

[MSP] MSP430 datasheeet.

[OOV08] Khaled Ouafi, Raphael Overbeck, and Serge Vaudenay, On the security of HB# against
a man-in-the-middle attack, ASIACRYPT, 2008, pp. 108–124.

[Poe] B. Poettering, AVRAES: The AES block cipher on AVR controllers, ”http://
point-at-infinity.org/avraes/”.

[Reg09] Oded Regev, On lattices, learning with errors, random linear codes, and cryptography,
J. ACM 56 (2009), no. 6.

17

ECRYPT Workshop on Lightweight Cryptography - November 2011 120

http://eprint.iacr.org/
http://eprint.iacr.org/
http://point-at-infinity.org/avraes/
http://point-at-infinity.org/avraes/

[Tik] Jeff Tikkanen, AES implementation on AVR ATmega328p, ”http://cs.ucsb.edu/

~koc/cs178/projects/JT/avr_aes.html”.

[Wik] WISP Wiki, WISP 4.0 DL hardware, ”http://wisp.wikispaces.com/WISP+4.0+DL”.

A Man-in-the-Middle Attack

In this section, we sketch a man-in-the-middle attack against the protocol in Figure 1 that recovers
the secret key in time approximately O

(
n1.5 · 2λ/2

)
when the adversary is able to insert himself

into that many valid interactions between the reader and the tag. For a ring R = F2[X]/(f) and a
polynomial g ∈ R, define the vector ~g to be a vector of dimension deg(f) whose ith coordinate is
the Xi coefficient of g. Similarly, for a polynomial h ∈ R, let Rot(h) be a deg(f) × deg(f) matrix

whose ith column (for 0 ≤ i < deg(f)) is
−−−→
h ·Xi, or in other words, the coefficients of the polynomial

h ·Xi in the ring R. From this description, one can check that for two polynomials g, h ∈ R, the

product
−−→
g · h = Rot(g) · ~h mod 2 = Rot(h) · ~g mod 2.

We now move on to describing the attack. The ith (successful) interaction between a reader
R and a tag T consists of the reader sending the challenge ci, and the tag replying with the pair
(ri, zi) where zi−ri ·(s ·π(ci)+s′) is a low-weight polynomial of weight at most n ·τ ′. The adversary
who is observing this interaction will forward the challenge ci untouched to the tag, but reply to
the reader with the ordered pair (ri, z

′
i = zi + ei) where ei is a vector that is strategically chosen

with the hope that the vector z′i − ri · (s · π(ci) + s′) is exactly of weight n · τ ′. It’s not hard to
see that it’s possible to choose such a vector ei so that the probability of z′i − ri · (s · π(ci) + s′)
being of weight n · τ ′ is approximately 1/

√
n. The response (ri, z

′
i) will still be valid, and so the

reader will accept. By the birthday bound, after approximately 2λ/2 interactions, there will be a
challenge cj that is equal to some previous challenge ci. In this case, the adversary replies to the
reader with (ri, z

′′
i), where the polynomial z′′i is just the polynomial z′i whose first bit (i.e. the

constant coefficient) is flipped. What the adversary is hoping for is that the reader accepted the
response (ri, z

′
i) but rejects (ri, z

′′
i). Notice that the only way this can happen is if the first bit of z′i

is equal to the first bit of ri · (s ·π(ci) + s′), and thus flipping it, increases the error by 1 and makes
the reader reject. We now explain how finding such a pair of responses can be used to recover the
secret key.

Since the polynomial expression z′i− ri · (s · π(ci) + s′) = z′i− ri · π(ci) · s− ri · s′ can be written
as matrix-vector multiplications as

~z′i −Rot(ri · π(ci)) · ~s−Rot(ri) · ~s′ mod 2,

if we let the first bit of ~z′i be βi, the first row of Rot(ri · π(ci)) be ~ai and the first row of Rot(ri) be
~bi, then we obtain the linear equation

〈~ai, ~s〉+ 〈~bi, ~s′〉 = βi.

To recover the entire secret s, s′, the adversary needs to repeat the above attack until he obtains
2n linearly-independent equations (which can be done with O(n) successful attacks), and then use
Gaussian elimination to recover the full secret.

18

ECRYPT Workshop on Lightweight Cryptography - November 2011 121

http://cs.ucsb.edu/~koc/cs178/projects/JT/avr_aes.html
http://cs.ucsb.edu/~koc/cs178/projects/JT/avr_aes.html
http://wisp.wikispaces.com/WISP+4.0+DL

The Cryptographic Power of Random Selection

Matthias Krause and Matthias Hamann

Theoretical Computer Science
University of Mannheim

Mannheim, Germany

Abstract. The principle of random selection and the principle of adding
biased noise are new paradigms used in several recent papers for con-
structing lightweight RFID authentication protocols. The cryptographic
power of adding biased noise can be characterized by the hardness of
the intensively studied Learning Parity with Noise (LPN) Problem. In
analogy to this, we identify a corresponding learning problem for random
selection and study its complexity. Given L secret GF (2)-linear functions
f1, . . . , fL : {0, 1}n −→ {0, 1}a, RandomSelect (L, n, a) denotes the prob-
lem of learning f1, . . . , fL from values (u, fl (u)), where the secret indices
l ∈ {1, . . . , L} and the inputs u ∈ {0, 1}n are randomly chosen by an ora-
cle. We take an algebraic attack approach to design a nontrivial learning
algorithm for this problem, where the running time is dominated by the
time needed to solve full-rank systems of linear equations over O

(
nL
)

unknowns. In addition to the mathematical findings relating correctness
and average running time of the suggested algorithm, we also provide an
experimental assessment of our results.

Keywords: Lightweight Cryptography, Algebraic Attacks, Algorithmic
Learning, Foundations and Complexity Theory

1 Introduction

The very limited computational resources available in technical devices like RFID
(radio frequency identification) tags implied an intensive search for lightweight
authentication protocols in recent years. Standard block encryption functions
like Triple-DES or AES seem to be not suited for such protocols largely because
the amount of hardware to implement and the energy consumption to perform
these operations is too high (see, e.g., [7] or [17] for more information on this
topic).

This situation initiated two lines of research. The first resulted in proposals
for new lightweight block encryption functions like PRESENT [4], KATAN and
KTANTAN [10] by use of which standard block cipher-based authentication
protocols can be made lightweight, too. A second line, and this line we follow in
the paper, is to look for new cryptographic paradigms which allow for designing
new symmetric lightweight authentication protocols. The two main suggestions
discussed so far in the relevant literature are the principle of random selection
and the principle of adding biased noise.

ECRYPT Workshop on Lightweight Cryptography - November 2011 122

The principle of adding biased noise to the output of a linear basis function
underlies the HB-protocol, originally proposed by Hopper and Blum [16] and
later improved to HB+ by Juels and Weis [17], as well as its variants HB# and
Trusted-HB (see [13] and [6], respectively). The protocols of the HB-family are
provably secure against passive attacks with respect to the Learning Parity with
Noise Conjecture but the problem to design HB-like protocols which are secure
against active adversaries seems to be still unsolved (see, e.g., [14], [20], [12]).

The principle of random selection underlies, e.g., the CKK-protocols of Ci-
choń, Klonowski, and Kuty lowski [7] as well as the Ff -protocols in [3] and the
Linear Protocols in [18]. It can be described as follows.

Suppose that the verifier Alice and the prover Bob run a challenge-response
authentication protocol which uses a lightweight symmetric encryption operation
E : {0, 1}n×K −→ {0, 1}m of block length n, whereK denotes an appropriate key
space. Suppose further that E is weak in the sense that a passive adversary can
efficiently compute the secret key K ∈ K from samples of the form (u,EK(u)).
This is obviously the case if E is linear.

Random selection denotes a method for compensating the weakness of E by
using the following mode of operation. Instead of holding a single K ∈ K, Alice
and Bob share a collection K1, . . . ,KL of keys from K as their common secret
information, where L > 1 is a small constant. Upon receiving a challenge u ∈
{0, 1}n from Alice, Bob chooses a random index l ∈ {1, . . . , L} and outputs the
response y = E(u,Kl). The verification of y with respect to u can be efficiently
done by computing E−1Kl (y) for all l = 1, . . . , L.

The main problem this paper is devoted to is to determine the level of security
which can be reached by applying this principle of random selection.

Note that the protocols introduced in [7], [3], and [18] are based on random
selection of GF (2)-linear functions. The choice of linear basis functions is moti-
vated by the fact that they can be implemented efficiently in hardware and have
desirable pseudo-random properties with respect to a wide range of important
statistical tests.

It is quite obvious that, with respect to passive adversaries, the security
of protocols which use random selection of linear functions can be bounded
from above by the complexity of the following learning problem referred to as
RandomSelect (L, n, a): Learn GF (2)-linear functions f1, . . . , fL : {0, 1}n −→
{0, 1}a from values (u, fl (u)), where the secret indices l ∈ {1, . . . , L} and the
inputs u ∈ {0, 1}n are randomly chosen by an oracle. In order to illustrate
this notion, we sketch in appendix B how an efficient learning algorithm for
RandomSelect (L, n, a) can be used for attacking the linear (n, k, L)+-protocol
described by Krause and Stegemann [18]. In the course of the respective argu-
ments, it will also become clear why we just changed our notation from {0, 1}m
to {0, 1}a, as, unlike m, the parameter a is controlled by the attacker.

In this paper, we present an algebraic attack approach for solving the above
learning problem RandomSelect (L, n, a). The running time of our algorithm is
dominated by the effort necessary to solve a full-rank system of linear equa-

ECRYPT Workshop on Lightweight Cryptography - November 2011 123

tions of O(nL) unknowns over the field GF (2a). Note that trivial approaches for
solving RandomSelect (L, n, a) lead to a running time exponential in n.

In recent years, people from cryptography as well as from complexity and
coding theory devoted much interest to the solution of learning problems around
linear structures. Prominent examples in the context of lightweight cryptography
are the works by Goldreich and Levin [15], Regev [21], and Arora and Ge [2]. But
all these results are rather connected to the Learning Parity with Noise Problem.
To the best of our knowledge, there are currently no nontrivial results with
respect to the particular problem of learning randomly selected linear functions,
which is studied in the present paper.

We are strongly convinced that the complexity of RandomSelect also defines
a lower bound on the security achievable by protocols using random selection
of linear functions, e.g., the improved (n, k, L)++-protocol in [18]. Thus, the
running time of our algorithm hints at how the parameters n, k, and L should be
chosen in order to achieve an acceptable level of cryptographic security. Note that
even for moderate choices like n = 128 and L = 8 or n = 256 and L = 4, solving
RandomSelect (L, n, a) by means of our algorithm implies solving a system of
around 228 unknowns, which should be classified as sufficiently difficult in many
practical situations.

The paper is organized as follows. In sections 2, 3, and 4, our learning algo-
rithm, which conducts an algebraic attack in the spirit of [22], will be described
in full detail. We represent the L linear basis functions as assignments A to
a collection X =

(
xli
)
i=1,...,n,l=1,...,L

of variables taking values from the field

K = GF (2a). We will then see that each example (u, fl (u)) induces a degree-
L equation of a certain type in the X-variables, which allows for reducing the
learning problem RandomSelect (L, n, a) to the problem of solving a system of
degree-L equations over K. While, in general, the latter problem is known to be
NP-hard, we can show an efficient way to solve this special kind of systems.

One specific problem of our approach is that, due to inherent symmetries of
the degree-L equations, we can never reach a system which has full linear rank
with respect to the corresponding monomials. In fact, this is the main difference
between our learning algorithm and the well-known algebraic attack approaches
for cryptanalyzing LFSR-based keystream generators (see, e.g., [19], [8], [9], [1]).

We circumvent this problem by identifying an appropriate set T (n,L) of basis
polynomials of degree at most L which allow to express the degree-L equations as
linear equations over T (n,L). The choice of T (n,L) will be justified by Theorem
2 saying that if |K| ≥ L, then the system of linear equations over T (n,L) induced
by all possible examples has full rank |T (n,L)| (note that according to Theorem
1, this is not true if |K| < L). Our experiments, which are presented in section
5, indicate that if |K| ≥ L, then with probability close to one, the number of
examples needed to get a full rank system over T (n,L) exceeds |T (n,L)| only by
a small constant factor. This implies that the effort to compute the unique weak
solution t (A) = (t∗ (A))t∗∈T (n,L) corresponding to the strong solution A equals

the time needed to solve a system of |T (n,L)| linear equations over K.

ECRYPT Workshop on Lightweight Cryptography - November 2011 124

But in contrast to the algebraic attacks in [19], [8], [9], [1], we still have
to solve another nontrivial problem, namely, to compute the strong solution
A, which identifies the secret functions f1, . . . , fL, from the unique weak so-
lution. An efficient way to do this will complete our learning algorithm for
RandomSelect (L, n, a) in section 4. Finally, we also provide an experimental
evaluation of our estimates using the computer algebra system Magma [5] in
section 5 and conclude this paper with a discussion of the obtained results as
well as an outlook on potentially fruitful future work in section 6.

2 The Approach

We fix positive integers n, a, L and secret GF (2)-linear functions f1, . . . , fL :
{0, 1}n −→ {0, 1}a. The learner seeks to deduce specifications of f1, . . . , fL from
an oracle which outputs in each round an example (u,w) ∈ {0, 1}n × {0, 1}a in
the following way. The oracle chooses independently and uniformly a random
input u ∈U {0, 1}n and a secret random index l ∈U [L]¬, computes w = fl (u)
and outputs (u,w).

It is easy to see that RandomSelect can be efficiently solved in the case L =
1 by collecting examples

(
u1, w1

)
, . . . , (um, wm) until

{
u1, . . . , um

}
contains a

basis of GF (2)n. The expected number of iterations until the above goal is
reached can be approximated by n+ 1.61 (see, e.g., the appendix in [11]).

We will now treat the case L > 1, which immediately yields a sharp rise in
difficulty. First we need to introduce the notion of a pure basis.

Definition 1. Let us call a set V =
{(
u1, w1

)
, . . . , (un, wn)

}
of n examples a

pure basis, if
{
u1, . . . , un

}
is a basis of GF (2)n and there exists an index l ∈ [L]

such that wi = fl
(
ui
)

is satisfied for all i = 1, . . . , n.

Recalling our preliminary findings, we can easily infer that form ∈ Ln+Ω (1),
a set of m random examples contains such a pure basis with high probability.
Moreover, note that for a given set Ṽ =

{(
ũ1, w̃1

)
, . . . , (ũn, w̃n)

}
the pure basis

property can be tested efficiently. The respective strategy makes use of the fact
that in case of a random example (u,w), where u =

⊕
i∈I ũ

i and I ⊆ [n], the

probability p that w =
⊕

i∈I w̃i holds is approximately L−1 if Ṽ is pure and at

most (2 · L)
−1

otherwise. The latter estimate is based on the trivial observation
that if Ṽ is not a pure basis, it contains at least one tuple

(
ũj , w̃j

)
, j ∈ [n], which

would have to be exchanged to make the set pure. As j ∈ I holds true for half
of all possible (but valid) examples, the probability that w =

⊕
i∈I w̃i is fulfilled

although Ṽ is not pure can be bounded from above by (2 · L)
−1

.

¬For a positive integer N , we denote by [N] the set {1, . . . , N}.
Let B =

{
v1, . . . , vn

}
denote a basis spanning the vector space V . It is a simple

algebraic fact that every vector v ∈ V has a unique representation I ⊆ [n] over B, i.e.,
v =

⊕
i∈I v

i.

ECRYPT Workshop on Lightweight Cryptography - November 2011 125

However, it seems to be nontrivial to extract a pure basis from a set of
m ∈ Ln+Ω (1) examples. Exhaustive search among all subsets of size n yields
a running time exponential in n. This can be shown easily by applying Stirling’s
formula® to the corresponding binomial coefficient

(
m
n

)
.

We exhibit the following alternative idea for solving RandomSelect (L, n, a)
for L > 1. Let e1, . . . , en denote the standard basis of the GF (2)-vector space
{0, 1}n and keep in mind that {0, 1}n = GF (2)n ⊆ Kn, where K denotes the
field GF (2a). For all i = 1, . . . , n and l = 1, . . . , L let us denote by xli a variable
over K representing fl

(
ei
)
. Analogously, let A denote the (n× L)-matrix with

coefficients in K completely defined by Ai,l = fl
(
ei
)
. Henceforth, we will refer to

A as a strong solution of our learning problem, thereby indicating the fact that
its coefficients fully characterize the underlying secret GF (2)-linear functions
f1, . . . , fL.

Observing an example (u,w), where u =
⊕

i∈I e
i, the only thing we know

is that there is some index l ∈ [L] such that w =
⊕

i∈I Ai,l. This is equivalent
to the statement that A is a solution of the following degree-L equation in the
xli-variables.

(⊕
i∈I

x1i ⊕ w

)
· . . . ·

(⊕
i∈I

xLi ⊕ w

)
= 0. (1)

Let g be a partial mapping from [L] to [n], whose domain and image will
henceforth be denoted by dom (g) and im (g), respectively. Note that equation
(1) can be rewritten as

⊕
J⊆I,1≤|J|≤L′

L⊕
j=|J|

wL−jtJ,j = wL, (2)

L′ = min {L, |I|}, where the basis polynomials tJ,j are defined as

tJ,j =
⊕

g,|dom(g)|=j,im(g)=J

mg

for all J ⊆ [n], 1 ≤ |J | ≤ L, and all j, |J | ≤ j ≤ L. The corresponding monomials
mg are in turn defined as

mg =
∏

l∈dom(g)

xlg(l)

for all partial mappings g (as introduced above).

®Stirling’s formula is an approximation for large factorials and commonly written
n! ≈

√
2πn

(
n
e

)n
.

ECRYPT Workshop on Lightweight Cryptography - November 2011 126

Let T (n,L) = {tJ,j | J ⊆ [n] , 1 ≤ |J | ≤ L, |J | ≤ j ≤ L} denote the set of all
basis polynomials tJ,j which may appear as part of equation (2). Moreover, we
define

Φ (a, b) =
b∑
i=0

(
a

i

)
for integers 0 ≤ b ≤ a and write

|T (n,L)| =
L∑
j=1

(
n

j

)
(L− j + 1)

= (L+ 1) (Φ (n,L)− 1)−
L∑
j=1

n

(
n− 1

j − 1

)
= (L+ 1) (Φ (n,L)− 1)− nΦ (n− 1, L− 1) . (3)

Consequently, each set of examples V =
{(
u1, w1

)
, . . . , (um, wm)

}
yields a

system of m degree-L equations in the xli-variables, which can be written as
m K-linear equations in the tJ,j-variables. In particular, the strong solution
A ∈ Kn×L satisfies the relation

M (V) ◦ t (A) = W (V) , (4)

where

– Kn×L denotes the set of all (n× L)-matrices with coefficients from K,
– M (V) is an (m× |T (n,L)|)-matrix built by the m linear equations of type

(2) corresponding to the examples in V,
– W (V) ∈ Km is defined by W (V)i = wLi

¯ for all i = 1, . . . ,m,
– t (A) ∈ KT (n,L) is defined by t (A) = (tJ,j (A))J⊆[n],1≤|J|≤L,|J|≤j≤L.

Note that in section 3, we will treat the special structure of M (V) in further
detail. Independently, it is a basic fact from linear algebra that if M (V) has full
column rank, then the linear system (4) has the unique solution t (A), which we
will call the weak solution.

Our learning algorithm proceeds as follows:

(1) Grow a set of examples V until M (V) has full column rank |T (n,L)|.
(2) Compute the unique solution t (A) of system (4), i.e., the weak solution of our

learning problem, by using an appropriate algorithm which solves systems
of linear equations over K.

(3) Compute the strong solution A from t (A).

We discuss the correctness and running time of steps (1) and (2) in section
3 and an approach for step (3) in section 4.

¯Keep in mind that, unlike for the previously introduced K-variables x1s, . . . , x
L
s ,

s ∈ [n], the superscripted L in case of wL
i is not an index but an exponent. See, e.g.,

equation (2).

ECRYPT Workshop on Lightweight Cryptography - November 2011 127

3 On Computing a Weak Solution

Let n and L be arbitrarily fixed such that 2 ≤ L ≤ n holds. Moreover, let
V ⊆ {0, 1}n×K denote a given set of examples obtained through linear functions
f1, . . . , fL : {0, 1}n −→ K, where K = GF (2a). By definition, for each tuple
(u,w) ∈ V, where u =

⊕
i∈I e

i and I ⊆ [n] denotes the unique representation
of u over the standard basis e1, . . . , en of {0, 1}n, the relation w = fl′ (u) =⊕

i∈I fl′
(
ei
)

is bound to hold for some l′ ∈ [L]. We denote by Kmin ⊆ K the

subfield of K generated by all values fl
(
ei
)
, where l ∈ [L] and i ∈ [n]. Note that

w ∈ Kmin for all examples (u,w) induced by f1, . . . , fl.
In the following, we show that our learning algorithm is precluded from suc-

ceeding if the secret linear functions f1, . . . , fL happen to be of a certain type
or if K itself lacks in size.

Theorem 1 If
∣∣Kmin

∣∣ < L, then the columns of M (V) are linearly dependent
for any set V of examples, i.e., a unique weak solution does not exist.

Proof: Let n, K, L, and f1, . . . , fL be arbitrarily fixed such that 2 ≤∣∣Kmin
∣∣ < L ≤ n holds and let V denote a corresponding set of examples. Obvi-

ously, for each tuple (u,w) ∈ V, where u =
⊕

i∈I e
i and I ⊆ [n], the two cases

1 ∈ I and 1 /∈ I can be differentiated.
If 1 ∈ I holds, then it follows straightforwardly from equation (2) that the

coefficient with coordinates (u,w) and t{1},(L−1) in M (V) equals wL−(L−1) =
w1. Analogously, the coefficient with coordinates (u,w) and t{1},(L−|Kmin|) in

M (V) equals wL−(L−|Kmin|) = w|K
min|. Note that t{1},(L−|Kmin|) is a valid (and

different) basis polynomial as

|{1}| = 1 ≤
(
L−

∣∣Kmin
∣∣) ≤ (L− 2) < (L− 1) < L

holds for 2 ≤ |Kmin| < L. As Kmin ⊆ K is a finite field of characteristic 2, we
can apply Lagrange’s theorem and straightforwardly conclude that the relation

z1 = z|K
min| holds for all z ∈ Kmin (including 0 ∈ Kmin). Hence, if 1 ∈ I

holds for an example (u,w), then in the corresponding row of M (V) the two
coefficients indexed by t{1},(L−1) and t{1},(L−|Kmin|) are always equal.

If 1 /∈ I holds for an example (u,w), then the coefficient with coordinates
(u,w) and t{1},(L−1) in M (V) as well as the coefficient with coordinates (u,w)
and t{1},(L−|Kmin|) in M (V) equals 0.

Consequently, if
∣∣Kmin

∣∣ < L holds, then the column of M (V) indexed by
t{1},(L−1) equals the column indexed by t{1},(L−|K|) for any set V of examples,
i.e., M (V) can never achieve full column rank. �

Corollary 1 If K is chosen such that |K| < L, then the columns of M (V) are
linearly dependent for any set V of examples, i.e., a unique weak solution does
not exist. �

While we are now aware of a lower bound for the size of K, it yet re-
mains to prove that step (1) of our learning algorithm is, in fact, correct.

ECRYPT Workshop on Lightweight Cryptography - November 2011 128

This will be achieved by introducing the ((2n |K|)× |T (n,L)|)-matrix M∗ =
M ({0, 1}n ×K), which clearly corresponds to the set of all possible examples,
and showing that M∗ has full column rank |T (n,L)| if L ≤ |K| holds.

However, be careful not to misinterpret this finding, which is presented below
in the form of Theorem 2. The fact that M∗ has full column rank |T (n,L)|
by no means implies that, eventually, this will also hold for M (V) if only the
corresponding set of observations V is large enough (let alone the treacherous
delusion that, given enough observations, even the equation M (V) = M∗ will
eventually hold, which would trivially imply that M (V) could always reach full
column rank). In particular, the experimental results summarized in section 5
(see, e.g., table 1) show that there are cases in which the rank of M (V) is
always smaller than |T (n,L)|, even if L ≤ |K| is satisfied and V equals the set
{(u, fl (u)) | u ∈ {0, 1}n , l ∈ [L]} ⊆ {0, 1}n ×K° of all possible valid examples.

Still, as a counterpart of Theorem 1, the following theorem proves the pos-
sibility of existence of a unique weak solution for arbitrary parameters n and
L satisfying 2 ≤ L ≤ n. In other words, choosing T (n,L) to be the set of ba-
sis polynomials does not necessarily lead to systems of linear equations which
cannot be solved uniquely.

Theorem 2 Let n and L be arbitrarily fixed such that 2 ≤ L ≤ n holds. If K
satisfies L ≤ |K|, then M∗ has full column rank |T (n,L)|.

Proof: We denote by Z (n) the set of monomials zd00 · . . . · zdnn , where 0 ≤
di ≤ |K| − 1 for i = 0, . . . , n. Obviously, the total number of such monomials

is |Z (n)| = |K|n+1
. Let us recall the aforementioned fact that the relation

z1 = z|K| holds for all z ∈ K (including 0 ∈ K). This straightforwardly implies
that each monomial in the variables z0, . . . , zn is (as a function from Kn+1 to
K) equivalent to a monomial in Z (n). Let µJ,j denote the monomial µJ,j =

zL−j0

∏
r∈J zr for all J ⊆ [n] and j, 0 ≤ j ≤ L. The following lemma can be

easily verified:

Lemma 2.1 For all J ⊆ [n], 1 ≤ |J | ≤ L, and j, |J | ≤ j ≤ L, and examples
(u,w) ∈ {0, 1}n ×K, it holds that µJ,j (w, u) equals the coefficient in M∗ which
has the coordinates (u,w) and tJ,j. �

For i = 1, . . . , |K|, we denote by ki the i-th element of the finite field K.
Moreover, we suppose the convention that 00 = 1 in K. Let (u,w) be an example
defined as above and keep in mind that we are treating the case L ≤ |K|. It
should be observed that the coefficients in the corresponding equation of type
(2) are given by wL−j , where 1 ≤ j ≤ L. Thus, the set of possible exponents
{L− j | 1 ≤ j ≤ L} is bounded from above by (L− 1) < L ≤ |K|. It follows
straightforwardly from Lemma 2.1 that the (distinct) columns ofM∗ are columns

°It can be seen easily that for random linear functions f1, . . . , fL, the relation
{(u, fl (u)) | u ∈ {0, 1}n , l ∈ [L]} 6= {0, 1}n × K will always hold if L < |K| and is
still very likely to hold if L = |K|.

ECRYPT Workshop on Lightweight Cryptography - November 2011 129

of the matrix W ⊗B⊗n, where

W =
(
kji

)
i=1,...,|K|,j=0,...,|K|−1

and B =

[
1 0
1 1

]
.

As W and B are regular, W ⊗ B⊗n is regular, too. This, in turn, implies that
the columns of M∗ are linearly independent, thus proving Theorem 2. �

We will see in section 4 that for |K| ∈ O
(
dnL4

)
, the strong solution can

be reconstructed from the weak solution in time nO(L) with error probability at
most d−1. Furthermore, section 5 will feature an experimental assessment of the
number of random (valid) observations needed until M (V) achieves full column
rank |T (n,L)| for various combinations of n, L, and K (see table 2).

4 On Computing a Strong Solution from the Unique
Weak Solution

Let n, K, L, and f1, . . . , fL be defined as before. Remember that the goal of our
learning algorithm is to compute a strong solution fully characterized by the L
sets

{(
ei, fl

(
ei
))
| i ∈ [n]

}
, l = 1, . . . , L, where ei denotes the i-th element of the

standard basis of GF (2)n and fl
(
ei
)

= xli ∈ K. Obviously, this information can

equivalently be expressed as a matrix A ∈ Kn×L defined by Ai,· =
(
x1i , . . . , x

L
i

)
for all i = 1, . . . , n.

Hence, we have to solve the following problem: Compute the matrix A ∈
Kn×L from the information t (A), where

t (A) = (tJ,j (A))J⊆[n],1≤|J|≤L,|J|≤j≤L

is the unique weak solution determined previously. But before we lay out how
(and under which conditions) a strong solution A can be found, we need to
introduce the following two definitions along with an important theorem linking
them:

Definition 2. Let for all vectors x ∈ KL the signature sgt (x) of x be defined
as sgt (x) = (|x|k)k∈K , where |x|k denotes the number of components of x which
equal k.

Furthermore, consider the following new family of polynomials:

Definition 3. a) For all L ≥ 1 and j ≥ 0 let the simple symmetric polynomial
sj over the variables x1, . . . , xL be defined by s0 = 1 and

sj =
⊕

S⊆[L],|S|=j

mS ,

where mS =
∏
i∈S xi for all S ⊆ [L]. Moreover, we denote

s (x) = (s0 (x) , s1 (x) , . . . , sL (x))

for all x ∈ KL.

ECRYPT Workshop on Lightweight Cryptography - November 2011 130

b) Let n, L, 1 ≤ L ≤ n, hold as well as j, 0 ≤ j ≤ L, and J ⊆ [n]. The
symmetric polynomial sJ,j : Kn×L −→ K is defined by

sJ,j (A) = sj

(⊕
i∈J

Ai,·

)

for all matrices A ∈ Kn×L. Moreover, we denote

sJ (A) = (sJ,0 (A) , . . . , sJ,L (A)) .

The concept of signatures introduced in Definition 2 and the family of simple
symmetric polynomials described in Definition 3 will now be connected by the
following theorem:

Theorem 3 For all L ≥ 1 and x, x′ ∈ KL it holds that s (x) = s (x′) if and
only if sgt (x) = sgt (x′).

Proof: See appendix A.

Building on this result, we can then prove the following proposition, which
is of vital importance for computing the strong solution A on the basis of the
corresponding weak solution t (A):

Theorem 4 Let A ∈ Kn×L and t (A) be defined as before. For each subset
I ⊆ [n] of rows of A, the signature of the sum of these rows, i.e., sgt

(⊕
i∈I Ai,·

)
,

can be computed by solely using information derived from t (A), in particular,
without knowing the underlying matrix A itself.

Proof: We first observe that the s-polynomials can be written as linear
combinations of the t-polynomials. Trivially, the relation t{i},j = s{i},j holds for
all i ∈ [n] and j, 1 ≤ j ≤ L. Moreover, for all I ⊆ [n], |I| > 1, it holds that

sI,j =
⊕

Q⊆I,1≤|Q|≤j

 ⊕
g:[L]−→[n],|dom(g)|=j,im(g)=Q

mg

 =
⊕

Q⊆I,1≤|Q|≤j

tQ,j . (5)

Note that for all J ⊆ [n] and j, |J | ≤ j ≤ L, relation (5) implies

tJ,j = sJ,j ⊕
⊕
Q⊂J

tQ,j . (6)

By an inductive argument, we obtain from relation (6) that the converse is
also true, i.e., the t-polynomials can be written as linear combinations of the
s-polynomials.

We have seen so far that given t (A), we are able to compute sI,j for all j,
1 ≤ j ≤ L, and each subset I ⊆ [n] of rows of A. Recall

sI,j (A) = sj

(⊕
i∈I

Ai,·

)
and sI (A) = (sI,0 (A) , . . . , sI,L (A))

ECRYPT Workshop on Lightweight Cryptography - November 2011 131

from Definition 3 and let x ∈ KL be defined by x =
⊕

i∈I Ai,·. It can be easily
seen that sI (A) = s (x) holds.

In conjunction with Theorem 3, this straightforwardly implies the validity of
Theorem 4. �

Naturally, it remains to assess the degree of usefulness of this information
when it comes to reconstructing the strong solution A ∈ Kn×L. In the following,
we will prove that if K is large enough, then with high probability, A can be
completely (up to column permutations) and efficiently derived from the signa-
tures of all single rows of A and the signatures of all sums of pairs of rows of
A:

Theorem 5 Let K = GF (2a) fulfill |K| ≥ 1
4 ·d·n·L

4, i.e., a ≥ log (n)+log (d)+
4 log (L)− 2. Then, for a random matrix A ∈U Kn×L, the following is true with
a probability of approximately at least

(
1− 1

d

)
: A can be completely reconstructed

from the signatures sgt (Ai,·), 1 ≤ i ≤ n, and sgt (Ai,· ⊕Aj,·), 1 ≤ i < j ≤ n.

Proof: See appendix A.

As we have seen now that, under certain conditions, it is possible to fully
reconstruct the strong solution A by solely resorting to information obtained
from the weak solution t (A), we can proceed to actually describe a conceivable
approach for step (3) of the learning algorithm:

We choose a constant error parameter d and an exponent a, i.e., K =
GF (2a), in such a way that Theorem 5 can be applied. Note that L ≤ n and
|K| ∈ nO(1). In a pre-computation, we generate two databases DB1 and DB2 of
size nO(L). While DB1 acts as a lookup table with regard to the one-to-one rela-
tion between s (x) and sgt (x) for all x ∈ KL, we use DB2 to store all triples of
signatures S, S′, S̃ for which there is exactly one solution pair x, y ∈ KL fulfilling
sgt (x) = S and sgt (y) = S′ as well as sgt (x⊕ y) = S̃.

Given t (A), i.e., the previously determined weak solution, we then compute
sgt (Ai,·) for all i, 1 ≤ i ≤ n, and sgt (Ai,· ⊕Aj,·) for all i, j, 1 ≤ i < j ≤ n, in
time nO(1) by using DB1 and relation (5), which can be found in the proof of
Theorem 4. According to Theorem 5, it is now possible to reconstruct A by the
help of database DB2 with probability at least 1− 1

d .

5 Experimental Results

To showcase the detailed workings of our learning algorithm as well as to evaluate
its efficiency at a practical level, we created a complete implementation using
the computer algebra system Magma. In case of success, it takes approximately
90 seconds on standard PC hardware (Intel i7, 2.66 GHz, with 6 GB RAM) to
compute the unique strong solution on the basis of a set of 10,000 randomly
generated examples for n = 10, a = 3 (i.e., K = GF (2a)), and L = 5. Relating
to this, we performed various simulations in order to assess the corresponding

ECRYPT Workshop on Lightweight Cryptography - November 2011 132

Parameters Performed Iterations

Rank of M (V) < |T (n,L)| Rank of M (V) = |T (n,L)| Total

n K L Number Ratio Number Ratio Number

4 GF
(
22
)

2 37 0.37 % 9,963 99.63 % 10,000
4 GF

(
22
)

3 823 8.23 % 9,177 91.77 % 10,000
4 GF

(
22
)

4 7,588 75.88 % 2,412 24.12 % 10,000
5 GF

(
22
)

4 4,556 45.56 % 5,444 54.44 % 10,000
5 GF

(
22
)

5 10,000 100.00 % 0 0.00 % 10,000
6 GF

(
23
)

4 0 0.00 % 1,000 100.00 % 1,000
8 GF

(
23
)

4 0 0.00 % 1,000 100.00 % 1,000
8 GF

(
23
)

6 0 0.00 % 100 100.00 % 100
8 GF

(
23
)

7 0 0.00 % 100 100.00 % 100
8 GF

(
23
)

8 0 0.00 % 100 100.00 % 100
9 GF

(
23
)

8 0 0.00 % 10 100.00 % 10
9 GF

(
23
)

9 10 100.00 % 0 0.00 % 10

Table 1. An estimate of the rank of M (V) on the basis of all possible valid observations
for up to 10,000 randomly generated instances of RandomSelect (L, n, a). For each choice
of parameters, |T (n,L)| denotes number of columns of M (V) as defined in section 2
and listed in table 2.

probabilities, which were already discussed in sections 3 and 4 from a theoretical
point of view.

The experimental results summarized in table 1 clearly suggest that if |K|
is only slightly larger than the number L of secret linear functions, then in all
likelihood, M (V) will eventually reach full (column) rank |T (n,L)|, thus allowing
for the computation of a unique weak solution. Moreover, in accordance with
Corollary 1, the columns of M (V) were always linearly dependent in the case
of n = 5, K = GF

(
22
)

and L = 5, i.e., |K| = 4 < 5 = L. A further analysis
of the underlying data revealed in addition that, for arbitrary combinations
of n, K, and L, the matrix M (V) never reached full column rank if at least
two of the corresponding L random linear functions f1, . . . , fL were identical
during an iteration of our experiments. Note that, on the basis of the current
implementation, it was not possible to continue table 1 for larger parameter sizes
because, e.g., in the case of n = 8, K = GF

(
23
)

and L = 7, performing as few
as 100 iterations already took more than 85 minutes on the previously described
computer system.

Table 2 features additional statistical data with respect to the number of
examples needed (in case of success) until the matrix M (V) reaches full column
rank |T (n,L)|. Please note that, in contrast to the experiments underlying table
1, such examples (u, fl (u)) are generated iteratively and independently choos-
ing random pairs u ∈U {0, 1}n and l ∈U [L], i.e., they are not processed in their
canonical order but observed randomly (and also repeatedly) to simulate a prac-
tical passive attack. While we have seen previously that for most choices of n,
K and L, the matrix M (V) is highly likely to eventually reach full column rank,
the experimental results summarized in table 2, most notably the observed p-

ECRYPT Workshop on Lightweight Cryptography - November 2011 133

Parameters Number of Random Examples until Rank (M (V)) = |T (n,L)|

n K L |T (n,L)| Avg. Max. Min. Q0.1 Q0.25 Q0.5 Q0.75 Q0.9

4 GF
(
22
)

1 4 5.5 18 4 4 4 5 6 8
4 GF

(
22
)

2 14 24.4 93 14 18 20 23 27 32
4 GF

(
22
)

3 28 71.8 273 33 51 58 67 81 99
4 GF

(
22
)

4 43 226.2 701 95 147 175 211 261 317
5 GF

(
22
)

4 75 218.5 591 140 176 192 211 237 263
6 GF

(
23
)

4 124 201.6 318 162 184 192 200 211 220
8 GF

(
23
)

4 298 378.7 419 345 365 371 378 386 393
8 GF

(
23
)

6 762 1401.6 1565 1302 1342 1364 1405 1427 1458
8 GF

(
23
)

7 1016 2489.7 2731 2275 2369 2417 2477 2547 2645
8 GF

(
23
)

8 1271 5255.3 7565 4302 4706 4931 5227 5557 5706
9 GF

(
23
)

8 2295 6266.1 6553 6027 6078 6136 6199 6415 6504

Table 2. An estimate of the number of randomly generated examples (u, fl (u)) which
have to be processed (in case of success) until the matrix M (V) reaches full column
rank |T (n,L)|. Given a probability p, we denote by Qp the p-quantile of the respective
sample.

quantiles, strongly suggest that our learning algorithm for RandomSelect (L, n, a)
will also be able to efficiently construct a corresponding LES which allows for
computing a unique weak solution.

Parameters Performed Iterations
(
i.e., randomly chosen A ∈U Kn×L

)
A not sgt (2)-identifiable A was sgt (2)-identifiable Total

n K L Number Ratio Number Ratio Number

4 GF
(
22
)

2 0 0.00 % 10,000 100.00 % 10,000
4 GF

(
22
)

3 69 0.69 % 9,931 99.31 % 10,000
4 GF

(
22
)

4 343 3.43 % 9,657 96.57 % 10,000
6 GF

(
23
)

4 0 0.00 % 10,000 100.00 % 10,000
8 GF

(
23
)

4 0 0.00 % 10,000 100.00 % 10,000
8 GF

(
23
)

6 0 0.00 % 1,000 100.00 % 1,000
8 GF

(
23
)

7 0 0.00 % 1,000 100.00 % 1,000
8 GF

(
23
)

8 0 0.00 % 100 100.00 % 100
9 GF

(
23
)

8 0 0.00 % 100 100.00 % 100

Table 3. An estimate of the ratio of sgt (2)-identifiable (n× L)-matrices over K.

It remains to clear up the question, to what extent Theorem 5 reflects reality
concerning the probability of a random (n× L)-matrix over K being sgt (2)-
identifiable (see Definitions 5.1 and 5.2 in the proof of Theorem 5), which is
necessary and sufficient for the success of step (3) of our learning algorithm. Our
corresponding simulations yielded table 3, which immediately suggests that even
for much smaller values of |K| than those called for in Theorem 5, a strong solu-
tion A ∈U Kn×L can be completely reconstructed from the signatures sgt (Ai,·),

ECRYPT Workshop on Lightweight Cryptography - November 2011 134

1 ≤ i ≤ n, and sgt (Ai,· ⊕Aj,·), 1 ≤ i < j ≤ n. In conjunction with the ex-
perimental results concerning the rank of M (V), this, in turn, implies that our
learning algorithm will efficiently lead to success in the vast majority of cases.

6 Discussion

The running time of our learning algorithm for RandomSelect (L, n, a) is domi-
nated by the complexity of solving a system of linear equations with |T (n,L)|
unknowns. Our hardness conjecture is that this complexity also constitutes a
lower bound to the complexity of RandomSelect (L, n, a) itself, which would im-
ply acceptable cryptographic security for parameter choices like n = 128 and
L = 8 or n = 256 and L = 6. The experimental results summarized in the previ-
ous section clearly support this view. Consequently, employing the principle of
random selection to design new symmetric lightweight authentication protocols
might result in feasible alternatives to current HB-based cryptographic schemes.

A problem of independent interest is to determine the complexity of recon-
structing an sgt (r)-identifiable matrix A from the signatures of all sums of at
most r rows of A. Note that this problem is wedded to determining the com-
plexity of RandomSelect (L, n, a) with respect to an active learner, who is able to
receive examples (u,w) for inputs u of his choice, where w = fl (u) and l ∈U [L] is
randomly chosen by the oracle. It is easy to see that such learners can efficiently
compute sgt (f1 (u) , . . . , fL (u)) by repeatedly asking for u. As the approach for
reconstructing A which was outlined in section 4 needs a data structure of size
exponential in L, it would be interesting to know if there are corresponding
algorithms of time and space costs polynomial in L.

From a theoretical point of view, another open problem is to determine the
probability that a random (n× L)-matrix over K is sgt (r)-identifiable for some
r, 2 ≤ r ≤ L. Based on the results of our computer experiments, it appears more
than likely that the lower bound derived in Theorem 5 is far from being in line
with reality and that identifiable matrices occur with much higher probability
for fields K of significantly smaller size.

References

1. F. Armknecht and M. Krause. Algebraic attacks on combiners with memory. In
Proceedings of Crypto 2003, volume 2729 of LNCS, pages 162–176. Springer, 2003.

2. S. Arora and R. Ge. New algorithms for learning in presence of errors. Submitted,
2010. http://www.cs.princeton.edu/~rongge/LPSN.pdf.

3. E.-O. Blass, A. Kurmus, R. Molva, G. Noubir, and A. Shikfa. The Ff -family
of protocols for RFID-privacy and authentication. In 5th Workshop on RFID
Security, RFIDSec’09, 2009.

4. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. H. Vikkelsoe. PRESENT: An ultra-lightweight block
cipher. In Proceedings of Cryptographic Hardware and Embedded Systems (CHES)
2007, volume 4727 of LNCS, pages 450–466. Springer, 2007.

ECRYPT Workshop on Lightweight Cryptography - November 2011 135

5. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997.

6. J. Bringer and H. Chabanne. Trusted-HB: A low cost version of HB+ secure against
a man-in-the-middle attack. IEEE Trans. Inform. Theor., 54:4339–4342, 2008.

7. J. Cichoń, M. Klonowski, and M. Kuty lowski. Privacy protection for RFID with
hidden subset identifiers. In Proceedings of Pervasive 2008, volume 5013 of LNCS,
pages 298–314. Springer, 2008.

8. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
Proceedings of Crypto 2003, volume 2729 of LNCS, pages 176–194. Springer, 2003.

9. N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feed-
back. In Proceedings of Eurocrypt 2003, volume 2656 of LNCS, pages 345–359.
Springer, 2003.

10. C. De Cannière, O. Dunkelman, and M. Knežević. KATAN and KTANTAN – A
family of small and efficient hardware-oriented block ciphers. In Proceedings of the
11th International Workshop on Cryptographic Hardware and Embedded Systems
(CHES) 2009, volume 5747 of LNCS, pages 272–288. Springer, 2009.

11. Z. Go lebiéwski, K. Majcher, and F. Zagórski. Attacks on CKK family of RFID
authentication protocols. In Proceedings Adhoc-now 2008, volume 5198 of LNCS,
pages 241–250. Springer, 2008.

12. D. Frumkin and A. Shamir. Untrusted-HB: Security vulnerabilities of Trusted-HB.
Cryptology ePrint Archive, Report 2009/044, 2009. http://eprint.iacr.org.

13. H. Gilbert, M. J. B. Robshaw, and Y. Seurin. HB#: Increasing the security and
efficiency of HB+. In Proceedings of Eurocrypt 2008, volume 4965 of LNCS, pages
361–378, 2008.

14. H. Gilbert, M. J. B. Robshaw, and H. Sibert. Active attack against HB+: A
provable secure lightweight authentication protocol. Electronic Letters, 41:1169–
1170, 2005.

15. O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In
Proceedings of the twenty-first annual ACM symposium on Theory of computing
(STOC), pages 25–32. ACM Press, 1989.

16. N. J. Hopper and M. Blum. Secure human identification protocols. In Proceedings
of Asiacrypt 2001, volume 2248 of LNCS, pages 52–66. Springer, 2001.

17. A. Juels and S. A. Weis. Authenticating pervasive devices with human protocols.
In Proceedings of Crypto 2005, volume 3621 of LNCS, pages 293–308. Springer,
2005.

18. M. Krause and D. Stegemann. More on the security of linear RFID authentication
protocols. In Proceedings of SAC 2009, volume 5867 of LNCS, pages 182–196.
Springer, 2009.

19. W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and decomposition of
boolean functions. In Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages
474–491. Springer, 2004.

20. K. Ouafi, R. Overbeck, and S. Vaudenay. On the security of HB# against a man-
in-the-middle attack. In Proceedings of Asiacrypt 2008, volume 5350 of LNCS,
pages 108–124. Springer, 2008.

21. O. Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing (STOC), pages 84–93. ACM Press, 2005.

22. A. Shamir, J. Patarin, N. Courtois, and A. Klimov. Efficient algorithms for solv-
ing overdefined systems of multivariate polynomial equations. In Proceedings of
Eurocrypt 2000, volume 1807 of LNCS, pages 474–491. Springer, 2000.

ECRYPT Workshop on Lightweight Cryptography - November 2011 136

A The Proofs of Theorems 3 and 5

A.1 The Proof of Theorem 3

Theorem 3 For all L ≥ 1 and x, x′ ∈ KL it holds that s (x) = s (x′) if and
only if sgt (x) = sgt (x′).

Proof: The if -direction of Theorem 3 follows directly from the definitions of
sgt (x) and s (x).

We will prove the only-if -direction of Theorem 3 by induction on L. The
case L = 1 is obvious. Let us fix an arbitrary L > 1 and let us suppose that
the following is true for all L′ < L and all x, x′ ∈ KL′ : if s (x) = s (x′) then
sgt (x) = sgt (x′).

Lemma 3.1 For all x ∈ KL−1, k ∈ K and j, 1 ≤ j ≤ L, the following is true:
sj (x, k) = sj (x)⊕ k · sj−1 (x). �

Henceforth, for all k ∈ K, r ≥ 1 and x ∈ Kr, we write k ∈ x if some
component of x equals k.

Lemma 3.2 For all y, y′ ∈ KL, the following is true: if s (y) = s (y′) and there
is some k ∈ K with k ∈ y and k ∈ y′, then sgt (y) = sgt (y′).

Proof of Lemma 3.2: Suppose, w.l.o.g., that y = (x, k) and y′ = (x′, k),
where x, x′ ∈ KL−1. It suffices to prove that s (x) = s (x′) as this implies by
induction hypothesis that sgt (x) = sgt (x′) and, consequently, sgt (y) = sgt (y′).
We prove s (x) = s (x′) by showing via induction on j that sj (x) = sj (x′) holds
for all j, 0 ≤ j ≤ L. The case j = 0 follows straightforwardly from Definition
3. Let us fix some j > 0 and suppose that sr (x) = sr (x′) holds for all non-
negative integers r < j. As sj (y) = sj (y′) is satisfied, it follows from Lemma
3.1, in conjunction with the induction hypothesis, that

sj (x) + k · sj−1 (x) = sj (x′) + k · sj−1 (x′) = sj (x′) + k · sj−1 (x)

and, consequently, sj (x) = sj (x′) holds. �

Lemma 3.3 For all y, y′ ∈ KL, the following is true: if s (y) = s (y′) and 0 ∈ y,
then sgt (y) = sgt (y′).

Proof of Lemma 3.3: Trivially, s (y) = s (y′) implies that sL (y) = sL (y′).
As 0 ∈ y, it follows directly from Definition 3 that sL (y) = 0, which, in turn,
implies that sL (y′) = 0 and, consequently, 0 ∈ y′. The proof now follows from
Lemma 3.2. �

Finally, we have to consider the last remaining case of y, y′ ∈ KL given by

– s (y) = s (y′),
– 0 /∈ y and 0 /∈ y′,

ECRYPT Workshop on Lightweight Cryptography - November 2011 137

– Y ∩ Y ′ = ∅,

where Y (Y ′) denotes the set of components of y (y′).

In order to proceed, we need the following technical definition, accompanied
by two technical lemmas:

Definition 3.1 For all r ≥ 1 and x ∈ Kr, we denote

S (x) =
r⊕
j=0

sj (x) .

Lemma 3.4 For all r ≥ 1 and x ∈ Kr, the following is true: S (x) = 0 if and
only if 1 ∈ x.

Proof of Lemma 3.4: We prove the lemma by induction on r. The case
r = 1 can be easily verified. Let us fix some r > 1 and suppose that for all q,
1 ≤ q ≤ (r − 1), and all z ∈ Kq, the following is true: S (z) = 0 if and only if
1 ∈ z. Furthermore, let us fix some x ∈ Kr satisfying S (x) = 0 and suppose
that x = (z, k) for z ∈ Kr−1 and k ∈ K. In conjunction with Lemma 3.1, this
yields the following equation:

0 = S (x) = 1⊕
r⊕
j=1

sj (x) = 1⊕
r⊕
j=1

(sj (z)⊕ k · sj−1 (z))

= 1⊕
r−1⊕
j=1

sj (z)⊕ k ·
r⊕
j=1

sj−1 (z)

=

r−1⊕
j=0

sj (z)⊕ k ·
r−1⊕
j=0

sj (z)

= (1⊕ k) · S (z)

Consequently, either k = 1 or, by induction hypothesis, 1 ∈ z. �

Lemma 3.5 For all r ≥ 1 and x, x′ ∈ Kr, the following is true: if s (x) = s (x′),
then s (k · x) = s (k · x′).

Proof of Lemma 3.5: This follows straightforwardly from the simple fact
that sj (k · x) = kj · sj (x) holds for all j, 0 ≤ j ≤ r. �

The finding given below will complete the proof of Theorem 3:

Lemma 3.6 For all y, y′ ∈ KL, the following is true: if 0 /∈ y as well as 0 /∈ y′
and the sets of components of y and y′ are disjoint, then s (y) 6= s (y′).

ECRYPT Workshop on Lightweight Cryptography - November 2011 138

Proof of Lemma 3.6: Due to Lemma 3.5, we can, w.l.o.g., suppose that
yL = 1. Let us denote d = y′L, y = (x, 1), y′ = (x′, d) and keep in mind that
d /∈ {0, 1}. We will prove this lemma by contradiction. Hence, let us assume that
s (y) = s (y′) holds.

By applying Lemma 3.1 to the assumption, we can deduce that

sj (x)⊕ 1 · sj−1 (x) = sj (x′)⊕ d · sj−1 (x′)

holds for all j = 1, . . . , L. This implies

s1 (x)⊕ 1 = s1 (x′)⊕ d
⇔ s1 (x′) = s1 (x)⊕ d⊕ 1.

Analogously, we obtain

s2 (x)⊕ s1 (x) = s2 (x′)⊕ d · s1 (x′) ,

i.e.,

s2 (x′) = s2 (x)⊕ s1 (x)⊕ d (s1 (x)⊕ d⊕ 1)

= s2 (x)⊕ (d⊕ 1) s1 (x)⊕ d (d⊕ 1) .

Iterating this, one can easily show that

sj (x′) = sj (x)⊕
j⊕
r=1

(
dr−1 (d⊕ 1) sj−r (x)

)
(7)

holds for all j, 1 ≤ j ≤ (L− 1). In conjunction with the fact that

1 · sL−1 (x) = sL (y) = sL (y′) = d · sL−1 (x′)

in the case of j = L, relation (7) implies

d−1sL−1 (x) = sL−1 (x)⊕
L−1⊕
r=1

(
dr−1 (d⊕ 1) sL−1−r (x)

)
⇔ 0 = d−1 (1⊕ d) sL−1 (x)⊕

L−1⊕
r=1

(
dr−1 (d⊕ 1) sL−1−r (x)

)
⇔ 0 =

L−1⊕
r=0

(
dr−1 (d⊕ 1) sL−1−r (x)

)
.

ECRYPT Workshop on Lightweight Cryptography - November 2011 139

Multiplying this by
(
d−(L−2) (d⊕ 1)

−1
)

, where d /∈ {0, 1}, yields

0 =
L−1⊕
r=0

(
d−((1−r)+(L−2))sL−1−r (x)

)
⇔ 0 =

L−1⊕
r=0

(
d−((L−1)−r)s(L−1)−r (x)

)
⇔ 0 =

L−1⊕
j=0

(
d−jsj (x)

)
⇔ 0 = S

(
d−1 · x

)
.

In conjunction with Lemma 3.4, this implies that 1 ∈
(
d−1 · x

)
, which, in

turn, means that d ∈ x. Consequently, d ∈ y and also d ∈ y′, which violates
the condition that the sets of components of y and y′ are disjoint. Hence, the
assumption s (y) = s (y′) must be false. �

To conclude, Theorem 3 now follows straightforwardly from Lemma 3.2,
Lemma 3.3 and Lemma 3.6. �

A.2 The Proof of Theorem 5

Theorem 5 Let K = GF (2a) fulfill |K| ≥ 1
4 ·d·n·L

4, i.e., a ≥ log (n)+log (d)+
4 log (L)− 2. Then, for a random matrix A ∈U Kn×L, the following is true with
a probability of approximately at least

(
1− 1

d

)
: A can be completely reconstructed

from the signatures sgt (Ai,·), 1 ≤ i ≤ n, and sgt (Ai,· ⊕Aj,·), 1 ≤ i < j ≤ n.

Proof: In order to prove the theorem, we first need the following definition:

Definition 5.1 a) Two matrices A,B ∈ Kn×L are called column-equivalent if
A can be obtained from B by permuting the columns.

b) Two matrices A,B ∈ Kn×L are called sgt (r)-equivalent if

sgt

(⊕
i∈I

Ai,·

)
= sgt

(⊕
i∈I

Bi,·

)

holds for all I ⊆ [n], 1 ≤ |I| ≤ r.

Clearly, if the matrices A and B are column-equivalent, then they are also
sgt (r)-equivalent for all r, 1 ≤ r ≤ L. The converse is not necessarily true as

can be seen from the following example, where A,B ∈ GF (8)
2×3

:

A =

[
1 + z 1 + z2 0
z2 1 z

]
and B =

[
1 + z 1 + z2 0

1 z z2

]
.

This crucial observation leads to the following definition:

ECRYPT Workshop on Lightweight Cryptography - November 2011 140

Definition 5.2 A matrix A ∈ Kn×L is called sgt (r)-identifiable if sgt (r)-
equivalence to A implies column-equivalence to A.

We show Theorem 5 by proving a lower bound on the probability of a random
matrix A ∈U Kn×L being sgt (2)-identifiable. In order to do so, we will now
introduce a sufficient condition for the sgt (2)-identifiability of an (n× L)-matrix
over K and further show that with high probability, it is fulfilled if |K| is large
enough.

Definition 5.3 a) For all L ≥ 1 and vectors x ∈ KL, we denote by {x} the
set of all k ∈ K occurring in x, i.e., {x} = {k ∈ K | |x|k > 0}.

b) For all subsets M ⊆ K, we denote by ∆ (M) the set of differences generated
by M , i.e., ∆ (M) = {k ⊕ k′ | k 6= k′ ∈M}.

c) Two subsets M,M ′ ⊆ K are called diff.disjoint if ∆ (M) ∩∆ (M ′) = ∅.
d) A matrix A ∈ Kn×L is called strongly diff.disjoint if there is some i ∈

[n] such that |{Ai,·}| = L and, for all j ∈ [n] \ {i}, {Ai,·} and {Aj,·} are
diff.disjoint.

In addition, we need the following technical lemma:

Lemma 5.1 Let M,M ′ ⊆ K be two given subsets which are diff.disjoint. For
all m1,m2 ∈M and m′1,m

′
2 ∈M ′, the following is true: if m1 ⊕m′1 = m2 ⊕m′2

then m1 = m2 and m′1 = m′2.

Proof of Lemma 5.1: Trivially, m1⊕m′1 = m2⊕m′2 can be transformed into
m1 ⊕m2 = m′1 ⊕m′2. The latter relation would obviously violate the condition
of M and M ′ being diff.disjoint if m1 6= m2 (and thus m′1 6= m′2) held. �

The following lemma states a sufficient condition for the sgt (2)-identifiability
of an (n× L)-matrix over K:

Lemma 5.2 If a matrix A ∈ Kn×L is strongly diff.disjoint, then A is also
sgt (2)-identifiable.

Proof of Lemma 5.2: Let us consider a strongly diff.disjoint matrix A ∈
Kn×L and suppose that, w.l.o.g., |{A1,·}| = L holds (i.e., the first row of A
contains the maximum number L of different elements). Furthermore, let us fix
some matrix B ∈ Kn×L which is sgt (2)-equivalent to A. In order to prove the
lemma, we have to show that A and B are column-equivalent.

As A and B are sgt (2)-equivalent, we know that sgt (A1,·) = sgt (B1,·) holds,
implying the existence of some column-permutation ρ ∈ SL such that A1,· =
ρ (B1,·). Now let us fix some arbitrary j, 1 < j ≤ n. From sgt (Aj,·), we learn
which elements occur in row Bj,· and from sgt (A1,· ⊕Aj,·), we learn which
elements occur in B1,· ⊕ Bj,·. As {B1,·} and {Bj,·} are diff.disjoint, Lemma
5.1 implies that for each element occurring in B1,· ⊕ Bj,·, there is exactly one
possibility of writing it as the sum of an element from B1,· and an element
from Bj,·. Moreover, these two elements have to be in the same column of B.

ECRYPT Workshop on Lightweight Cryptography - November 2011 141

Due to this and the fact that all components of B1,· are different, the positions
of all elements occurring in Bj,· are uniquely determined. In particular, the
aforementioned column-permutation ρ not only satisfies A1,· = ρ (B1,·) but also
Aj,· = ρ (Bj,·) for all 1 < j ≤ n. Clearly, this proves the column-equivalence of
A and B, thus implying the correctness of the lemma. �

Consequently, Theorem 5 can be shown by proving an appropriate lower
bound on the probability of a random matrix A ∈U Kn×L being strongly
diff.disjoint. Our argument will be based on the following lemma:

Lemma 5.3 Given a subset M ⊆ K such that |M | = L holds and a sequence
x = (x1, . . . , xL) chosen randomly from KL with respect to the uniform distri-
bution, the lower bound on the probability of {x} being diff.disjoint from M can

be approximated by 1− L4

4|K| .

Proof of Lemma 5.3: In the course of this proof, we will make use of the

approximation
∏q−1
i=1

(
1− i

p

)
≈ e−

q2

2p , commonly found in the context of the

well-known birthday paradox, as well as the approximations e−
1
x ≈

(
1− 1

x

)
and(

1− 1
x

)x ≈ e−1. In order to obtain a sequence x ∈ KL whose set of components
is diff.disjoint from M , for all i, 1 < i ≤ L, the element xi needs to be chosen in
such a way that

∆ (M) ∩ {xi ⊕ x1, . . . , xi ⊕ xi−1} = ∅.

The probability of this being fulfilled for a randomly (i.e., independently and

uniformly) chosen xi can be bounded from below by |K|−(i−1)·|∆(M)|
|K| . Hence, in

case of a random sequence x ∈ KL, the probability of {x} being diff.disjoint
from M is at least

(|K| − |∆ (M)|) · (|K| − 2 |∆ (M)|) · . . . · (|K| − (L− 1) |∆ (M)|)
|K|L−1

=

(
1− 1

|K| / |∆ (M)|

)
·
(

1− 2

|K| / |∆ (M)|

)
· . . . ·

(
1− L− 1

|K| / |∆ (M)|

)
=
L−1∏
i=1

(
1− i

|K| / |∆ (M)|

)
.

By applying the above-mentioned approximations, we obtain that the lower
bound on the probability of {x} being diff.disjoint from M is around

e−
L2

2(|K|/|∆(M)|) ≈ 1− L2

2 (|K| / |∆ (M)|)
= 1− L2 · |∆ (M)|

2 |K|
.

As |∆ (M)| ≤
(
L
2

)
, an even coarser approximation can be given by

1−
L2 ·

(
L
2

)
2 |K|

= 1−
L2 · L·(L−1)2

2 |K|
> 1− L4

4 |K|
,

ECRYPT Workshop on Lightweight Cryptography - November 2011 142

which proves the lemma. �

Now let A ∈U Kn×L be a random (n× L)-matrix over K. Similarly to the
argument in the previous proof, we can learn that with probability around 1−
L2

2|K| , the first row of A contains L different coefficients. In this particular case,

it follows straightforwardly from Lemma 5.3 that for all j, 2 ≤ j ≤ n, the
lower bound on the probability of {A1,·} and {Aj,·} being diff.disjoint can be

approximated by 1− L4

4|K| .

Consequently, if K satisfies

L2

2 |K|
≤ L4

4 |K|
≤ 1

dn
, (8)

then due to the implication(
1− 1

dn

)n
≤
(

1− L2

2 |K|

)
·
(

1− L4

4 |K|

)n−1
,

in conjunction with Lemmata 5.2 and 5.3, the probability that A is sgt (2)-
identifiable can be bounded from below by approximately(

1− 1

dn

)n
≈ e− 1

d ≈ 1− 1

d
.

Observing that relation (8) holds if

|K| ≥ 1

4
· (dn) · L4,

i.e.,

a ≥ log (n) + log (d) + 4 log (L)− 2,

completes the proof of Theorem 5. �

B On attacking the (n, k, L)+-protocol by solving
RandomSelect (L, n, a)

The following outline of an attack on the (n, k, L)+-protocol by Krause and
Stegemann [18] is meant to exemplify the immediate connection between the
previously introduced learning problem RandomSelect (L, n, a) and the security
of this whole new class of lightweight authentication protocols. Similar to the
basic communication mode described in the introduction, the (n, k, L)+-protocol
is based on L n-dimensional, injective linear functions F1, . . . , FL : GF (2)n −→
GF (2)n+k (i.e., the secret key) and works as follows.

Each instance is initiated by the verifier Alice, who chooses a random vector
a ∈U GF (2)n/2 and sends it to Bob, who then randomly (i.e., independently and

ECRYPT Workshop on Lightweight Cryptography - November 2011 143

uniformly) chooses l ∈U [L] along with an additional value b ∈U GF (2)n/2, in or-

der to compute his response w = Fl (a, b). Finally, Alice accepts w ∈ GF (2)
n+k

if there is some l ∈ [L] with w ∈ Vl and the prefix of length n/2 of F−1l (w)

equals a, where Vl denotes the n-dimensional linear subspace of GF (2)
n+k

cor-
responding to the image of Fl.

This leads straightforwardly to a problem called Learning Unions of L Lin-
ear Subspaces (LULS), where an oracle holds the specifications of L secret n-
dimensional linear subspaces V1, . . . , VL of GF (2)n+k, from which it randomly
chooses examples v ∈U Vl for l ∈U [L] and sends them to the learner. Knowing
only n and k, he seeks to deduce the specifications of V1, . . . , VL from a suffi-
ciently large set {w1, . . . , ws} ⊆

⋃L
l=1 Vl of such observations. It is easy to see

that this corresponds to a passive key recovery attack against (n, k, L)-type pro-
tocols. Note that there is a number of exhaustive search strategies to solve this
problem, e.g., the generic exponential time algorithm called search-for-a-basis
heuristic, which was presented in the appendix of [18].

It should be noted that an attacker who is able to solve the LULS prob-
lem needs to perform additional steps to fully break the (n, k, L)

+
-protocol as

impersonating the prover requires to send responses w ∈ GF (2)n+k which not

only fulfill w ∈
⋃L
l=1 Vl but also depend on some random nonce a ∈ GF (2)n/2

provided by the verifier. However, having successfully obtained the specifications
of the secret subspaces V1, . . . , VL allows in turn for generating a specification of
the image of Fl (a, ·) for each l ∈ [L] by repeatedly sending an arbitrary but fixed
(i.e., selected by the attacker) a ∈ GF (2)n/2 to the prover. Remember that, al-
though the prover chooses a random l ∈U [L] each time he computes a response
w based on some fixed a, an attacker who has determined V1, . . . , VL will know
which subspace the vector w actually belongs to. Krause and Stegemann pointed
out that this strategy allows for efficiently constructing specifications of linear
functions G1, . . . , GL : GF (2)n −→ GF (2)n+k and bijective linear functions
g1, . . . , gL : GF (2)n/2 −→ GF (2)n/2 such that

Fl (a, b) = Gl (a, gl (b))

for all l ∈ [L] and a, b ∈ GF (2)n/2 [18]. Hence, the efficiently obtained specifi-
cations of the functions ((G1, . . . , GL) , (g1, . . . , gL)) are equivalent to the actual
secret key (F1, . . . , FL). However, keep in mind that the running time of this
attack is dominated by the effort needed to solve the LULS problem first and
that RandomSelect (L, n, a) in fact refers to a special case of the LULS problem,
which assumes that the secret subspaces have the form

Vl = {(v, fl (v)) | v ∈ GF (2)n} ⊆ GF (2)n+k

for all l ∈ [L] and secret GF (2)-linear functions f1, . . . , fL : GF (2)n −→ GF (2)k.
This is true with probability p (n) ≈ 0.2887 as, given an arbitrary ((n+ k)× n)-
matrix A over GF (2), the general case V = {A ◦ v | v ∈ GF (2)n} can be written
in the special form iff the first n rows of A are linearly independent (see, e.g.,
[11]).

ECRYPT Workshop on Lightweight Cryptography - November 2011 144

In order to solve this special problem efficiently, we suggest the following
approach, which makes use of our learning algorithm for RandomSelect (L, n, a)
and works by

– determining an appropriate number a ∈ O (log (n)) which, w.l.o.g., divides
k (i.e., k = γ · a for some γ ∈ N),

– identifying vectors w ∈ {0, 1}k with vectors w = (w1, . . . , wγ) ∈ GF (2a)
γ

and functions f : {0, 1}n −→ {0, 1}k with γ-tuples
(
f1, . . . , fγ

)
of compo-

nent functions f1, . . . , fγ : {0, 1}n −→ GF (2a) based on the following rule:
f i (u) = wi for all i = 1, . . . , γ if and only if f (u) = (w1, . . . , wγ),

– learning f1, . . . , fL : {0, 1}n −→ {0, 1}k by learning each of the corresponding
sets of component functions f i1, . . . , f

i
L : {0, 1}n −→ GF (2a) in time nO(L)

for i = 1, . . . , γ.

Clearly, for efficiency reasons, a should be as small as possible. However,
in section 4 we show that a needs to exceed a certain threshold, which can be
bounded from above by O (log (n)), to enable our learning algorithm to find a
unique solution with high probability.

Please note that, throughout this paper, a is assumed to be fixed as we
develop a learning algorithm for sets of secret GF (2)-linear functions f1, . . . , fL :
{0, 1}n −→ K, where K = GF (2a). In particular, for the sake of simplicity,
we write f1, . . . , fL while actually referring to a set of component functions as
explained above.

ECRYPT Workshop on Lightweight Cryptography - November 2011 145

TWINE: A Lightweight, Versatile Block Cipher

Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi

NEC Corporation, 1753 Shimonumabe, Nakahara-Ku, Kawasaki, Japan
t-suzaki@cb.jp.nec.com, k-minematsu@ah.jp.nec.com,

s-morioka@ak.jp.nec.com, e-kobayashi@fg.jp.nec.com

Abstract. This paper presents a 64-bit lightweight block cipher TWINE
supporting 80 and 128-bit keys. It enables quite small hardware imple-
mentation similar to the previous proposals, yet enables efficient imple-
mentations on embedded software. Moreover, it allows a compact im-
plementation of unified encryption and decryption. This characteristic
mainly originates from the use of generalized Feistel with many sub-
blocks combined with a recent improvement on the diffusion layer.
Keywords: lightweight block cipher, generalized Feistel, block shuffle

1 Introduction

Recent advances in tiny computing devices, such as RFID and sensor network
nodes, give rise to the need of symmetric encryption with highly-limited re-
sources, called lightweight encryption. While we have AES it is often inap-
propriate for such devices due to their size/power/memory constraints, even
though there are constant efforts for small-footprint AES, e.g., [14, 31, 37]. To
fill the gap, a number of hardware-oriented lightweight block ciphers have been
recently proposed; for instance, DESL [26], HIGHT [21], PRESENT [9], and
KATAN/KTANTAN [13], PRINTcipher [25], and many more.

In this paper, we propose a new lightweight 64-bit block cipher TWINE. It
supports 80 and 128-bit keys. Our purpose is to achieve hardware efficiency while
minimizing the hardware-oriented design choices, such as a bit permutation.
The avoidance of such options may be beneficial to software implementation
and yield a balanced performance on both software and hardware. Lightweight
blockciphers from a similar motivation are also seen in, e.g., KLEIN [19], LBlock
[43], and most recently, LED [18] and Piccolo [40].

For this purpose, we employ Type-2 generalized Feistel structure (GFS) pro-
posed1 by Zheng et al. [44] with 16 nibble-blocks. The drawback of such design is
poor (slow) diffusion property, leading to a slow cipher with quite many rounds.
To overcome the problem, we employ the idea of Suzaki and Minematsu at FSE
’10 [41] which substantially improves diffusion by using a different block shuffle
from the original (cyclic shift). As a result, TWINE is also efficient on (em-
bedded) software and enables compact unification of encryption and decryption.
1 Zheng et al. called it Type-2 Feistel-Type Transformation. The generalized Feistel

structure is an alias taken by, e.g., [39,41].

ECRYPT Workshop on Lightweight Cryptography - November 2011 146

The features of our proposal are (1) no bit permutation, (2) generalized Feistel-
based, and (3) no Galois-Field matrix. The components are only one 4-bit S-box
and 4-bit XOR. As far as we know, this is the first attempt that combines these
three features. There is a predecessor called LBlock [43] which has some re-
semblances to ours, however TWINE is an independent work and has several
concrete design advantages (See Section 3).

We implemented TWINE on hardware (ASIC and FPGA) and software
(8-bit microcontroller). We did not take the fixed key setting, hence keys can
be updated. Our hardware implementations suggest that the encryption-only
TWINE can be implemented with about 1, 500 Gate Equivalent (GE), and when
encryption and decryption are unified, it can be implemented within 1, 800 GEs.
We are also trying a serialized implementation and a preliminary result suggests
1, 116 GEs. For software, TWINE is implemented within 0.8 to 1.5 Kbytes ROM.
The speed is relatively fast compared to other lightweight ciphers. Though the
hardware size is not the smallest, we think the performance of TWINE is well-
balanced for both hardware and software.

For security, TWINE employs a technique to enhance the diffusion of GFS,
however, it is definitely important to evaluate the security against attacks that
exploit the diffusion property of generalized Feistel, such as the impossible dif-
ferential attack and the saturation attack. We perform a thorough analysis (for a
new cipher proposal) on TWINE and present the impossible differential attack
against 23-round TWINE-80 and 24-round TWINE-128 as the most powerful
attacks we have found so far. The attack is ad-hoc and fully exploits the key
schedule, which can be of independent interest as an example of highly-optimized
impossible differential attack against GFS-based ciphers.

The organization of the paper is as follows. In Section 2 we describe the
specification of TWINE. Section 3 explains the design rationale for TWINE.
In Section 4 we present the result of security evaluation, and in section 5 we
present the implementation results of both hardware and software. Section 6
concludes the paper.

2 Specification of TWINE

2.1 Notations

The basic mathematical operations we use are as follows. ⊕ denotes bitwise
exclusive-OR. For binary strings, x and y, x∥y denotes the concatenation of x
and y. Let |x| denote the bit length of a binary string x. If |x| = m, x is also
written as x(m) to emphasize its bit length. If |x| = 4c for some positive integer
c, we write x → (x0∥x1∥ . . . ∥xc−1), where |xi| = 4, is the partition operation
into the 4-bit subsequences. The opposite operation, (x0∥x1∥ . . . ∥xc−1) → x, is
similarly defined. The partition operation may be implicit, i.e., we may simply
write xi to denote the i-th 4-bit subsequence for any 4c-bit string x.

2

ECRYPT Workshop on Lightweight Cryptography - November 2011 147

2.2 Data Processing Part (Encryption Process)

TWINE is a 64-bit block cipher with two supported key lengths, 80 and 128 bits.
If the key length is needed to be specified, we write TWINE-80 or TWINE-128
to denote the corresponding version. The global structure of TWINE is a variant
of Type-2 GFS [44] [38] with 16 4-bit sub-blocks. Given a 64-bit plaintext, P(64),
and a round key, RK(32×36), the cipher produces the ciphertext C(64). Round
key RK(32×36) is derived from the secret key, K(n) with n ∈ {80, 128}, using the
key schedule. A round function of TWINE consists of a nonlinear layer using
4-bit S-boxes and a diffusion layer, which permutes the 16 blocks. Unlike Type-2
GFS, the diffusion layer is not a circular shift and is designed to provide a better
diffusion that the circular shift, according the result of [41]. This round function
is iterated for 36 times for both key lengths, where the diffusion layer of the last
round is omitted. The encryption process can be written as Algorithm 2.1.

The S-box, S, is a 4-bit permutation defined as Table 1. The permutation
of block indexes, π : {0, . . . , 15} → {0, . . . , 15}, where j-th sub-block (for j =
0, . . . , 15) is mapped to π[j]-th sub-block, is depicted at Table 2.

The figure of the round function is in Fig. 1.

Algorithm 2.1: TWINE.Enc(P(64), RK(32×36), C(64))

X1
(64) ← P

RK1
(32)∥ . . . ∥RK35

(32) ← RK(32×36)

for i← 1 to 35

do

Xi
0(4)∥Xi

1(4)∥ . . . ∥Xi
14(4)∥Xi

15(4) ← Xi
(64)

RKi
0(4)∥RKi

1(4)∥ . . . ∥RKi
6(4)∥RKi

7(4) ← RKi
(32)

for j ← 0 to 7
do Xi

2j+1 ← S(Xi
2j ⊕RKi

j)⊕Xi
2j+1

for h← 0 to 15
do Xi+1

π[h] ← Xi
h

Xi+1 ← Xi+1
0 ∥Xi+1

1 ∥ . . . ∥Xi+1
14 ∥X

i+1
15

for j ← 0 to 7
do X36

2j+1 ← S(X36
2j ⊕RK36

j)⊕X36
2j+1

C ← X36

Table 1. S-box Mapping in the Hexadecimal Notation.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 0 F A 2 B 9 5 8 3 D 7 1 E 6 4

3

ECRYPT Workshop on Lightweight Cryptography - November 2011 148

FFFFFFFF

i
x
0

i
x
1

i
x
2

i
x
3

i
x
4

i
x
5

i
x
6

i
x
7

i
x
8

i
x
9

i
x
10

i
x
11

i
x
12

i
x
13

i
x
14

i
x
15

1

0

+i
x

1

1

+i
x

1

2

+i
x

1

3

+i
x

1

4

+i
x

1

5

+i
x

1

6

+i
x

1

7

+i
x

1

8

+i
x

1

9

+i
x

1

10

+i
x

1

11

+i
x

1

12

+i
x

1

13

+i
x

1

14

+i
x

1

15

+i
x

i
RK

S

i

j
RK

Fig. 1. Round function of TWINE. Data path is 4-bit and each F function is of the
form y = S(x⊕ k) with a 4-bit S-box.

Table 2. Block Shuffle π and its Inverse π−1.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π[j] 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14

π−1[j] 1 2 11 6 3 0 9 4 7 10 13 14 5 8 15 12

2.3 Key Schedule Part

The key schedule produces RK(32×36) from the secret key, K(n), where n ∈
{80, 128}. As well as the data processing part, it is a variant of GFS but with
much sparser nonlinear functions. The pseudocode of key schedule for 80-bit
key is in Algorithm 2.2 and the figure is in Appendix C. For 128-bit key, see
Appendix A. Round constant, CONi

(6) = CONi
H(3)∥CONi

L(3), is defined as 2i in
GF(26) with primitive polynomial z6+z+1. The exact values are listed at Table
3.

Table 3. Round Constants. CONi is the rightmost 6-bit (of 8 bits expressed in hex-
adecimal notation).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CONi 01 02 04 08 10 20 03 06 0C 18 30 23 05 0A 14 28 13 26

i 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

CONi 0F 1E 3C 3B 35 29 11 22 07 0E 1C 38 33 25 09 12 24 0B

4

ECRYPT Workshop on Lightweight Cryptography - November 2011 149

Algorithm 2.2: TWINE.KeySchedule-80(K(80), RK(32×36))

WK(80) ← K
WK0(4)∥WK1(4)∥ . . . ∥WK18(4)∥WK19(4) ←WK
RK1

0(4) ←WK1, RK1
1(4) ←WK3, RK1

2(4) ←WK4, RK1
3(4) ←WK6

RK1
4(4) ←WK13, RK1

5(4) ←WK14, RK1
6(4) ←WK15, RK1

7(4) ←WK16

RK1
(32) ← RK1

0∥RK1
1∥ . . . ∥RK1

6∥RK1
7

for i← 2 to 36

do

WK1 ←WK1 ⊕ S(WK0)
WK4 ←WK4 ⊕ S(WK16)
WK7 ←WK7 ⊕ 0∥CON i−1

H

WK19 ←WK19 ⊕ 0∥CON i−1
L

tmp0 ←WK0, tmp1 ←WK1, tmp2 ←WK2, tmp3 ←WK3

for j ← 0 to 3

do

{
WKj∗4 ←WKj∗4+4, WKj∗4+1 ←WKj∗4+5

WKj∗4+2 ←WKj∗4+6, WKj∗4+3 ←WKj∗4+7

WK16 ← tmp1, WK17 ← tmp2, WK18 ← tmp3, WK19 ← tmp0

RKi
0 ←WK1, RKi

1 ←WK3, RKi
2 ←WK4, RKi

3 ←WK6

RKi
4 ←WK13, RKi

5 ←WK14, RKi
6 ←WK15, RKi

7 ←WK16

RKi
(32) ← RKi

0(4)∥RKi
1(4)∥ . . . ∥RKi

6(4)∥RKi
7(4)

RK(32×36) ← RK1
(32)∥RK2

(32)∥ . . . ∥RK35
(32)∥RK36

(32)

2.4 Decryption Process

The decryption of TWINE is quite similar to the encryption; we use the same
S-box and key schedule as used in the encryption, with the inverse block shuffle.
See Algorithm 2.3.

Algorithm 2.3: TWINE.Dec(C(64), RK(32×36), P(64))

X36
(64) ← C

RK0
(32)∥ . . . ∥RK35

(32) ← RK(32×36)

for i← 36 to 2

do

Xi
0(4)∥Xi

1(4)∥ . . . ∥Xi
14(4)∥Xi

15(4) ← Xi
(64)

RKi
0(4)∥RKi

1(4)∥ . . . ∥RKi
6(4)∥RKi

7(4) ← RKi
(32)

for j ← 0 to 7
do Xi

2j+1 ← S(Xi
2j ⊕ RKi

j)⊕Xi
2j+1

for h← 0 to 15
do Xi−1

π−1[h]
← Xi

h

Xi−1 ← Xi−1
0 ∥Xi−1

1 ∥ . . . ∥Xi−1
14 ∥X

i−1
15

for j ← 0 to 7
do X1

2j+1 ← S(X1
2j ⊕ RK1

j)⊕X1
2j+1

P ← X1

5

ECRYPT Workshop on Lightweight Cryptography - November 2011 150

3 Design Rationale

3.1 Basic Objective

We focus on the mixed environments of resource-constrained hardware and soft-
ware, and aim at building a block cipher with a balanced performance under
such environments. Specifically, our goals are

1. small footprint in hardware implementation (e.g. under 2,000 GE [23,33]),
2. small ROM/RAM consumption in software implementation,
3. these goals achieved for the unified encryption/decryption functionality.

The importance of the last item is also pointed out by [1].

On LBlock. We remark that LBlock [43], proposed independently of ours, is
quite similar to our proposal. It is a 64-bit block cipher based on the balanced
Feistel whose round function consists of 8 4-bit S-boxes followed by a 4-bit
block-wise permutation (hence no matrix operation as used by SPN). LBlock
also performs 8-bit rotation to the round function’s output. Such a structure
can be transformed into a further generalized Type-2 GFS proposed by [41],
though we do not know whether the authors of LBlock are aware of it. We
investigated LBlock in this respect and found that the LBlock’s diffusion layer
is equivalent to that of the decryption of our proposal. Note that this choice is
quite reasonable from Table 6 of [41], as it satisfies both of the fastest diffusion
and the highest immunities against linear and differential attacks among other
block shuffles.

Nevertheless, there are some important differences between TWINE and
LBlock, as follows;

1. LBlock uses ten distinct S-boxes while ours uses one S-box. The use of sin-
gle S-box rather than multiple ones can contribute to smaller (serialized)
hardware and software implementations.

2. LBlock uses a bit permutation in its key scheduling, while ours is completely
bit permutation-free, including the key schedule. Hence the design of LBlock
does not meet our criteria mentioned at Introduction.

We also would like to point out that the security evaluation of LBlock is in-
sufficient. We already found a saturation attack against 22-round version with-
out considering the key schedule, thus the security margin is smaller than the
claimed by the authors (20-round). Using the techniques presented at Section 4,
we expect further improvements on the attack.

3.2 Parameters and Components

Considering the basic design goals as above, we choose the 64-bit block size with
80 and 128-bit keys, which is compatible to many previous lightweight blockci-
phers. The number of rounds is determined from our security analysis. As far
as we investigated, the most powerful attack against TWINE is a dedicated

6

ECRYPT Workshop on Lightweight Cryptography - November 2011 151

impossible differential attack, which breaks 23-round TWINE-80 and 24-round
TWINE-128. From this, we consider 36-round TWINE-128 has a sufficient
security margin. When keeping the same size of margin for TWINE-80 and
TWINE-128 is our sole goal, the 80-bit key version could reduce the number of
rounds from 36. However, considering the security margin and the implementa-
tion merit (i.e. 36 has many factors, which enables various multiple-round hard-
ware implementations with a small overhead), we employ the 36-round structure
for both key lengths.

Block Shuffle. The block shuffle π comes from a result of FSE ’10 [41]. In [41], it
was reported that by changing the block shuffle different from the ordinal cyclic
shift one can greatly improve the diffusion of Type-2 GFS. Here, goodness-of-
diffusion is measured by the minimum number of rounds that diffuses any input
sub-block difference to all output sub-blocks, called DRmax. Smaller DRmax
means a faster diffusion. DRmax of cyclic shift with k sub-blocks is k, while
there exist shuffles with DRmax = 2 log2 k, called “optimum block shuffle” [41].
Our π is such one2 with k = 16, hence DRmax = 8 while DRmax = 16 for the
cyclic shift. DRmax is connected to the resistance against various attacks. For
example, Type-2 GFS with 16 sub-blocks has 33-round impossible differential
characteristics and 32-round saturation characteristics. However, by using π of
Table 2 they can be reduced to 14 and 15 rounds.

There exist multiple optimum block shuffles [41]. Hence π was chosen con-
sidering other aspects which is not (directly) related to DRmax. In particular,
we focus on the resistance against differential and linear cryptanalysis, i.e., the
number of active S-boxes.

S-box. The 4-bit S-box is chosen to satisfy

1. The maximum differential and linear probabilities are 2−2, which is theoret-
ically the minimum for invertible S-box,

2. The boolean degree is 3,
3. The interpolation polynomial contains many terms and has degree 14.

Following the AES S-box design, we searched S-boxes satisfying the above while
being representable as a composition of Galois field inversion and an affine trans-
formation. More precisely, our S-box is defined as y = S(x) = f((x⊕b)−1), where
a−1 denotes the inverse of a in GF(24) (the zero element is mapped to itself.)
with irreducible polynomial z4 + z + 1, and b = 1 is a constant, and f(·) is an
affine function defined as

y0

y1

y2

y3

=

0 0 1 1
1 0 0 1
1 0 0 0
0 1 0 0

·

x0

x1

x2

x3

(1)

for y = f(x) with y = (y0∥y1∥y2∥y3) and x = (x0∥x1∥x2∥x3).
2 More precisely, an isomorphic shuffle in Appendix B (k = 16, No. 10) of [41].

7

ECRYPT Workshop on Lightweight Cryptography - November 2011 152

Key Schedule. The key schedule has many design options. We choose one which
enables (1) on-the-fly operations and (2) produces each round key via sequential
update of a key state, that is, there is no intermediate key. As mentioned, it uses
no bit permutation. As hardware efficiency is not our ultimate goal, the design is
rather conservative compared to the recent hardware-oriented ones [13,34,40], yet
quite simple. For security, we want our key schedule to have sufficient resistance
against slide, meet-in-the-middle, and related-key attacks.

4 Security Evaluation

4.1 Overview

We examined the security of TWINE against various attacks for both 80 and
128-bit keys. Since it is hard to describe all the evaluation results due to the page
limit, we focus on the most critical attacks in our evaluation; the impossible dif-
ferential and saturation attacks. For simplicity we only describe the details of the
attacks against TWINE-80; the results on TWINE-128 will be briefly described
in the summary. The short summary on other attacks, such as differential and
linear attacks, will also be given.

In this section, we use the following notations. S̄c denotes the sequence of
c symbols S, e.g. 0̄3 means (0, 0, 0) and Ū3 means (U,U,U). The F function
in the i-th round is labeled as F i

0, . . . , F
i
15, where F i

0 is the leftmost one. We
let RKi

[j1,...,jh] to denote the vector (RKi
j1 , . . . ,RKi

jh
). Since RKi

j is the j-th 4-
bit subsequence of RKi (for j = 0, 1, . . . , 15), this means F i

j (x) = S(RKi
j ⊕ x).

Xi
[j1,...,jh] is similarly defined.

4.2 Impossible Differential Attack

Generally, impossible differential attack [6] is one of the most powerful attack
against Feistel and GFS-based ciphers, as demonstrated by (e.g.) [15, 32, 42].
We searched impossible differential characteristics (IDCs) using Kim et al.’s
method [24], and found 64 14-round IDCs. We here present a highly-optimized
attack against 23-round TWINE-80. It exploits the key schedule and is based
on the following 14-round IDC (for 4-bit blocks);

(0, α, 0̄14)14r9(0̄8, β, 0̄7), where α ̸= 0 and β ̸= 0. (2)

Our attack uses the above IDC to 5-th to 18-th rounds of TWINE, and tries to
recover the subkeys of the first 4 rounds and last 5 rounds, 144 bits in total. These
subkey bits are uniquely determined via its 80-bit subsequence; see Appendix D.

The details of our attack are as follows.

Data Collection. We call a set of 232 plaintexts a structure if its i-th sub-blocks
are fixed to a constant for all i = 2, 4, 5, 6, 7, 8, 9, 14 ∈ {0, . . . , 15} and the re-
maining 8 sub-blocks take all 232 values. Suppose we have one structure. From
it we extract plaintext pairs having the differential

(α1, α2, 0, α3, 0̄6, α4, α5, α6, α7, 0, α0), (3)

8

ECRYPT Workshop on Lightweight Cryptography - November 2011 153

where αi is a non-zero 4-bit value. For such a plaintext pair, we want to make
sure that the differential of the internal state after the first 4 rounds to match
the left hand side of Eq. (2). For this, the output differentials with respect to
some F functions (in the first 4 rounds) have to be canceled out. For example,
α2 must be the differential of F with input differential α1, as shown by Fig. 2.
Here, we use the following observation;

Proposition 1. Let y = F i
j (x) = S(RKi

j ⊕ x) and y′ = F i
j (x

′). For fixed ∆x =
x⊕ x′ ̸= 0, ∆y = y ⊕ y′ has always 7 possible values, for any i and j. Moreover,
for a fixed ∆x ̸= 0 let τ(∆y) be the function of ∆y which represents the number
of possible RKi

j values. Then τ(∆y) equals 2 for some 6 values of ∆y and 4 for
the remaining one.

Hence we have a set of 7 possible values for α2, which is determined by α1.
Considering this restriction, we can extract 254.56 plaintext pairs from a structure
with its differential being Eq (3).

Key Elimination. After the plaintext pairs have been generated, we encrypt
them and seek the ciphertext pairs with a differential

(0, β1, 0, β2, β3, β4, β0, β5, β6, β7, β8, β9, β10, β11, 0, 0), ∀βi ̸= 0. (4)

For each ciphertext pair with differential Eq. (4), we try to eliminate the
wrong (impossible) candidates for the 80-bit (sub)key vector (K1∥K2∥K3), where

K1 = (RK1
[1,2,3,7],RK23

0),K2 = (RK1
[0,5,6],RK2

[2,4,6,7], RK23
[2,4,5]RK22

[1,3,4]),

K3 = (RK22
0,2), (5)

using the plaintext pair of differential Eq. (3) and the ciphertext pair of dif-
ferential Eq. (4). This can be done as follows. First, we guess the 20-bit K1

(which can take all possible values). After K1 is guessed, the number of each
4-bit subkey candidates in K2 is (2 · 6 + 4)/7 ≈ 2.28 on average from Proposi-
tion 1. Moreover, once K1 and K2 are fixed, each 4-bit subkey of K3 will have
(2 · 6 + 4)/15 ≈ 1.07 candidates, as we have no restrictions on the input differ-
ential for F s relating to these subkeys. From this observation, we can expect to
eliminate 220 · (16/7)13 · (16/15)2 ≈ 235.69 candidates from a set of 280 values for
each plaintext-ciphertext pair, i.e. a guess of 80-bit (K1∥K2∥K3) is eliminated
with probability 2−44.31. The detail of the above procedure is depicted at Table
12 in Appendix D.

From this, to determine (K1∥K2∥K3) with probability almost one, we need
N ciphertext pairs, where N satisfies 280(1 − 2−44.31)N ≈ 1. This implies N ≈
250.11. Assuming the ciphertext’s randomness, we can expect a ciphertext pair of
differential Eq (4) with probability (2−4)4 · (2−1)8 = 2−24. This implies that we
basically need 274.11 ciphertext pairs. But in fact we need some more. In the key
elimination we need to compute some other subkeys (64 bits in total), which is
uniquely determined by the key of Eq. (5). These keys contain RK19

4 ,RK21
4 , and

RK23
6 and they can cause a contradiction with other keys. If this event occurs,

9

ECRYPT Workshop on Lightweight Cryptography - November 2011 154

the corresponding plaintext/ciphertext pair turns out to be useless. Considering
the probability of this event we need 210 times more pairs, thus we eventually
need 284.11 ciphertext pairs.

Since one structure enables to produce 254.56 plaintext pairs of the desired
difference, we need to generate 229.55 structures (by using 229.55 distinct con-
stants) and run the above key elimination procedure for all structures.

Details of Key Elimination. In the key elimination we combine several techniques
to reduce the complexity. In particular we use the Difference Table. Its entry is
indexed by (x, x′, y) ∈ ({0, 1}4)3 and the entry is a set K = {k : y = S(k ⊕
x)⊕S(k⊕x′)}. We also use the relationships between subkeys induced from the
key schedule, or we can directly guess the key if input and output pairs of the
corresponding F are fixed (not only their differentials).

Complexity Estimation. For each plaintext-ciphertext pair, the procedure re-
garding K2 and K3 requires the 17 evaluations of F function, shown on the
dotted lines in Fig.s 2 and 3, and F 23

[2,3,4,5,6], total 22 functions. This amounts to
22/(23 · 8) encryptions of 22-round TWINE. Consequently, we can attack 23-
round TWINE-80 with the time complexity 250.11+10 · 220 · 22/(23 · 8) = 277.04

encryptions, and the memory complexity 280/64 = 274 blocks.

0 4

5

1 2 60 5 73 41

2

3

4

0 α
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

α
1

α
2

α
3

α
4

α
5
α

6
α

7
α

0
0 0 0 0 0 0 00

0

1

1

2 3 5 6 7

0

2

2 3

3 4

4

7

7

6

651

Fig. 2. The First 4 Rounds in the Impossible Differential Attack.

4.3 Saturation Attack

Saturation attack [16] is also a powerful attack against GFS-based ciphers. We
consider 4-bit-wise saturations. The state consists of 24 variables, denoted by S =
(S0, . . . , S15), where Si has the following four status (here X is the plaintext):

Constant (C) : ∀i, j Xi = Xj All (A) : ∀i, j i ̸= j ⇔ Xi ̸= Xj

Balance (B) :
⊕24−1

i Xi = 0 Unknown (U) : Others

10

ECRYPT Workshop on Lightweight Cryptography - November 2011 155

19

20

21

22

23

0 β
0

0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0β
0

β
1

β
2
β

3
β

4
β

5
β

6
β

7
β

8
β

9
β

10
β

11

0 1 2 3 4 765

0 1 2

0

54 73 6

2 3 61 74 5

70

0

1 2 3 54 6

1 2 54 73 6

Fig. 3. The Last 5 Rounds in the Impossible Differential Attack.

Let α = (α0, . . . , α15) and β = (β0, . . . , β15), αi, βi ∈ {C,A, B, U}, be the
initial state and the t-round state holding with probability 1. If we have αi = A

and βj ̸= U for some i and j, we call α
tr→β an t-round saturation characteristic

(SC).
TWINE has 15-round SC with input consisting of one C and fifteen As and

output consisting of 4 Bs (the remaining consists of U), for example;

(Ā12, C, Ā3)15r→(Ū3, B, Ū5, B, Ū3, B, U,B), (6)

(Ā6, C, Ā9)15r→(U,B, Ū3, B, U,B, Ū3, B, Ū4). (7)

Suppose we use SC of Eq. (7) to break 22-round TWINE-80. Let S-structure
denote a set of 260 plaintexts induced from Eq. (7), i.e., the input block X6 is
fixed to a constant and the other blocks take all combinations.

Our attack recovers a 72-bit subkey vector

Ktarget = (RK22, RK21
[0,2,3,4,5,6,7],RK20

[6,7], RK16
0)

based on the fact that (the state of) X15
1 is B with these 15-round SCs. Here,

the state of X15
1 being B implies the coincidence of states between X16

0 and F 16
0 ,

the output of the leftmost F function in the round 16, computed from the S-
structure. From this, we calculate the sums of F 16

0 and X16
0 independently, and

choose a key that makes these values the same as a candidate for the correct
key. The basic procedure for one S-structure is as follows.

1. Encrypt an S-structure and obtain 260 ciphertexts. As our target is the 22-
round version, the ciphertext is written as X22.

2. List all ciphertexts except their rightmost (16-th) block, X22
15 . The result is

denoted by List L1. It is merely a set of 60-bit values and the values with
even appearances need not be stored. We then guess

K1 = (RK22
[0,1,2,3,4,5,6],RK21

[2,3,4,5,7],RK20
6 ,RK17

2 ,RK16
0)

11

ECRYPT Workshop on Lightweight Cryptography - November 2011 156

and compute the sum of outputs of F 16
0 (the leftmost F function in the

round 16) using all entries in L1 with each guess for K1
3. We remark that

a pair of an entry of L1 and a guess for K1 uniquely determines the output
of F 16

0 . The key guesses are grouped according to the sum of F 16
0 ’s outputs.

Let G1(s) be the key group with F 16
0 output sum s ∈ {0, 1}4.

3. Count the appearance of 48-bit ciphertext subsequences, X22
[0,2,4,5,6,7,8,9,10,11,14,15],

and list those have odd counts to form the list L2. We then guess

K2 = (RK22
[2,3,4,5,7], RK21

[0,5,6],RK20
7 ,RK18

2)

and compute the sum of X16
0 using all entries in L2 with each guess for K2.

The key guesses are grouped according to the sum of X16
0 . The key group

with X16
0 sum being s′ ∈ {0, 1}4 is denoted by G2(s′).

4. Extract the all “consistent” combinations from G1(s) and G2(s) for all s ∈
{0, 1}4, and output them as the set of valid key candidates for Ktarget. This
can be done as follows. Let v ∈ G1(0000) and w ∈ G2(0000). We denote the
guess for RKi

j in v and w by RKi
j(v) and RKi

j(w). Both v and w contain
guesses of RK22

[2,3,4,5] and RK21
5 . If the following four equations,

RK22
[2,3,4,5](v) = RK22

[2,3,4,5](w), RK21
5 (v) = RK21

5 (w), (8)

RK21
6 (w) = S(RK21

2 (v)) ⊕ RK18
2 (w), (9)

RK22
7 (w) = S(S(RK20

7 (w)) ⊕ S−1(RK20
6 (v) ⊕ RK17

2 (v))) ⊕ RK21
0 (w) (10)

hold true, a valid key candidate for Ktarget is obtained by combining v and
w. The check is done for all pairs from G1(s)×G2(s), and for all s ∈ {0, 1}4.

Taking Step 2 for example, we explain the detailed procedure. We first guess
RK22

0 and compute X21
1 (= F 22

0 (X22
0) = S(RK22

0 ⊕ X22
0)) using L1 with 264 F

evaluations. Then we substitute X22
[0,1] (8 bits) written in L1 with X21

1 (4 bits)
and obtain a list of 56-bit sequences, and collect the values with odd appearance
to form a new list, called L1,1. Next, we guess RK22

2 and compute X21
5 based

on the guess with 264 F evaluations. We then substitute X22
[4,5] with X21

5 in
L1,1 and obtain the list of 52-bit sequences and collect the values with odd
appearance to form a new list, called List L1,2. The above procedure is repeated
to gradually reduce the list size. Eventually the computation of the sum of F 16

0

outputs requires 273.80 F evaluations (equivalently 266.34 encryptions of 22-round
TWINE). A similar complexity reduction can also be applied to Step 3, however,
the computation of Step 3 is much smaller than that of Step 2 (due to the small
space for the key guess) in any case.

As checks are done w.r.t. 4-bit internal values, the above procedure with one
S-structure rejects a wrong key candidate for Ktarget with probability 1 − 2−4

(i.e. the size of candidates is reduced to 1/16), hence we basically need at least
3 More precisely, RK20

[0,5],RK19
[1,7],RK18

3 are required to compute F 16
0 outputs. Also

RK20
1 and RK19

3 are required to compute X16
0 in Step 3. These RKs can be computed

from K1 or K2. See Appendix E.

12

ECRYPT Workshop on Lightweight Cryptography - November 2011 157

18 S-structures to identify the right key. However, this is impossible as each sub-
block is 4-bit. To elude the problem, we exploit the key schedule; the structure
of the key schedule allows us to derive the 80-bit key with 268 candidates for
72-bit subkey, and an exhaustive search for the remaining 8-bit subkey, and the
final key check, which is trivial.

Summarizing, the attack with an S-structure requires 260 plaintexts to be
encrypted, and 277 (which follows from 266.34 + 276 + ρ, where ρ denotes the
computation of Step 3, which is negligible) encryptions. The memory complexity
is 267 (64-bit) blocks. If we want to further reduce the complexity, using multiple
S-structures (using distinct constants with the same SC) can help. The result
is shown by Table 4. According to our investigation, the attack with 5 or more
structures has higher time complexity than that with 4 structures, hence the
best one is with 4 structures.

Table 4. Complexity of Saturation Attack.

of Struct.s Data Time (Enc) Memory (Block)

1 260 277(≈ 260 + 266.34 + ρ + 276 + 212) 267

2 261 273(≈ 261 + (266.34 + ρ) · 2 + 272 + 28) 267

3 261.59 268.97(≈ 261.59 + (266.34 + ρ) · 3 + 268 + 24) 267

4 262 268.43(≈ 262 + (266.34 + ρ) · 4 + 264) 267

4.4 Differential / Linear Cryptanalysis

To evaluate the resistance against differential cryptanalysis (DC) [5] and linear
cryptanalysis (LC) [29], we need to know the number of differentially and lin-
early active S-boxes, denoted by ASD and ASL, respectively. We performed a
computer-based search for differential and linear paths, and evaluated ASD and
ASL for each round. As a result, the numbers of ASD and ASL are the same,
as shown by Table 5. Since our S-box has 2−2 maximum differential and linear
probabilities, the maximum differential and linear characteristic probabilities are
both 2−64 for 15 rounds. Examples of 14-round differential (∆) and linear (Γ)
characteristics having the minimum I/O weights are as follows. They involve 30
active S-boxes, and thus the characteristic probability is 2−60.

∆ = (09, 1, 0, 1, 0, 1, 0, 0)14r→(03, 1, 04, 1, 0, 0, 1, 0, 0, 1, 1),

Γ = (06, 1, 1, 03, 1, 0, 0, 1, 1)14r→(09, 1, 03, 1, 0, 1). (11)

Here, 1 denotes an arbitrary non-zero difference (mask) and 0 denotes the zero
difference (mask) for ∆ (Γ). Compared to the impossible differential attack, we
naturally expect the key recovery attacks exploiting the key schedule with these

13

ECRYPT Workshop on Lightweight Cryptography - November 2011 158

differential/linear characteristics are less powerful, since 14-round impossible dif-
ferential characteristic has much fewer (only 2) weights, and fewer weights imply
the more attackable rounds in the key guessing. We remark that a computer-
based search for the maximum differential probability (rather than the char-
acteristic probability) of GFS was proposed by [30]. However, applying their
algorithm to our 16-block case seems infeasible due to the computational com-
plexity.

Table 5. Number of Differentially and Linearly Active S-boxes.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ASD, ASL 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32

4.5 Key Schedule-based Attacks

Related-Key Differential Attacks. The related-key attack, proposed by Biham
[4], is an attack applicable to the environment where the adversary can somehow
modify the key input. We focus on the typical setting, that is, the adversary is
allowed to insert a key differential. In order to evaluate the resistance of TWINE
against the related-key attack, we implemented the search method proposed by
Biryukov et al. [8], which counts the number of active S-boxes for combined data
processing and key schedule parts. See [8] for the detail of the algorithm. We
(naturally) searched 4-bit truncated differential paths. As S-box has maximum
differential probability being 2−2, we needed 40 (64) active S-boxes for TWINE-
80 (TWINE-128).

Due to the computational constraint the full-search is only feasible for TWINE-
80. As a result, we confirmed that the number of active S-boxes reaches 40 for
the 22-round. Appendix F provides the number of active S-boxes and the corre-
sponding truncated differential paths.

Other Attacks. For the slide attack [7], the key schedule of TWINE inserts
distinct constants for each round. This is a typical way to thwart slide attacks
and hence we consider TWINE is immune to the slide attack.

For Meet-In-The-Middle (MITM) attack, we confirmed that the round keys
for the first 3 (5) rounds contain all key bits for the 80-bit (128-bit) key case.
Thus, we consider it is difficult to mount the basic MITM attack against the full-
round TWINE. Note that the recently-proposed MITM variant, called biclique
attack [11], may work even when all key bits are used in the relatively small
number of rounds. The evaluation of such attack against TWINE is a future
topic.

The result of our security evaluation for TWINE is summarized at Table 6.

14

ECRYPT Workshop on Lightweight Cryptography - November 2011 159

Table 6. Summary of Attacks on TWINE.

Key Attack Rounds
Data Time Memory

(bits) (blocks) (encryption) (blocks)

80 Impossible Diff. 23 261.39 276.88 274

Saturation 22 262 268.43 267

128 Impossible Diff. 24 252.21 2115.10 2118

Saturation 23 262.81 2106.14 2103

5 Implementation

5.1 Hardware

We implemented TWINE on ASIC using a 90nm standard cell library with
logic synthesis done by Synopsys Design Compiler Version D-2010.03-SP1-1.
Following the recent trend in the lightweight implementations [9,13], the figures
are shown for the case when Scan Flip-Flops (FFs) are used. In our library, a
D-FF and 2-to-1 MUX cost 5.5 GE and 2.25 GE, and a Scan FF costs 6.75 GE:
hence this technique saves 1.0 GE per 1-bit storage.

The data path of TWINE-80 encryption circuit is in Fig. 4, and the imple-
mentation result is shown by Table 7. We also show the detail of TWINE-80
encryption implementation in Table 8. The figures must be taken with cares,
because they are related to the type of memory unit (FF), technology, library,
etc, as pointed out by [13]. Even single XOR gate has several grades, from fast-
but-large and slow-but-small. As suggested by [13], we list Gates/Memory Bit
in the table, which denotes the size (in Gate Equivalent (GE)) of 1-bit memory
device used for the key and states.

We did not perform a thorough logic minimization of the S-box circuit, which
currently costs 30 GEs. The S-box logic minimization can further reduce the size.

We also tried a serialized implementation. Though it is not yet finished,
the preliminary result indicates that encryption-only TWINE-80 can be imple-
mented 1, 116 GEs. The details of our serialized implementation will be given in
a forthcoming paper.

5.2 Software

To evaluate the performance on embedded software, we implement TWINE
on Atmel AVR 8-bit Micro-controller. The target device is ATmega163, which
has 16K bytes Flash, 512 bytes EEPROM and 1024 bytes SRAM. We imple-
mented the four versions: speed-first, ROM-first (minimizing the consumption),
and RAM-first, and the double-block implementation, where two message blocks
are processed in parallel. Such an implementation works for parellelizable modes
of operations, e.g., the counter mode and PMAC. All implementations include
the precomputation of round keys, i.e. they do not use an on-the-fly key schedule.

15

ECRYPT Workshop on Lightweight Cryptography - November 2011 160

Table 7. ASIC Implementation Results. For some implementations, the figures of Throughput and
Cycles/Block is an estimated value.

Algorithm Function Block size Key size Cycles/ Throughput Area Gates / Type

(bit) (bit) block (Kbps@100KHz) (GE†) Memory bit

TWINE Enc 64 80 36 178 1503 6.75 round

TWINE Enc+Dec 64 80 36 178 1799 6.75 round

TWINE Enc 64 128 36 178 1866 6.75 round

TWINE Enc+Dec 64 128 36 178 2285 6.75 round

TWINE Enc 64 80 540 11.8 1116 6.75 serial

PRESENT [36] Enc 64 80 547 11.4 1000 n/a serial

PRESENT [9] Enc 64 80 32 200 1570 6 round

AES [31] Enc 128 128 226 57 2400 6 serial

mCRYPTON [27] Enc 64 64 13 492.3 2420 5 round

SEA [28] Enc+Dec 96 96 93 103 3758 n/a round

HIGHT [21] Enc+Dec 64 128 34 188.25 3048 n/a round

KLEIN [19] Enc 64 80 17 376.4 2629 n/a round

KLEIN [19] Enc 64 80 271 23.6 1478 n/a serial

DES [26] Enc 64 56 144 44.4 2309 12.19 serial

DESL [26] Enc 64 56 144 44.4 1848 12.19 serial

KATAN [13] Enc 64 80 254 25.1 1054 6.25 serial

Piccolo [40] Enc 64 80 27 237 1496¶ 6.25 round

Piccolo [40] Enc+Dec 64 80 27 237 1634¶ 6.25 round

Piccolo [40] Enc 64 80 432 14.8 1043¶ 6.25 serial

Piccolo [40] Enc+Dec 64 80 432 14.8 1103¶ 6.25 serial

LED [18] Enc 64 80 1872 3.4 1040 6/4.67⋄ serial

PRINTcipher [25] Enc 48 80 48 12.5 503⋆ n/a round

† Gate Equivalent : cell area/2-input NAND gate size (2.82).
¶ Includes a key register that costs 360 GEs; Piccolo can be implemented without a key register if

key signal holds while encryption.
⋄ Mixed usage of two memory units.
⋆ Hardwired key.

Table 8. TWINE-80 Encryption Hardware Implementation.

Data Processing Part (GE) Key Scheduling Part (GE)

Data Register 432 Key Register 540

S-box 240 round const comp. 2

Round Key XOR 64 round const XOR 12

S-box out XOR 64 S-box 60

S-box out XOR 16

RC register 33

State register 6

Others/Control 34

Total 1503

16

ECRYPT Workshop on Lightweight Cryptography - November 2011 161

block shuffle

mux

S S

plaintext

...

ciphertext

mux

key
64

4 4 4 4

64

64

64

80

80

32

80

Key Schedule

[a]

reg reg

Fig. 4. Data path of TWINE-80 encryption, when Scan FF is not used (i.e. the case
with MUX and D-FF). The bit boundary [a] indicates certain 32 bits of 80-bit key
state specified from the key schedule.

In the speed-first implementation, two rounds are processed in one loop.
This removes the block shuffle between the first and second rounds. A further
speeding up is possible if more rounds are contained in one loop at the cost of
increased memory. Our program keeps all 4-bit blocks in the distinct registers.
RAM load instruction (LD) is faster than ROM load instruction (LPM), hence
the S-box and the constants are stored at RAM. The data arrangement is care-
fully considered to avoid carry in the address computation. The double-block
implementation stores the S-boxes in ROM.

Our result is in Table. 9, and a comparison is in Table 10. In Table 10 we
list the (scaled) throughput/code ratio for a performance measure (See Table
10 for the formula), following [35]. AES’s performance is still quite impressive,
however, one can also observe a good performance of TWINE.

One might be interested in the performance of TWINE under 32/64-bit
CPU. We are currently working on this, in particular using the vector permuta-
tion instructions, which was shown to be very powerful for AES [20].

Table 9. Software Implementation of TWINE on ATmega163.

Target
Key schedule Encryption Decryption ROM RAM

(cycles) (cycles/block) (cycles/block) (bytes) (bytes)

Speed-first 2,170 2,165 2,166 1,304 414

ROM-first 12,022 18,794 18,689 728 335

RAM-first 12,058 18,794 18,688 792 191

Double-block 1,887 1,301 1,302 2,294 386

17

ECRYPT Workshop on Lightweight Cryptography - November 2011 162

Table 10. Comparison of Software Implementation on AVR.

Algorithm
Key Block Language ROM RAM Enc Dec ETput DTput

(bits) (bits) (bytes) (bytes) (cyc/byte) (cyc/byte) /Code† /Code‡

TWINE 80 64 asm 1,304 414 271 271 2.14 2.14

PRESENT [33] 80 64 asm 2,398 528 1,199 1,228 0.28 0.28

PRESENT [17] 80 64 N/A 936 0 1,340 1,405 0.80 0.76

DES [17] 56 64 N/A 4,314 0 1,079 1,019 0.21 0.22

DESXL [17] 184 64 N/A 3,192 0 1,066 995 0.29 0.31

HIGHT [17] 128 64 N/A 5,672 0 371 371 0.48 0.48

IDEA [17] 128 64 N/A 596 0 338 1,924 4.97 0.87

TEA [17] 128 64 N/A 1,140 0 784 784 1.11 1.11

SEA [17] 96 96 N/A 2,132 0 805 805 0.58 0.58

AES [12] 128 128 asm 1,912 432 125 181 3.42 2.35

† Encryption Throughput per Code: (1/Enc)/(ROM + RAM) (scaled by 106)
‡ Decryption Throughput per Code: (1/Dec)/(ROM + RAM) (scaled by 106)

6 Conclusions

We have presented a lightweight block cipher TWINE, which has 64-bit block
and 80 or 128-bit key. It is primary designed to fit extremely-small hardware,
yet provides a notable performance under embedded software. This characteris-
tic mainly originates from the Type-2 generalized Feistel with a highly-diffusive
block shuffle. We performed a thorough security analysis, in particular for the
impossible differential and saturation attacks. Although the result implies the
sufficient security of full-round TWINE, its security naturally needs to be stud-
ied further.

Acknowledgments. The authors would like to thank the anonymous reviewers
for many useful comments. We thank Maki Shigeri, Etsuko Tsujihara, and Teruo
Saito for discussions, and Daisuke Ikemura for investigation on hardware-related
issues.

References

1. Final report of European project IST-1999-12324, New European Schemes for Sig-
natures, Integrity, and Encryption. 2004.

2. http://www.lightweightcrypto.org/implementations.php

3. http://cis.sjtu.edu.cn/index.php

/Software_Implementation_of_Block_Cipher_PRESENT_for_8-Bit_Platforms

4. E. Biham. ”New Types of Cryptanalytic Attacks Using Related Keys.” Journal of
Cryptology, vol. 7, no. 4, pp. 229-246, 1994.

5. E. Biham and A. Shamir. “Differential Cryptanalysis of the Data Encryption Stan-
dard.” Springer-Verlag, 1993.

18

ECRYPT Workshop on Lightweight Cryptography - November 2011 163

6. E. Biham, A. Biryukov and A. Shamir, “Cryptanalysis of skipjack reduced to 31
rounds using impossbile differentials.” Advances in Cryptology - EUROCRYPT ’99,
LNCS 1592, pp.12-23, 1999.

7. A. Biryukov and D. Wagner. “Slide Attacks.” FSE’99, LNCS 1636, pp.245-259.
8. A. Biryukov and I. Nikolic̀. “Automatic Search for Related-Key Differential Char-

acteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad,
and Others.” EUROCRYPT 2010.

9. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Rob-
shaw, Y. Seurin and C. Vikkelsoe, “PRESENT: An Ultra-Lightweight Block Ci-
pher”, CHES 2007, LNCS 4727, pp. 450-466, 2007.

10. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. “Small-Footprint Block Cipher Design -How
far can you go?” 3rd Conference on RFID Security, 2007.

11. A. Bogdanov, D. Khovratovich and C. Rechberger. “Biclique Cryptanalysis of the
Full AES.” cryptology eprint archive 2011/449.

12. J. W. Bos, D. A. Osvik, D. Stefan. “Fast Implementations of AES on Various
Platforms.” SPEED-CC – Software Performance Enhancement for Encryption and
Decryption and Cryptographic Compilers, 2009.

13. C. D. Canniere, O. Dunkelman and M. Knezevic. “KATAN and KTANTAN - A
Family of Small and Efficient Hardware-Oriented Block Ciphers.” CHES ’09, pp.
272-288, 2009.

14. D. Canright. “A Very Compact S-Box for AES.” Cryptographic Hardware and
Embedded Systems- CHES’05, LNCS 3659, pp. 441-455, 2005.

15. J. Chen, K. Jia, H. Yu, and X. Wang. “New Impossible Differential Attacks of
Reduced-Round Camellia-192 and Camellia-256.” ACISP 2011, LNCS 6812, pp.16-
33, 2011

16. J. Daemen, L. R. Knudsen, and V. Rijmen, “The Block Cipher SQUARE.” Fast
Software Encryption-FSE’97, LNCS 1267, pp.149-165, 1997.

17. T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel. “A Survey of
Lightweight Cryptography Implementations.” IEEE Design & Test of Computers
– Special Issue on Secure ICs for Secure Embedded Computing, 24(6):522-533,
November/December 2007.

18. J. Guo, T. Peyrin, A. Poschmann, M. J. B. Robshaw. “The LED Block Cipher.”,
CHES’10, LNCS 6225, pp. 326-341.

19. Z. Gong, S. Nikova and Y.-W. Law. “KLEIN: A New Family of Lightweight Block
Ciphers.” RFIDsec 2011.

20. M. Hamburg. “Accelerating AES with Vector Permute Instructions.” CHES 2009,
LNCS 5747, pp. 18-32.

21. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee, K.
Jeong, H. Kim, J. Kim and S. Chee, “HIGHT: A New Block Cipher Suitable for
Low-Resource Device.” CHES 2006, LNCS 4249, pp. 46-59, 2006.

22. M. Izadi, B. Sadeghiyan, S. S. Sadeghian, and H. A. Khanooki. “MIBS: A New
Lightweight Block Cipher.” CANS’09, LNCS 5888, pp. 334-348, 2009.

23. A. Juels and S. A. Weis. “Authenticating Pervasive Devices with Human Proto-
cols.” CRYPTO’05, LNCS 3126, pp. 293-198, 2005.

24. J. Kim, S. Hong, J. Sung, C. Lee, S. Lee, “Impossible Differential Cryptanalysis
for Block Cipher Structures.” INDOCRYPT 2003, LNCS 2904, pp.82-96, 2003.

25. L. R. Knudsen, G. Leander, A. Poschmann and M. J. B. Robshaw. “PRINTcipher:
A Block Cipher for IC-Printing.” CHES’10, LNCS 6225, pp. 16-32.

26. G. Leander, C. Paar, A. Poschmann, and K. Schramm. “New Lightweight DES
Variants.” Fast Software Encryption-FSE’07, LNCS 4593, pp. 196-210, 2007.

19

ECRYPT Workshop on Lightweight Cryptography - November 2011 164

27. C. H. Lim and T. Korkishko. “mCrypton - A Lightweight Block Cipher for Security
of Low-Cost RFID Tags and Sensors”. Information Security Applications-WISA’05,
LNCS 3786, pp. 243-258, 2005.

28. F. Mace, F.-X. Standaert, and J.-J. Quisquater. “Implementations of the Block
Cipher SEA for Constrained Applications.” Proceedings of the Third International
Conference on RFID Security, RFIDSec 2007, pp.103-114.

29. M. Matsui, “Linear cryptanalysis of the data encryption standard.” EURO-
CRYPT’93, LNCS 765, pp.386-397, Springer-Verlag, 1994.

30. K. Minematsu, T. Suzaki, and M. Shigeri. “On Maximum Differential Probability
of Generalized Feistel.” ACISP 2011, LNCS 6812, pp. 89-105, 2011.

31. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. “Pushing the Limits: A
Very Compact and a Threshold Implementation of AES.” Eurocrypt 2011, LNCS
6632, pp. 69-88.

32. O. Özen, K. Varici, C. Tezcan, Ç. Kocair. “Lightweight Block Ciphers Revisited:
Cryptanalysis of Reduced Round PRESENT and HIGHT.” ACISP 2009, LNCS
5594, pp. 90-107, 2009.

33. A. Poschmann. “Lightweight Cryptography - Cryptographic Engineering for a Per-
vasive World.” Cryptology ePrint Archive, Report 2009/516, 2009.

34. A. Poschmann, S. Ling, and H. Wang. “256 Bit Standardized Crypto for 650 GE
- GOST Revisited.” CHES’10, LNCS 6225, pp. 219-233.

35. S. Rinne, T. Eisenbarth, and C. Paar. ”Performance Analysis of Contemporary
Lightweight Block Ciphers on 8-bit Microcontrollers.” SPEED – Software Perfor-
mance Enhancement for Encryption and Decryption, 2007.

36. C. Rolfes, A. Poschmann, G. Leander, and C. Paar. “Ultra-Lightweight Imple-
mentations for Smart Devices - Security for 1000 Gate Equivalents.” Smart Card
Research and Advanced Application Conference (CARDIS 2008), LNCS 5189, pp.
89-103, 2008.

37. Akashi Satoh, Sumio Morioka, Kohji Takano and Seiji Munetoh, ”A Compact Rijn-
dael Hardware Architecture with S-Box Optimization.” ASIACRYPT2001, LNCS
Vol.2248, pp.239-254, Dec 2001.

38. T. Shirai, K. Shibutani, T. Akishita, S. Moriai and T. Iwata, “The 128-bit Blockci-
pher CLEFIA.” Fast Software Encryption-FSE’07, LNCS 4593, pp. 181-195, 2007.

39. K. Shibutani. “On the Diffusion of Generalized Feistel Structures Regarding Dif-
ferential and Linear Cryptanalysis.” SAC’10, LNCS 6544, pp. 211-228, 2011.

40. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai. “Pic-
colo: An Ultra-Lightweight Blockcipher.” CHES 2011, LNCS 6917, pp. 342-357,
2011.

41. T. Suzaki and K. Minematsu. “Improving the Generalized Feistel.” Fast Software
Encryption-FSE’10, LNCS 6147, pp.19-39, 2010.

42. Y. Tsunoo, E. Tsujihara, M. Shigeri, T. Saito, T. Suzaki, and H. Kubo. “Impossible
Differential Cryptanalysis of CLEFIA.” FSE 2008. LNCS 5086, pp.398-411, 2008.

43. W. Wu and L. Zhang. “LBlock: A Lightweight Block Cipher. ” 9th International
Conference on Applied Cryptography and Network Security, ACNS ’11, LNCS
6715, pp. 327-344.

44. Y. Zheng, T. Matsumoto, and H. Imai. “On the Construction of Block Ciphers
Provably Secure and Not Relying on Any Unproved Hypotheses.” Advances in
Cryptology - CRYPTO ’89, LNCS 435, pp. 461-480, 1989.

20

ECRYPT Workshop on Lightweight Cryptography - November 2011 165

A Key Schedule for 128-bit Key

Algorithm A.1: TWINE.KeySchedule-128(K(128), RK(32×36))

WK(128) ← K
WK0(16)∥WK1(16)∥ . . . ∥WK6(16)∥WK7(16) ←WK
RK1

0(4) ←WK2, RK1
1(4) ←WK3, RK1

2(4) ←WK12, RK1
3(4) ←WK15

RK1
4(4) ←WK17, RK1

5(4) ←WK18, RK1
6(4) ←WK28, RK1

7(4) ←WK31

RK1
(32) ← RK1

0∥RK1
1∥ . . . ∥RK1

6∥RK1
7

for i← 2 to 36

do

WK1 ←WK1 ⊕ S(WK0)
WK4 ←WK4 ⊕ S(WK16)
WK23 ←WK23 ⊕ S(WK30)
WK7 ←WK7 ⊕ 0∥CON i−1

H

WK19 ←WK19 ⊕ 0∥CON i−1
L

tmp0 ←WK0, tmp1 ←WK1, tmp2 ←WK2, tmp3 ←WK3

for j ← 0 to 6

do

{
WKj∗4 ←WKj∗4+4, WKj∗4+1 ←WKj∗4+5

WKj∗4+2 ←WKj∗4+6, WKj∗4+3 ←WKj∗4+7

WK28 ← tmp1, WK29 ← tmp2, WK30 ← tmp3, WK31 ← tmp0

RKi
0 ←WK2, RKi

1 ←WK3, RKi
2 ←WK12, RKi

3 ←WK15

RKi
4 ←WK17, RKi

5 ←WK18, RKi
6 ←WK28, RKi

7 ←WK31

RKi
(32) ← RKi

0(4)∥RKi
1(4)∥ . . . ∥RKi

6(4)∥RKi
7(4)

RK(32×36) ← RK1
(32)∥RK2

(32)∥ . . . ∥RK35
(32)∥RK36

(32)

B Test Vectors

Table 11. Test Vectors in the Hexadecimal Notation.

key length 80-bit 128-bit

key 00112233 44556677 8899 00112233 44556677 8899AABB CCDDEEFF

plaintext 01234567 89ABCDEF 01234567 89ABCDEF

ciphertext 7C1F0F80 B1DF9C28 979FF9B3 79B5A9B8

C 80-bit Key Schedule

Figure 5 depicts the key schedule for TWINE-80.

21

ECRYPT Workshop on Lightweight Cryptography - November 2011 166

16

S

S

i
RK

0

i
RK

1

i
RK

2

i
RK

3

i
RK

4

i
RK

5

i
RK

6

i
RK

7

i

H
CON0

i

L
CON0

16161616

4 4 4 4 4 4 4 4 4 4 4 4 4 8 4

1616161616

Fig. 5. 80-bit Key Schedule.

D Supplementary Information for Impossible Differential
Cryptanalysis

The following is the subkey relationships used for the impossible differential
cryptanalysis.

RK3
3 = RK1

5

RK3
5 = RK1

1

RK4
1 = RK1

6

RK21
0 = S[S[S[RK19

4]⊕ RK1
3]⊕ RK21

4]⊕ RK2
7

RK21
5 = S−1[S−1[RK21

1 ⊕ S[RK20
3]⊕ RK1

1]⊕ RK1
6]

RK22
0 = RK19

4

RK22
2 = S[RK20

6]⊕ S[RK2
7]⊕ RK2

2

RK22
4 = S[S[S[RK20

3]⊕ RK1
1]⊕ RK22

3]⊕ S[S[S[S[RK20
6]⊕ S[RK2

7]⊕ RK2
2]⊕ S−1[RK22

1

⊕ S−1[S−1[S−1[RK21
1 ⊕ S[RK20

3]⊕ RK1
1]⊕ RK1

6]⊕ S[RK21
4]⊕ RK1

5]]]⊕ RK21
7]⊕ RK2

4

RK22
5 = S−1[S−1[RK22

1 ⊕ S−1[S−1[S−1[RK21
1 ⊕ S[RK20

3]⊕ RK1
1]⊕ RK1

6]⊕ S[RK21
4]⊕ RK1

5]]

⊕ RK2
6]

RK22
6 = S[S[RK20

6]⊕ S[RK2
7]⊕ RK2

2]⊕ S−1[RK22
1 ⊕ S−1[S−1[S−1[RK21

1 ⊕ S[RK20
3]⊕ RK1

1]

⊕ RK1
6]⊕ S[RK21

4]⊕ RK1
5]]

RK23
0 = S[S[S[RK21

4]⊕ RK1
5]⊕ RK20

3]⊕ S−1[S[S[S[RK20
6]⊕ S[RK2

7]⊕ RK2
2]⊕ S−1[RK22

1

⊕ S−1[S−1[S−1[RK21
1 ⊕ S[RK20

3]⊕ RK1
1]⊕ RK1

6]⊕ S[RK21
4]⊕ RK1

5]]]⊕ RK21
7 ⊕ RK1

7]

RK23
1 = RK20

6

RK23
3 = S−1[S−1[RK21

1 ⊕ S[RK20
3]⊕ RK1

1]⊕ RK1
6]

RK23
4 = RK20

3

RK23
5 = RK21

1

RK23
6 = S[RK23

2]⊕ S[RK21
1]⊕ S−1[RK2

7 ⊕ RK1
0]

RK23
7 = S[S[RK21

7]⊕ S[RK22
1]⊕ S[RK1

7]⊕ RK1
2]⊕ RK19

4

22

ECRYPT Workshop on Lightweight Cryptography - November 2011 167

Table 12. Procedure of Round Key Determination.

Step target key method

1 RK1
0, RK1

5, RK1
6 diff-table

2 RK3
4, RK4

1 key rel.

Input of F 3
3 and output of F 2

4 are decided from diff-table.

Input of F 4
1 is decided from diff-table.

3 RK1
3 guess

4 RK2
4 IO value

5 RK1
7 guess Input of F 2

7 is decided.

6 RK2
7 diff-table

7 RK1
1 guess Input of F 2

2 is decided.

8 RK3
5 key rel. Output of F 2

6 is decided.

9 RK2
2 diff-table

10 RK1
2 guess

11 RK2
6 IO value

12 RK23
2 , RK23

4 , RK23
5 diff-table IO value of F 22

0 is decided.

13 RK20
3 , RK21

1 key rel. Input of F 20
3 is decided from diff-table.

14 RK21
5 , RK23

3 , RK23
6 key rel.

Input of F 22
2 is decided. IO value of F 22

0 is decided.

Input of F 21
5 is decided, then output of F 22

4 is decided.

15 RK22
2 diff-table

16 RK20
6 key rel.

17 RK23
1 key rel. IO value of F 22

3 is decided.

18 RK22
3 diff-table

19 RK22
0 IO value

20 RK19
4 key rel.

21 RK22
4 IO value

22 RK23
0 guess IO value of F 22

1 is decided.

23 RK22
1 diff-table

24 RK21
4 , RK21

7 key rel.

25 RK22
5 , RK22

6 , RK23
7 key rel.

23

ECRYPT Workshop on Lightweight Cryptography - November 2011 168

E Subkey Relationships used for Saturation Attack

The following is the subkey relationships used for the saturation attack.

RK21
4 = RK18

3

RK21
5 = RK19

1

RK21
6 = S[RK21

2] ⊕ RK18
2

RK22
2 = RK19

7

RK22
3 = RK20

5

RK22
4 = RK19

3

RK22
5 = RK20

1

RK22
6 = S−1[RK21

7 ⊕ RK20
0]

RK22
7 = S[S[RK20

7] ⊕ S−1[RK20
6 ⊕ RK17

2]] ⊕ RK21
0

F Related-key Truncated Differential and Its Active
S-box Numbers

Table 13 shows the number of active S-boxes using related-key differential, where
∆KS, ∆RK, ∆X and AS denote key state difference, subkey difference, data
difference, and the number of active S-boxes.

Table 13. Truncated Differential and Its Active S-box Numbers.

Round ∆KS ∆RK ∆X AS Round ∆KS ∆RK ∆X AS

1 4D010 A2 A255 0 12 60402 80 A0E2 22

2 D8108 E1 6931 6 13 0402C 05 A630 27

3 010C3 08 9896 8 14 C02C0 88 8D39 30

4 10C30 46 4462 9 15 02C01 10 5A2E 33

5 0C302 20 2288 10 16 2C010 22 62C3 35

6 C3020 94 9411 11 17 C0104 80 8191 38

7 30201 40 0968 14 18 01041 08 0824 38

8 02016 12 1306 15 19 10410 42 4202 39

9 20160 0C 4545 19 20 04102 00 0081 39

10 01604 00 108C 20 21 41020 84 8100 41

11 16040 58 D840 21 22 10208 41 4124 41

24

ECRYPT Workshop on Lightweight Cryptography - November 2011 169

SPONGENT: The Design Space of Lightweight Cryptographic
Hashing

Andrey Bogdanov1, Miroslav Knežević1,2, Gregor Leander3, Deniz Toz1, Kerem Varıcı1, and
Ingrid Verbauwhede1

1 Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Belgium
{andrey.bogdanov, deniz.toz, kerem.varici, ingrid.verbauwhede}@esat.kuleuven.be

2 NXP Semiconductors, Leuven, Belgium
miroslav.knezevic@nxp.com

3 DTU Mathematics, Technical University of Denmark
g.leander@mat.dtu.dk

Abstract. The design of secure yet efficiently implementable cryptographic algorithms is a funda-
mental problem of cryptography. Lately, lightweight cryptography – optimizing the algorithms to fit
the most constrained environments – has received a great deal of attention, the recent research being
mainly focused on building block ciphers. As opposed to that, the design of lightweight hash functions
is still far from being well-investigated with only few proposals in the public domain.
In this article, we aim to address this gap by exploring the design space of lightweight hash functions
based on the sponge construction instantiated with present-type permutations. The resulting family
of hash functions is called spongent. We propose 13 spongent variants – for different levels of collision
and (second) preimage resistance as well as for various implementation constraints. For each of them, on
various technologies, we provide several ASIC hardware implementations - ranging from the lowest area
to the highest throughput. We also prove essential differential properties of spongent permutations,
give a security analysis in terms of collision and preimage resistance, as well as study in detail dedicated
linear distinguishers.

1 Introduction

1.1 Motivation

As crucial applications go pervasive, the need for security in RFID and sensor networks is dra-
matically increasing, which requires secure yet efficiently implementable cryptographic primitives
including secret-key ciphers and hash functions. In such constrained environments, the area and
power consumption of a primitive usually comes to the fore and standard algorithms are often
prohibitively expensive to implement.

Once this research problem was identified, the cryptographic community designed a number
of tailored lightweight cryptographic algorithms to specifically address this challenge: stream ci-
phers like Trivium [18,16], Grain [23,24], and Mickey [3] as well as block ciphers like SEA [43],
DESL, DESXL [35], HIGHT [27], mCrypton [36], KATAN/KTANTAN [17], and present [10] —
to mention only a small selection of the lightweight designs.

Rather recently, some significant work on lightweight hash functions has been also performed:
[11] describes ways of using the present block cipher in hashing modes of operation and [1]
and [21] take the approach of designing a dedicated lightweight hash function based on a sponge
construction [15,7] resulting in two hash functions Quark and photon.

Among the most prominent security applications targeted by a lightweight hash function are
(including the ones requiring preimage security only and collision security only):

ECRYPT Workshop on Lightweight Cryptography - November 2011 170

– Lightweight signature schemes: ECC over F2163 is implementable with just 11.904 GE
without key storage after synthesis and around 15.000 GE on a chip [22]. For comparison,
the smallest published SHA-256 implementation [32] requires 8.588 GE and the reportedly
most compact SHA-3 finalists BLAKE and Grøstl need 13.560 GE [25] and 14.620 GE [44],
respectively, to our best knowledge. Hence, adding a hashing engine based on one of these
functions to a lightweight ECC implementation nearly doubles the footprint.

– RFID security protocols often rely on hash functions [2,40,46]. Some of the applications
require collision resistance and some of them do not, just needing preimage security. An in-
teresting case is constituted by keyed message authentication codes (MAC) often used in this
context. Here, a lightweight hash function can require less area than a lightweight block cipher
in a MAC mode at a fixed level of offline and online security. MACs can be also designed using
sponge primitives [8].

– Random number generation in hardware is used for ephemeral key generation in public-
key schemes, producing random input for cryptographic protocols, and for masking schemes in
implementations with protection against side-channel attacks. This frequently needs a preimage-
resistant hash function. Using a hash function for pseudorandom number generator (PRNG),
given a seed, provides backward security which a block cipher based PRNG (e.g. in OFB mode)
does not: Once the key is leaked e.g. through a side-channel attack, the adversary can compute
the previous outputs of the block cipher based PRNG. Moreover, the postprocessing of a physical
random number generator sometimes includes a preimage-resistant hash function.

– Post-quantum signature schemes can be built upon a hash function using Merkle trees [38],
[12]. There have been several attempts to efficiently implement it [42,41]. Having a lightweight
hash function allows to derive a more compact implementation of the Merkle signature scheme.

However, while for multiple block ciphers, designs have already closely approached the mini-
mum ASIC hardware footprint theoretically attainable, it does not seem the case for some recent
lightweight hash functions so far. This article proposes the family of sponge-based lightweight hash
functions spongent with a smaller footprint than most existing dedicated lightweight hash func-
tions: present in hashing modes and Quark. Its area is comparable to that of photon, though
sometimes being slightly more compact. However, a fair comparison in terms of area requirements
is a challenging task, since the area occupation is highly dependent on the implementation, tech-
nology and tools used. To address this challenge, we provide implementation figures for spongent
on four different technologies.

For some spongent variants, similarly to Quark and photon, a part of this advantage comes
from a reduced level of second preimage security, while maintaining the standard level collision re-
sistance. The other spongent variants attain the standard preimage, second preimage and collision
security, while having area requirements much lower than those of SHA-1, SHA-2, and SHA-3 final-
ists. This design subspace has not been specifically addressed by any previous concrete lightweight
hash function proposal. Whereas we note that the design ideas of present in hashing modes,
Quark and photon might be extended to any set of security parameters.

1.2 Design considerations for lightweight hashing

The footprint of a hash function is mainly determined by

1. the number of state bits (incl. the key schedule for block cipher based designs) as well as
2. the size of functional and control logic used in a round function.

ECRYPT Workshop on Lightweight Cryptography - November 2011 171

For highly serialized implementations (usually used to attain low area and power), the logic size
is normally rather small and the state size dominates the total area requirements of the design.
Among the recent hash functions, Quark, while using novel ideas of reducing the state size to
minimize (1), does not appear to provide the smallest possible logic size, which is mainly due to the
Boolean functions with many inputs used in its round transform. In contrast to that, spongent
keeps the round function very simple which reduces the logic size close to the smallest theoretically
possible, thus, minimizing (2) and resulting in a significantly more compact design.

As shown in [11], using a lightweight block cipher in a hashing mode (single block length such as
Davies-Meyer or double block length such as Hirose) is not necessarily an optimal choice for reducing
the footprint, the major restriction being the doubling of the datapath storage requirement due to
the feed-forward operation.

At the same time, no feed-forward is necessary for the sponge construction, which is the design
approach of choice in this work. In a permutation-based sponge construction, let r be the rate (the
number of bits input or output per one permutation call), c be the capacity (internal state bits not
used for input or output), and n be the hash length in bits.

To explore the design space of lightweight hashing, we propose to instantiate the sponge con-
struction with a present-type permutation. The resulting construction is called spongent and we
refer to its various parameterizations as spongent-n/c/r for different hash sizes n, capacities c, and
rates r. spongent is a hermetic sponge, i.e., we do not allow the underlying permutation to have any
structural distinguishers. More precisely, for five different hash sizes of n ∈ {88, 128, 160, 224, 256},
covering most security applications in the field, we consider (up to) three types of preimage and
second-preimage security levels:

– Full preimage and second-preimage security. The standard security requirements for
a hash function with an n-bit output size are collision resistance of 2n/2 as well as preim-
age and second-preimage resistance of 2n. For this, in spongent, we set r = n and c = 2n
to obtain spongent-88/176/88, spongent-128/256/128, spongent-160/320/160, spongent-
224/448/224, and spongent-256/512/256.

– Reduced second-preimage security. The design of [1] as well as the works [7,8,15] convinc-
ingly demonstrate that a permutation-based sponge construction can allow to almost halve the
state size for n ≥ c and reasonably small r. In this case, the preimage and second-preimage
resistances are reduced to 2n−r and 2c/2, correspondingly, while the collision resistance remains
at the level of 2c/2. In most embedded scenarios, where a lightweight hash function is likely to be
used, the full second-preimage security is not a necessary requirement. For relatively small rate
r, the loss of preimage security is limited. So we take this parametrization in the design of the
smallest spongent variants with n ≈ c for small r and obtain spongent-88/80/8, spongent-
128/128/8, spongent-160/160/16, spongent-224/224/16, and spongent-256/256/16. These
five spongent-variants were published in a shortened conference version [9] of this article.

– Reduced preimage and second-preimage security. In some applications, the collision
security is of concern only and one can abandon the requirement of preimage security to be close
to 2n. In a permutation-based sponge, going for c = n and r = n/2, results in the reduction
of both the preimage security and second-preimage security to 2n/2, while maintaining the full
collision security of 2n/2. On the implementation side, this parametrization can yield a favorable
ratio between the rate and the permutation size which reduces the time-area product. We use
this approach in the design of spongent-160/160/80, spongent-224/224/112, and spongent-
256/256/128.

ECRYPT Workshop on Lightweight Cryptography - November 2011 172

The group of all spongent variants with the same output size of n bits is referred to as spongent-
n. The spongent-88 functions are designed for extremely restricted scenarios and low preimage
security requirements. They can be used e.g. in some RFID protocols and for PRNGs. spongent-
128 and spongent-160 might be used in highly constrained applications with low and middle
requirements for collision security. The latter also provides compatibility to the SHA-1 interfaces.
The parameters of spongent-224 and spongent-256 correspond to those of a subset of SHA-2
and SHA-3 to make spongent compatible to the standard interfaces in usual lightweight embedded
scenarios.

1.3 Organization of the article

The remainder of the article is organized as follows. Section 2 describes the design of spongent
and gives a design rationale. Section 3 presents some results of security analysis, including proven
lower bounds on the number of differentially active S-boxes, best differential characteristics found,
rebound attacks, and linear attacks. In Section 4, the implementation results are given for a range
of trade-offs. We conclude in Section 5.

2 The design of spongent

spongent is a sponge construction based on a wide present-type permutation. Given a finite
number of input bits, it produces an n-bit hash value. A design goal for spongent is to follow the
hermetic sponge strategy (no structural distinguishers for the underlying permutation are allowed).

2.1 Permutation-based sponge construction

squeezing

b

h 3

π b

h 2

π b

h 1

π b

m4

π b

m3

π b

m1 m2

c

r

0

0

absorbing

π

Fig. 1. Sponge construction based on a b-bit permutation πb with capacity c bits and rate r bits.
mi are r-bit message blocks. hi are parts of the hash value.

spongent relies on a sponge construction – a simple iterated design that takes a variable-length
input and can produce an output of an arbitrary length based on a permutation πb operating on a
state of a fixed number b of bits. The size of the internal state b = r + c ≥ n is called width, where
r is the rate and c the capacity.

The sponge construction proceeds in three phases (see also Figure 1):

– Initialization phase: the message is padded by a single bit 1 followed by a necessary number
of 0 bits up to a multiple of r bits (e.g., if r = 8, then the 1-bit message ‘0’ is transformed to
‘01000000’). Then it is cut into blocks of r bits.

ECRYPT Workshop on Lightweight Cryptography - November 2011 173

– Absorbing phase: the r-bit input message blocks are xored into the first r bits of the state,
interleaved with applications of the permutation πb.

– Squeezing phase: the first r bits of the state are returned as output, interleaved with appli-
cations of the permutation πb, until n bits are returned.

In spongent, the b-bit 0 is taken as the initial value before the absorbing phase. In all spongent
variants, except spongent-88/80/8, the hash size n equals either capacity c or 2c. The message
chunks are xored into the r rightmost bit positions of the state. The same r bit positions form parts
of the hash output.

Let a permutation-based sponge construction have n ≥ c and c/2 > r which is fulfilled for the
parameter choices of most of the spongent variants. Then the works [7,8,15] imply the preimage
security of 2n−r as well as the second preimage and collision securities of 2c/2 if this construction
is hermetic (that is, if the underlying permutation does not have any structural distinguishers).
The best preimage attack we are aware of in this case has a computational complexity of 2n−r +
2c/2. Later, this work is extended in [21] and preimage security is defined more generalized form:
min(2min(n, c+r),max(2min(n−r, c), 2c/2)).

For permutation-based sponge constructions with n < c and c/2 ≤ r such as the remaining
spongent variants, it follows from the same works that the second preimage security is 2n and
collision security is 2c/2. The previous preimage attack also works for this case hence we claim that
the preimage security is min(2n,max(2n−r, 2c/2)) since n− r < c.

2.2 Parameters

We propose 13 variants of spongent with five different hash output lengths at multiple security
levels, see Table 1.

Table 1. 13 spongent variants

n b c r R number security(bit)
(bit) (bit) (bit) (bit) of rounds pre. 2nd pre. col.

spongent-88/80/8 88 88 80 8 45 80 40 40
spongent-88/176/88 88 264 176 88 135 88 88 44

spongent-128/128/8 128 136 128 8 70 120 64 64
spongent-128/256/128 128 384 256 128 195 128 128 64

spongent-160/160/16 160 176 160 16 90 144 80 80
spongent-160/160/80 160 240 160 80 120 80 80 80
spongent-160/320/160 160 480 320 160 240 160 160 80

spongent-224/224/16 224 240 224 16 120 208 112 112
spongent-224/224/112 224 336 224 112 170 112 112 112
spongent-224/448/224 224 672 448 224 340 224 224 112

spongent-256/256/16 256 272 256 16 140 240 128 128
spongent-256/256/128 256 384 256 128 195 128 128 128
spongent-256/512/256 256 768 512 256 385 256 256 128

ECRYPT Workshop on Lightweight Cryptography - November 2011 174

2.3 present-type permutation

The permutation πb : Fb2 → Fb2 is an R-round transform of the input state of b bits that can be
outlined at a top-level as:

for i = 1 to R do
state← lCounter b(i)⊕ state⊕ lCounterb(i)
state← sBoxLayerb(state)
state← pLayerb(state)

end for

where sBoxLayerb and pLayerb describe how the state evolves. For ease of design, only widths
b with 4|b are allowed. The number R of rounds depends on block size b and can be found in
Subsection 2.2 (see also Table 1). lCounterb(i) is the state of an LFSR dependent on b at time i
which yields the round constant in round i and is added to the rightmost bits of state. lCounter b(i)
is the value of lCounterb(i) with its bits in reversed order and is added to the leftmost bits of state.

The following building blocks are generalizations of the present structure to larger b-bit widths:

1. sBoxLayerb: This denotes the use of a 4-bit to 4-bit S-box S : F4
2 → F4

2 which is applied b/4
times in parallel. The action of the S-box in hexadecimal notation is given by the following
table:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] E D B 0 2 1 4 F 7 A 8 5 9 C 3 6

2. pLayerb: This is an extension of the (inverse) present bit-permutation and moves bit j of
state to bit position Pb(j), where

Pb(j) =

{
j · b/4 mod b− 1, if j ∈ {0, . . . , b− 2}
b− 1, if j = b− 1.

and can be seen in Figure 2.

Fig. 2. The bit permutation layer of spongent-88 at the example of pLayer88

3. lCounterb: This is one of the four dlog2Re-bit LFSRs. The LFSR is clocked once every time its
state has been used and its final value is all ones. If ζ is the root of unity in the corresponding
binary finite field, the n-bit LFRSs defined by the polynomials given below are used for the
spongent variants.

ECRYPT Workshop on Lightweight Cryptography - November 2011 175

LFSR size (bit) Primitive Polynomial

6 ζ6 + ζ5 + 1
7 ζ7 + ζ + 1
8 ζ8 + ζ4 + ζ3 + ζ2 + 1
9 ζ9 + ζ4 + 1

Table 2 provides sizes and initial values of all the LFSRs.

Table 2. Initial values of lCounterb for all spongent variants

LFSR size (bit) Initial Value (hex)

spongent-88/80/8 6 05
spongent-88/176/88 8 D2

spongent-128/128/8 7 7A
spongent-128/256/128 8 FB

spongent-160/160/16 7 45
spongent-160/160/80 7 01
spongent-160/320/160 8 A7

spongent-224/224/16 7 01
spongent-224/224/112 8 52
spongent-224/448/224 9 105

spongent-256/256/16 8 9E
spongent-256/256/128 8 FB
spongent-256/512/256 9 015

2.4 Design rationale

The overall design approach for spongent is to target low area while favoring simplicity.
The 4-bit S-box is the major block of functional logic in a serial low-area implementation of

spongent. It fulfills the present design criteria in terms of differential and linear properties [10].
Moreover, any linear approximation over the S-box involving only single bits both in the input and
output masks is unbiased. This aims to restrict the linear hull effect discovered in round-reduced
present.

The function of the bit permutation pLayer is to provide good diffusion, by acting together with
the S-box, while having a limited impact on the area requirements. This is its main design goal,
while a bit permutation may occupy additional space in silicon. The counters lCounter and lCounter
are mainly aimed to prevent sliding properties and make prospective cryptanalysis approaches using
properties like invariant subspaces [34] more involving.

The structures of the bit permutation and the S-box in spongent make it possible to prove
the following differential property (see Subsection 3.1 for the proof):

Theorem 1. Any 5-round differential characteristic of the underlying permutation of spongent
with b ≥ 64 has a minimum of 10 active S-boxes. Moreover, any 6-round differential characteristic
of the underlying permutation of spongent with b ≥ 256 has a minimum of 14 active S-boxes.

ECRYPT Workshop on Lightweight Cryptography - November 2011 176

The concept of counting active S-boxes is central to the differential cryptanalysis. The minimum
number of active S-boxes relates to the maximum differential characteristic probability of the
construction. Since in the hash setting there are no random and independent key values added
between the rounds, this relation is not exact (in fact that it is even not exact for most practical
keyed block ciphers). However, differentially active S-boxes are still the major technique used to
evaluate the security of SPN-based hash functions.

An important property of the spongent S-box is that its maximum differential probability
is 2−2. This fact and the assumption of the independency of difference propagation in different
rounds yield an upper bound on the differential characteristic probability of 2−20 over 5 rounds and
of 2−28 over 6 rounds for b ≥ 256 which follows from the claims of Theorem 1.

Theorem 1 is used to determine the number R of rounds in permutation πb: R is chosen in a
way that πb provides at least b active S-boxes. Other types of analysis are performed in the next
section.

3 Security Analysis

In this section, we discuss the security of spongent against known cryptanalytic attacks by apply-
ing the most important state-of-the-art methods of cryptanalysis and investigating their complexity.

Table 3. Differential characteristics with lowest numbers of differentially active S-boxes (ASN).
The probabilities are calculated assuming the independency of round computations.

of spongent-88/80/8 spongent-128/128/8 spongent-160/160/16 spongent-224/224/16 spongent-256/256/16
rounds ASN Prob ASN Prob ASN Prob ASN Prob ASN Prob

5 10 2−21 10 2−22 10 2−21 10 2−21 10 2−20

10 20 2−47 29 2−68 20 2−50 20 2−43 - −
15 30 2−74 - - 30 2−79 30 2−66 - −

of spongent-160/160/80 # of spongent-224/224/112 spongent-256/256/128
rounds ASN Prob rounds ASN Prob ASN Prob

5 10 2−21 6 14 2−28 14 2−28

10 20 2−43

15 30 2−66

of spongent-88/176/88 spongent-128/256/128 spongent-160/320/160 spongent-224/448/224 spongent-256/512/256
rounds ASN Prob ASN Prob ASN Prob ASN Prob ASN Prob

6 14 2−28 14 2−28 14 2−28 14 2−28 14 2−28

3.1 Resistance against differential cryptanalysis

Here we analyze the resistance of spongent against differential attacks where Theorem 1 plays a
key role providing a lower bound on the number of active S-boxes in a differential characteristic. The
similarities of the spongent permutations and the basic present cipher allow to reuse some of
the results obtained for present in [10]. More precisely, the results on the number of differentially
active S-boxes over 5 and 6 rounds will hold for all respective spongent variants which is reflected
in Theorem 1. The proof of the Theorem 1 is as follows:

ECRYPT Workshop on Lightweight Cryptography - November 2011 177

Proof. [Theorem 1] The statements for spongent variants with 64 ≤ b ≤ 255 can directly be proven
by applying the same technique used in [10, Appendix III]. The proof of the 6-round bounds for
spongent variants with b ≥ 256 in Theorem 1 is based on some extended observations. Here, we
will only give the proof for when the width, b, is a multiple of 64 bits, i.e., b = 64n. The proof for
other b values can also be obtained by making use of the observations given below. Since the proof
is specific to each b and hence more tedious, we do not present them here.

We obtain n groups and 4n subgroups by calling each four consecutive S-boxes as a subgroup
and each sixteen consecutive S-boxes as a group. To be more specific: subgroup i is comprised of
the S-boxes [4(i − 1) . . . 4i − 1] and similarly group j has the subgroups [4(j − 1) . . . 4j − 1]. (see
Figure 3). By examining the substitution and linear layers, one can make the following observations:

1. The S-box of spongent is such that a difference in single input bit causes a difference in at
least two output bits or vice versa.

2. The input bits to an S-box come from four distinct S-boxes of the same subgroup.

3. The input bits to a subgroup of four S-boxes come from 16 distinct S-boxes of the same group.

4. The input bits to a group of 16 S-boxes come from 64 different S-boxes.

5. The four output bits from a particular S-box enter four distinct S-boxes, each of which belongs
to a distinct group of S-boxes in the subsequent round.

6. The output bits of S-boxes in distinct groups go to distinct S-boxes in distinct subgroups.

7. The output bits of S-boxes in distinct subgroups go to distinct S-boxes.

For the latter statement (spongent-256), one has to deal with more cases. Consider six con-
secutive rounds of spongent ranging from i to i + 5 for i ∈ [1 . . . 155]. Let Dj be the number of
active S-boxes in round j. If Dj ≥ 3, for i ≤ j ≤ i + 5, then the theorem trivially holds. So let us
suppose that one of Dj is equal to one first and to two then. We have the following cases:

Case Di+2 = 1. By using observation 1, we can deduce that Di+1 + Di+3 ≥ 3 and all active
S-boxes of round i + 1 belong to the same subgroup from observation 2. Each of these active S-
boxes have only a single bit difference in their output. So, according to observation 3 we have that
Di ≥ 2Di+1. Conversely, according to observation 5, all active S-boxes in round i + 3 belong to
distinct groups and have only a single bit difference in their input. So, according to observation 6,
we have that Di+4 ≥ 2Di+3. Moreover, all active S-boxes in round i+4 belong to distinct subgroups
and have only a single bit difference in their input. Thus, by using observation 7, we obtain that
Di+5 ≥ 2Di+4 and can conclude that

∑i+5
j=iDj ≥ 1 + 3 + 2× 3 + 4Di+3 ≥ 14.

Case Di+3 = 1 If Di+2 = 1 we can refer to the first case. So, suppose that Di+2 ≥ 2. According
to the observation 2, all active S-boxes of round i + 2 belong to the same subgroup and each of
these active S-boxes has only a single bit difference in their output. Thus, according to observation
3, Di+1 ≥ 2Di+2 ≥ 4. Since all active S-boxes in round i+ 1 belong to distinct S-boxes of the same
group and have only a single bit difference in their input, according to observation 4, we have that
Di ≥ 2Di+1. On the opposite, Di+4 and Di+5 can get one and two as a minimum value, respectively.
Together this gives

∑i+5
j=iDj ≥ 8 + 4 + 2 + 1 + 1 + 2 ≥ 18.

Case Di+1 = 1 If Di+2 = 1, then we can refer to the first case. Thus, suppose that Di+2 ≥ 2.
According to observation 5, all active S-boxes in round i+2 belong to distinct groups and have only
a single bit difference in their input. Thus, according to observation 6, we have that Di+3 ≥ 2Di+2.
Since all active S-boxes in round i + 3 belong to distinct subgroups and have only a single bit

ECRYPT Workshop on Lightweight Cryptography - November 2011 178

Subgroup 1

..15 2 1 0 3

 4203652

...31 16

 0 1 2 360616263

 7233955 3193551

...
15314763 12284460

...
8244056

60616263 60616263 0 1 2 3 0 1 2 3 0 1 2 3

11274359 03248 16 03248 16 03248 16 03248 16

60616263 4 5 6 7 8 9101112131415

63 324748

Group 4 Group 3 Group 2 Group 1

.

Fig. 3. The grouping and subgrouping of S-boxes for b = 256. The input numbers indicate the S-box
origin from the previous round and the output numbers indicate the destination S-box in the following
round.

difference in their input. Therefore, according to observation 7, we have that Di+4 ≥ 2Di+3. To
sum up,

∑i+5
j=iDj ≥ 1+1+2+4+8+Di+5 ≥ 16+Di+5 ≥ 17, since Di+4 > 0 implies that Di+5 ≥ 1.

Case Di+4 = 1 If Di+3 = 1, then we can refer to the second case. So, suppose that Di+3 ≥ 2.
According to the observation 2, all active S-boxes of round i+ 3 belong to the same subgroup and
each of those active S-boxes has only a single bit difference in their output. Therefore, according
to observation 3, we have that Di+2 ≥ Di+3. Since, all active S-boxes in round i + 2 belong to
distinct S-boxes of the same group and have only a single bit difference in their input, according
to observation 4, we have that Di+1 ≥ 2Di+2. Since Di+1 > 0, Di ≥ 1. Thus, we can conclude that∑i+5

j=iDj ≥ Di + 8 + 4 + 2 + 1 + 1 ≥ Di + 16 ≥ 17.
Cases Di = 1 and Di+5 = 1 are similar to the those for the third and fourth cases.

So far we have considered all paths including one active S-box in one of the rounds and obtained 14
as the minimum number of active S-boxes. But if there exists a path that has two active S-boxes in
each round, then the lower bound would be 12. For this purpose, without loss of generality, assume:

Di+1 = Di+2 = Di+3 = 2 The two active S-boxes in i+ 2 are either in the same subgroup
or in different subgroups. For the former, from observations 3 and 7, we know that they have
single bit of differences coming from two different subgroups of the same group in round i + 1.
From observation 1, these two S-boxes have at least two bits of input difference, hence we obtain
Di = 4 by observation 2 and 3. Furthermore the two S-boxes in round i + 2 have two bits of
output difference by observation 1. Hence, in round i+ 3, the active S-boxes have two bits of input
and they are in distinct groups by observation 5. Therefore, it is possible to have Di+4 = 2 in
distinct subgroups. Hence by using observation 7, we obtain Di+5 = 4. Thus, we can conclude that∑i+5

j=iDj ≥ 4 + 2 + 2 + 2 + 2 + 4 ≥ 16.

For the latter, the two active S-boxes in round i+1 must have two bits of input and by observation
2 their input bits should be coming from distinct S-boxes in the same subgroup. So, the problem
is reduced to the former case with one round of shift, and we can immediately say that Di = 2
and Di+4 = 4. Hence by using observation 7, we obtain Di+5 = 4. Thus, we can conclude that∑i+5

j=iDj ≥ 2 + 2 + 2 + 2 + 4 + 4 ≥ 16.

Based on these results, we conclude that the longest run with two active S-boxes in each round is
four rounds, and the number of active S-boxes cannot be less than 14.

For all spongent variants, we found that those 5- and 6-round bounds are actually tight. We
present the characteristics attaining them in Table 3. Additionally, we identified iterative charac-

ECRYPT Workshop on Lightweight Cryptography - November 2011 179

teristics with up to three active S-boxes in each round. For spongent-88/80/8 the probability of
the 2-round iterative characteristic is 2−14. Whereas, for spongent-160/160/80 and spongent-
224/224/16 (since they have the same state size) the probability for two rounds is 2−9.

3.2 Collision attacks

A natural approach to obtain a collision for a sponge construction is to inject a difference in
a message block and then cancel the propagated difference by a difference in the next message
block, i.e., (0 . . . 0||∆mi)

π→ (0 . . . 0||∆mi+1). For this purpose, we follow a narrow trail strategy
using truncated differential characteristics. We start from a given input difference (some difference
restricted to S-boxes that the message block is xored into) and look for all paths that go to a fixed
output difference (also located in the bitrate part of the state). Based on our experiments, even by
using truncated differential characteristics, the probability of such a path is quite low and it is not
possible to attack the full number of rounds.

Rebound attack: The rebound attack [37], a recent technique for cryptanalysis of hash functions,
is applicable to both block cipher based and permutation based hash constructions. It consists of
two main steps: the inbound phase where the freedom is used to connect the middle rounds by
using the match-in-the-middle technique and the outbound phase where the connected truncated
differentials are calculated in both forward and backward directions. It has been mostly used to
improve the results on AES-based algorithms (ECHO [6], Grøstl [20], LANE [28], Whirlpool [5]),
but it has also been successfully applied to similar permutations (Luffa [30], Keccak [19]).

Compared to the other algorithms the rebound attack has been successfully applied to, the
design of spongent imposes some limitations. First of all, since the permutation is bit oriented,
and not byte oriented, it might be non-trivial to find the path followed by a given input difference
and to determine the number of active S-boxes after several rounds. This is mainly because the
difference propagation strictly depends on the values of the passive part of the state. Moreover, the
probability that two inbound phases match requires more detailed analysis.

For spongent-88/80/8, we tried to implement the rebound attack. We found that for up to
4 rounds it is impossible to obtain a characteristic that matches in the middle with the available
degrees of freedom coming from the message bits. Starting from 5 rounds such a characteristic is
possible, but we cannot generate enough pairs by using only a difference in the message bits when
the whole state is active in the matching phase. Since the expected probability of matching the
inbound phases is 2−b/4 (where b/4 is the number of S-boxes) and the available degree of freedom is
only 22r, this argument is also valid for spongent-128/128/8, spongent-160/160/16, spongent-
224/224/16, and spongent-256/256/16. For other spongent variants there exist enough degrees
of freedom but we are not aware of any dedicated attack.

Bound considerations for the rebound attack: The adversary might try to find a way to
attack by using multiple inbounds with a sparse differential. Therefore, to explore the security
against multiple inbound phases, we put the adversary into a best-case scenario as follows.

We know that there exists no differential characteristic over five rounds with the number of
active S-boxes less than 10 for all spongent variants. We can also deduce lower bounds on the
number of active S-boxes for 1, 2, 3, and 4 rounds as 1, 2, 4 and 6, respectively. Then a bound on

ECRYPT Workshop on Lightweight Cryptography - November 2011 180

the minimum number of active S-boxes, hence the probability of a differential characteristic, for
any number of rounds can be approximated by combining these bounds.4

The desired bit security level for a sponge construction with respect to collision attacks is c/2.
From now on we assume that the complexity of each inbound phase is equal to c/2 and at least one
active S-box matches between two inbound phases (with probability 2−8). Let nin be the number
of inbound phases then we have to generate nelm = 28·(nin−1)/nin elements for each inbound phase.
Let p denote the probability of each inbound phase, then p can be at least 2−(c/2−dlog2(nelm)e) and
we can compute the number of rounds in each inbound phase by using the given bounds above.

Under these assumptions, the maximum number of rounds per inbound phase and the percentage
of the total number of rounds attacked is given in Table 4.

Table 4. Bounds for rebound attack

2 Inbounds 3 Inbounds
rounds attacked rounds attacked

/inbound rounds(%) /inbound rounds(%)

spongent-88/80/8 9 40.00 9 60.00
spongent-88/176/88 10 14.81 9 20.00

spongent-128/128/8 15 42.86 14 60.00
spongent-128/256/128 14 14.36 13 20.00

spongent-160/160/16 19 42.22 19 63.33
spongent-160/160/80 19 31.67 19 47.50
spongent-160/320/160 17 14.17 16 20.00

spongent-224/224/16 28 46.67 27 67.50
spongent-224/224/112 23 27.06 23 40.59
spongent-224/448/224 23 13.53 23 20.29

spongent-256/256/16 28 40.00 27 57.86
spongent-256/256/128 28 28.72 27 41.54
spongent-256/512/256 28 14.55 27 21.04

3.3 Preimage resistance

Here we apply a meet-in-the-middle approach to obtain preimages on spongent. The attack has
two main steps: Pre-computation and matching phase. Complexity of the attack is dominated by
pre-computation phase.

Since the hash size is n bits, and the data is extracted in r bit chunks, there exists n/r rounds
in the squeezing phase. To be able to compute the data backwards in the absorbing phase, we need
to know not only hi’s but also di values to obtain the input value of the permutation π, where
hi denotes the part of the hash value and di is the concatenated part to hi. The algorithm is as
follows:

1. Pre-computation: We know that π−1(hi+1, di+1) = (hi, di) for each i in the squeezing phase.
Since hi (r-bits) is already fixed, the probability of finding such di is 2−r. Therefore, we start
with 2((n/r)−1)·r = 2n−r different dn/r values to have a solution for d1.

4 Note that, Table 3 shows that these bounds might be optimistic.

ECRYPT Workshop on Lightweight Cryptography - November 2011 181

2. Match-in-the-middle: Choose k such that k · r ≥ c/2. Then
– Generate 2c/2 elements in the backward direction by using (h1, d1) and possible values for
mk+2, . . . ,m2k+1 and store them in a table.

– Generate 2c/2 elements in the forward direction by using possible values for m1, . . . ,mk and
compare with list in the previous step to find a match of c bits (corresponding to capacity)
in the middle.

– Obtain mk+1 by xor-ing the r bits (corresponding to bitrate) for the matching elements.

In the pre-computation part, we obtain the required value d1 to compute the data backwards in
the absorbing phase by 2n−r computations. We need 2c/2 memory to store the elements generated
in the second step and 2c/2 computations are needed to find a full match. These results are exactly
those obtained in (”Errata for Keccak presentation”) and mentioned in (extended Photon paper)
which extends the bounds given in [15] for c > n. The results, together with the parameter k, are
given in Table 5.

Table 5. Meet-in-the-middle attack results for spongent

Time Complexity Memory Complexity

k max(2n−r, 2c/2) (2c/2)

spongent-88/80/8 5 280 240

spongent-88/176/88 1 288 288

spongent-128/128/8 8 2120 264

spongent-128/256/128 1 2128 2128

spongent-160/160/16 5 2144 280

spongent-160/160/80 1 280 280

spongent-160/320/160 1 2160 2160

spongent-224/224/16 7 2208 2112

spongent-224/224/112 1 2112 2112

spongent-224/448/224 1 2224 2224

spongent-256/256/16 8 2240 2128

spongent-256/256/128 1 2128 2128

spongent-256/512/256 1 2256 2256

Note that, if c ≤ n − r, it is sufficient to try all possible 2c values to construct the whole
state in order to obtain a preimage, hence it provides an upper bound for the preimage resis-
tance. If we combine the results we obtain max(2min(n−r,c), 2c/2) and it can be generalized into the
form: min(2min(n, c+r),max(2min(n−r, c), 2c/2)). Here, 2min(n, c+r) computations will be necessary
depending on the permutation size when the generic attack, defined above, fails.

3.4 Linear attacks

The most successful attacks, the attacks that can break the highest number of rounds, for the block
cipher present are those based on linear approximations. In particular the multi-dimensional linear
attack [13] and the statistical saturation attack [14] claim to break up to 26 rounds. It was shown in
[33] that both attacks are closely related. Moreover, the main reason why these attacks are the most
successful attacks on present so far, is the existence of many linear trails with only one active S-box

ECRYPT Workshop on Lightweight Cryptography - November 2011 182

dd dd

hn/r

. . .

m1 m2 mk

π

mk+2mk+1

πππππ π πππ

0

0

Match−in−the−Middle

.

Pre−computation

.

1 2 3 n/r

mk+3 m2k+1 h1 h2 h3

Fig. 4. Meet-in-the-middle attack against sponge construction

in each round. It is not immediately clear how linear distinguishers on the spongent permutation
πb could be transferred into collision or (second) pre-image attacks on the hash function. However,
as we claim that spongent is a hermetic sponge construction, the existence of such distinguishers
has to be excluded. So the spongent S-box was chosen in a way that allows for at most one trail
with this property given a linear approximation.

Unlike for the block cipher present, where the key determines the actual linear correlation
between an input and an output mask, for the permutation πb we can compute the actual linear
trail contribution for all trails with only one active S-box in every round. Each such trail over w
rounds has a correlation of ±2−2w and for each trail determining the sign is easy. More concretely,
one can easily compute a b× b matrix Mt over the rationals such that the entry at position i, j is
the correlation coefficient for round t for the linear trail with input mask ei and output mask ej .
Here ei (resp. ej) is the unit vector with a single 1 at position i (resp. j). Note that the matrices Mt

are sparse and all very similar, the only difference is caused by the round constant, which induces
sign changes at a few positions only.

Given those matrices, it is now possible to compute the maximal linear correlation contribution
for those one bit intermediate masks for all one bit input and output masks. For w rounds we

simply compute M (w) =
∏w
i=1Mi and the maximal correlation is given by cw := maxi,j |M (w)

ij |. We
compute this value for all spongent variants. Table 6 summarizes those results. Most importantly,
this table shows the maximal number of rounds w where the trail contributions is still larger than
or equal to 2−b/2. Beyond this number of rounds, it seems unlikely that distinguishers based on
linear approximations exist. For most spongent variants, the best linear hull based on single-bit
masks has exactly one linear trail.

4 Hardware Implementations

In this section we provide a wide range of hardware figures by evaluating all of the 13 spongent
variants in detail. Not only a comprehensive hardware evaluation is of our primary interest, we also
further elaborate on the importance of having the unified benchmarking platform for comparing
different lightweight designs. To further stress on the latter issue, we provide the results using four
different CMOS technologies. For a thorough evaluation of area, throughput, maximum frequency,
and power consumption, we use the UMC 130 nm CMOS generic process (UMC130) provided
by the Faraday corporation5. Moreover, we provide the estimates of the circuit area using three

5 The choice of the UMC130 library for our hardware implementation is driven by the size of a single scan flip-flop.
One scan flip-flop in our UMC180 is 6.67 GE large, while in UMC130 it consists of 6.25 GE. In [21], for example,
a scan flip-flop of only 6 GE has been reported.

ECRYPT Workshop on Lightweight Cryptography - November 2011 183

Table 6. Results of linear trail correlation based on one bit masks

b max w with R log2 cR
cw ≥ 2−b/2

spongent-88/80/8 88 22 45 −90
spongent-88/176/88 264 66 135 −270

spongent-128/128/8 136 34 70 −140
spongent-128/256/128 384 96 195 −388.4

spongent-160/160/16 176 44 90 −180
spongent-160/160/80 240 60 120 −240
spongent-160/320/160 480 122 240 −473.7

spongent-224/224/16 240 60 120 −240
spongent-224/224/112 336 84 170 −340
spongent-224/448/224 673 169 340 −675.3

spongent-256/256/16 272 68 140 −280
spongent-256/256/128 384 96 195 −388.4
spongent-256/512/256 768 192 385 −770

other libraries: UMC 180 nm CMOS generic process (UMC180), an open source NANGATE 45 nm
CMOS technology (NANGATE45) [39] as well as the advanced 90 nm CMOS standard cell library
provided by NXP Semiconductors (NXP90).

In order to provide very compact implementations, we first focus on serialized designs. We ex-
plore different datapath sizes (d) for each of the spongent variants and we focus on d ∈ {4, 8, b2 , b}.
An architecture representing our serialized datapath is depicted in Fig. 5(a). The control logic con-
sists of a single counter for the cycle count and some extra combinational logic to drive the select
signals of the multiplexers. In order to further reduce the area we use so-called scan flip-flops, which
act as a combination of two input multiplexer and an ordinary D flip-flop6. Instead of providing
a reset signal to each flip-flop separately, we use two zero inputs at the multiplexers M1 and M2

to correctly initialize all the flip-flops. This additionally reduces hardware resources, as the scan
flip-flops with a reset input approximately require an additional GE per bit of storage. With gi we
denote the value of lCounterb(i) in round i. lCounterb(i) is implemented as an LFSR as explained
in Subsection 2.3. The input of the message block m, denoted with dashed line, is omitted in some
cases, i.e. d ≥ r. The pLayer module requires no additional logic except some extra wiring.

Using the most serialized implementation, the smallest variant of the spongent family, spongent-
88/80/8, can be implemented using only 738 GE. Even the largest member of the family, spongent-
256/512/256, consumes only 5.1 kGE, while providing 256 bits of preimage and second preimage
security, and 128 bits of collision resistance. Though some of this advantage is at the expense of
a performance reduction, also less serialized (and, thus, faster) implementations result in area re-
quirements significantly lower than 10 kGE. To demonstrate this, we implement all the spongent
variants as depicted in Fig. 5(b). Every round now requires a single clock cycle, therefore resulting
in faster, yet rather compact designs.

6 Scan flip-flops are typically used to provide scan-chain based testability of the circuit. Due to the security issues
of scan-chain based testing [47], other methods such as Built-In-Self-Test (BIST) are recommended for testing the
cryptographic hardware.

ECRYPT Workshop on Lightweight Cryptography - November 2011 184

r

pLayer

state

m

r

r

gi

8

r

4 4 4

b

. . .

r

r

4

4

4

4

4

4

sBox sBox sBox r/4 × sBox

rM

(b)

4 4

gi [0..3] gi [4..7]

sBox

Layer

m

gi
0

0

. . .

d
d

d d
d d d

d d

dd

d

d

d-bit

FF
d-bit

FF
d-bit

FF

pLayer

d d d d d d

scan-FF
scan-FF

scan-FFM1

M2

(a)

Fig. 5. Hardware architecture representing (a) serial datapath (b) parallel datapath of the spon-
gent variants

Another courtesy of our proposal is the result of 5 times unrolled design of spongent variants
which, all running at the maximum frequency of about 600 MHz, provide a throughput between
360 Mbps and 2 Gbps (depending on the variant) and consume between 5 kGE and 48 kGE.

Next, we present the obtained hardware figures for all of the spongent variants. For the
purpose of extensive hardware evaluation we use Synopsys Design Compiler version D-2010.03-SP4
and target the High-Speed UMC 130 nm CMOS generic process provided by Faraday Technology
Corporation (fsc0h d tc).

The power is estimated by observing the internal switching activity of the complete design.
Using Mentor Graphics ModelSim version 10.0 SE, we simulate the circuits’ behavior for very long
messages and generate the VCD (Value Change Dump) files. The VCD files are then converted
to the backward SAIF (Switching Activity Interchange Format) files and used within Synopsys
Design Compiler for the accurate estimation of the mean power consumption. A typical frequency
of 100 kHz is used for all measurements.

Table 7 reports hardware figures obtained using the aforementioned methodology. For the sake
of comparison, we include figures for several state-of-the-art lightweight hash functions. We also
include two out of five SHA-3 finalists for which the data of compact hardware implementations
is publicly available. We do not compare our design with software-like solutions that benefit from
using an external memory for storing the intermediate data. Figure 6 illustrates the wide spectrum
of our explored design space, where a typical trade-off between speed and area is scrutinized.

4.1 A Fair Comparison – Mission (Im)possible

A fair comparison of hardware performance between different designs has already been discussed
in the literature [17,4]. It is rather obvious that such comparison is only possible once the highly
optimized designs are implemented on the same hardware platform, using the same standard cell
library and the same synthesis tools (including the design flow scripts). However, mainly due to
the licensing issues and the designer’s preference to use a certain software package, this becomes a
very difficult task in practice.

To partially address this issue and in order to avoid any ambiguity we provide Table 8 with
area requirements of the basic building cells from our UMC130 library. The library contains many

ECRYPT Workshop on Lightweight Cryptography - November 2011 185

Table 7. Hardware performance of the spongent family and comparison with state-of-the-art
lightweight hash designs. The nominal frequency of 100 kHz is assumed in all cases and the power
consumption is therefore adjusted accordingly.

Hash function
Security (bit) Hash Cycles Datapath Process Area Throughput Power*

Pre. Coll. 2nd Pre. (bit) (bit) (µm) (GE) (kbps) (µW)

spongent-88/80/8 80 40 40 88
990 4 0.13 738 0.81 1.57
45 88 0.13 1127 17.78 2.31

spongent-88/176/88 88 44 88 88
8910 4 0.13 1912 0.99 3.4
135 264 0.13 3450 65.19 7.5

spongent-128/128/8 120 64 64 128
2380 4 0.13 1060 0.34 2.20
70 136 0.13 1687 11.43 3.58

spongent-128/256/128 128 64 128 128
18720 4 0.13 2641 0.68 6.1
195 384 0.13 5011 65.64 10.9

spongent-160/160/16 144 80 80 160
3960 4 0.13 1329 0.40 2.85
90 176 0.13 2190 17.78 4.47

spongent-160/160/80 80 80 80 160
7200 4 0.13 1730 1.11 3.4
120 240 0.13 3139 66.67 6.8

spongent-160/320/160 160 80 160 160
28800 4 0.13 3264 0.56 8.2
240 480 0.13 6237 66.67 13.6

spongent-224/224/16 208 112 112 224
7200 4 0.13 1728 0.22 3.73
120 240 0.13 2903 13.33 5.97

spongent-224/224/112 112 112 112 224
14280 4 0.13 2371 0.78 5.0
170 336 0.13 4406 65.88 9.6

spongent-224/448/224 224 112 224 224
57120 4 0.13 4519 0.39 11.5
340 672 0.13 8726 65.88 19.2

spongent-256/256/16 240 128 128 256
9520 4 0.13 1950 0.17 4.21
140 272 0.13 3281 11.43 6.62

spongent-256/256/128 128 128 128 256
18720 4 0.13 2641 0.68 6.1
195 384 0.13 5011 65.64 10.9

spongent-256/512/256 256 128 256 256
73920 4 0.13 5110 0.35 12.8
385 768 0.13 9944 66.49 21.9

photon-80/20/16 [21] 64 40 40 80
708 4 0.18 865 2.82 1.59
132 20 0.18 1168 12.15 2.70

photon-128/16/16 [21] 112 64 64 128
996 4 0.18 1122 1.61 2.29
156 24 0.18 1708 10.26 3.45

photon-160/36/36 [21] 124 80 80 160
1332 4 0.18 1396 2.70 2.74
180 28 0.18 2117 20.00 4.35

photon-224/32/32 [21] 192 112 112 224
1716 4 0.18 1735 1.86 4.01
204 32 0.18 2786 15.69 6.50

photon-256/32/32 [21] 224 128 128 256
996 8 0.18 2177 3.21 4.55
156 48 0.18 4362 20.51 8.38

u-Quark [1] 120 64 64 128
544 1 0.18 1379 1.47 2.44
68 8 0.18 2392 11.76 4.07

d-Quark [1] 144 80 80 160
704 1 0.18 1702 2.27 3.10
88 8 0.18 2819 18.18 4.76

s-Quark [1] 192 112 112 224
1024 1 0.18 2296 3.13 4.35
64 16 0.18 4640 50.00 8.39

dm-present-80 [11] 64 32 64 64
547 4 0.18 1600 14.63 1.83
33 64 0.18 2213 242.42 6.28

dm-present-128 [11] 64 32 64 64
559 4 0.18 1886 22.90 2.94
33 128 0.18 2530 387.88 7.49

h-present-128 [11] 128 64 64 128
559 8 0.18 2330 11.45 6.44
32 128 0.18 4256 200.00 8.09

c-present-192 [11] 192 96 192 192
3338 12 0.18 4600 1.90 -
108 192 0.18 8048 59.26 9.31

Keccak-f[400] [29] 160 80 160 160
1000 16 0.13 5090 14.40 11.50
20 16 0.13 10560 720.00 78.10

Keccak-f[200] [29] 128 64 128 128
900 8 0.13 2520 8.00 5.60
18 8 0.13 4900 400.00 27.60

SHA-1 [31] 160 80 160 160 450 32 0.25 6812 113.78 11.00
SHA-256 [32] 256 128 256 256 490 32 0.25 8588 104.48 11.20

BLAKE [26] 256 128 256 256 816 32 0.18 13575 62.79 11.16
Grøstl [45] 256 128 256 256 196 64 0.18 14622 261.14 221.00

* The power figures rather serve an illustration purpose. A comparison between different technologies is difficult.

ECRYPT Workshop on Lightweight Cryptography - November 2011 186

0

2000

4000

6000

8000

10000

12000

0.1 1 10 100

A
re

a
[G

E]
 @

 1
0

0
 k

H
z

Throughput [kbps] @ 100 kHz

SPONGENT-88/80/8 SPONGENT-256/256/128

SPONGENT-128/128/8 SPONGENT-88/176/88

SPONGENT-160/160/16 SPONGENT-128/256/128

SPONGENT-224/224/16 SPONGENT-160/320/160

SPONGENT-256/256/16 SPONGENT-224/448/224

SPONGENT-160/160/80 SPONGENT-256/512/256

SPONGENT-224/224/112

Fig. 6. Area versus throughput trade-off of the spongent hash family

other cells and we only outline ones that are of particular interest to us. Several special cells acting
as a combination of two or more basic gates (e.g. AO is a combination of AND and OR) are also
used very often and are appropriate for reducing the physical size of the design. The size of these
cells varies, mainly depending on the driving strength of the cell. The final design provided by the
synthesis tool will therefore be driven by many internal factors, e.g. speed constraints, physical area
constraints, fan-in, fan-out, length of the wires, and many others.

Moreover, we provide Table 9 where the same spongent RTL designs were synthesized using
four different libraries. Compared to our UMC130 library, the overhead of UMC180 and NAN-
GATE45 libraries ranges up to 13 % and 20 %, respectively, while the NXP90 library results in
smaller area up to 32 %, which represents a significant margin (the size is compared using gate
equivalences).

The main cause of the above described variance is a different cells’ size, which is directly related
to the library type. A single scan flip-flop consumes at least 6.25 GE and 6.67 GE in UMC130 and
UMC180, respectively. The NXP90 library has significantly smaller flip-flops which are the main
area consumers in the case of spongent family. NANGATE45 (with a scan flip-flop of 7.67 GE), on
the other hand, is an open core library and seems to be a good candidate for accurate comparison
between different lightweight designs.

5 Conclusion

In this work, we have explored the design space of lightweight cryptographic hashing by proposing
the family of new hash functions spongent tailored for resource-constrained applications. We

ECRYPT Workshop on Lightweight Cryptography - November 2011 187

Table 8. Area requirements of selected standard cells in our UMC 130 nm library.

Standard cell
Number Area Area

Standard cell
Number Area Area

of inputs [µm2] [GE] of inputs [µm2] [GE]
D Flip Flop 1 20 – 40 5 – 10 2 11 – 16 2.75 – 4

Scan Flip Flop 1 25 – 47 6.25 – 11.75 XOR 3 22 – 26 5.5 – 6.5
NOT 1 3 – 28 0.75 – 7 4 30 – 31 7.5 – 7.75

2 4 – 23 1 – 5.75

AO, AN

6 6 – 17 1.5 – 4.25
NAND 3 6 – 14 1.5 – 3.5 4 6 – 21 1.5 – 5.25

4 12 – 18 3 – 4.5 6 10 – 25 2.5 – 6.25
2 4 – 40 1 – 10 8 15 – 18 3.75 – 4.5

NOR 3 6 – 13 1.5 – 3.25

OA, NA

6 5 – 21 1.25 – 5.25
4 11 – 19 2.75 – 4.75 4 6 – 21 1.5 – 5.25
2 5 – 19 1.25 – 4.75 6 9 – 18 2.25 – 4.5

AND 3 7 – 16 1.75 – 4 8 15 – 18 3.75 – 4.5
4 10 – 33 2.5 – 8.25 2 9 – 28 2.25 – 7

OR
2 5 – 25 1.25 – 6.25 MUX 3 16 – 27 4 – 6.75
3 7 – 26 1.75 – 6.5 4 25 – 35 6.25 – 8.75

AO = AND and OR, AN = AND and NOR,
OA = OR and AND, NA = NOR and AND.

consider 5 hash sizes for spongent – ranging from the ones offering mainly preimage resistance
only to those complying to (a subset of) SHA-2 and SHA-3 parameters. For each parameter set,
we instantiate spongent using up to three competing security paradigms (all of them offering
full collision security): reduced second-preimage security, reduced preimage and second-preimage
security, as well as full preimage and second-preimage security. Each parametrization accounts
for its unique implementation properties in terms of ASIC hardware footprint, performance and
time-area product, which are analyzed in the article. We also perform security analysis in terms of
differential properties, linear distinguishers, and rebound attacks.

6 Acknowledgment

Andrey Bogdanov is a postdoctoral fellow of the Fund for Scientific Research - Flanders (FWO).
This work is supported in part by the IAP Programme P6/26 BCRYPT of the Belgian State, by
the European Commission under contract numbers ICT-2007-216676 ECRYPT NoE phase II and
ICT-2007-238811 UNIQUE, and by the Research Council K.U.Leuven: GOA 11/007 TENSE.

ECRYPT Workshop on Lightweight Cryptography - November 2011 188

Table 9. Area of the spongent family compared using four different standard cell libraries

Datapath Area (GE)
(bit) UMC UMC NANGATE NXP

130 nm 180 nm 45 nm 90 nm

spongent-88/80/8
4 738 759 868 521
88 1127 1232 1236 883

spongent-88/176/88
4 1912 1965 2264 1308

264 3450 3847 3633 2553

spongent-128/128/8
4 1060 1103 1256 737

136 1687 1855 1831 1279

spongent-128/256/128
4 2641 2724 3182 1813

384 5011 5581 5715 4167

spongent-160/160/16
4 1329 1367 1571 918

176 2190 2241 2406 1752

spongent-160/160/80
4 1730 1769 2066 1192

240 3139 3434 3612 2650

spongent-160/320/160
4 3264 3340 3930 2232

480 6237 6949 7163 5262

spongent-224/224/16
4 1728 1768 2071 1192

240 2903 3203 3220 2334

spongent-224/224/112
4 2371 2422 2826 1621

336 4406 4900 4611 3197

spongent-224/448/224
4 4519 4625 5430 3069

672 8726 9696 9751 6932

spongent-256/256/16
4 1950 2012 2323 1340

272 3281 3721 3639 2612

spongent-256/256/128
4 2641 2724 3182 1813

384 5011 5581 5713 4213

spongent-256/512/256
4 5110 5232 6163 3471

768 9944 11054 10777 7426

References

1. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A lightweight hash. In: Mangard, S., Stan-
daert, F.X. (eds.) CHES. Lecture Notes in Computer Science, vol. 6225, pp. 1–15. Springer (2010)

2. Avoine, G., Oechslin, P.: A Scalable and Provably Secure Hash-Based RFID Protocol. In: PerCom Workshops.
pp. 110–114. IEEE Computer Society (2005)

3. Babbage, S., Dodd, M.: The MICKEY Stream Ciphers. In: Robshaw, M.J.B., Billet, O. (eds.) The eSTREAM
Finalists, Lecture Notes in Computer Science, vol. 4986, pp. 191–209. Springer (2008)

4. Badel, S., Dagtekin, N., Nakahara, J., Ouafi, K., Reffé, N., Sepehrdad, P., Susil, P., Vaudenay, S.: ARMADILLO:
A Multi-purpose Cryptographic Primitive Dedicated to Hardware. In: Mangard, S., Standaert, F.X. (eds.) CHES.
Lecture Notes in Computer Science, vol. 6225, pp. 398–412. Springer (2010)

5. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool hashing function. In: Proceedings of the 1st NESSIE Workshop.
p. 15. Leuven,B (2000)

6. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M., Seurin, Y.: SHA-3 Pro-
posal: ECHO. Submission to NIST (updated) (2009), http://crypto.rd.francetelecom.com/echo/doc/echo_
description_1-5.pdf

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the Indifferentiability of the Sponge Construction. In:
Smart, N.P. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 4965, pp. 181–197. Springer (2008)

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge-Based Pseudo-Random Number Generators. In:
Mangard, S., Standaert, F.X. (eds.) CHES. Lecture Notes in Computer Science, vol. 6225, pp. 33–47. Springer
(2010)

9. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.: spongent: A lightweight hash
function. In: Preneel, B., Takagi, T. (eds.) CHES. Lecture Notes in Computer Science, vol. 6917, pp. 312–325.
Springer (2011)

10. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe,
C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES. Lecture Notes
in Computer Science, vol. 4727, pp. 450–466. Springer (2007)

ECRYPT Workshop on Lightweight Cryptography - November 2011 189

http://crypto.rd.francetelecom.com/echo/doc/echo_description_1-5.pdf
http://crypto.rd.francetelecom.com/echo/doc/echo_description_1-5.pdf

11. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash Functions and RFID
Tags: Mind the Gap. In: Oswald, E., Rohatgi, P. (eds.) CHES. Lecture Notes in Computer Science, vol. 5154,
pp. 283–299. Springer (2008)

12. Buchmann, J., Garćıa, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS - An Improved Merkle Signature
Scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT. Lecture Notes in Computer Science, vol. 4329, pp. 349–363.
Springer (2006)

13. Cho, J.Y.: Linear Cryptanalysis of Reduced-Round PRESENT. In: Pieprzyk, J. (ed.) CT-RSA. Lecture Notes in
Computer Science, vol. 5985, pp. 302–317. Springer (2010)

14. Collard, B., Standaert, F.X.: A Statistical Saturation Attack against the Block Cipher PRESENT. In: Fischlin,
M. (ed.) CT-RSA. Lecture Notes in Computer Science, vol. 5473, pp. 195–210. Springer (2009)

15. Daemen, J., Peeters, M., Assche, G.V.: Sponge Functions. Ecrypt Hash Workshop 2007 (2007), http://www.

csrc.nist.gov/pki/HashWorkshop/PublicComments/2007May.html

16. De Cannière, C.: Trivium: A Stream Cipher Construction Inspired by Block Cipher Design Principles. In: Kat-
sikas, S.K., Lopez, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC. Lecture Notes in Computer Science, vol.
4176, pp. 171–186. Springer (2006)

17. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN - A Family of Small and Efficient
Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES. Lecture Notes in Computer Science,
vol. 5747, pp. 272–288. Springer (2009)

18. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M.J.B., Billet, O. (eds.) The eSTREAM Finalists, Lecture
Notes in Computer Science, vol. 4986, pp. 244–266. Springer (2008)

19. Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned Rebound Attack - Application to Keccak. Cryptology ePrint
Archive, Report 2011/420 (2011), http://eprint.iacr.org/2011/420

20. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schlffer, M., Thomsen, S.S.: Grøstl
– a SHA-3 candidate. Submission to NIST (Round 3) (2011), http://www.groestl.info/Groestl.pdf

21. Guo, J., Peyrin, T., Poschmann, A.: The photon family of lightweight hash functions. In: Rogaway, P. (ed.)
CRYPTO. Lecture Notes in Computer Science, vol. 6841, pp. 222–239. Springer (2011)

22. Hein, D.M., Wolkerstorfer, J., Felber, N.: ECC Is Ready for RFID - A Proof in Silicon. In: Avanzi, R.M., Keliher,
L., Sica, F. (eds.) Selected Areas in Cryptography. Lecture Notes in Computer Science, vol. 5381, pp. 401–413.
Springer (2008)

23. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain Family of Stream Ciphers. In: Robshaw, M.J.B.,
Billet, O. (eds.) The eSTREAM Finalists, Lecture Notes in Computer Science, vol. 4986, pp. 179–190. Springer
(2008)

24. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained environments. IJWMC 2(1), 86–93
(2007)

25. Henzen, L., Aumasson, J.P., Meier, W., Phan, R.C.W.: VLSI Characterization of the Cryptographic Hash Func-
tion BLAKE. http://131002.net/data/papers/HAMP10.pdf (2010)

26. Henzen, L., Aumasson, J.P., Meier, W., Phan., R.C.W.: VLSI Characterization of the Cryptographic Hash
Function BLAKE (2010), available at http://131002.net/data/papers/HAMP10.pdf

27. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim,
J., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.)
CHES. Lecture Notes in Computer Science, vol. 4249, pp. 46–59. Springer (2006)

28. Indesteege, S.: The LANE hash function. Submission to NIST (2008), http://www.cosic.esat.kuleuven.be/
publications/article-1181.pdf

29. Kavun, E., Yalcin, T.: A Lightweight Implementation of Keccak Hash Function for Radio-Frequency Identification
Applications. In: Ors Yalcin, S. (ed.) Radio Frequency Identification: Security and Privacy Issues, Lecture Notes
in Computer Science, vol. 6370, pp. 258–269. Springer Berlin / Heidelberg (2010)

30. Khovratovich, D., Naya-Plasencia, M., Röck, A., Schläffer, M.: Cryptanalysis of Luffa v2 Components. In:
Biryukov, A., Gong, G., Stinson, D.R. (eds.) Selected Areas in Cryptography. Lecture Notes in Computer Science,
vol. 6544, pp. 388–409. Springer (2010)

31. Kim, M., Ryou, J.: Power Efficient Hardware Architecture of SHA-1 Algorithm for Trusted Mobile Computing.
In: Proceedings of the 9th international conference on Information and communications security. pp. 375–385.
ICICS’07, Springer (2007)

32. Kim, M., Ryou, J., Jun, S.: Efficient Hardware Architecture of SHA-256 Algorithm for Trusted Mobile Computing.
In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt. Lecture Notes in Computer Science, vol. 5487, pp. 240–252. Springer
(2008)

33. Leander, G.: On Linear Hulls, Statistical Saturation Attacks, PRESENT and a Cryptanalysis of PUFFIN. to
appear (2011)

ECRYPT Workshop on Lightweight Cryptography - November 2011 190

http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007 May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007 May.html
http://eprint.iacr.org/2011/420
http://www.groestl.info/Groestl.pdf
http://131002.net/data/papers/HAMP10.pdf
http://131002.net/data/papers/HAMP10.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf

34. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A Cryptanalysis of PRINTcipher: The Invariant
Subspace Attack. In: Rogaway, P. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 6841, pp. 206–221.
Springer (2011)

35. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Variants. In: Biryukov, A. (ed.)
FSE. Lecture Notes in Computer Science, vol. 4593, pp. 196–210. Springer (2007)

36. Lim, C.H., Korkishko, T.: mCrypton - A Lightweight Block Cipher for Security of Low-Cost RFID Tags and
Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA. Lecture Notes in Computer Science, vol. 3786, pp.
243–258. Springer (2005)

37. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced
Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE. Lecture Notes in Computer Science, vol. 5665, pp. 260–276.
Springer (2009)

38. Merkle, R.: Secrecy, authentication and public key systems / A certified digital signature. Ph.D. thesis, Dept. of
Electrical Engineering, Stanford University (1979)

39. NANGATE: The NanGate 45nm Open Cell Library, available at http://www.nangate.com

40. Osaka, K., Takagi, T., Yamazaki, K., Takahashi, O.: An Efficient and Secure RFID Security Method with Own-
ership Transfer. In: Wang, Y., ming Cheung, Y., Liu, H. (eds.) CIS. Lecture Notes in Computer Science, vol.
4456, pp. 778–787. Springer (2006)

41. Rohde, S., Eisenbarth, T., Dahmen, E., Buchmann, J., Paar, C.: Fast Hash-Based Signatures on Constrained
Devices. In: Grimaud, G., Standaert, F.X. (eds.) CARDIS. Lecture Notes in Computer Science, vol. 5189, pp.
104–117. Springer (2008)

42. Shoufan, A.: An FPGA Accelerator for Hash Tree Generation in the Merkle Signature Scheme. In: Sirisuk,
P., Morgan, F., El-Ghazawi, T.A., Amano, H. (eds.) ARC. Lecture Notes in Computer Science, vol. 5992, pp.
145–156. Springer (2010)

43. Standaert, F.X., Piret, G., Gershenfeld, N., Quisquater, J.J.: SEA: A Scalable Encryption Algorithm for Small
Embedded Applications. Presented at the Workshop on RFID and Light-Weight Crypto in Graz, Austria (2005)

44. Tillich, S., Feldhofer, M., Issovits, W., Kern, T., Kureck, H., Muehlberghuber, M., Neubauer, G., Reiter, A.,
Koefler, A., Mayrhofer, M.: Compact Hardware Implementations of the SHA-3 Candidates ARIRANG, BLAKE,
Grøstl, and Skein. Cryptology ePrint Archive, Report 2009/349 (2009)

45. Tillich, S., Feldhofer, M., Issovits, W., Kern, T., Kureck, H., Mühlberghuber, M., Neubauer, G., Reiter, A., Köfler,
A., Mayrhofer, M.: Compact Hardware Implementations of the SHA-3 Candidates ARIRANG, BLAKE, Grøstl,
and Skein. Cryptology ePrint Archive, Report 2009/349 (2009), available at http://eprint.iacr.org/2009/349

46. Tsudik, G.: YA-TRAP: Yet Another Trivial RFID Authentication Protocol. In: PerCom Workshops. pp. 640–643.
IEEE Computer Society (2006)

47. Yang, B., Wu, K., Karri, R.: Scan Based Side Channel Attack on Dedicated Hardware Implementations of Data
Encryption Standard. International Test Conference pp. 339–344 (2004)

ECRYPT Workshop on Lightweight Cryptography - November 2011 191

http://www.nangate.com
http://eprint.iacr.org/2009/349

A new generic protocol for authentication and
key agreement in lightweight systems

Näım Qachri1, Frédéric Lafitte2, and Olivier Markowitch1

1 Département d’Informatique, Université Libre de Bruxelles,
CP212, boulevard du Triomphe, 1050 Brussels, Belgium
nqachri@ulb.ac.be,olivier.markowitch@ulb.ac.be

2 Royal Military Academy, Department of Mathematics
Renaissancelaan 30, 1000 Brussels, Belgium

frederic.lafitte@rma.ac.be

Abstract. In this paper, we propose a new generic authenticated key
agreement protocol where the master secret is automatically renewed
based on a sequence of hash values, thus providing the system with an
extended cryptoperiod. The focus of this work is to formally assess the
security offered by the protocol’s key renewing in the case of a long term
use of the system. The formal analysis is carried using the automated
tools ProVerif and AVISPA. The protocol is designed to be implemented
on devices with limited computing and storage resources.

Key words: Mutual authentication, Key agreement protocol, Wireless
communication security, Cryptoperiod

1 Introduction

Since a decade, we have seen many developments to strengthen the security
of wireless embedded communication systems: these improvements intended to
correct problems related, for example, to defective cryptographic primitives or
protocols [17, 7, 10] (e.g. the 4-way handshake protocol defined for the Wime-
dia MAC layer standard [16] used to authenticate and generate session keys).
Nowadays, the last versions of the Wifi and Wimax standards include the use
of EAP [1] declined in different versions (LEAP – EAP using a Radius Server
–, EAP-TTLS, etc.). In practice, EAP is not well suited for constrained envi-
ronments such as handheld devices, short-range communication systems or even
domestic wireless LAN devices. The reason being that many versions of EAP
use certificates, public key encryption or exhaustive exchanges of information,
that are not always appropriate for lightweight wireless devices. For example,
certificate revocation is not viable in point to point communications.

Moreover, wireless communication protocols are dedicated to the specific
technology considered. This lack of genericity makes the security evaluation of
such protocols more cumbersome and also less re-usable. Furthermore, those pro-
tocols do not address the issue of the master secret cryptoperiod. This weakness
has already been used in order to mount practical attacks in [17, 10]: instead of

ECRYPT Workshop on Lightweight Cryptography - November 2011 192

2 Näım Qachri, Frédéric Lafitte, and Olivier Markowitch

renewing the key used by RC4, the WEP protocol uses a different IV (Inital-
ization Vector). However, the number of IVs is not large enough to prevent key
re-use, which is a serious weakness for stream ciphers.

Furthermore, the existing systems proposed in the literature do not meet all
of the needed requirements; indeed, the existing solutions either do not combine
authentication and key generation [14, 5], use public-key cryptography [20, 21,
12, 9], use a trusted entity [14, 15], or combine artificially an authentication
scheme [13] with a key transport protocol [14] (involving more transfers without
gaining more security). Similar authentication mechanisms used for [13] are used
in [3, 4]. The ISO/IEC 9798-2 and ISO/IEC 11770-2 protocols (ISO standards
that define some key agreement protocols) differ from our protocol since they do
not authenticate the exchanged messages and they consider only single execution
of the protocols. Therefore, because of the lack of messages authentications, the
information exchanged during these protocols (that are used to produce the
session keys) are not protected against modifications, and may be exposed to
denial of services attacks. Moreover, most of the protocols does not include a
session key confirmation procedure as well as a synchronization mechanism (i.e.
in case of repetitive establishments of sessions).

Contribution. According to the paragraphs above, we are after a key agreement
protocol that relies only on symmetric key cryptography and satisfies all the
requirements for contributive authenticated key exchange in wireless communi-
cation systems. In particular, we focus on the protocol lifecycle by introducing
an automated key renewing mechanism. The security of our proposal is analyzed
in a Dolev-Yao model [6] where the adversary has corruption capabilities. We use
the tools AVISPA and ProVerif in order to automate the analysis. Our protocol
is generic since we do not instantiate the underlying cryptographic primitives.
It is considered lightweight since no asymmetric algorithms are used. Therefore,
in this symmetric key setting, our protocol best fits point to point communica-
tions, or centralized networks, where a device interacts with a limitted number
of participants.

Outline. The paper is divided in six sections. The next section exposes the
assumptions, definitions, and notations that will be used along the paper. The
third section presents a general description of the protocol and a formal definition
of the protocol and the subprotocols is given. The fourth section presents a formal
analysis of the security of the protocol. The fifth section describes an interesting
security finding. In the sixth section, we summarize some future works for a
larger exploitation of our protocol.

2 Preliminaries

In this section we define the security requirements for authenticated key exchange
protocols as well as the adversarial capabilities. We also introduce general as-
sumptions and notations.

ECRYPT Workshop on Lightweight Cryptography - November 2011 193

Title Suppressed Due to Excessive Length 3

2.1 Requirements

Common security requirements for key agreement include:

Contributiveness: the key exchange is said to be contributive if Alice and
Bob contributed equally to the computation of the new session keys (and
the renewing of the long-term key).

Backward security: future sessions remain secure even if secrets used in past
sessions are corrupted. Different types of secrets can be leaked in a session.
The type of secret that is leaked is used to caracterise the type of corruption
(see types of corruption below).

Forward security: past sessions remain secure even if future sessions are cor-
rupted. Again, different kinds of corruptions can be considered.

Mutual authentication: the mutual authentication is a mechanism that al-
lows to authenticate two devices to each other. In our case, this property is
obtained through a challenge-response mechanism.

Key confirmation: the purpose of key confirmation is to make sure that both
Alice and Bob derived the same session keys. Many existing protocols do
not satisfy this property. Obviously, this verification procedure must not
reveal the underlying generated key and can be achived through a challenge-
response mechanism.

In addition to the rather common properties defined above, our protocol has
the following property.

Key renewing: another desirable property (see intro) consists in the auto-
mated renewing of the master secret. We consider this key renewing pro-
cedure secure as long as the new key remains secret.

The requirements defined above only make sense when considered together
with a specific adversary. In our case, the (active) adversary has Dolev-Yao ca-
pabilities [6] over all communication channels, i.e., it is capable to read, delay,
delete, insert messages from/to the channels used in the execution of the proto-
col.

We also assume that the adversary is able to corrupt participants, i.e., to
learn their secret values. Secrets involved in key exchange protocols are often
categorized as short term (ephemeral) secrets and long term (master) secrets. In
our case, the ephemeral secrets correspond to the nonces and the master secret
consists of the chain of hash values. This leads to the consideration of three kinds
of corruptions.

Types of corruptions: Corruptions that leak an ephemeral secret are referred
to as type I corruptions whereas those leaking the master secret are referred
to as type II corruptions. Type III corruptions correspond to the case where
both ephemeral and master secrets are leaked.

In section 4, we assess to what extent each type of corruption can be used to
compromise the requirements defined above, in particular, forward and backward
secrecy. This analysis is conducted in a symbolic framework.

ECRYPT Workshop on Lightweight Cryptography - November 2011 194

4 Näım Qachri, Frédéric Lafitte, and Olivier Markowitch

2.2 Assumptions

We suppose that Alice and Bob (wireless devices that know each other) share
a symmetric key that has been secretly exchanged during an association step
that happens before any exchange that would occur between the two devices.
It is assumed that this association step is secure and therefore does not leak
any information about the shared secret. Furthermore, the association step is
not considered in the protocol because this step is strongly dependent of the
technology considered and will remove a part of the genericity of the protocol.
Moreover, it is assumed that the secret, shared by Alice and Bob, is not already
shared by them with any other devices.

It is also assumed that the devices are tamper resistant (i.e. an attacker
cannot physically read or modify the secrets stored in the devices).

2.3 Notations

The notations used in our protocol are the following:

– hi denotes that the hash function H is applied successively, i times, according
to the following construction:

h1 = H(s)

hi = H(hi−1 ‖ s) ∀i > 1

– Ek(m) denotes a symmetric bloc encryption of the message m with the secret
key k;

– MAC k(m) denotes the result of a keyed hash function applied on a message
m;

– s denotes the secret shared between Alice and Bob during the association step;
– rA and rB denotes the random nonces chosen and sent respectively by Alice

and Bob during a session of the key agreement protocol;
– LSBi(m) is a function that truncates m to its i least significant bits.

3 The protocol

3.1 General description of the protocol

Based on the initial secret (exchanged at the association step), keys for authen-
tication and encryption are generated and shared between Alice and Bob.

The protocol is designed in order to avoid that an attacker, who discovers
the secrets of a session of the protocol, can deduce the secrets that will be
computed during the following sessions. The secret values of the different sessions
are computed on the basis of a chain of hash values. During an initialization
step (that takes place after the association step), Alice and Bob realize the
computation of n consecutive hashing on the initial shared secret. Those hashed

ECRYPT Workshop on Lightweight Cryptography - November 2011 195

Title Suppressed Due to Excessive Length 5

values will be used to authenticate Alice and Bob and to generate the session
keys as described hereafter. After the initialization step, when a session must be
set, Alice invokes a 3-step main subprotocol that ensures mutual authentication
by the means of challenge-response techniques, session keys generated between
Alice and Bob and desynchronization resistance.

Since the produced secret hashed values are in a limited number, when only
three hash values remain, a new secret is computed using those values and this
new secret key is used to create a new chain of hash values that will be used for
the next sessions of the protocol. The chain of hash values implies a notion of
lifecycle of secret keys.

The key renewing procedure and the generation of keys during the key agree-
ment are based on a secure key generation mechanism similar to the HMAC-Key
Derivation Function (HDKF [11]).

3.2 The protocol life cycle

The protocol begins with the two following steps:

– the association step (where a secret s is exchanged);
– the initialization step (where some or all of the n hashed values, from the

secret s, are computed in order to speed up further hash computations in the
protocol and i is initialized to 1 by Alice and Bob).

h1, . . . , hn and CC ← 1

Then, the life cycle of the protocol is described as follows :

– bn3 − 1c successive executions of the main protocol
and/or resynchronization protocol (if needed)

– renewing protocol (where the initialization step is made again after the re-
newing)

– successive executions of the main protocol (a new cycle is launched)...

The Cycle Counter (CC) is a variable that counts the number of chains of n
hashed values completely used in the life cycle of the protocol since the initializa-
tion step (where CC is set to 1). Within a cycle, a session of the main protocol
is characterized by a number i. The concatenation CC ‖ i is a unique identifier
of a session of the protocol between Alice and Bob.

The initialization step, made after the association step, consists in computing
the chain of the n hashed values that will be used during the executions of the
main subprotocol during a lifecycle. This initialization step is made again after
a renewing of the secret.

3.3 The main subprotocol

When Alice and Bob have to initiate a new session i, being in the cycle CC,
they execute the following main protocol:

ECRYPT Workshop on Lightweight Cryptography - November 2011 196

6 Näım Qachri, Frédéric Lafitte, and Olivier Markowitch

1. Alice→ Bob : IDAlice , i, Ehn−((i−1)×3)
(m1, H(m1))

where m1 = (1, CC, i, rA, IDAlice)

The message contains the first challenge under the form of a message to
decrypt and verify. If the two devices share the same secret, then Bob can decrypt
and verify it. The nonce, rA, sent by Alice, has to be well chosen and contributes
to the keys generation in a fair way in regards to Bob. The number i of the
session is sent unencrypted to synchronize the two devices on the keys to use
(see the resynchronization subprotocol). The hashing, at the end of the encrypted
message, is computed to ensure that the message cannot be easily manipulated
by the attacker regardless of the encryption algorithm.

Once Bob has decrypted the message, he chooses a second random nonce,
rB , and generates three keys by computing the following MAC :

(kSE ‖ kSA ‖ kconf) = LSBq(MAC hn−((i−1)×3)−2
(CC ‖ i ‖ rA ‖ rB ‖ hn−((i−1)×3)−1))

where ‖ is the concatenation operator. rA and rB are the contributions of
respectively Alice and Bob in the computation of these three keys. q denotes the
sum of the sizes of the three keys generated during a session of the protocol.
CC ‖ i is used to avoid replay attacks. kSE is the key generated to encrypt the
communication of the session that will take place between Alice and Bob and
kSA is the key generated to authenticate the packets transmitted during this
communication.

The MAC algorithm has to be well dimensioned to generate enough bits for
the three keys. On the basis of kconf , Bob creates a new challenge and sends it
to Alice.

2. Bob→ Alice : IDBob, i, Ehn−((i−1)×3)
(m2,MACkconf

(m2))

where m2 = (2, CC, i, rB , rA, IDBob)

The challenge has the purpose to ensure that Alice can derive the good key
and decrypt the message of Bob. From these keys, Alice can verify that she has
derived the same keys than Bob if she is able to verify the MAC on the message.
Alice can also authentify Bob, since only Bob knows the secret hashed value used
to encrypt the message and authenticate. Furthermore, Bob sends the nonce rA
to prove that he has made the correct decryption of the first message.

3. Alice→ Bob : IDAlice , i,MACkconf (3, IDAlice , CC, i, rA, rB)

In this third message, Alice answers that she has well derived the keys and
that the authentication of Bob succeeds, she provides also rB to prove that she
has made the correct decryption of the second message. At the end of the main
protocol, Alice and Bob increment i.

ECRYPT Workshop on Lightweight Cryptography - November 2011 197

Title Suppressed Due to Excessive Length 7

3.4 The renewing subprotocol

Within a cycle, on the basis of n hash values, we can realize bn3 − 1c sessions
of the main protocol. We use the last session of the protocol to generate a new
secret value that will overwrite the previous shared secret between Alice and
Bob (initially s).

The renewing is made when only three hash values (h3, h2 and h1 remain).
Alice and Bob run again the main subprotocol (see Figure 1) during which
the new secret is computed from h1 = H(s) and s. This execution allows the
exchange of rA and rB .

snew = MAC sold(CC ‖ rA ‖ rB ‖ H(sold))

The shared secret hash values and the CC are computed for the future ses-
sions of the next cycle of the main protocol:

h1 = H(snew), . . . , hj = H(hj−1||snew) ∀j ∈ {2, . . . , n}
and CC ← CC + 1; i← 1

Device 1 Device 2

Alice BobIDAlice, 3, Eh3(s)(1, CC, 3, rA, IDAlice, h(1, CC, 3, rA, IDAlice))

IDBob, 3, Eh3(s)(2, CC, 3, rB , rA, IDBob, MACh2(s)(2, CC, 3, rB , rA, IDBob))

IDAlice, MACh2(s)(3, IDAlice, CC, 3, rA, rB)

Fig. 1. The renewing protocol

3.5 The resynchronization protocol

If the two devices are desynchronized (i.e. if Alice and Bob consider a different
value of i), they reveal their session values i and i′. In that case, the current
session of the main protocol is aborted and a new session protocol is launched
with a session value max(i, i′) + 1.

We make the assumption that, in case of desynchronization, the devices can-
not have different CC’s, because it would mean that one of the two devices has
done the renewing protocol without having incremented the variable CC (unless
one of the devices were cloned).

4 Security Analysis

In this section, we use the automated protocol verification tools AVISPA and
ProVerif in order to show that our protocol meets the requirements defined in
section 2.1 when attacked by an active Dolev-Yao adversary with corruption
capabilities.

ECRYPT Workshop on Lightweight Cryptography - November 2011 198

8 Näım Qachri, Frédéric Lafitte, and Olivier Markowitch

The symbolic Dolev-Yao model abstracts away cryptographic operations on
bits and considers only symbols in order to represent keys, nonces, messages, etc.
Therefore, in this model, cryptographic primitives are considered ideal, since the
adversary is able to recover the secret symbol (i.e. 100% of the secret bits) or
not (i.e. 0% of the secret bits). In our case, since we do not instanciate the
cryptographic algorithms used by our protocol, this abstraction is necessary for
the analysis of the protocol.

AVISPA is used to establish the mutual authentication property whereas
ProVerif is used to assess the impact of corruptions. In both cases, the three
keys derived at the end of one session are considered as one unique symbol
(being the concatenation of the three keys).

4.1 Analysis using AVISPA

AVISPA [19, 18] is an automated protocol verifier based on temporal logic. Its
purpose is to check the security of protocols through a specification language
named HLPSL. The language allows for the description of the protocol through
roles and sessions of execution where the channel of communication meets the
Dolev-Yao model [6]. We have chosen AVISPA, because it offers the opportunity
to analyze our protocol in four backends (verification engines) and then to cover
a large spectrum of possible attacks.

Since AVISPA does not define boolean or MAC functions, we have rather
modeled the HMAC function (through its formal definition):

HMAC k(m) = H((k ⊕ opad)||H((k ⊕ ipad)||m))

where ⊕ is the exclusive-or and || the concatenation operation. The opad
and ipad values are constant values, respectively composed of the repeated 0x5C
and 0x36 values, as long as the key k.

Because of the modeling of the HMAC with the use of exclusive-or operations,
two of the four backends (i.e. SATMC and TA4SP) became not conclusive on
the security of the protocol, because they cannot manage arithmetic or boolean
operations used within the protocol specification. We have analyzed the protocol
on parallel sessions where we have explicitly computed a chain of hashed values.

We have taken a particular care in defining the security goals within AVISPA
and the complete formalization of the process of the mutual authentication.
In the specification, we have authenticated both parties with the challenges
provided by the exchange of their nonces rA and rB , but also on kconf that
confirms the good derivation of the key and the fact that they know the secret
hashed values without revealing them.

The sessions were specified to consider various possible attacks such as Man
in the middle attacks, or replay attacks (through parallel executions of sessions).

The protocol was also checked in order to find some way to attack the se-
crecy of the three keys generated or the mutual authentication of both parties.
The tests have given safe (i.e. no attacks were found) results on two of the four

ECRYPT Workshop on Lightweight Cryptography - November 2011 199

Title Suppressed Due to Excessive Length 9

backends (the two other were non conclusive due to the use of boolean arith-
metic). This validate that our protocol is secure, that both parties are mutually
authenticated and that the lifecycle is secure (see the discussion section below).
The complete specification of the protocol is given in append.

4.2 Analysis using ProVerif

ProVerif [2] is an automated cryptographic protocol verifier, mainly used to as-
sess secrecy and authentication properties. The protocol may be specified in
different formalisms, in particular an extension of the (typed) applied pi cal-
culus. Next, the adversary’s goals and capabilities are specified (see appendix
B). Internally, ProVerif translates the protocol and the adversary’s capabilities
into first order logic formulas (i.e. Horn clauses). Finally, a dedicated resolution
algorithm is used to output one of the three following outcomes:

– a (sound) confirmation that the adversary is unable to reach his goal
– the execution trace of a successful attack
– the inability of the tool to conclude

Fortunately, in many practical cases ProVerif is able to conclude in a few seconds.
The main advantage of ProVerif lies in its ability to analyze an unbounded
number of sessions.

We model the execution of three consecutive sessions in order to show whether
leaking a secret during session i helps the adversary in the recovery of secrets
from session i − 1 (forward secrecy) or session i + 1 (backward secrecy). At
the end of each session, both participants use the exchanged key to encrypt
a secret that is specific to the session. That is, the key established in session
one is used to encrypt the symbol secret1, the one established during session
two encrypts the symbol secret2, and so on. The adversary is then queried on
those three secrets since recovering one of them is equivalent to recovering the
corresponding session key. As mentionned in section 2.1, the types of secrets
leaked are either ephemeral secrets (i.e. nonces), master secrets (i.e. values from
the hash chain) or both master and ephemeral secrets, thus caracterising three
kinds of corruptions, referred to respectively as “type I”, “type II”, and “type
III” corruptions. We need not assess the impact of leaking the secret s, since
this leakage would allow the adversary to recover the entire chain of hash values.
However, s is only used in the computation of the hash values. Therefore, the
hash function’s one-wayness ensures the secrecy of s.

Primitives. Symmetric key encryption is modeled by two symbols senc and sdec,
whose meaning is captured by the following equation

∀x,∀k sdec(k, senc(k, x)) = x

The hash function H and the message authentication code function MAC are
simply function symbols for which the absence of equation that decomposes
H(x) or MAC(k, x) ensure the function’s onewayness. That is, the only way for
an adversary to build the term MAC(k, x) (H(x)) is by knowing the symbols k
and x (resp. x).

ECRYPT Workshop on Lightweight Cryptography - November 2011 200

10 Näım Qachri, Frédéric Lafitte, and Olivier Markowitch

Other symbols. As usual in ProVerif, we use the symbol c for “broadcast channel”
to model an insecure network. We also use symbols of constants to represent the
cycle counter (CC), the session number (i) and the identities of the participants
IDA, IDB.

Processes. We now describe the processes corresponding to the roles of Alice and
Bob (i.e. initiator and responder respectively). The complete input file given to
ProVerif can be found in appendix B.

– Process for participant A :

1. let h1 = h(s) in let h2 = h(h1) in let h3 = h(h2) in
2. new r1
3. let m = 〈1,CC, i, r1,A〉
4. out(c, 〈A, i, senc(h3, 〈m, h(m)〉〉)
5. in(c, msg(B, i, x))
6. let 〈m′, y〉 = sdec(h3, x) in
7. let 〈2,CC, i, r2, r1,B〉 = m′ in let 〈kse,ksa,kconf 〉 = mac(h2, 〈CC, i, r1, r2, h2〉)
8. if y = mac(kconf ,m

′) then
9. out(c, 〈A, i,mac(h1, 〈3,A,CC, i, r1, r2〉)〉)

10. out(c, 〈senc(x,kse), senc(s,kse), senc(x,ksa), senc(s,ksa)〉)
– Process for participant B :

1. let h1 = h(s) in let h2 = h(h1) in let h3 = h(h2) in
2. new r1
3. in(c, 〈A, i,x〉)
4. let 〈m, y〉 = sdec(h3, x)
5. if y = h(m) then
6. let 〈1,CC, i, r1,A〉 = m in let 〈kse,ksa,kconf 〉 = mac(h2, 〈CC, i, r1, r2, h2〉)
7. let m′ = 〈2,CC, i, r2, r1,B〉 in
8. out(c, 〈B, i, senc(h3, 〈m′,mac(kconf ,m

′)〉〉)
9. in(c,〈A, i,mac(h1, 〈3,A,CC, i, r1, r2〉)〉)

10. out(c, 〈senc(x,kse), senc(s,kse), senc(x,ksa), senc(s,ksa)〉)

Results. Type I corruptions do not allow for breaking the corresponding session.
In the case of type II corruptions, as long as one of the three hash values involved
in one session remains secret, the adversary cannot deduce any of the session
keys. That is, the keys exchanged in the current, next, and previous sessions
remain secret. In the case that all three hash values are leaked, then the current
session is broken (i.e. the adversary learned secret2) while the other sessions
remain safe. This result holds independently of whether the nonces are leaked
or not. Thus, the only way to compromise a session would be to reveal all three
hash values. However, this would not affect other sessions since future (resp.
previous) values of the hash chain are made inaccessible by the secrecy of s
(resp. the one-wayness of H).

ECRYPT Workshop on Lightweight Cryptography - November 2011 201

Title Suppressed Due to Excessive Length 11

4.3 Discussion

We will present the analysis of the protocol in its entirety. The main purpose
is to demonstrate that the security of our protocol, which is more realistic and
complete, can be formally analyzed. Our protocol can be represented like in
the Figure 2. The arrows with 1 stands for the initialization step. The arrows
marked with 2 represents the complete set of sessions during a cycle. The arrows
marked with 3 illustrate the invocation of the renewing subprotocol. Finally, the
arrow marked with 4 symbolizes the break point between two lifecycle and can
stand for the renewing during the key derivation and the one-way property of
the derivation.

association
step first session

(resynchronization
session if needed)

nth session

renewing
subprotocol

2

2

1

3

first session

(resynchronization
session if needed)

nth session

2

2

1st
lifecycle

4

2 nd
lifecycle

Future
lifecycle

Fig. 2. The graphical representation of the protocol

We declare now that two lifecycle are independent thanks to its renewing sub-
protocol, because the one-way property and the use of random nonces produce
a new secret that is strongly independent from the previous. This independence
implies that our analysis can be restricted to one lifecycle.

If we examine a lifecycle, Alice and Bob will process bn3 − 1c sessions. The
rest of the analyses are conducted with the use of formal methods, because they
can scrutinize the security of single or multiple concurrent sessions of the main
subprotocol.

Furthermore if the sessions are indeed independent, the security analysis can
be reduced to single session execution. A session is independent from the others
if it does not deliver information about past and future sessions. Proving the
independence is done with the use of automated tools.

ECRYPT Workshop on Lightweight Cryptography - November 2011 202

12 Näım Qachri, Frédéric Lafitte, and Olivier Markowitch

During a lifecycle, a session i has the most informations about the (i− 1)th
and (i + 1)th sessions. Proving this independence consists in proving that both
consecutive sessions are independent. By induction, if the session (i− 1)th and
i are independent and the session i and (i + 1)th are independent, then by
transitivity the sessions (i + 1)th and (i− 1)th are independent.

We have devised and made the analysis of parallel executions of three con-
secutive sessions with the tools AVISPA and ProVerif in sections 4.1 and 4.2
respectively. The analysis has not found any attack such as impersonation, re-
play, or man-in-the-middle attacks. We can consider then that the security of
each session is equivalent to the security of one session. Furthermore, this inde-
pendence proves that the protocol is backward and forward secure.

The construction of the chain (of hashed values) is an important aspect
in the security of our subprotocols. In [8], the authors describe efficient and
secure methods to compute hash chains for authentication. These methods are
stronger than ours, but they make the assumption that a hashed value of the
chain may be revealed after its use. In that case, the collection of the revealed
values provide the ability to forge false chains of hashed values. We do not make
such an assumption, because the elements of our hash chain are thrown after
their use and therefore never revealed. Nonetheless, it remains possible to use
the construction developed in [8] for our protocol.

5 Other security finding

If the underlying technology of implementation is based on very short range
communication technologies (such as RFID or NFC technologies), it would be
possible to detect cloned device thanks to the value of CC.

The cloned device will have access during a maximum of n sessions. After
those n sessions, the key renewing will be made with one of the two devices
(the legit or the cloned device). After the renewing, we have two possibilities.
First, the legit user has made the renewing and then the cloned has not the new
secret s and cannot process any session (the device should be cloned again). In
the second case, the cloned device has made the renewing, but the user cannot
process a session and then he detects the cloning.

This cloning detection is efficient only if eavesdropping is made really hard,
because the cloned device could make the renewing by listening the renewing
processed by the legit device. This security finding is limited to very short range
communication technologies for that reason.

6 Future Works and Conclusion

We have developed a generic and efficient authenticated key agreement pro-
tocol for lightweight devices. This protocol provides automated key renewing,
contributivity and security against nonce corruption. This protocol has been
verified to be secure with AVISPA and ProVerif. Future studies will bring new

ECRYPT Workshop on Lightweight Cryptography - November 2011 203

Title Suppressed Due to Excessive Length 13

protocols with concrete cryptographic primitives for some specific applications.
For instance, the usage of our authenticated key agreement protocol can be ap-
plied to create more robust authenticated distance bounding protocols for RFID
technologies.

References

1. Aboba, B., Blunk, L., Vollbrecht, J., and Carlson, J. Extensible authen-
tication protocol (EAP). RFC 3748, June 2004.

2. Blanchet, B. Automatic verification of correspondences for security protocols.
Journal of Computer Security 17, 4 (July 2009), 363–434.

3. Challal, Y., Bouabdallah, A., and Hinard, Y. Efficient multicast source
authentication using layered hash-chaining scheme. In Proceedings of the 29th
Annual IEEE International Conference on Local Computer Networks (Washington,
DC, USA, 2004), LCN ’04, IEEE Computer Society, pp. 411–412.

4. Choi, S. Denial-of-service resistant multicast authentication protocol with predic-
tion hashing and one-way key chain. In Proceedings of the Seventh IEEE Interna-
tional Symposium on Multimedia (Washington, DC, USA, 2005), IEEE Computer
Society, pp. 701–706.

5. Diffie, W., and Hellman, M. E. New directions in cryptography. In IEEE
Transactions on Information Theory (1976), vol. 22, pp. 644–654.

6. Dolev, D., and Yao, A. On the security of public key protocols. Information
Theory, IEEE Transactions on 29, 2 (1983), 198–208.

7. Fluhrer, S., Mantin, I., and Shamir, A. Weaknesses in the key scheduling
algorithm of rc4. In Proceedings of the 4th Annual Workshop on Selected Areas of
Cryptography (2001), S. B. . Heidelberg, Ed., pp. 1–24.

8. Hu, Y.-C., Perrig, A., and Jakobsson, M. Efficient constructions for one-way
hash chains. In Applied Cryptography and Network Security (New York, NY, June
2005).

9. Jeong, I., Katz, J., and Lee, D. One-round protocols for two-party authenti-
cated key exchange. In Applied Cryptography and Network Security, M. Jakobs-
son, M. Yung, and J. Zhou, Eds., vol. 3089 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2004, pp. 220–232.

10. Klein, A. Attacks on the rc4 stream cipher. Des. Codes Cryptography 48 (Septem-
ber 2008), 269–286.

11. Krawczyk, H. Cryptographic extraction and key derivation: The hkdf scheme.
In Advances in Cryptology, CRYPTO, T. Rabin, Ed., vol. 6223 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2010, pp. 631–648.

12. LaMacchia, B., Lauter, K., and Mityagin, A. Stronger security of authenti-
cated key exchange. In Proceedings of the 1st international conference on Provable
security (Berlin, Heidelberg, 2007), ProvSec’07, Springer-Verlag, pp. 1–16.

13. Lamport, L. Password authentication with insecure communication. Communi-
cations of the ACM 24, 11 (November 1981), 770–772.

14. Needham, R., and Schroeder, M. Using encryption for authentication in large
networks of computers. Communications of the ACM 21, 12 (December 1978),
993–999.

15. Neuman, B. C., and Ts’o, T. Kerberos: An authentication service for computer
networks. IEEE Communications 32, 9 (September 1994), 33–38.

ECRYPT Workshop on Lightweight Cryptography - November 2011 204

14 Näım Qachri, Frédéric Lafitte, and Olivier Markowitch

16. Qachri, N., and Roggeman, Y. The flaws and critics about the security layer
for the wimedia mac standard. In 30-th symposium on Information Theory in the
Benelux (may 2009), pp. 89–96.

17. Stubblefield, A., Ioannidis, J., and Rubin, A. D. Using the fluhrer, mantin,
and shamir attack to break wep. Tech. Rep. TD-4ZCPZZ, AT&T Labs, 2001.

18. team, T. A. Avispa v1.1 user manual, June 2006.
19. team, T. A. Hlpsl tutorial: A beginner’s guide to modelling and analysis internet

security protocols, June 2006.
20. Wang, F., and Zhang, Y. A new provably secure authentication and key agree-

ment mechanism for sip using certificateless public-key cryptography. In 2007
International Conference on Computational Intelligence and Security (December
2007), IEEE, Ed., pp. 809–814.

21. Zou, X., Thukral, A., and Ramamurthy, B. An authenticated key agreement
protocol for mobile ad hoc networks. In Mobile Ad-hoc and Sensor Networks. Sec-
ond International Conference, MSN 2006. Proceedings (Lecture Notes in Computer
Science Vol. 4325). Springer-Verlag, January 2006.

Appendix A. HLPSL specification of the main subprotocol

%%% This is the Alice Role of the authenticated key agreement protocol
%%% where the input parameters are the main knowledge of Alice and Bob

role alice (A,B: agent ,
S: symmetric_key ,
Hash: hash_func ,
CC: nat ,
Sess: nat ,
SND ,RCV : channel (dy))

played_by A def=
local
State: nat ,
Kconf: message ,
R1,R2: text ,
Authb: message ,
K1: symmetric_key ,
K2: symmetric_key ,
K3: symmetric_key ,
X : hash(message.hash(message.nat.nat.nat.text.text.agent)) %%% expression of the

%%% knowledge on the
%%% format used to
%%% compute the message
%%% authentication code

%%% creation of the 3 keys from the shared secret
init
State :=1 /\
K1:=Hash(Hash(Hash(Hash(S).S).S).S) /\
K2:=Hash(Hash(Hash(S).S).S) /\
K3:=Hash(Hash(S).S)

transition

%%% First message that launchs the key agreement with a fresh Nonce R1

1. State=0 /\ RCV(start) =|>
State ’:= 2 /\ R1 ’:=new() /\ SND(A.Sess .{1.CC.Sess.R1 ’.A.Hash (1.CC.Sess.R1 ’.A)}_K1)

ECRYPT Workshop on Lightweight Cryptography - November 2011 205

Title Suppressed Due to Excessive Length 15

%%% Answer of Bob with R2 and the MAC that confirms that the key derived by Alice is
%%% the same than Bob

2. State=2 /\ RCV(B.Sess .{2.CC.Sess.R2 ’.R1.B.X’}_K1)
/\ X’ = Hash(xor(Hash(K2.Hash(K2.CC.Sess.R1.R2 ’.K3)) ,23644). Hash(xor(Hash(K2.

Hash(K2.CC.Sess.R1.R2 ’.K3)) ,13878).2. CC.Sess.R2 ’.R1.B))
=|> State ’:=4 /\ Kconf ’:= Hash(K2.Hash(K2.CC.Sess.R1.R2 ’.K3))

/\ SND(Hash(xor(Kconf ’ ,23644). Hash(xor(Kconf ’ ,13878).3.A.CC.Sess.R1.R2)))
/\ witness(A,B,alice_bob_R2 ,R2 ’)
/\ witness(A,B,derive_ab_ks ,Kconf ’)
/\ request(A,B,bob_alice_R1 ,R1)

end role

%%%
%%% This is the role played by Bob in the system
%%%

role bob (
A,B: agent ,
S: symmetric_key ,
Hash: hash_func ,
CC: nat ,
Sess: nat ,
SND ,RCV : channel (dy))

played_by B def=
local
State: nat ,
Kconf: message ,
R1,R2: text ,
Autha: message ,
K1: symmetric_key ,
K2: symmetric_key ,
K3: symmetric_key ,
X3: hash(nat.nat.nat.text.agent),
X2: hash(message.hash(message.nat.agent.nat.nat.text.text))

init
State :=1 /\
K1:=Hash(Hash(Hash(Hash(S).S).S).S) /\
K2:=Hash(Hash(Hash(S).S).S) /\
K3:=Hash(Hash(S).S)

transition

%%% Reception of the message of Alice that wants make a key agreement
%%% based on the secret shared keys , on the fresh nonce of Alice and on
%%% the nonce chosen by Bob

1. State=1 /\ RCV(A.Sess .{1.CC.Sess.R1 ’.A.X3 ’}_K1) /\ Hash (1.CC.Sess.R1 ’.A) = X3’
=|> State ’:= 3 /\ R2 ’:= new() /\ Kconf ’:= Hash(xor(K2 ,23644). Hash(xor(K2 ,13878).

CC.Sess.R1.R2 ’.K3)) /\ SND(B.Sess .{2.CC.Sess.R2 ’.R1 ’.B.Hash(xor(Kconf ’,
23644). Hash(xor(Kconf ’ ,13878).2. CC.Sess.R2 ’.R1.B))}_K1) /\ secret(Kconf ’,
kconf ,{A,B}) /\ witness(A,B,bob_alice_R1 ,R1 ’)

%%% Last received message where Bob checks the good ending of the protocol and that
%%% the authentication is well achieved

2. State = 3 /\ RCV(X2 ’) /\ Hash(xor(Kconf ,23644). Hash(xor(Kconf ,13878).3.A.CC.Sess.
R1.R2)) = X2 ’
=|> State ’:=5 /\ request(A,B,alice_bob_R2 ,R2) /\ request(A,B,derive_ab_ks ,
Kconf)

end role

%%

ECRYPT Workshop on Lightweight Cryptography - November 2011 206

16 Näım Qachri, Frédéric Lafitte, and Olivier Markowitch

%%% This role makes the composition of the roles of Alice and Bob and describes a
%%% session of the protocol
%%

role session(A,B : agent ,
S: symmetric_key ,
Hash : hash_func ,
CC: nat ,
Sess: nat)

def=
%%% Define of the channel of communications
local SA , SB , RA, RB: channel (dy)

composition
alice (A, B, S, Hash , CC, Sess , SA, RA)
/\ bob (A, B, S, Hash , CC , Sess , SB, RB)

end role

%%

role environment ()
def=

const
kconf , bob_alice_R1 , alice_bob_R2 , derive_ab_ks : protocol_id ,
kab , kai , kib : symmetric_key ,
a, b : agent ,
h : hash_func

intruder_knowledge = {a, b, h, kai , kib} %%% it defines what knows an intruder i

%% The test involves 4 parallel sessions

composition

%% Two legitimates sessions between Alice and Bob are executed with consecutive number
%% and keys of session

session(a, b, kab , h, 1, 1) /\ session (a,b, h(h(h(h(kab).kab).kab.).kab), h, 1,2)

%% Two sessions where the intruder plays one of the two role in a protocol session

/\ session(a, i, kai , h, 1, 2) /\ session(i, b, kib , h, 1, 3)

end role

%%% The goal section describes the security goals that must achieve the protocol to
%%% confirm the mutual authentication and to ensure the secrecy of the derived keys

goal

secrecy_of kconf
authentication_on bob_alice_R1
authentication_on alice_bob_R2
authentication_on derive_ab_ks

end goal

environment ()

Appendix B. ProVerif specification of the main
subprotocol

ECRYPT Workshop on Lightweight Cryptography - November 2011 207

Title Suppressed Due to Excessive Length 17

(* T Y P E S *)
type N. (*nonce*)
type M. (*message*)
type I. (*identity*)
type R. (*round*)
type O. (*other*)

(* S Y M B O L S *)
const RND1,RND2,RND3:R.
const IDA, IDB: I.
const CC, i1, i2, i3: O.

(* P R I M I T I V E S *)
fun h(bitstring): bitstring.
fun mac(bitstring, bitstring): bitstring.
fun senc(bitstring, bitstring): bitstring. (*/!\ this is authenticated encryption*)
reduc forall k : bitstring, x : bitstring; sdec(k , senc(k , x)) = x .

(* A D V E R S A R Y *)
free c: channel.
set attacker = active.
free s, secret1, secret2, secret3: bitstring [private].
query attacker (secret1).
query attacker (secret2).
query attacker (secret3).

(* P R O C E S S *)

let processA1 = new rA:N;
let k2 = h(s) in

let k1 = h((k2 , s)) in
let k0 = h((k1 , s)) in
let m = (RND1,CC, i1, rA, IDA) in
let x = (m, h(m)) in
out(c, (IDA, i1, senc(k0 , x)));
in(c, (= IDB,= i1, y:bitstring));
let (mp:bitstring,macmp:bitstring) = sdec(k0 , y) in

let (= RND2,= CC,= i1, rB :N,= rA,= IDB) = mp in
let KEYS = mac(k2 , (CC, i1, rA, rB , k1)) in
if macmp = mac(KEYS ,mp) then

out(c, (IDA, i1,mac(KEYS , (RND3, IDA,CC, i1, rA, rB))));
out(c, senc(KEYS , secret1)).

let processB1 = new rB :N;
let k2 = h(s) in
let k1 = h((k2 , s)) in
let k0 = h((k1 , s)) in
in(c, (= IDA,= i1, y:bitstring));
let (m:bitstring,= h(m)) = sdec(k0 , y) in
let (= RND1,= CC,= i1, rA:N,= IDA) = m in
let KEYS = mac(k2 , (CC, i1, rA, rB , k1)) in
let mp = (RND2,CC, i1, rB , rA, IDB) in
let xp = (mp,mac(KEYS ,mp)) in
out(c, (IDB, i1, senc(k0 , xp)));
in(c, (= IDA,= i1, (= RND3,= IDA,= CC,= i1,= rA,= rB)));
out(c, senc(KEYS , secret1)).

let processA2 = new rA:N;
let tmp1 = h((h(s), s)) in
let tmp2 = h((tmp1 , s)) in
let k2 = h((tmp2 , s)) in

let k1 = h((k2 , s)) in
let k0 = h((k1 , s)) in

let m = (RND1,CC, i2, rA, IDA) in
let x = (m, h(m)) in

ECRYPT Workshop on Lightweight Cryptography - November 2011 208

18 Näım Qachri, Frédéric Lafitte, and Olivier Markowitch

out(c, (IDA, i2, senc(k0 , x)));
in(c, (= IDB,= i2, y:bitstring));
let (mp:bitstring,macmp:bitstring) = sdec(k0 , y) in
let (= RND2,= CC,= i2, rB :N,= rA,= IDB) = mp in
let KEYS = mac(k2 , (CC, i2, rA, rB , k1)) in
if macmp = mac(KEYS ,mp) then
out(c, (IDA, i2,mac(KEYS , (RND3, IDA,CC, i2, rA, rB))));
out(c, senc(KEYS , secret2)).

let processB2 = new rB :N;
let tmp1 = h((h(s), s)) in
let tmp2 = h((tmp1 , s)) in
let k2 = h((tmp2 , s)) in

let k1 = h((k2 , s)) in
let k0 = h((k1 , s)) in

out(c, s);
in(c, (= IDA,= i2, y:bitstring));
let (m:bitstring,= h(m)) = sdec(k0 , y) in
let (= RND1,= CC,= i2, rA:N,= IDA) = m in
let KEYS = mac(k2 , (CC, i2, rA, rB , k1)) in
let mp = (RND2,CC, i2, rB , rA, IDB) in
let xp = (mp,mac(KEYS ,mp)) in
out(c, (IDB, i2, senc(k0 , xp)));
in(c, (= IDA,= i2, (= RND3,= IDA,= CC,= i2,= rA,= rB)));
out(c, senc(KEYS , secret2)).

let processA3 = new rA:N;
let tmp1 = h((h(s), s)) in
let tmp2 = h((tmp1 , s)) in
let tmp3 = h((tmp2 , s)) in
let tmp4 = h((tmp3 , s)) in
let tmp5 = h((tmp4 , s)) in
let k2 = h((tmp5 , s)) in

let k1 = h((k2 , s)) in
let k0 = h((k1 , s)) in

let m = (RND1,CC, i3, rA, IDA) in
let x = (m, h(m)) in
out(c, (IDA, i3, senc(k0 , x)));
in(c, (= IDB,= i3, y:bitstring));
let (mp:bitstring,macmp:bitstring) = sdec(k0 , y) in
let (= RND2,= CC,= i3, rB :N,= rA,= IDB) = mp in
let KEYS = mac(k2 , (CC, i3, rA, rB , k1)) in
if macmp = mac(KEYS ,mp) then
out(c, (IDA, i3,mac(KEYS , (RND3, IDA,CC, i3, rA, rB))));
out(c, senc(KEYS , secret3)).

let processB3 = new rB :N;
let tmp1 = h((h(s), s)) in
let tmp2 = h((tmp1 , s)) in
let tmp3 = h((tmp2 , s)) in
let tmp4 = h((tmp3 , s)) in
let tmp5 = h((tmp4 , s)) in
let k2 = h((tmp5 , s)) in

let k1 = h((k2 , s)) in
let k0 = h((k1 , s)) in

in(c, (= IDA,= i3, y:bitstring));
let (m:bitstring,= h(m)) = sdec(k0 , y) in
let (= RND1,= CC,= i3, rA:N,= IDA) = m in
let KEYS = mac(k2 , (CC, i3, rA, rB , k1)) in
let mp = (RND2,CC, i3, rB , rA, IDB) in
let xp = (mp,mac(KEYS ,mp)) in
out(c, (IDB, i3, senc(k0 , xp)));
in(c, (= IDA,= i3, (= RND3,= IDA,= CC,= i3,= rA,= rB)));
out(c, senc(KEYS , secret3)).

process (!processA1 |!processB1)
| (!processA2 |!processB2)

ECRYPT Workshop on Lightweight Cryptography - November 2011 209

Title Suppressed Due to Excessive Length 19

| (!processA3 |!processB3)

ECRYPT Workshop on Lightweight Cryptography - November 2011 210

Relation among the Security Models for

RFID Authentication Protocol

Daisuke Moriyama1, Shin’ichiro Matsuo1, and Miyako Ohkubo1

National Institute of Information and Communications Technology (NICT), Japan
{dmoriyam,smatsuo,m.ohkubo}@nict.go.jp

Abstract. In this paper, we present the relationship between the pri-
vacy definition for Radio Frequency Identification (RFID) authentication
protocol. The security model is necessary to ensure the security or pri-
vacy, but many researchers describe different privacy notion for RFID
authentication and the technical relationship among them is unclear.
We reconsider the zero-knowledge privacy proposed by Deng et al. in
ESORICS 2010 and show that this privacy is equivalent to the indis-
tinguishability based privacy proposed by Juels and Weis. Furthermore,
we present that these privacy definitions are technically weaker than the
simulation based privacy proposed by Paise and Vaudenay in AsiaCCS
2008.

1 Introduction

Radio Frequency Identification (RFID) technology enables the reader
to identify objects. Briefly speaking, RFID systems consist of a
reader and many tags. The reader communicates with the tags over
the wireless (insecure) channel and checks the identity. RFID is ex-
pected to replace barcode and it is now used in many industries
(manufacturing, transportation, logistics, etc.). However, the exist-
ing low-cost tags only contain its identity without any protection and
respond their identity directly when the reader provides the electric
power. Therefore, many cryptographer have been studied the RFID
authentication protocol to overcome the privacy problem.

In cryptography, the security/privacy of each schemes or proto-
cols is evaluated by the security model. There are several security
models for RFID authentication protocols [4, 5, 7, 8, 11–14, 16]. All
these models define the three component: correctness, security and
privacy. The correctness and security definitions are almost same in
these models. The correctness ensures that the reader accepts the
tag if the reader and tag correctly communicate each other. The

ECRYPT Workshop on Lightweight Cryptography - November 2011 211

2 Daisuke Moriyama, Shin’ichiro Matsuo, and Miyako Ohkubo

security requires that if a malicious adversary impersonates a valid
tag and interferes the communication, then the reader rejects and
aborts the session. However, the privacy notion is not commonly de-
fined and the relationship between them is unclear. In this paper, we
concentrate on the privacy definitions for the RFID authentication
protocol and investigate the relationship.

Our Contributions. Our contributions are twofold:

1. We show that the indistinguishability based privacy definition
proposed by Juels-Weis [10,11] and zero-knowledge based privacy
definition proposed by Deng et al. [7] are equivalent. Though
Deng et al. provided zero-knowledge based privacy is stronger
than indistinguishability based privacy, we show that their argu-
ment is not adequate and these privacy definitions are proven to
be equivalent.

2. There is a technical gap between indistinguishability based pri-
vacy and simulation based privacy proposed by Paise and Vaude-
nay [16]. There are many existing RFID authentication protocols
which are proven to be secure in one of the two security mod-
els or its slight variants [9, 15], but no one investigates whether
there exists a technical difference1 between [11] and [16]. These
privacy definitions are formalized in different style and it is hard
to present the difference directly. Hence, we consider a variant
of zero-knowledge based privacy proposed in [7] to reduce the
gap between them (this variant is polynomially equivalent to the
Juels-Weis security model). Then we compare the resulting pri-
vacy definition with [16] and show that Paise-Vaudenay privacy
definition requires reader’s privacy in addition to the tag’s pri-
vacy.

Related Work. Ha et al. proposed an unpredictability based pri-
vacy model [8] and it was refined by several researchers [12,14]. This
kind of privacy model requires that at least the tag’s response to
the reader is indistinguishable from random string. Ma et al. [14]
showed that (1) the unpredictability based privacy model requires
strictly stronger privacy than the indistinguishability based privacy
1 We ignore the several minor differences including the timing of the corrupt query
and registration of the new tags.

ECRYPT Workshop on Lightweight Cryptography - November 2011 212

Relation among the Security Models for RFID Authentication Protocol 3

model [11], and (2) the existence of an RFID authentication protocol
which satisfies the unpredictability based privacy model equals the
existence of pseudo-random function. The pseudo-random function is
used in many lightweight RFID authentication protocol, but we con-
sider the unpredictability based privacy is too strong to satisfy. For
example, if both the reader and tag can perform IND-CCA2 secure
public key encryption and all communication is encrypted by each
party’s public key, then none of the secret information is revealed
by the communication. However, the ciphertext usually consists of
group elements and is easily distinguishable from random string.

The other privacy formalization is universal composability based
privacy model [4, 5, 13]. This model requires that any actions of the
malicious adversary are simulated by a simulator and any external
environment cannot distinguish whether it interacts with the ad-
versary or simulator. The authors did not describe the relationship
between their model and the other privacy model, but Paise and
Vaudenay demonstrated the RFID authentication protocol depicted
in [5] does not hold narrow-forward privacy in the Paise-Vaudenay
privacy model [16].

Throughout the paper we use the following notation. When A
is a probabilistic machine or algorithm, A(x) denotes the random
variable of the output of A on input x. If O is an oracle, AO denotes

that A can issue O as oracle query. y
R← A(x) denotes that y is

randomly selected from A(x) according to its distribution. Then,
A(x) → a indicates the event that A outputs a on input x if a is a

value. When A is a set, y
U← A means that y is uniformly selected

from A. When A is a value, y := A denotes that y is set as A.

2 Existing RFID Security Models

We review security models proposed by Juels-Weis [11], Deng-Li-
Yung-Zhao [7] and Paise-Vaudenay [16], respectively. Especially, we
only concentrate on the privacy definition in the security model and
call it as privacy model. We denote by T the total set of tags in the
RFID authentication protocol that communicates with the readerR.
The reader runs Setup algorithm and obtains (pk, sk). The public pa-

ECRYPT Workshop on Lightweight Cryptography - November 2011 213

4 Daisuke Moriyama, Shin’ichiro Matsuo, and Miyako Ohkubo

rameter pk is published and secret key sk is kept as secret. If the
RFID authentication protocol is based on symmetric key cryptogra-
phy, each tag shares several secret keys with the reader (sk is the set
of these secret keys). In the authentication phase, the reader and the
tag communicate each other with wireless communication. We con-
sider an active adversary A who can interfere/insert/delete/modify
the communication message and its direction.

2.1 Juels-Weis Privacy Model

Juels and Weis proposed a privacy model for RFID authentication
protocol based on indistinguishability [11]. We describe a slight vari-
ant of the privacy model modified by Deng et al. [7]. The privacy
game between an adversary A := (A1,A2) and challenger is defined
as follows:

Setup. The challenger runs Setup algorithm and obtains (sk, pk)
to setup the reader R and set of tags T . The adversary obtains
public parameter pk and (R, T).

Phase 1. The adversary A1 can issue oracle queries O := {Launch,
SendReader, SendTag,Result,Corrupt} and interact with the reader
and tags:

Launch(1k) — Launch the reader to initiate the session.
SendReader(m) — Send arbitrary message m to the reader.
SendTag(t,m) — Send arbitrary message m to the tag t ∈ T .
Result(sid) — Output whether the reader accepts or not for the
session sid (sid is uniquely determined by the communication
message).

Corrupt(t) — Output the secret key of the tag t.

Challenge. The adversary sends two tags t∗0 and t∗1 (t
∗
0 ̸= t∗1) to the

challenger and outputs state information st1. Then the challenger

flips a coin b
U← {0, 1} and sets T ′ := T \ {t∗0, t∗1}.

Phase 2. The adversary A2 obtains st1 and interacts with the
reader R and tags (t∗b , T ′) with the oracle queries. However, when
the adversary interacts with the challenge tag t∗b , we consider
special algorithm I. I relays the message between A and t∗b so
that the adversary communicates with t∗b anonymously.

Guess. The adversary A2 outputs a guess b′.

ECRYPT Workshop on Lightweight Cryptography - November 2011 214

Relation among the Security Models for RFID Authentication Protocol 5

We say that the adversary wins the game if b′ = b holds and (t∗0, t
∗
1)

is not corrupted. The advantage of the adversary in the above game
is defined as AdvINDΠ,A(k) := |2 · Pr[b′ = b]− 1|. This advantage is also
evaluated by the following experiment

ExpIND-bΠ,A (k)

(pk, sk)
R← Setup(1k);

(t∗0, t
∗
1, st1)

R← AO
1 (pk,R, T);

b
U← {0, 1}, T ′ := T \ {t∗0, t∗1};

b′
R← AO

2 (R, T ′, I(t∗b), st1):
Output b′

and we have AdvINDΠ,A(k) = |Pr[ExpIND-0
Π,A (k) → 1] − Pr[ExpIND-1

Π,A (k) →
1]|.

Definition 1. An RFID authentication protocol Π satisfies the pri-
vacy in the Juels-Wies security model if for any probabilistic polyno-
mial time adversary A, AdvIND

Π,A(k) is negligible.

In this paper, we call this privacy as IND-privacy.

2.2 Deng-Li-Yung-Zhao Privacy Model

The privacy model proposed by Deng et al. is based on a zero-
knowledge formulation [7]. The intuition behind this privacy model
is that when the communication message does not reveal any tag’s
identity nor secret key, then these messages should be simulated even
if an algorithm cannot interact with the tag.

We consider two experiments ExpZK-0A,D (k) and ExpZK-1S,D (k). In the
former experiment, the adversary A interacts with the reader and
tags. A outputs an arbitrary subset of tags C ⊆ T and the chal-

lenger uniformly chooses a challenge tag t∗
U← C at random. Then

the adversary can interacts with R, tags T ′ := T \ C and the chal-
lenge tag t∗ anonymously. When the adversary sends message m to
I, this algorithm passes m to t∗ and responds the output from t∗.
Finally the adversary outputs its view and an distinguisher outputs
a bit b with the view. The latter experiment is just same as the for-
mer experiment except that the simulator S cannot interact with
the challenge tag. We note that the adversary and simulator cannot

ECRYPT Workshop on Lightweight Cryptography - November 2011 215

6 Daisuke Moriyama, Shin’ichiro Matsuo, and Miyako Ohkubo

issue any corrupt queries to the tags in C in the experiment. These
experiments are depicted as follows:

ExpZK-0Π,A,D(k)

(pk, sk)
R← Setup(1k);

(C, st1)
R← AO

1 (pk,R, T);
t∗

U← C, T ′ := T \ C;
viewA

R← AO
2 (R, T ′, I(t∗), st1);

b
R← D(C, t∗, viewA):

Output b

ExpZK-1Π,S,D(k)

(pk, sk)
R← Setup(1k);

(C, st1)
R← SO

1 (pk,R, T);
t∗

U← C, T ′ := T \ C;
viewS

R← SO
2 (R, T ′, st1);

b
R← D(C, t∗, viewS):

Output b

In this privacy model, the advantage of the adversary is defined by
AdvZKΠ,A,S,D(k) = |Pr[ExpZK-0Π,A,D(k)→ 1]− Pr[ExpZK-1Π,S,D(k)→ 1]|.
Definition 2. An RFID authentication protocol Π satisfies the pri-
vacy in the Deng et al. security model if for any probabilistic polyno-
mial time adversary A, there exists a probabilistic polynomial time
algorithm S, for any probabilistic polynomial time distinguisher D,
AdvZKΠ,A,S,D(k) is negligible.

In the following, we call this privacy as ZK-privacy.

2.3 Paise-Vaudenay Privacy Model

Vaudenay [18] proposed a simulation based privacy model for two-
pass RFID authentication protocol. Paise and Vaudenay [16] ex-
tended it to satisfy reader authentication. The privacy game of their
model is slightly similar to the Deng et al.’s privacy model, but the
game flow is not explicitly defined. Instead, the adversary addition-
ally can issue the following queries:

CreateTag(ID) — Register a free tag to the reader. The reader as-
signs the secret key for this tag and updates the database.

DrawTag(C, Dist) — According to the distribution Dist and the
arbitrary sets of tags C ⊆ T , the oracle responds drawn tags
V := {vtag1, . . .}. The oracle keeps a list list that maps the drawn
tags to the real identity.

Free(vtag) — Change the drawn tag vtag to the free tag.

In their model, the challenger assigns temporal identity to each
drawn tag. The adversary can issue SendTag query to the drawn

ECRYPT Workshop on Lightweight Cryptography - November 2011 216

Relation among the Security Models for RFID Authentication Protocol 7

tags only and free tags do not execute the communication to the
reader. These queries are useful when we consider the tag’s recycle.

Paise and Vaudenay classifies the adversary’s capacity into 2× 4
categories.

1. Result query for the reader:
(a) Wide — The adversary can issue result query.
(b) Narrow — The adversary cannot issue result query.

2. Corrupt query for the tag:
(a) Strong — No restriction for the corrupt query.
(b) Destructive — If the adversary issues the corrupt query to a

drawn tag, the tag is destroyed and unusable.
(c) Forward — After the corrupt query, the adversary cannot is-

sue any other queries in the experiment.
(d) Weak — The adversary cannot issue corrupt query.

For example, wide-strong privacy is defined as follows. Consider the
sets of the oracle queries O1 := {CreateTag,DrawTag,Free,Corrupt}
and O2 := {Launch, SendReader, SendTag,Result}. The wide-strong
privacy game in this model is defined by the following experiments:

ExpSIM-0Π,A (k)

(pk, sk)
R← Setup(1k);

b
R← AO1,O2(pk,R):

Output b

ExpSIM-1Π,A,S(k)

(pk, sk)
R← Setup(1k);

b
R← ASO1 (pk)(pk):

Output b

In the SIM-0 experiment, adversary A can create tags and interact
with reader and tags through O2 query. On the contrary, the SIM-1
experiment requires that simulator S responds the adversary’s oracle
queries. Note that S cannot issue O2 query and all communication
messages must be simulated by S. The advantage of the adversary is
defined by AdvSIMΠ,A,S(k) := |Pr[ExpSIM-0Π,A (k)→ 1]− Pr[ExpSIM-1Π,A,S(k)→
1]|. Of course, we can formalize the other types of adversary in the
same fashion.

Definition 3. An RFID authentication protocol Π satisfies the (wide/
narrow)-(strong/descructive/forward/weak) privacy in the Paise-
Vaudenay security model if for any probabilistic polynomial time ad-
versary A, there exists a probabilistic polynomial time algorithm S,
AdvSIMΠ,A,S(k) is negligible.

In the following, we call this privacy as SIM-privacy.

ECRYPT Workshop on Lightweight Cryptography - November 2011 217

8 Daisuke Moriyama, Shin’ichiro Matsuo, and Miyako Ohkubo

3 Equivalence between IND and ZK Privacy

In the previous section, we described the three privacy models. Deng
et al. [7] showed that their ZK-privacy is stronger than IND-privacy.
That is, there exists two examples of the RFID authentication proto-
cols which are secure in the Juels-Weis privacy model but insecure in
the zero-knowledge privacy model. However, we will show that these
privacy models are proven to be equivalent. To justify our result, we
first review their examples and point out the flaw of their argument.

The former example is constructed by digital signature scheme.
In the setup phase, a reader generates signing/verification key pair

(sk, vk) and sends the signature of the tag’s identity σi
R← Sign(sk, ti)

as a secret key. To authenticate the tag, the reader outputs a request
message and the tag responds σi itself. Deng et al. argued that “If
the system has only one tag, it is clear to satisfy the IND-privacy
but the simulator cannot simulate the signature at Phase 2 in the
ZK-privacy”. But we remark that this implication does not make
sense. As we explicitly describe in Sect 2.1, IND-privacy assumes
that the adversary must output two different tags (it is also implicitly
assumed in the IND-CPA security for public key encryption). Thus
their instantiation is not adequate to consider the IND-privacy. If
we consider there are more than two tags in the system, it is clear
that the adversary against IND-privacy can distinguish the message
since the output of the tag’s message is deterministically defined.
Moreover, even in the case for ZK-privacy, the simulator can simulate
the message properly since it can access to the (only one) tag in the
Phase 1 and obtain the message (again, we note that this message
is always reused when the tag receives a request message).

The building block of the latter example is public key encryp-
tion scheme (Gen,Enc,Dec) and an RFID authentication protocol Π
which holds IND-privacy. Following [7], we assume that when the
reader sends a to the tag, it responds b to the reader in Π. Now we
consider the following RFID authentication protocolΠ ′. In the setup

phase, a reader generates public/secret key pair (pkPKE, skPKE)
R←

Gen(1k) and sends skPKE to the tags (we remark that all tags in this
protocol shares this unique secret key) as a secret key for Π ′. When
the reader authenticates the tag, it generates a and sends encrypted

ECRYPT Workshop on Lightweight Cryptography - November 2011 218

Relation among the Security Models for RFID Authentication Protocol 9

message c
R← Enc(pkPKE, a). If the tag receives the message, it de-

crypts as a := Dec(skPKE, c), generates b with Π and responds a∥b to
the reader. Deng et al. said that Π ′ satisfies IND-privacy and does
not satisfy ZK-privacy since no simulator can output the decryption
of the ciphertext. However, we found that this argument is also wrong
and Π ′ still holds ZK-privacy. Since the communication message is
indistinguishable, simulator S1 can internally run zero-knowledge ad-
versary (A1,A2). No problem happens for the simulation of A1 and
A1 outputs (C, st1). When A1 outputs (C, st1), S1 uniformly chooses

t∗1
U← C and runs A2 with input (pk,R, T \ C, I(t∗1), st1). Remark

that t∗1 may not be identical to the challenge tag, but IND-privacy
ensures that no adversary can distinguish whether he interacts with
the challenge tag or t∗1. If A2 sends a message to the challenge tag,
S1 simply sends it to t∗1 and responds its message. When A2 outputs
viewA, then S1 sets st′1 := viewA and outputs (C, st′1). Finally, S2
outputs st′1 as its view regardless of the choice of the challenge tag.
Since the simulator can continue Phase 1 until the adversary outputs
the view (Phase 1 and 2 for the adversary), these outputs are indis-
tinguishable for any distinguisher D. Of course, if we try to simulate
the response of the SendTag query issued by A2 with S2, it is difficult
to construct such a simulator since S2 must break the security for
public key encryption. The key point here is that IND-privacy allows
S1 to simulate the whole behavior of the zero-knowledge adversary
(A1,A2).

Now, we show that IND-privacy is equivalent to ZK-privacy.

Theorem 1. The indistinguishability based privacy model is equiv-
alent to the zero-knowledge based privacy model.

Lemma 1. If an RFID authentication protocol Π holds IND-privacy,
it implies ZK-privacy.

Proof. We prove the above theorem by the following sequence of
games. Especially, we show that if for any IND adversary B, AdvIND

Π,B(k)
is negligible, then for any ZK adversary A, there exists an simula-
tor S, for any distinguisher D, AdvZKΠ,A,S,D(k) is negligible. For each
game, Pr[Tj] denotes the probability that the distinguisher outputs
1 in Game j.

ECRYPT Workshop on Lightweight Cryptography - November 2011 219

10 Daisuke Moriyama, Shin’ichiro Matsuo, and Miyako Ohkubo

Game 0: Game 0 is same as the original ZK-privacy game be-
tween a challenger and A．Without loss of generality, we assume

that t∗0
U← C is chosen as the challenge tag. It is clear that Pr[T0] =

Pr[ExpZK-0Π,A,D(k)→ 1].

Game 1: We modify Game 1 by changing the challenge tag. In

addition to t∗0, we select t∗1
U← C and the adversary (anonymously)

interacts with t∗1 instead of t∗0.

Game 2: Game 2 is the original ZK-privacy game between a chal-
lenger and S under the condition that S runs A as Fig. 2. Remark
that the challenge tag is chosen as Game 0 and the inputs to the
distinguisher is t∗0.

Game 0 (ZK-0) Game 1 Game 2 (ZK-1)

(pk, sk)
R← Setup(1k); (pk, sk)

R← Setup(1k); (pk, sk)
R← Setup(1k);

(C, st1)
R← AO

1 (pk,R, T); (C, st1)
R← AO

1 (pk,R, T); (C, st1)
R← SO

1 (pk,R, T);
t∗0

U← C, T ′ := T \ C; t∗0, t
∗
1

U← C, T ′ := T \ C; t∗0
U← C, T ′ := T \ C;

viewA
R← AO

2 (R, T ′, I(t∗0), st1); viewA
R← AO

2 (R, T ′, I(t∗1), st1); viewS
R← SO

2 (R, T ′, st1);

b
R← D(C, t∗0, viewA): b

R← D(C, t∗0, viewA): b
R← D(C, t∗0, viewA):

Output b Output b Output b

Fig. 1. Game Transformation for Theorem 1

SO
1 (pk,R, T) S2(R, T ′, st′1)

(C, st1)
R← AO

1 (pk,R, T); viewS := viewA:

t∗1
U← C, T ′ := T \ C; Output viewS

viewA
R← AO

2 (R, T ′, I(t∗1), st1);
st′1 := viewA:
Output (C, st′1)

Fig. 2. Simulation in Game 2

The flow of the game transformation is depicted in Fig. 1. We
evaluate the relations between pairs of advantages with the following
claims.

ECRYPT Workshop on Lightweight Cryptography - November 2011 220

Relation among the Security Models for RFID Authentication Protocol 11

Claim. There exists a probabilistic algorithm B such that

|Pr[T1]− Pr[T0]| ≤ AdvIND
Π,B(k).

Proof. If (A,D) distinguishes Game 0 and Game 1 with non-negligible
probability, we construct an algorithm B := (B1,B2) which can break
the IND-privacy. B internally runs (A,D) in the IND-privacy game
as follows:

BO
1 (pk,R, T)

(C, st1)
R← AO

1 (pk,R, T);
t∗0, t

∗
1

U← C, T ′ := T \ C;
st′1 := (T ′, t∗0, st1):
Output (t∗0, t

∗
1, st

′
1)

BO
2 (pk, I(t∗b), st′1)

viewA
R← AO

2 (R, T ′, I(t∗b), st1);
b′

R← D(C, t∗0, viewA):
Output b′

When the adversary A1 outputs C, B1 chooses two tags (t∗0, t
∗
1) in C

and sends it to the challenger. Since the challenger chooses a coin

b
U← {0, 1} and B2 can access to I(t∗b), SendTag query whichA2 issues

to the challenge tag can be completely simulated. If the flipped coin
is b = 0, the output distribution is same as Game 0. Otherwise, this
simulation is equivalent to Game 1. Therefore, we obtain

|Pr[T1]− Pr[T0]| ≤
∣
∣AdvIND-1

Π,B (k)− AdvIND-0
Π,B (k)

∣
∣ = AdvIND

Π,B(k).

⊓⊔

Claim. We have Pr[T2] = Pr[T1].

Proof. We show that the output distribution of A in Game 1 is
equivalent to that of S in Game 2. Recall that S2 cannot interact
with the challenge tag in the original ZK-privacy game. Nonetheless,
the previous claim shows that the anonymous interaction between
A2 and t∗0 can be changed by another tag. This means that even if S1
chooses another tag t∗1 ∈ C and replaces the anonymous interaction
by I(t∗1), A2 cannot distinguish the difference between the games.
Therefore S1 can simulate (A1,A2) as Fig.2 and obtains the view of
the adversary viewA. Any oracle queries made by (A1,A2) can be
simulated correctly since S1 can send the same query to O. Thus
A2’s output in Game 1 is equivalent to S2’s output in Game 2 and it
is (information theoretically) indistinguishable for any distinguisher
D. Therefore we have Pr[T2] = Pr[T1]. ⊓⊔

ECRYPT Workshop on Lightweight Cryptography - November 2011 221

12 Daisuke Moriyama, Shin’ichiro Matsuo, and Miyako Ohkubo

It is clear that Pr[T2] = Pr[ExpZK-1Π,B,D(k) → 1] and finally we have

AdvZKΠ,A,S,D(k) ≤ AdvINDΠ,B(k). ⊓⊔

Remark. If the zero-knowledge adversary sets C as only one tag, then
we can directly transform Game 0 to Game 2. The strategy of the
simulator is same as Fig. 2. The simulator issues SendTag query in
Phase 1 until the zero-knowledge adversary finishes the experiment.

Lemma 2. If an RFID authentication protocol Π holds ZK-privacy,
it implies IND-privacy 2.

Proof. Again, we prove the above theorem by the following sequence
of games. We show that if for any ZK adversary A, there exists an
simulator S, for any distinguisher D, AdvZKΠ,B,S,D(k) is negligible, then

for any IND adversary A, AdvIND
Π,A(k) is negligible.

For each game, Pr[Tj] denotes the probability that the experi-
ment outputs 1 in Game j.

Game 0: Game 0 is same as the original IND-0 privacy game be-
tween a challenger and A．We consider A1 outputs two tags (t∗0, t

∗
1)

and t∗0 is chosen as the challenge tag in this game. It is clear that
Pr[T0] = Pr[ExpIND-0Π,A (k)→ 1].

Game 1: We modify Game 1 by changing the challenge tag from t∗0
to t∗1. It is clear that Pr[T1] = Pr[ExpIND-1

Π,A (k)→ 1].

Using A = (A1,A2), we construct the following ZK-privacy ad-
versary B := (B1,B2) and distinguisher D.

BO
1 (pk,R, T)

(t∗0, t
∗
1, st1)

R←AO
1 (pk,R, T);

C := {t∗0, t∗1};
st′1 := (st1, t

∗
0, t

∗
1):

Output (C, st′1)

BO
2 (R, T ′, I(t∗), st′1)

b′
R← AO

2 (R, T ′, I(t∗), st1);
viewB := tb′ :
Output viewB

D(C, t∗, viewB)
t∗ = viewB ⇐⇒ b := 1;
t∗ ̸= viewB ⇐⇒ b := 0:
Output b

2 This lemma has been provided by Deng et al. [7], but their proof is informal. So we
give the precise security proof based on the game transformation technique.

ECRYPT Workshop on Lightweight Cryptography - November 2011 222

Relation among the Security Models for RFID Authentication Protocol 13

The adversary B1 sets two tags (t∗0, t
∗
1) as C and one of the two tags

can be accessed by B2. If t∗0 is chosen from C, it is equivalent to Game
0 with respect to A and we obtain

Pr[ExpIND-0Π,A (k)→ 0] = 1− Pr[T0] = Pr[ExpZK-0Π,B,D(k)→ 1 | C → t∗0].

Otherwise, it can be viewed as Game 1 and

Pr[ExpIND-1Π,A (k)→ 1] = Pr[T1] = Pr[ExpZK-0Π,B,D(k)→ 1 | C → t∗1].

Of course, the challenger uniformly selects the challenge tag and
Pr[C → t∗0] = Pr[C → t∗1] = 1/2. Thus we obtain

Pr[ExpZK-0Π,B,D(k)→ 1] =
1

2
+

1

2
· (Pr[T1]− Pr[T0]).

Recall that we have assumed that Π is ZK-privacy. Thus, for any
adversary B, there exists an algorithm S such that for any distin-
guisher D, |Pr[ExpZK-0Π,B,D(k)→ 1]−Pr[ExpZK-1Π,S,D(k)→ 1]| is negligible.
However, S has no information about the flipped coin in the exper-
iment and we have Pr[ExpZK-1Π,S,D(k)→ 1] = 1/2. Finally, we obtain

AdvINDΠ,B(k) = |Pr[T1]− Pr[T0]|
= |2 · Pr[ExpZK-0Π,B,D(k)→ 1]− 1|
= 2 · AdvZKΠ,B,S,D(k).

⊓⊔

4 Relation between SIM and IND Privacy

4.1 Constraint for Corrupt Query

We revisit the privacy relation between SIM-privacy and IND-privacy.
These models have been informally analyzed by many researcher
and several papers conclude that SIM-privacy is stronger than IND-
privacy since a wide-strong adversary can corrupt all tags in the ex-
periment (recall that in the IND-privacy, the adversary must output
uncorrupted tags for the challenge phase). However, there are four
wide adversaries for SIM-privacy and it is meaningful to consider
the other privacy notions. Recently, Vaudenay depicted that IND-
privacy game can be written by the wide-destructive SIM-privacy

ECRYPT Workshop on Lightweight Cryptography - November 2011 223

14 Daisuke Moriyama, Shin’ichiro Matsuo, and Miyako Ohkubo

game [19]. Of course, the condition for the corrupt query in IND-
privacy game is different from that in SIM-privacy game and we can
say that wide-forward SIM-privacy does not imply IND-privacy in
the sense of the adaptive corruption3. However, it is still an open
problem whether IND-privacy implies wide-weak SIM-privacy. Fur-
thermore, we can consider two variants for IND-privacy:

1. Strong IND-privacy — the challenge tags can be corrupted in
Phase 1, and

2. Weak IND-privacy — the adversary cannot issue corrupt query
to any tag.

Then, strong/weak IND-privacy is arguable to compare against wide-
strong/wide-weak SIM-privacy. Of course, the actual procedure of
the IND experiment is different from that of SIM experiment, but
the restriction for the corrupt query in strong (resp. weak) IND-
privacy is same as the wide-strong (resp. wide-weak) SIM-privacy.
One can also consider these variants for the ZK-privacy which are
equivalent to the strong/weak IND-privacy, respectively.

Interestingly, we prove that ZK-privacy variants do not imply
SIM-privacy variants for any cases in the next subsection. We note
one can think that the adaptive registration of the tag is allowed in
SIM-privacy through SetupTag oracle, but it is not a technical point
and can be easily modified.

4.2 Another Aspect of the Privacy Definitions

To show the gap between ZK-privacy and SIM-privacy, we change
ZK-privacy as a game transformation technique. For simplicity, we
consider weak ZK-privacy and wide-weak SIM-privacy.

First, we consider a slight variant of weak ZK-privacy such that
the adversary can anonymously access to any tags in C in Phase 2.
This is done by a slight modification for the intermediate algorithm
I. When the adversary outputs C, each tag in C is randomized and
indexed by the challenger. The challenger keeps the list {(i, IDj)}i,j
3 If an RFID authentication protocol specifies that the secret key of each tag is initially
correlated and always updated, the adversary can obtain the challenge tag’s secret
key in Phase 1 of the IND-privacy game. However, this protocol can hold wide-
forward SIM-privacy due to the key update algorithm.

ECRYPT Workshop on Lightweight Cryptography - November 2011 224

Relation among the Security Models for RFID Authentication Protocol 15

where i ∈ {1, . . . , |C|} and IDj ∈ C which is initially empty. When
the adversary issues SendTag query to I with input (i,m), the chal-
lenger checks the list. If the index i is not contained in the list,
new identity ID in C is uniformly chosen and the tuple (i, ID) is in-
serted in the list. The message is sent to the corresponding identity
and its response is returned to the adversary. This is quite natural
extension for ZK-privacy but we remark that this modification par-
tially interpolates DrawTag query in ZK privacy to allow anonymous
access. We call the modified privacy as ZK′-privacy. Consider that
O′ := {Launch, SendTag, SendReader,Result} and it is described as
follows:

ExpZK
′-0

Π,A,D(k)

(pk, sk)
R← Setup(1k);

(C, st1)
R← AO′

1 (pk,R, T);
T ′ := T \ C;
viewA

R← AO′
2 (R, T ′, I(C), st1);

b
R← D(C, {i, IDj}i,j, viewA):

Output b

ExpZK
′-1

Π,S,D(k)

(pk, sk)
R← Setup(1k);

(C, st1)
R← SO′

1 (pk,R, T);
T ′ := T \ C;
viewS

R← SO′
2 (R, T ′, st1);

b
R← D(C, {i, IDj}i,j, viewS):

Output b

In this privacy model, the advantage of the adversary is defined by
AdvZK

′

Π,A,S,D(k) = |Pr[ExpZK
′-0

Π,A,D(k)→ 1]− Pr[ExpZK
′-1

Π,S,D(k)→ 1]|.

Definition 4. An RFID authentication protocol Π satisfies the ZK′-
privacy if for any probabilistic polynomial time adversary A, there
exists an probabilistic polynomial time algorithm S, for any proba-
bilistic polynomial time distinguisher D, AdvZK′

Π,A,S,D(k) is negligible.

Theorem 2. ZK′-privacy is equivalent privacy notion to ZK-privacy.

Proof. It is clear that ZK′-privacy implies ZK-privacy. We prove that
if an RFID authentication protocol Π satisfies ZK-privacy, Π is also
ZK′-privacy. This proof follows from the standard hybrid argument.
Assume that the adversary against ZK′-privacy issues SendTag query
at most qs. Based on the ZK′-0 experiment, we change the output
from SendTag query in Phase 2. The response is simulated by S for
ZK-privacy until j-th invocation and executed by real tag after j-
th invocation. When the adversary issues j-th SendTag query, the

challenger flips a coin b
U← {0, 1}. If b = 1, the challenger activates

ECRYPT Workshop on Lightweight Cryptography - November 2011 225

16 Daisuke Moriyama, Shin’ichiro Matsuo, and Miyako Ohkubo

the real tag, and otherwise it runs a simulator to output the re-
sponse. The difference between b = 1 and b = 0 is clearly bounded
by AdvZKΠ,A,S,D(k). For 0 ≤ j ≤ qs, we can apply the same argument
and finally we obtain an experiment which is identical to the ZK′-1
experiment. Therefore we have AdvZK

′

Π,A,S,D(k) ≤ qs · AdvZKΠ,A,S,D(k).
⊓⊔

Now, recall the simulation strategy in Lemma 1. The simulator
S chooses an arbitrary tag to simulate the anonymous access for
the adversary if the RFID authentication holds IND-privacy. ZK′-
privacy implies that the simulator can simulate the message between
the reader and all tags in C without any communication with these
tags. Even when particular tags are chosen by a distribution (i.e.
DrawTag query in SIM-privacy), the tag’s behavior is indistinguish-
able from the another tag and simulated by the simulator. Therefore,
if the RFID authentication protocol satisfies ZK′-privacy (= IND-
privacy), any specific information that corresponds to tag’s secret is
not revealed.

However, when we compare this privacy with wide-weak SIM-
privacy, we can prove the following theorem.

Theorem 3. ZK′-privacy does not imply SIM-privacy.

Proof. One of the main technical differences between these privacy
definitions is whether the simulator can interact with the reader or
not. We explicitly wrote that the simulator takes as input R and
can issue SendReader query in ZK′-privacy. On the other hand, SIM-
privacy requires that the simulator must simulate SendReader query
along with SendTag query. This gap leads the fact that ZK′-privacy
does not imply SIM-privacy.

Let Π be an RFID authentication protocol that satisfies ZK′-
privacy. For simplicity, we assume that (m1,m2,m3, . . .) is the com-
munication message exchanged by the reader and a tag in this proto-
col. Let f : X → Y be a one-way function and consider the following
RFID authentication protocol Π ′.

Setup. The reader runs Π to obtain (pk, sk) and shares secret keys

with each tag in some cases. Choose x
U← X and compute y := f(x).

The reader publishes pk′ := (pk, f, y) and holds x as special secret
key of the reader in Π ′.

ECRYPT Workshop on Lightweight Cryptography - November 2011 226

Relation among the Security Models for RFID Authentication Protocol 17

Authentication. The authentication is executed as follows:

1. The reader obtains m1 from Π and sends it to the tag.
2. When the tag receives the message, it generates m2 with Π and

responds m′
2 := 0∥m2 to the reader.

3. When the reader receives the message m′
2, it is parsed as b∥m2.

If b = 0, the reader generates m3 and sends it to the tag (this is
same as the honest execution of Π). If b = 1, the reader outputs
x as the third message.

It is clear that the above RFID authentication protocol Π ′ satis-
fies ZK′-privacy. The simulator can issue SendReader query to obtain
x when the adversary sends 0∥m2 to the reader. The other messages
are trivially simulated by the assumption that Π is ZK′-privacy.

On the other hand, we can show that Π ′ does not meet SIM-
privacy. The SIM adversary A launches the reader and sends 0∥m2

to the reader to obtain x. A sets b := 1 if and only if y = f(x)
and terminates the experiment by outputting b. It is obvious that
Pr[ExpSIM-0Π,A (k) → 1] = 1. However, it is infeasible for any simulator
to output x′ such that y = f(x′) from the assumption that f is
one-way function. Therefore we have Pr[ExpSIM-1Π,A,S(k) → 1] ≤ ε for a

negligible fraction ε. Thus we have AdvSIMΠ,A,S(k) is not negligible. ⊓⊔
Remark that this kind of the separation example is originally de-

scribed in Pass, Shelat and Vaikuntanathan to show the gap between
their variants of non-malleability definition for public key encryp-
tion [17]. We think that it is interesting to show the gap between
IND-privacy and SIM-privacy based on the same idea. As a result,
SIM-privacy covers reader’s information leakage though IND-privacy
and ZK-privacy only consider the tag’s privacy.

5 Conclusion

We analyzed the three privacy models for RFID authentication pro-
tocol. Contrary to the discussion described in Deng et al. [7], we
showed that IND-privacy is equivalent to ZK-privacy. Furthermore,
we provided a polynomially equivalent variant of the ZK-privacy to
consider the relation between SIM-privacy and obtained the result
that ZK-privacy does not imply SIM-privacy since SIM-privacy cov-
ers the reader’s privacy in addition to the tag’s privacy.

ECRYPT Workshop on Lightweight Cryptography - November 2011 227

18 Daisuke Moriyama, Shin’ichiro Matsuo, and Miyako Ohkubo

References

1. Avoine, G.: Adversarial model for radio frequency identification. ePrint Archive,
2006/049 (2005)

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer Heidelberg (1998)

3. Bellare, M., Sahai, A.: Non-malleable encryption: Equivalence between two no-
tions, and an indistinguishability-based characterization. CRYPTO 1999 1666 pp.
519–536 (1999)

4. Burmester, M., Le, T.V., Medeiros, B.D., Tsudik, G.: Universally composable rfid
identification and authentication protocols. TISSEC 2009 12(4) pp. 21:1–33 (2009)

5. Burmester, M., van Le, T., de Medeiros, B.: Provably secure ubiquitous systems:
Universally composable RFID authentication protocols. In: SecureComm 2006,
pp. 1–9. IEEE (2006)

6. Canard, S., Coisel, I.: Data synchronization in privacy-preserving rfid authentica-
tion schemes. In: RFIDSec 2008. (2008)

7. Deng, R.H., Li, Y., Yung, M., Zhao, Y.: A new framework for RFID privacy.
In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol.
6345, pp. 1–18. Springer Heidelberg (2010)

8. Ha, J., Moon, S., Zhou, J., Ha, J.: A new formal proof model for RFID location
privacy. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp.
267–281. Springer Heidelberg (2008)

9. Hermans, J., Pashalidis, A., Vercauteren, F., Preneel, B.: A new rfid privacy
model. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 568–
587. Springer Heidelberg (2011)

10. Juels, A., Weis, S.A.: Defining strong privacy for RFID. In: PerCom 2007, pp.
342–347. IEEE (2007)

11. Juels, A., Weis, S.A.: Defining strong privacy for RFID. ACM Transactions on
Information and System Security 13(1) (2009)

12. Lai, J., Deng, R.H., Li, Y.: Revisiting unpredictability-based RFID privacy. In:
Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 475–492. Springer
Heidelberg (2010)

13. Le, T.V., Burmester, M., de Medeiros, B.: Universally composable and forward-
secure rfid authentication and authenticated key exchange. In: ASIACCS 2007.
pp. 242–252. (2007)

14. Ma, C., Li, Y., Deng, R.H., Li, T.: RFID privacy: Relation between two notions,
minimal condition, and efficient construction. In: ACMCCS 2009, pp. 54–65. ACM
(2009)

15. Ouafi, K., Phan, R.C.W.: Traceable privacy of recent provably-secure RFID pro-
tocols. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS
2008. LNCS, vol. 5037, pp. 479–489. Springer Heidelberg (2008)

16. Paise, R.I., Vaudenay, S.: Mutual authentication in RFID. In: ASIACCS 2008.
pp. 292–299. (2008)

17. Pass, R., Shelat, A., Vaikuntanathan, V.: Relations among notions of non-
malleability for encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 519–535. Springer Heidelberg (2007)

18. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

19. Vaudenay, S.: Privacy models for RFID schemes. In: Yalcin, S.O. (ed.) RFIDSec
2010. LNCS, vol. 6370 pp. 65. (2010)

ECRYPT Workshop on Lightweight Cryptography - November 2011 228

CANAuth - A Simple, Backward Compatible
Broadcast Authentication Protocol for CAN bus

Anthony Van Herrewege, Dave Singelee, Ingrid Verbauwhede
firstname.lastname@esat.kuleuven.be

Abstract— The Controller-Area Network (CAN) bus
protocol [1] is a bus protocol invented in 1986 by Robert
Bosch GmbH, originally intended for automotive use.
By now, the bus can be found in devices ranging from
cars and trucks, over lightning setups to industrial
looms. Due to its nature, it is a system very much fo-
cused on safety, i.e., reliability. Unfortunately, there is
no build-in way to enforce security, such as encryption
or authentication.

In this paper, we investigate the problems associated
with implementing a backward compatible message
authentication protocol on the CAN bus. We show
which constraints such a protocol has to meet and why
this eliminates, to the best of our knowledge, all the
authentication protocols published so far.

Furthermore, we present a message authentication
protocol, CANAuth, that meets all of the requirements
set forth and does not violate any constraint of the CAN
bus.

Keywords—CAN bus, embedded networks, broadcast
authentication, symmetric cryptography

I. Introduction
The Controller-Area Network (CAN) bus protocol [1] is

a bus protocol invented in 1986 by Robert Bosch GmbH,
originally intended for automotive use.

CAN bus nodes are all connected to the same, shared bus
line. The CAN bus is wired such that a 0-signal is dominant
over a recessive 1-signal. These dominant and recessive
signals are used for a CSMA/CA scheme. An arbitration
scheme using priority resolution is used to decide which
node is allowed to transmit data over the bus. The lower a
node its ID (and thus the more dominant 0s it sends during
bus arbitration), the higher its priority. Using this scheme
makes the CAN bus fit for use as a real-time communication
bus.

During transmission, a node continuously checks the
signal on the bus and compare this with the signal it
is transmitting. If a mismatch occurs, an error is raised,
except during arbitration, in which case the node will
just stop transmitting. After each message, a CRC is
transmitted and receiving nodes will raise an error in
case a mismatch occurs. To prevent broken nodes from
continuously disturbing and invalidating messages, internal
error counters are kept which, depending on their value,
disable the right of a node to raise errors. This guarantees
that communication over the CAN bus is very reliable,
since, even with broken nodes raising errors, messages will
eventually be transmitted successfully.

One year after its introduction, Philips presented the
first CAN bus controller and, in time, the protocol was
used more and more in non-automotive machines. By now,
the bus protocol can be found in a wide range of devices:
from cars and trucks, over lightning setups to industrial
looms, printers, freezers and trains.

Due to its nature, the design of CAN bus is very much
focused on safety, i.e., reliability. Unfortunately, there is
no build-in way to enforce security, such as encryption
or authentication. This leads to many possible attacks, as
demonstrated by Koscher et al. [2] and Checkoway et al. [3].
Examples of such attacks are controlling brakes, remotely
starting the car and controlling the air conditioning.

In this paper, we investigate the possibility of imple-
menting a backward compatible message authentication
protocol on the CAN bus. We show which constraints such
a protocol has to meet and why this eliminates, to the
best of our knowledge, all the authentication protocols
published so far.

In Section II, we very briefly show some of the work that
is already been done on broadcast authentication protocols.
Section III gives a detailed overview of the requirements
such a protocol should meet and the constraints it should
honor for it to be usable on the CAN bus. Then, in Sec-
tion IV, we present our proposal for such an authentication
protocol. In Section V, an adversarial model is defined
and the security properties of the protocol are investigated.
Finally, we present our conclusions in Section VI.

II. Previous Work
In the past, different protocols have been published on

how to archieve authentication in broadcast networks, some
of those even aimed at lightweight embedded networks. The
next few paragraphs give a very concise overview of some
of those protocols.

The TESLA protocols are a family of related lightweight
authentication protocols, relying on delayed key disclosure
to guarantee message authenticity. The original TESLA
protocol was published by Perrig et al. in 2000 [4], [5].
This protocol is designed to provide authenticated broad-
cast capabilities. Subsequently, Perrig et al. presented
µTESLA [6], a modification of the original TESLA protocol,
aimed at sensor networks, with severe contraints placed on
computation and storage capabilities.

Other protocols have been published for use in broadcast
networks, such as a symmetric solution by Gennaro and

ECRYPT Workshop on Lightweight Cryptography - November 2011 229

Rohatgi [7] and Rohatgi’s improved protocol [8].
Unfortunately, all of these protocols have certain charac-

teristics which violate the constraints set in Section III, such
as requiring challenge-response communication, introducing
delays (the main problem with TESLA and µTESLA)
or needing to transmit large amounts of data (the main
problem of the solutions by Gennaro and Rohatgi), all of
which are not acceptable in a CAN bus network.

III. Problem Overview
In this section we explain the requirements and con-

straints for a backward compatible, lightweight message
authentication protocol on CAN bus. This should make it
clear why none of the published protocols so far are usable
on the CAN bus. Furthermore, we show how we will we
meet those requirements and constraints with our proposed
CANAuth protocol.

A. Authentication Protocol Requirements
The basic requirements a message authentication proto-

col should provide are:
Message authentication

The authenticity of messages should be provable.
The exact origin of the message is not important
as long as it is guaranteed that it was sent by a
trusted node.

Replay attack resistance
Replaying previously sent authenticated messages
should lead to those messages being discarded by
the verifying nodes.

Group keys
It should be possible for a group of related
messages to be authenticated with the same key1.
This reduces the size of key storage needed.

Backward compatibility
A node employing the authentication protocol has
to be able to authenticate its messages without
disturbing the workings of any incompatible nodes.
It should be possible to connect a number of
nodes supporting the authentication protocol
to an existing bus without having to do any
reconfiguration of the existing nodes.

B. Restrictions Due To CANBus
Although many authentication protocols exist, the CAN

bus presents a few peculiar problems. Due to the fact that
we want a backward compatible authentication protocol,
following restrictions have to be taken into account:

Hard real-time
CAN bus systems are often employed in environ-
ments where hard real-time constraints apply, e.g.,
cars. Therefore, message transmission and process-
ing times should not be significantly influenced

1Note that this is slightly different from the usual use of the term
Group key, which normally implies a key shared between a group of
users. In this case the key is shared between a group of messages.

by the authentication protocol. All authentication
data needs to be send along with its message, so as
not to disturb the real-time response capabilities
of the system.

Message length
A single message on the CAN bus can contain
between 1 and 8 bytes of data. Any extra authen-
ticated data needed by the authentication protocol
somehow has to be transmitted along with the
message it belongs to.

Message IDs
Each type of message on the CAN bus is associated
with a certain ID, e.g. ID 1 = temperature of
location L1, ID 2 = humidity of location L1,
An ID consists of 11 bits2 and due to the fact
that an ID is coupled to a very specific message
content, most of the IDs will already be taken in
an existing network. This means one can not go
around adding extra IDs with some new content
type.

Unidirectional communication
A CAN interface sending messages has no ID for
itself and all communication is broadcast. Due to
this there is no notion of bi-directional communi-
cation between nodes, since CAN interfaces have
no ID. The only bi-directional “communication”
possible between multiple nodes is though an error
flag. Even then, a transmitting node can not find
out which receiving node raised the error.

The first requirement, Message authentication, can be
met by attaching a message authentication code (MAC)
to a message. Due to the Hard real-time restriction, the
employed MAC algorithm needs to be fast. Ideally, it should
be possible to start processing for verification as soon as
part of the authentication data is received. One algorithm
satisfying these requirements is HMAC [9], [10], assuming
the hash function employed therein is fast.

The Replay attack resistance requirement can then be
met by incorporating some counter value in the MAC
calculation. The same counter value should never be reused
however, which could lead to problems if a counter of
limited length is used and a large amount of authenticated
messages are sent. Furthermore, the less state that has
to be saved across subsequent system restarts, the better.
A solution for this is the establishment of a session-key
during system startup. A limited length counter can then
be made to work in our benefit, since it allows the system
to gauge when a new session-key should be established.

Due to the restriction on Message IDs and Unidirectional
communication, nodes can not send a message back in
response to some message they receive. That would require
the creation of a large amount of new IDs, each with a
specific new content type such as ID 5 = response of node
Ni to messages with ID 1. Thus, if n nodes want to be

2When using extended CAN, IDs are 29 bits long.

ECRYPT Workshop on Lightweight Cryptography - November 2011 230

able to respond to m different message IDs, n ·m IDs
have to be created. Given the large number of different
message content types, that is not possible as it would
quickly lead to exhaustion of all the available 11 bit IDs.
Furthermore, it would require reconfiguration of existing
nodes on a bus each time a new node is added. In case
bi-directional communication should prove necessary, a
(backward compatible) workaround will need to be devised.

Supporting the Group keys requirement is straightfor-
ward using options made available by the CAN protocol. In
general, one can program a CAN interface with a number of
acceptance codes. These codes tell the interface to listen to
messages with an ID matching any of the acceptance codes.
It is also possible to specify acceptance masks, allowing a
single acceptance code to match multiple IDs. By linking
keys to these {acceptance code, acceptance mask} sets, a
group key setup can be achieved. We define a group of re-
lated messages Gi as the collection of all messages with IDs
matching the pair {acceptance code, acceptance mask}i.

The last requirement, Backward compatibility presents
the biggest problem. For one, attaching authentication
data by concatenating it with an existing CAN message
is impossible, since that will violate the Message length
constraint. Neither can the authentication data be put
inside a CAN message, since this will decrease the already
very limited maximum message size. A third option would
be to sent one long data packet over multiple messages.
However, this would reduce the real-time capabilities of
the system.

C. Transmission with CAN+

One solution to all this is sending the authentication
data through an out-of-band channel. This can be achieved
with the CAN+ protocol [11]. Using this protocol, extra
bits can be inserted in between the sampling points of a
CAN bus interface. A graphical presentation of how this
works, is shown in Fig. 1.

CAN bit

CAN+ transmission
window

15% 55%
75% - CAN
sample point

Fig. 1. Timeframe during which the CAN+ protocol can insert extra
data into a CAN bit, without disrupting the working of regular CAN
bus controllers.

The number of data bits that can be transmitted this
way is limited by the maximum attainable clock speed
of the CAN+ interface. Ziermann et al. report that on a
1 MHz CAN network, they can transmit 15 CAN+ bytes
for each CAN byte, using an FPGA running at 300 MHz.

At lower CAN bus speeds, this number increases linearly
as:

CAN+ data bits
CAN data bit

= 1 MHz
fbus

· 16− 1.

The loss of one CAN+ data bit is due to the need to send
a start bit at the beginning of every CAN+ transmission.
On a 100 kHz CAN network, it is thus possible to transmit
up to 159 CAN+ bits for each CAN bit.

Since it should be possible to authenticate a message
irrespective of its length or the bus speed of the CAN bus
network, authentication data should be limited to 15 bytes.
This allows one to send all necessary authentication data
in the worst case scenario, i.e. as part of a 1 byte CAN
message on a 1 MHz CAN bus. Due to this restriction
on authentication data length, the use of public-key (and
identity-based) cryptography is not possible, due to its large
key size requirement compared to symmetric cryptography.

The restrictions and requirements an authentication
protocol has to adhere to on the CAN bus make any
published protocols, to the best of our knowledge, unusable.

D. Problems with multi-node transmissions
One could devise a system whereby multiple nodes

transmit during the CAN+ timeframe, which would then
allow bi-directional communication. This would violate
the hard real-time constraint as soon as a certain number
of nodes needed to sent data, since one would still need
multiple messages to do that. During a key establishment,
such a breach of constraints could be disregarded though.
However, in the next paragraph, we prove that any protocol
that requires bi-directional communication between nodes,
will impose a speed limit on the CAN bus.

The CAN bus protocol uses a Carrier Sense Multiple
Access with Collision Detection (CSMA/CA) protocol
during transmission, whereby bit collisions are to be
detected within a bit its transmission window. Assume
one wanted to sent a minimum of one data bit with the
CAN+ protocol per CAN bit. Each CAN+ transmission
begins with a start bit, so there would have to be two bit
transmissions during the CAN+ timeframe. This timeframe
occupies maximum 40% of a CAN bus bit transmission
timeframe. Thus, in this case, the CAN+ protocol would
need to work at a frequency at least 2 · 1

0.40 = 5 times faster
than the CAN protocol.

The CAN bus standard guarantees that for a bus length
of a maximum of 30 meter, CSMA/CA, and thus the CAN
bus protocol, can work at a maximum bus speed of 1 MHz.
However, since we want CSMA/CA to function during the
CAN+ transmission, which needs to work at a frequency
at least 5 times as fast as the CAN bus, the maximum
CAN bus speed for the given bus length is only 200 kHz.

Furthermore, at this rate, of the 16 CAN + bits sent
during a CAN byte transmission, only 8 CAN + bits are
usable for data, since the other 8 are needed as start bits.
The more data bits one wishes to sent during the CAN+
transmission window, the lower the CAN bus speed needs

ECRYPT Workshop on Lightweight Cryptography - November 2011 231

to be if one wishes to adhere to the maximum speed of
1 MHz for CAN+.

Of course, it is possible to increase the speed of CAN+
in our example to 5 MHz, in which case CAN can run at
1 MHz. However, if so, the maximum bus length would
be reduced as well, to allow for timely collision detection
during the CAN+ transmissions.

Thus, if one requires bi-directional communication with
the help of CAN+, either the maximum bus length or the
CAN bus speed needs to decrease.

IV. CANAuth Protocol
In this section we propose a simple authentication

protocol, CANAuth, that meets all of the requirements
set forth in Section III and does not violate any of the
constraints.

A. Data Transmission and Frame Format
As suggested in Section III, authentication data is

transmitted out-of-band with the CAN+ [11] protocol,
which gives us a maximum length of 15 bytes for the
authentication message. The bytes are subdivided in fields
as shown in Fig. 2.

120 bits

Status Bits Payload

8 bits 112 bits

Fig. 2. The CANAuth data frame fields. The data frame consists of
the first 15 CAN+ bytes (= 120 CAN+ bits) of a CAN message.

The first eight bits are used as status flags. Currently,
only the first two of these bits are used, with the remaining
six available to be used in future versions of the protocol.
The remaining 112 bits are used to either transmit key es-
tablishment or signature data. In the following subsections,
more information is given about these two possibilities.

B. Key Establishment
The key establishment protocol described here requires

one or more pre-shared 128 bit keys to be available on each
CANAuth node. Each group of related messages Gi should
get a pre-shared key Kpi assigned during development of
the CAN bus design3. We assume that the keys are stored
in some tamper-proof storage and are unable to be queried
by anyone but the node itself.

The node responsible for transmitting messages Gi is
to set up the key for that group. In case multiple nodes
transmit messages Gi, the key established by the node
transmitting with the lowest ID for that group gains
precedence.

3Even better would be if all ‘devices’ of the same type (i.e. all
Brand X Model Y cars) all contained different keys, programmed
during production. This to prevent one Kpi being found from leading
to a security breach of all devices of the same type.

To prevent replay attacks, key establishment works in
two phases. First, the appropriate node (as per the rule
defined above) transmits a message on the CAN bus with
an attached CAN+ message of the form shown in Fig. 3.

Status bits
[2 + 6 bits]

Counter value
[24 bits]

Random Number
[88 bits]

10 0 ctrAi ri

Fig. 3. The CANAuth data frame fields during the first part of key
establishment.

The first bit of the frame is set to one to signal that
key establishment is taking place. The second bit is set to
zero, signalling that this message is the first of two needed
for key establishment. The next six bits are unused and
should be set to zero. The actual payload of the message
is a 24 bit counter and an 88 bit random number.

With the counter value ctrAi and the random number
ri all nodes possessing the pre-shared key Kpi generate
the session key Ksi for messages Gi using HMAC [9].
Implementations of CANAuth are free to use whichever
hashing algorithm for HMAC that is deemed strong enough.
Depending on the hashing algorithm used, the HMAC
output will be longer than 128 bits. The session key Ksi
consists of the 128 LSB of the HMAC output and is
generated as follows:

Ksi = HMAC(Kpi, ctrAi ‖ ri) mod 2128. (1)

The addition of a counter in the message prevents an
adversary from isolating the trusted key establishment
node from the bus and setting up a session key with the
other nodes on the bus, using a previously transmitted
random number. Even though the adversary would not
know the session key Ksi, he could then transmit recorded
authenticated messages. Thus, to prevent this attack, before
any node accepts the session key Ksi, it should verify that
the random number did in fact originate from a trusted
node and that it has not been used before.

There are two checks to guarantee this. First, each
node on the bus should store the last validated counter
value ctrAi for each Gi in non-volatile memory. New
key establishment messages are only accepted when the
transmitted counter value is higher than the stored value.
Second, as the next step in the key establishment, the key
establishment node transmits a second message, using the
format shown in Fig. 4.

Status bits
[2 + 6 bits]

Signature
[112 bits]

11 0 sigAi

Fig. 4. The CANAuth data frame fields during the second part of
key establishment.

ECRYPT Workshop on Lightweight Cryptography - November 2011 232

In this case, the first and second bits are both set to
one, to signal that this is a message to authenticate the
key establishment. The next six bits are again unused and
should be set to zero. Following that is a 112 bit signature
generated as follows:

sigAi = HMAC(Ksi, ctrAi ‖ ri) mod 2112. (2)

All nodes participating in the establishment protocol can
now verify that the sending node knows the session key
and is thus trustworthy and that ctrAi and ri where not
tampered with. These nodes, including the transmitting
node, set their stored value ctrAi to whatever value was
transmitted in the first key establishment message.

An adversary could still isolate the key establishment
node from the bus and get valid pairs of key establishment
messages, but to keep the machine in working condition,
will have to forward those messages to the rest of the bus
anyway, due to reasons we explain later.

The addition of the counter to the key establishment pro-
tocol does not only have benefits though. Once the counter
is at its maximum value, listening nodes will not accept
new session keys anymore, since the transmitted counter
value can not be higher than the stored counter value. This
limits the maximum lifetime of any machine utilizing the
CANAuth protocol. That is why we propose the use of a
24 bit counter field, which allows 224 = 16 777 216 session
key setups, enough to set up a new session key once every
minute for ±32 years.

In case an error is raised in response to any of the two
key establishment messages, the key establishment node
will restart the protocol from the first message.

C. Message Authentication
Once a session key has been established, messages Gi

can be authenticated. The frame format for authentication
data is shown in Fig. 5.

Status bits
[1 + 7 bits]

Counter value
[32 bits]

Signature
[80 bits]

0 0 ctrMi sigMi

Fig. 5. The CANAuth data frame fields during message authentica-
tion.

The counter value ctrMi is there to prevent replay
attacks. Nodes should keep a local copy of the value of
ctrMi encountered in the last valid message. Authenticated
message should only be accepted when ctrMi is greater
than the stored value. Due to this rule, the session key
Ksi needs to be renewed each time ctrMi is about to wrap
around back to 0. For every message Gi a node transmits,
ctrMi should be increased by at least 1.

The second part of the authentication data frame is the
signature, which is obtained by taking the 80 LSB of the

HMAC of the counter value ctrMi and the CAN message
data msgi under the session key Ksi, i.e.:

sigMi = HMAC(Ksi, ctrMi ‖ msgi) mod 280. (3)

D. Handling of Invalid Authentications
On a CAN bus system, every node can transmit an

error frame at any time, which invalidates the message
that is being transmitted. Nodes keep track of the number
of errors on the bus. A node that is receiving data will
increase its receiving error counter (REC) by 1 for each
erroneous message, except if it signaled the error itself, in
which case its REC is increased by 8. For every successfully
received message, the REC is decreased by 1.

To prevent a faulty node from invalidating every message
on the bus, nodes are allowed to signal errors as long as
their REC is below 127. Once a node its REC value is
higher, it has to abstain from signalling errors until enough
messages have been successfully received to decrease its
REC below 127.

CANAuth leverages this error handling capability by
utilizing the counters in much the same way. Whenever a
node can not successfully validate a message, CANAuth
will make that node raise an error and increase its REC by
8. Whenever an error is raised, every CANAuth compatible
node should discard the corresponding message, even if a
node does not detect an error and can successfully verify
the attached signature.

E. A Note on Hardware Implementation Speed
The latest a message can be rejected on the CAN bus is

by signalling an error frame after the transmission of the
ACK delimiter bit. The end of the ACK delimiter bit is
3 CAN bit lengths after the last CRC bit has been send.
Thus, to be able to reject messages with invalid CANAuth
data, the CANAuth controller should be done verifying
the signature by then.

The transmission speed of CAN+, over which CANAuth
data is transmitted, should be at least 40 times that of the
CAN bus4. Since the CAN+ bits need to be sampled, the
internal clock of a CAN+ controller will need to be at least
twice as fast as that, so for every transmission of a CAN
bit, there are 80 clock cycles on the CAN+ controller.

For a CAN message of 1 byte, there are 18 CAN bit
lengths between the transmission of the last CAN data bit
and the transmission of the ACK delimiter bit. Further-
more, the last CANAuth bit is transmitted after 55% of
the duration of a CAN bit transmission [11]. Thus, there
are at least (18+0.45) · 80 = 1 476 clock cycles available for
the CANAuth implementation to calculate and verify the
HMAC signature, assuming a CAN message with 1 byte
of data and 16 CAN + bits per CAN bit. That should be

4CAN+ can only utilize a maximum of 40% of the duration of a
CAN bit for transmission. During this time, for CANAuth to work,
at least 16 bits need to be transmitted, thus fCAN+ = 16

0.4 · fCAN =
40 · fCAN.

ECRYPT Workshop on Lightweight Cryptography - November 2011 233

more than sufficient for any hardware implementation of a
hash function to calculate its result.

V. Security Properties
The requirements and workings of the CANAuth au-

thentication protocol have been explained. In this section,
we define a simple model for an adversary A upon which
we can base ourselves when discussing the security of our
authentication protocol. Furthermore, we show how certain
properties of the CAN bus make attacks a lot harder.

A. Adversarial Model
The adversary A has access to all the data that is trans-

mitted over the CAN bus. Furthermore, A has physical
access to the bus and the nodes. Thus, A is capable of
setting up a Man-in-the-Middle (MitM) attack. Although
A has access to the nodes, it reasonable to assume A does
not possess the technology to set up invasive attacks on
the nodes, thereby allowing access to e.g. tamper-proof
storage.

We furthermore assume that all pre-shared and session
keys are stored in tamper-proof to and from which only the
node can write and read. Counter values should be stored
in tamper-proof memory as well, but are not required to
be shielded from reading by an outsider, since their values
are public anyway.

B. Denial-of-Service Attacks
One important class of attacks are Denial-of-Service

(DoS) attacks. It is trivial to invent methods to set up a
DoS attack on the proposed protocol. Since such attacks
will always somehow involve disturbing the signal on the
CAN bus, it would be just as simple, if not simpler, for A
to connect the bus to ground at strategic times to create
an error condition. Since it is impossible to defend against
such an attack, we will ignore any kind of attack that can
be reduced to a simple DoS attack.

An example of one such attack, goes as follows. We have
a CAN bus with two nodes, Na and Nb, which both know
a pre-shared key Kp1. During the first key establishment
message, A executes a straightforward MitM attack:

Na
r1−−−−−→ A r′1−−−−−→ Nb.

The result is that nodes Na and Nb generate different
session keys, and thus Nb will find the key establishment
authentication message invalid. Thus, Na will restart the
key establishment. The attacker A learns nothing however
and could have achieved exactly the same result by raising
an error frame when the key establishment authentication
message appeared on the bus, hence this attack reduces to
a DoS attack.

C. Protocol Security = HMAC Security
We will now argue that the security of our protocol

reduces to the security of the underlying HMAC algorithm.
An adversary A is considered capable of breaking the

protocol when he can forge authentication signatures for
messages msgi with probability p > ε. Since signature
content is entirely generated with HMAC, A can forge
signatures sig′i iif, given a message msgi and a counter
value ctri,

P (sig′i = sigi) > ε.

Being able to forge signatures thus implies that A has
knowledge of one of the following:

1) pre-shared key Kpi
2) session key Ksi
3) a key Ks′i for which

HMAC(Ks′i, i ‖ ctri ‖ msgi) mod 280 = sigi.

Since invasive readings of node content is not possible in
our adversarial model, option one is ruled out, since that
would require invasive access to a node N storing Kpi.
The only way option two is possible then is if A manages
to break HMAC. Finally, the third option requires A to
find a collision on HMAC. Thus, the security of CANAuth
depends entirely on the security of HMAC.

D. Tamper Resistance
The fact that a trusted node only increases its key

establishment counter ctrAi after a valid key establish-
ment provides certain security benefits. If instead ctrAi
was increased after every unsuccessful key establishment
attempt, A could easily mount a DoS attack by constantly
raising errors, thereby rapidly increasing the counter
to its maximum value and preventing any further key
establishment. One could argue that this is not important,
since our adversarial model ignores DoS attacks. However,
a more important advantage of not increasing the counter
ctrAi is that it leaves the machine in which the CANAuth
protocol is implemented in a non-functional state should
A manage to establish a session key. Thus, this quality
can work as a deterent against attacks: either A does not
attempt any attacks and his machine stays functional or
he has to completely break the protocol by finding Kpi to
be able to keep his machine functional.

Assume A manages to find a valid tuple {ctrAi, ri,Ksi},
but not Kpi5. Due to the checks during the key estab-
lishment, ctrAi needs to be higher than the last used
authenticated counter value. Thus, if A uses the valid
tuple, after the next machine reboot or when the message
authentication counter reaches its maximum, the protocol
will not accept any more valid key establishment messages
from a trusted node, since the trusted node will transmit
a key establishment counter value ctrA′i equal to or lower
than the ctrAi value used by A. Nodes will thus reject all
(valid) messages from the trusted node. This means that
if A ever uses such a valid tuple, the machine will be left
in a non-functional state.

5Knowledge of Kpi would make this attack obsolete, since A
can then gain full control over the messages Gi by either sending
authenticated messages Gi himself or executing MitM attacks.

ECRYPT Workshop on Lightweight Cryptography - November 2011 234

Note that this non-functionality can never happen
during normal operation, since nodes only increase their
key establishment counter value ctrAi after a valid key
establishment phase and only one node is allowed to set
up session keys Ksi for Gi, so counter values are always
synchronized between verifying and signing nodes.

E. Limitations on On-line Attack Speed
Due to the nature of the CAN bus, message throughput

on the bus is very modest at best. A table showing the time
it takes to transmit messages is shown in Table I. These
times are calculated assuming there are zero errors on the
bus, an average number of stuffing bits6 and include the
necessary 3 bit interframe space after each message.

TABLE I
List of theoretical minimum transmission times for n

messages of length l on an s baud CAN bus. An average
number of stuffing bits was accounted for when calculating

these times [1].

Baud rate s
& message length l

Number of messages n
216 232 264

100 Kbps
1 byte 39 s 29 d 3.4× 108 y
4 bytes 54 s 2 mo 4.8× 108 y
8 bytes 2 m 2 mo 6.7 × 108 y

500 Kbps
1 byte 8 s 6 d 6.8× 107 y
4 bytes 11 s 9 d 9.6× 107 y
8 bytes 15 s 12 d 1.3× 108 y

1 Mbps
1 byte 4 s 3 d 3.4× 107 y
4 bytes 6 s 5 d 4.8× 107 y
8 bytes 8 s 6 d 6.7 × 107 y

As can be deduced from Table I, on-line attacks on the
system, using honest nodes as oracles to verify a key guess,
would be extremely slow. Furthermore, every wrong key
guess leads to an error message on the bus, which in turn
increases the REC of each node. If these nodes their REC
exceeds 127, they will not signal errors anymore and can
thus not be used as verification oracles. Thus, for every
wrong key guess a valid message needs to appear on the
bus, so that the honest nodes their REC does not exceed
127. So in reality, the time it would take to transmit a
certain number of guesses would take at least twice as long
as the times given in Table I.

VI. Conclusion
In this paper, we gave an overview of the problems

associated with message authentication protocols on the
CAN bus. Furthermore, we presented CANAuth, a simple,
lightweight message authentication protocol based on

6There can only be a maximum of five bits of equal value in
sequence on the CAN bus. Whenever such a series of five equal bits
is encountered, the CAN controller inserts a stuffing bit of inverse
value [1].

HMAC for use on the CAN bus. Due to its backward
compatibility, CANAuth-compatible nodes can work on a
CAN bus without any modification to existing nodes. The
security of the proposed protocol depends entirely on the
security of the employed HMAC variant. Furthermore, due
to the nature of the CAN bus and the design of CANAuth,
adversaries executing on-line attacks against the protocol
can only do this at very slow speeds and are severely
hindered should they be able to establish a session key,
further enhancing security.

One of the major drawbacks of the proposed protocol
is that all nodes that must be able to verify messages
Gi need to know the pre-shared key Kpi. Thus, as future
work, it would be interesting to research if there is any
possibility of using some kind of asymmetric primitives
whilst maintaining a sufficiently high level of security.

Acknowledgments
This work was supported in part the IAP Programme

P6/26 BCRYPT of the Belgian State (Belgian Science
Policy), by K.U.Leuven-BOF (OT/06/40), by FWO grant
G.0300.07, and by the European Commission through the
ICT programme under contract ICT-2007-216676 ECRYPT
II.

References
[1] W. Voss, A Comprehensible Guide to Controller Area Network.

Massachusetts, USA: Copperhill Media Corporation, 2005.
[2] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno,

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
and S. Savage, “Experimental Security Analysis of a Modern
Automobile,” in IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2010, pp. 447–462.

[3] S. Checkoway, D. McCoy, D. Anderson, B. Kantor, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehen-
sive Experimental Analysis of Automototive Attack Surfaces,” in
Proceedings of the USENIX Security Symposium, San Francisco,
CA, August 2011.

[4] A. Perrig, R. Canetti, J. D. Tygar, and D. X. Song, “Efficient
Authentication and Signing of Multicast Streams over Lossy
Channels,” in IEEE Symposium on Security and Privacy, 2000,
pp. 56–73.

[5] A. Perrig, R. Canetti, D. X. Song, and J. D. Tygar, “Efficient
and Secure Source Authentication for Multicast,” in NDSS. The
Internet Society, 2001.

[6] A. Perrig, R. Szewczyk, V. Wen, D. E. Culler, and J. D. Tygar,
“SPINS: security protocols for sensor networks,” in MOBICOM,
2001, pp. 189–199.

[7] R. Gennaro and P. Rohatgi, “How to sign digital streams,” in
CRYPTO, ser. Lecture Notes in Computer Science, B. S. K. Jr.,
Ed., vol. 1294. Springer, 1997, pp. 180–197.

[8] P. Rohatgi, “A compact and fast hybrid signature scheme
for multicast packet authentication,” in ACM Conference on
Computer and Communications Security, 1999, pp. 93–100.

[9] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-
Hashing for Message Authentication,” RFC 2104 (Informational),
Internet Engineering Task Force, February 1997. [Online].
Available: http://www.ietf.org/rfc/rfc2104.txt

[10] M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash Func-
tions for Message Authentication,” in CRYPTO, ser. Lecture
Notes in Computer Science, N. Koblitz, Ed., vol. 1109. Springer,
1996, pp. 1–15.

[11] T. Ziermann, S. Wildermann, and J. Teich, “CAN+: A new
backward-compatible Controller Area Network (CAN) protocol
with up to 16x higher data rates,” in DATE. IEEE, 2009, pp.
1088–1093.

ECRYPT Workshop on Lightweight Cryptography - November 2011 235

http://www.ietf.org/rfc/rfc2104.txt

The Technology Dependence of Lightweight
Hash Implementation Cost

Xu Guo and Patrick Schaumont

Center for Embedded Systems for Critical Applications (CESCA)
Bradley Department of Electrical and Computer Engineering

Virginia Tech, Blacksburg, VA 24061, USA
{xuguo,schaum}@vt.edu

Abstract. The growing demand of security features in pervasive com-
puting requires cryptographic implementations to meet tight cost con-
straints. Lightweight Cryptography is a generic term that captures new
efforts in this area, covering lightweight cryptography proposals as well
as lightweight implementation techniques. This paper demonstrates the
influence of technology selection when comparing different lightweight
hash designs and when using lightweight cryptography techniques to im-
plement a hash design. First, we demonstrate the impact of technology
selection to the cost analysis of existing lightweight hash designs through
two case studies: the new lightweight proposal Quark [1] and a lightweight
implementation of CubeHash [2]. Second, by observing the interaction of
hash algorithm design, architecture design, and technology mapping, we
propose a methodology for lightweight hash implementation and apply
it to Cubehash optimizations. Finally, we introduce a cost model for an-
alyzing the hardware cost of lightweight hash implementations.

1 Introduction

Lightweight Cryptography is a recent trend that combines several cryptographic
proposals that implement a careful tradeoff between resource-cost and security-
level. For Lightweight Hash implementations, lower security levels mean a reduced
level of collision resistance as well as preimage and second-preimage resistance
compared with the common SHA standard [3].

The growing emphasis on engineering aspects of cryptographic algorithms
can be observed through recent advances in lightweight hash designs, which are
strongly implementation-oriented. Fig. 1 demonstrates three important design
fields in lightweight hash design: algorithm-specification, hardware architecture,
and silicon implementation. Crypto-engineers are familiar with the relationship
between algorithm- and architecture-level. However, the silicon implementation
remains a significant challenge for the crypto-engineer, and the true impact of
design decisions often remains unknown until the design is implemented.

This paper contributes to this significant challenge in three ways. First, by
mapping an existing lightweight hash proposal to different technology nodes and

ECRYPT Workshop on Lightweight Cryptography - November 2011 236

2 X. Guo and P. Schaumont

standard-cell libraries, we illustrate how important technology-oriented cost fac-
tors can be taken into account during analysis. Second, by studying the interac-
tion between hardware architecture and silicon implementation, we demonstrate
the importance of low-level memory structures in lightweight hash design. As a
case study, we show how to optimize CubeHash [2], a SHA-3 Round 2 candidate
with a high security level, to fit in 6,000 GEs (Gate Equivalent) by combin-
ing bit-slicing (at hardware architecture level) and proper memory structures
(at silicon implementation level). Third, we built a cost model for lightweight
hash designs and provide guidelines for both lightweight hash developers and
hardware designers.

Algorithm Specification

(e.g. datapath, state size,
and number of round)

Silicon Implementation
(e.g. memory structures,
standard-cell design, and
full/semi-custom design)

Hardware Architecture
(e.g. datapath folding and

logic optimization)

Lightweight

Hash

Cost,

Throughput,

and Power

Models

Cost,

Throughput,

and Power

Results

Circuit Level Optimization Choices

Fig. 1. The interactive process in the development of lightweight cryptography.

2 Lightweight Hash Comparison Issues

Due to the nature of lightweight hash designs they are very sensitive to small
variations in comparison metrics. For example, several of them claim area around
1,000 GEs with power consumption around 2 µW. However, it appears that most
lightweight hash designers only discuss algorithm implementations at logic level,
and they make abstraction of important technological factors. This makes a com-
parison between different lightweight hash designs difficult or even impossible.

To understand the issues, one should first identify whether the selected met-
rics are dependent or independent of the technology. Below we discuss several
metrics that are commonly used to compare different lightweight hash proposals.

2.1 Area

Most of the lightweight hash papers compare the hardware cost by using the post-
synthesis circuit area in terms of GEs. However, the circuit area estimation based

ECRYPT Workshop on Lightweight Cryptography - November 2011 237

Technology Dependence of Lightweight Hash Implementation Cost 3

on GEs is a coarse approach; it ignores the distinction between control, datapath,
and storage, for example. Moreover, GEs are strongly technology dependent. In
the following two case studies of Quark [1] and CubeHash [2], we will demonstrate
different aspects of technology dependence of area cost.

– Standard-cell Library Impact. This is brought by different technology nodes
and different standard-cell libraries. The ASIC library influence can be found
by using the same synthesis scripts for the same RTL designs in a comprehen-
sive exploration with different technology nodes and standard-cell libraries.
As found in the Quark case study in Section 3, the cost variation range
caused by changing standard-cell libraries can be from -17.7% to 21.4%, for
technology nodes from 90nm to 180nm.

– Storage Structure Impact. Hash designs are state-intensive, and typically re-
quire a proportionally large amount of gates for storage. This makes the
selection of the proper storage structure an important tuning knob for the
implementation of a hash algorithm. For example, we implement several
bit-sliced versions of CubeHash [4,5,6], and show that the use of a register
file may imply an area reduction of 42.7% area reduction compared with a
common flip-flop based memory design.

2.2 Power

The power consumption is another commonly used metric which is strongly cor-
related to the technology. For the standard-cell library impact, we can see from
Table 1 the power efficiency in terms of nW/MHz/GE differs by a factor of two to
three times across different technology nodes. For the storage structure impact,
as illustrated in our case study of CubeHash in Section 4, the power variation
range can be from -31.4% to 14.5% at 130nm technology node. Therefore, it
is important to provide proper context when comparing the power estimation
results for different lightweight hash implementations.

Table 1. Compare the characteristics of different ASIC technology nodes from
some commercial standard-cell libraries [7].

Technology Gate Density Power
Node [kGEs/mm2] [nW/MHz/GE]

180 nm 125 15.00
130 nm 206 10.00
90 nm 403 7.00
65 nm 800 5.68

However, in general we think that the power consumption is a less important
metric in comparing different lightweight hash designs. Take the most popular
and ultra-constrained RFID application as an example, which has the power

ECRYPT Workshop on Lightweight Cryptography - November 2011 238

4 X. Guo and P. Schaumont

budget for security portion as 27 µW at 100KHz [8,9]. Just by looking at the
average power number in Table 1, we can easily get a rough estimation of the area
needed to consume 27 µW would be 18k GEs, 27k GEs, 39k GEs and 48k GEs
at 180nm, 130nm, 90nm and 65nm, respectively. Therefore, all of the lightweight
hash proposals which are much smaller should satisfy the power requirement.

2.3 Latency

The latency of hash operations is measured in clock cycles and is technology
independent. However, one related metric, Throughput, may be technology de-
pendent if the maximum throughput is required since the maximum frequency
of a design is technology dependent. Since in most lightweight hash targeted
applications, especially tag-based applications, hashing a large amount of data
is unlikely to happen or the operating frequency is fixed at a very low value
(e.g. 100 KHz for RFID), latency as a technology independent metric should be
sufficient to characterize the lightweight hash performance.

2.4 Summary

As discussed above, only the latency metric is independent of technology. Power
is technology dependent metric but it is a much less important metric than area.
Therefore, the rest of the work will focus on the technology dependent analysis
of the hardware cost of lightweight hash designs. The technology impacts of
standard-cell libraries and storage structures are measured in a quantitative
way through two concrete case studies of Quark and CubeHash designs.

3 ASIC Library Dependent Cost Analysis of Quark

In this section, we investigate the impact of technology library selection on the
overall GE count of a design. We do this through the example of the Quark
lightweight hash function.

3.1 Overview of Quark

The Quark hash family by Aumasson et al. was presented at CHES2010 [1], using
sponge functions as domain extension algorithm, and an internal permutation
inspired from the stream-cipher GRAIN and the block-cipher KATAN. There
are three instances of Quark: U-Quark, D-Quark and S-Quark, providing at
least 64, 80, 112 bit security against all attacks (collisions, second preimages,
length extension, multi-collisions, etc.) [10]. The authors reported the hardware
cost after layout of each variant as 1379, 1702 and 2296 GEs at 180nm.

The open-source RTL codes found at the Quark website [10] help us evaluate
the standard-cell library impact on the hardware cost by reusing the same source
codes. The evaluation is performed at two steps: first, we look at cost variations
at three technology nodes (180nm/130nm/90nm); second, at the same 130nm

ECRYPT Workshop on Lightweight Cryptography - November 2011 239

Technology Dependence of Lightweight Hash Implementation Cost 5

Table 2. Summary of technology nodes and standard-cell libraries used in tech-
nology dependent cost analysis.

Technology Vendor Standard-Cell Library Notes

90 nm UMC fsd0a a generic core tc Standard Performance Low-K
130 nm UMC fsc0g d sc tc Standard Performance High Density
180 nm UMC fsa0a c sc tc High Performance

130 nm UMC fsc0g d sc tc Standard Performance High Density
130 nm IBM scx3 cmos8rf rvt tt 1p2v 25c Standard Performance
130 nm IBM scx3 cmos8rf lpvt tt 1p2v 25c Low Power

technology node we have tried: a) two standard-cell libraries from different ven-
dors; and b) two different standard-cell libraries from the same vendor. A list of
all the technology nodes and libraries can be found at Table 2.

3.2 The Impact of Technology Nodes and Standard-Cell Libraries

To evaluate the standard-cell library impacts we used the Synopsys Design Com-
piler (C-2009.06-SP3) to map the Quark VHDL source codes [10] to all the dif-
ferent technologies and libraries listed in Table 2. The synthesis constraints are
set to optimize for the minimum area.

1379

1702

2296

1153

1427

1937

1345

1669

2265

1392

1721

2352

0

500

1000

1500

2000

2500

U-Quark D-Quark S-Quark

A
re

a
 (

G
E

s)

Technology Node Impacts to the Synthesis Results of Quark

REF180nm UMC90nm UMC130nm UMC180nm

Fig. 2. Cross-comparison of Quark post-synthesis area at different technology
nodes. (Note: numbers of REF180nm refer to the hardware cost presented in [1])

Take the smallest U-Quark as an example. As shown in Fig. 2, the synthesized
circuit area varies from 1153 GEs to 1392 GEs in 90nm and 180nm, respectively.

ECRYPT Workshop on Lightweight Cryptography - November 2011 240

6 X. Guo and P. Schaumont

The differential area, 239 GEs, implies a variation range from -17.2% to 20.7%.
The similar trend can also be found for D-Quark and S-Quark. In average, the
area variation is from -17.3% to 20.9% for all the three Quark variants.

The Quark RTL designs have very simple logic operations in their compres-
sion function and most of the circuit area is used for storing the state bits. For
a further analysis of which part of the design contributes more to those vari-
ations, we show the portion of combinational and non-combinational logic of
each synthesized design in Fig. 3. From this graph, we can clearly see that the
combinational part, largely determined by the logic complexity of the compres-
sion functions, has much less variations under different technology nodes and
contributes an average of 20.9% to the total area variation for all cases. The
non-combinational part, mainly occupied by the storage of state bits, is more
sensitive to different technology nodes.

420 438 472

734

908
921

0

200

400

600

800

1000

1200

1400

1600

UMC90nm UMC130nm UMC180nm

A
re

a
 [

G
E

s]

U-Quark: Post-Synthesis Area

Combinational Logic Non-Combinational Logic

509 538 567

919

1132 1154

0

200

400

600

800

1000

1200

1400

1600

1800

2000

UMC90nm UMC130nm UMC180nm

D-Quark: Post-Synthesis Area

657 689 745

1279

1576
1606

0

500

1000

1500

2000

2500

UMC90nm UMC130nmUMC180nm

S-Quark: Post-Synthesis Area

Fig. 3. Technology impact on the combinational logic vs. non-combinational
logic after synthesis.

Through the above exploration we have demonstrated that a direct compar-
ison of circuit area obtained at different technology nodes may cause significant
inaccuracy. However, as shown in Fig. 4 comparing synthesis results using differ-
ent libraries (UMC vs. IBM and Low Power Vt Library vs. Regular Vt Library)
at the same 130nm technology node shows very small variations with an accept-
able variation range from -1.1% to 1.1%. This means more accurate comparison
in hardware cost could be achieved if the same standard-cell libraries are used
or at least different standard-cell libraries are at the same technology node.

4 Storage Structure Dependent Cost Analysis of CubeHash

In this Section we discuss the impact of storage architecture on GE, through the
example of a bitsliced Cubehash design proposed by Bernstein [4,5,6].

ECRYPT Workshop on Lightweight Cryptography - November 2011 241

Technology Dependence of Lightweight Hash Implementation Cost 7

1345

1669

2265

1327

1644

2258

1330

1645

2256

0

500

1000

1500

2000

2500

U-Quark D-Quark S-Quark

A
re

a
 (

G
E

s)

130nm Standard-Cell Library Impacts to the Synthesis Results of Quark

UMC130nm IBM130nm-LPVT IBM130nm-RVT

Fig. 4. Cross-comparison of Quark post-synthesis area with different 130nm
CMOS standard-cell libraries.

4.1 Overview of CubeHash

CubeHash is among the 14 NIST SHA-3 Second Round candidates. Although
it was not selected to be considered as one of the SHA-3 finalists, CubeHash
attracted extensive third-party analysis and no practical attacks were found.
CubeHash is also an exception among Second Round SHA-3 candidates in terms
of hardware footprint. The smallest implementation of CubeHash was reported
with 7630 GEs in 130 nm technology [11]. Because Cubehash offers a high secu-
rity level with a very simple structure, it is worthwhile to look further into the
lightweight implementation of this design.

CubeHash is a sponge-like hash algorithm that is based on the iteration of a
fixed permutation, T , on a state of 128 bytes. A simple padding rule is applied to
the input message. The algorithm consists of three stages: initialization, message
injection, and finalization. In addition to the parameter, h, for the bit length of
the message digest size, there are four tunable parameters: 1) the number of
rounds of message injection, r; 2) the message word size, b, in bytes; 3) the ini-
tialization rounds, i; and 4) the finalization rounds, f . Thus, for the message
injection stage of CubeHashi + r/b + f − h, b bytes of the message are XORed
into the state before r iterations of T . The initialization and finalization stages
each consist of i and f rounds of T on the state, respectively. Initialization may
either be pre-computed to save time, or computed on-the-fly to save memory.
Finalization is preceded by the flipping of a single bit of the state. No round con-
stants or length indicators are used, other than the encodings of the parameters
in the three initial-state words.

In this work we evaluated the CubeHash512 (Version November 2010), de-
fined as CubeHash16+16/32+32-512. The security bits for preimages attacks is
384 and 256 for collision attacks. The operations in the round permutation, T ,
are modular additions, XORs, and rotations, which are very suitable for bit-
sliced implementations.

ECRYPT Workshop on Lightweight Cryptography - November 2011 242

8 X. Guo and P. Schaumont

4.2 VLSI Implementations

In Appendix A. we describe two general techniques, bit-slicing and memory
structures, for lightweight hash designs. In this section, we will show how to use
them in optimizing a new hash proposal, CubeHash [2], for lightweight imple-
mentations. By using CubeHash as a case study, we also show that with the
combination of bit-slicing and register file as the main storage, CubeHash can
also be a ideal lightweight hash candidate (less than 6,000 GEs with 130nm
technology) but with much higher security levels. This makes Cubehash comple-
mentary to other new lightweight hash proposals with lower security margins.
For practical aspects, we will also show the interaction between bit-slicing and
register file configurations, and how this interaction will affect the hardware cost.

x00 x1f

32
32

0

31
0

31

Rotate << 7

(Wiring)

32

32
XOR (x16)

Adder (x16)

Swap

(Wiring)

32
32

0

31
0

31

32

32
XOR (x16)

Adder (x16)

x10 x0f

1024 bits Memory

Rotate << 1

(Wiring)

Swap

(Wiring)

Fig. 5. The hardware architecture of CubeHash with 32 bits datapath.

The architecture of the original CubeHash with 32 bits datapath is shown in
Fig. 5. The 32 bits datapath, as shown, can finish one round of CubeHash core
function in one clock cycle. The left and right part of the datapath are almost
identical except for the different rotations. Since rotation and swap operations
can be realized through simple wiring in hardware without logics, the ALUs
of datapath mainly consists of 32 bits adders and 32 bits XORs. The Cube-
Hash state with the configuration of 1024 bits × 1 word (1024b1w) can only be
implemented using flip-flops.

For the one-cycle-per-round CubeHash architecture, denoted as Cube1, the
32 bits datapath and 1,024 bits flip-flops will consume most of the circuit area.
So, we can apply the bit-slicing technique to reduce the datapath bit width.

ECRYPT Workshop on Lightweight Cryptography - November 2011 243

Technology Dependence of Lightweight Hash Implementation Cost 9

For bit-sliced ALUs of CubeHash datapath, we only need to consider the 32
bits adders. Here the ripple carry adder with full adders can be used. Although
rotation and swap operations are free in hardware, for different degrees of bit-
slicing preparing the corresponding data format and vector ordering needs to
be carefully addressed. More details on how to map these operations in 2, 4, 8
bit-sliced versions of CubeHash can be found at [4,5,6].

We have implemented two bit-sliced versions of CubeHash with a 2-bit and
a 4-bit datapath, respectively. We denote these two versions as Cube32 and
Cube16. As a result of the bit-slicing, the CubeHash state memory configuration
changes from the default ‘1024b1w’ to ‘64b16w’ and ‘128b8w’, respectively.

We chose to define our design space only with these two bit-sliced versions
for two reasons. First, the register file needs to have at least 8 fields, so that
bitslicing above 4 bits would imply storage overhead. Second, after analyzing
the results of Cube32 and Cube16, we found the throughput of the bit-serial
implementation of CubeHash to be too slow to be competitive. This will be
illustrated further.

4.3 Quantify the Storage Structure Impact

When optimizing the bit-sliced implementations of Cube32 and Cube16, in ad-
dition to the memory type selection we also have the option to implement both
flip-flops and register file based memories with single-port (SP) or dual-port
(DP). For single-port memories, since they have single set of address and con-
trols with single access (read/write) to the memory, it will save some area due to
the simpler peripheral circuits compared with dual-port memories with the same
size. However, the CubeHash throughput will cut into half with SP-memories
because in this case read and write operations need to be in separate clock cycles.

Cube32_SP Cube32_DP Cube16_SP Cube16_DP

RF-Cube 5988 6625 7627 8371

FFs-Cube 10442 10734 10568 11287

0

2000

4000

6000

8000

10000

12000

A
re

a
 (

G
E

s)

CubeHash: Register File vs. Flip-Flops based Memory

Fig. 6. Comparison of the impact of different memory types to the CubeHash
area.(Note: the latency of Cube32 SP, Cube32 DP, Cube16 SP and Cube16 DP
are 1024, 512, 512 and 256 cycles, respectively)

ECRYPT Workshop on Lightweight Cryptography - November 2011 244

10 X. Guo and P. Schaumont

We emphasize that after choosing single- or dual-port memory types in hard-
ware architecture design, the RTL code for a flip-flop based version and for a
register-file based version is identical. Both of them share the same standard
memory interface. However, after using the same synthesis constraints target-
ing smallest area to synthesize both of the designs with IBM MOSIS 130nm
standard-cell technology (scx3 cmos8rf lpvt tt 1p2v 25c) and register file mod-
ules from Artisan Standard Library 130nm Register File Generator, the advan-
tages of using register file becomes obvious, as shown in Fig. 6.

The RF-based CubeHash designs can save between 26% and 43% of the area
over flip-flop based ones. As we look further into the memory efficiency metric in
terms of GEs/bit, for the size of 1,024 bits the flip-flops based memories is almost
constant with small variations between 7.0 GEs/bit and 7.8 GEs/bit; however,
the register file based ones have the densest configuration of 32b32w SP with
highest efficiency at 2.3 GEs/bit and 4.9 GEs/bit for the lowest efficiency with
128b8w DP configuration as shown in Fig. 7.

32b32w_SP 32b32w_DP 64b16w_SP 64b16w_DP 128b8w_SP 128b8w_DP

1,024 bit RF 2374 3177 2881 3591 4252 5037

0

1000

2000

3000

4000

5000

6000

A
re

a
 (

G
E

s)

The Register File configurations corresponding to 1, 2, 4 bit datapaths

1 bit datapath

2 bit datapath

4 bit datapath

Fig. 7. Comparison of the cost of different configurations of the register file.
(Note: for all single-port memories the read and write operations need to be in
separate clock cycles)

After analyzing the area composition of RF-based CubeHash designs shown
in Fig. 8, by reducing the datapath from 4 bits to 2 bits, we only save less than
300 GEs in average, which is less than 5% of the total CubeHash area; however,
moving from Cube16 DP to Cube32 SP we can save 2,156 GEs, which is 26%
area reduction of the overall Cube16 DP area.

This interesting comparison delivers an important message: bit-slicing may not
provide a reduction in datapath area. In fact, in an extreme case (e.g. bit-serial
implementation), bit-slicing may even increase the logic area with more incurred
control overhead than the reduced area in ALUs; however, the associated changes

ECRYPT Workshop on Lightweight Cryptography - November 2011 245

Technology Dependence of Lightweight Hash Implementation Cost 11

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Cube32_SP Cube32_DP Cube16_SP Cube16_DP

RF 2881 3591 4252 5037

Logic 3108 3034 3376 3334

A
re

a
 (

G
E

s)

Bit-slicing with Register File

Fig. 8. Comparison of the storage ratio in different memory configurations.

in memory configurations may have greater impact on the overall area reduction.
Note that there are also some ways to further compress the control unit design
(e.g. ROM-based FSMs vs. conventional FSMs), but since the focus of this paper
lies on the storage impact analysis we choose to use conventional FSMs based
designs and leave the control overhead optimization as a future work.

For the bit-serial CubeHash design, according to the above analysis the logic
area reduction will become negligible. Using register file with 32b32w SP config-
uration can save 500 GEs, but this will make the latency as bad as 2048 cycles,
which even cannot meet the RFID tag’s requirement of 1800 cycles [8]; while for
the other configuration with 32b32w DP, with the same latency of 1024 cycles
as Cube32-64b16w SP the area of the register file will increase (possibly due to
the memory shape). Therefore, bit-serial version of CubeHash is excluded in our
design space.

We have also performed post-synthesis simulation and compared the power
efficiency of flip-flops and register file based CubeHash designs. As we can see
from Fig. 9, register file based designs are in general more power efficient than
the flip-flop based ones. For all the cases, the power consumption at 100 KHz
are way below the RFID’s required power budget of 27 µW [8].

To compare lightweight CubeHash implementations with other published
work, CubeHash can offer much higher security levels with satisfying through-
put at an acceptable cost. Based on the lightweight hash design methodology
proposed in this work, we have shown how to optimize a general purpose hash
algorithm for lightweight applications. With the given security and cost, we
think CubeHash is an ideal complement to other existing lightweight proposals.
As also shown in Table 3, all these lightweight hash designs take advantages of
bit-slicing but only our design makes a better usage of the memory structure.

ECRYPT Workshop on Lightweight Cryptography - November 2011 246

12 X. Guo and P. Schaumont

Table 3. Comparison of the characteristics of different lightweight hash designs.
(Note: 1) ‘Dig.’, ‘Dp’, ‘Proc.’ and ‘Thr.’ refer to digest size, datapath width,
process and throughput, respectively; 2) throughput and power numbers are
based on designs running at 100KHz; 3) a graphical presentation of selected
metrics can be found in the Appendix B. for easier comparison)

Hash Function Pre. Coll. Dig. Latency Dp Proc. Area Thr. Power
[bit] [bit] [bit] [cycles] [bit] [nm] [GEs] [kbps] [µW]

DM-PRESENT-80 [12] 64 32 64 547 4 180 1600 14.63 1.83
DM-PRESENT-128 [12] 64 32 64 559 4 180 1886 22.90 2.94
PHOTON-80/20/16 [13] 64 40 80 708 4 180 865 2.82 1.59
PHOTON-128/16/16 [13] 112 64 128 996 4 180 1122 1.61 2.29
H-PRESENT-128 [12] 128 64 128 559 8 180 2330 11.45 6.44
U-Quark [1] 128 64 128 544 1 180 1379 1.47 2.44
ARMADILLO2-B [14] 128 64 128 256 1 180 4353 25.00 –
PHOTON-160/36/36 [13] 128 80 160 1332 4 180 1396 2.70 2.74
D-Quark [1] 160 80 160 704 1 180 1702 2.27 3.10
ARMADILLO2-C [14] 160 80 160 320 1 180 5406 25.00 –
C-PRESENT-192 [12] 192 96 192 3338 12 180 4600 1.90 –
PHOTON-224/32/32 [13] 192 112 224 1716 4 180 1736 1.86 4.01
S-Quark [1] 224 112 224 1024 1 180 2296 3.13 4.35
PHOTON-256/32/32 [13] 224 128 256 996 8 180 2177 3.21 4.55
ARMADILLO2-E [14] 256 128 256 512 1 180 8653 25.00 –

Keccak-f[200] [15] 64 32 64 900 8 130 2520 8.00 5.60
SPONGENT-88 [16] 80 40 88 990 4 130 738 0.81 1.57
SPONGENT-128 [16] 120 64 128 2380 4 130 1060 0.34 2.20
Keccak-f[400] [15] 128 64 128 1000 16 130 5090 14.40 11.50
SPONGENT-160 [16] 144 80 160 3960 4 130 1329 0.40 2.85
SHA-1 [8] 160 80 160 344 8 130 5527 148.88 2.32
SPONGENT-224 [16] 208 112 224 7200 4 130 1728 0.22 3.73
SPONGENT-256 [16] 240 128 256 9520 4 130 1950 0.17 4.21
Cube8/1-512 [11] 384 256 512 512 32 130 7630 2.00 –
Cube32 SP-RF 384 256 512 1024 2 130 5988 25.00 2.91
Cube32 DP-RF 384 256 512 512 2 130 6625 50.00 3.91
Cube16 SP-RF 384 256 512 512 4 130 7627 50.00 4.33
Cube16 DP-RF 384 256 512 256 4 130 8371 100.00 5.68

ECRYPT Workshop on Lightweight Cryptography - November 2011 247

Technology Dependence of Lightweight Hash Implementation Cost 13

64b16w_SP 64b16w_DP 128b8w_SP 128b8w_DP

Flip-Flops 2.74 2.95 2.87 3.49

Logics 1.50 1.26 1.62 1.47

0.00

1.00

2.00

3.00

4.00

5.00

6.00

P
o
w

er
 (

u
W

)

Power consumption of CubeHash with Flip-Flops

64b16w_SP 64b16w_DP 128b8w_SP 128b8w_DP

Register-File 1.57 2.67 2.91 4.27

Logics 1.34 1.24 1.42 1.41

0.00

1.00

2.00

3.00

4.00

5.00

6.00

P
o
w

er
 (

u
W

)

Power consumption of CubeHash with Register File

Fig. 9. Comparison of the power consumption with flip-flops and register file
based CubeHash implementations.

5 Conclusions

Recent lightweight hash proposals have presented a tradeoff between security
and cost; cryptographic engineers, on the other hand, have proposed more fine-
grained optimizations to achieve the most efficient implementations. By quan-
tifying technology impacts to the cost analysis of different lightweight hash im-
plementations, this paper shows the benefits of making these two groups people
working in an interactive design process and at different abstraction levels. Our
technology dependent cost analysis may help cryptographic engineers have bet-
ter presentation of the metrics and avoid some common pitfalls. The proposed
lightweight hash design methodology establish the link between algorithm design
and silicon implementation with a strong emphasis on the interaction between
hardware architecture and silicon implementation. The cost model of lightweight
hash designs reveals the interaction between bit-slicing and memory structures
may divide the design space for lightweight implementation into two regions:
one is mainly about the tradeoff between datapath folding and control overhead,
and the other one needs to add the low-level memory structure as an additional
tradeoff point.

Acknowledgment

This work is supported by a NIST grant, ‘Environment for Fair and Compre-
hensive Performance Evaluation of Cryptographic Hardware and Software’. We
acknowledge the support from Dr. Daniel J. Bernstein at University of Illinois
at Chicago for providing bit-sliced CubeHash software implementations.

ECRYPT Workshop on Lightweight Cryptography - November 2011 248

14 X. Guo and P. Schaumont

References

1. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A Lightweight
Hash. In Mangard, S., Standaert, F.X., eds.: Cryptographic Hardware and Em-
bedded Systems, CHES 2010. Volume 6225 of LNCS. (2010) 1–15

2. Bernstein, D.J.: CubeHash: a simple hash function (May 2011) http://cubehash.
cr.yp.to/index.html.

3. NIST: CRYPTOGRAPHIC HASH ALGORITHM COMPETITION (May 2011)
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

4. Bernstein, D.J.: CubeHash: 8-cycle-per-round hardware implementation strategy
(May 2011) http://cubehash.cr.yp.to/hardware8/hash.c.

5. Bernstein, D.J.: CubeHash: 16-cycle-per-round hardware implementation strategy
(May 2011) http://cubehash.cr.yp.to/hardware16/hash.c.

6. Bernstein, D.J.: CubeHash: 32-cycle-per-round hardware implementation strategy
(May 2011) http://cubehash.cr.yp.to/hardware32/hash.c.

7. TOSHIBA: Toshiba CMOS Technology Roadmap for ASIC (May 2011) http:

//www.toshiba-components.com/ASIC/Technology.html.
8. O’Neill, M., Robshaw, M.: Low-cost digital signature architecture suitable for radio

frequency identification tags. Computers Digital Techniques, IET 4(1) (january
2010) 14 –26

9. Feldhofer, M., Wolkerstorfer, J.: Strong Crypto for RFID Tags - A Comparison
of Low-Power Hardware Implementations. In: Circuits and Systems, 2007. ISCAS
2007. IEEE International Symposium on. (may 2007) 1839 –1842

10. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: a lightweight
hash (October 2011) http://131002.net/quark/.

11. Bernet, M., Henzen, L., Kaeslin, H., Felber, N., Fichtner, W.: Hardware imple-
mentations of the SHA-3 candidates Shabal and CubeHash. Circuits and Systems,
Midwest Symposium on (2009) 515–518

12. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y.:
Hash Functions and RFID Tags: Mind the Gap. In Oswald, E., Rohatgi, P., eds.:
Cryptographic Hardware and Embedded Systems C CHES 2008. Volume 5154 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2008) 283–299

13. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In Rogaway, P., ed.: Advances in Cryptology, CRYPTO 2011. Volume
6841 of LNCS. Springer Berlin / Heidelberg (2011) 222–239

14. Badel, S., Daǧtekin, N., Nakahara, J., Ouafi, K., Reffé, N., Sepehrdad, P., Sušil, P.,
Vaudenay, S.: ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated
to Hardware. In Mangard, S., Standaert, F.X., eds.: Cryptographic Hardware
and Embedded Systems, CHES 2010. Volume 6225 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg (2010) 398–412

15. Kavun, E., Yalcin, T.: A Lightweight Implementation of Keccak Hash Function
for Radio-Frequency Identification Applications. In Ors Yalcin, S., ed.: Radio Fre-
quency Identification: Security and Privacy Issues. Volume 6370 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg (2010) 258–269

16. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
SPONGENT: A Lightweight Hash Function. In Preneel, B., Takagi, T., eds.:
Cryptographic Hardware and Embedded Systems, CHES 2011. Volume 6917 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2011) 312–325

17. Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN – A Family
of Small and Efficient Hardware-Oriented Block Ciphers. In: Proceedings of the

ECRYPT Workshop on Lightweight Cryptography - November 2011 249

http://cubehash.cr.yp.to/index.html
http://cubehash.cr.yp.to/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://cubehash.cr.yp.to/hardware8/hash.c
http://cubehash.cr.yp.to/hardware16/hash.c
http://cubehash.cr.yp.to/hardware32/hash.c
http://www.toshiba-components.com/ASIC/Technology.html
http://www.toshiba-components.com/ASIC/Technology.html
http://131002.net/quark/

Technology Dependence of Lightweight Hash Implementation Cost 15

11th International Workshop on Cryptographic Hardware and Embedded Systems.
CHES ’09, Berlin, Heidelberg, Springer-Verlag (2009) 272–288

18. Weste, N., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective
(3rd Edition). Addison-Wesley (2004)

19. Guo, X., Srivistav, M., Huang, S., Ganta, D., Henry, M., Nazhandali, L., Schau-
mont, P.: Pre-silicon Characterization of NIST SHA-3 Final Round Candidates.
In: 14th Euromicro Conference on Digital System Design Architectures, Methods
and Tools (DSD 2011). (2011)

20. Guo, X., Srivistav, M., Huang, S., Ganta, D., Henry, M., Nazhandali, L., Schau-
mont, P.: ASIC Implementations of Five SHA-3 Finalists. In: Design, Automation
Test in Europe Conference Exhibition (DATE), 2012. (March 2012) 1 –6

21. Guo, X., Srivistav, M., Huang, S., Ganta, D., Henry, M., Nazhandali, L., Schau-
mont, P.: Silicon Implementation of SHA-3 Finalists: BLAKE, Grostl, JH, Keccak
and Skein. In: ECRYPT II Hash Workshop 2011. (May 2011)

22. Guo, X., Huang, S., Nazhandali, L., Schaumont, P.: Fair and Comprehensive
Performance Evaluation of 14 Second Round SHA-3 ASIC Implementations. In:
The Second SHA-3 Candidate Conference. (August 2010)

23. Guo, X., Huang, S., Nazhandali, L., Schaumont, P.: On The Impact of Target
Technology in SHA-3 Hardware Benchmark Rankings. Cryptology ePrint Archive,
Report 2010/536 (2010) http://eprint.iacr.org/2010/536.

24. Kim, M., Ryou, J., Jun, S.: Efficient Hardware Architecture of SHA-256 Algorithm
for Trusted Mobile Computing. In Yung, M., Liu, P., Lin, D., eds.: Information
Security and Cryptology. Volume 5487 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg (2009) 240–252

A. Lightweight Hash Implementation Methodology

Below we propose a methodology for lightweight hash designs and created a cost
model to help designers understand when changing memory structure becomes
necessary in order to further reduce the circuit area.

Hardware Architecture Optimization: Datapath Folding The com-
plexity of hash algorithms determines the ALUs used in the datapath to complete
complex arithmetic operations. For some hash algorithms with 32 bits datapath,
these ALUs may become the dominant factor in the overall cost.

Fig. 10 shows an example hash datapath with four logic operations between
the IN and OUT states. There are two common ways to reduce the area of
ALUs in this datapath. First, through horizontal folding, we can save half of
the ALUs at the cost of introducing control overhead for selecting the inputs
for each round of operations. Second, through vertical folding (also known as
bit-slicing), we can cut the bit width of processing elements and this will also
cause control overhead.

There is no universal answer on how to select the horizontal or vertical or
combined folding for the optimal architectural design. The choice has to be
made by a tradeoff between ALU complexity and control unit cost. However,
we recommend that lightweight hash in general may benefit more from vertical
folding (or bit-slicing). One of the key reasons is that the bit-slicing will also
change the memory structure as shown in Fig. 10. This may greatly affect the

ECRYPT Workshop on Lightweight Cryptography - November 2011 250

http://eprint.iacr.org/2010/536

16 X. Guo and P. Schaumont

optimization at the lower silicon implementation level, as will be shown through
the Cubehash design further in this paper.

Silicon Implementation Optimization: Memory Structures The im-
portance of memory design was recently identified in the new lightweight block
cipher designs [17]. The authors found that most of existing lightweight block
cipher implementations not only differ in the basic gate technology, but also in
the memory efficiency, namely the number of GEs required for storing a bit.
Most of the lightweight block ciphers have more than 50% of the total area dedi-
cated for memory elements, mostly flip-flops (FFs), and a single flip-flop in UMC
130nm standard-cell library (fsc0l d sc tc) may cost 5 to 12 GEs depending on
the different types of FFs in use.

Compared with lightweight block ciphers, the memory requirement for a hash
is much more demanding as hash functions usually have a much larger state size
(e.g. typically 512 bits or 1024 bits). However, in most published lightweight
hash implementations we can hardly find discussions on optimization of mem-
ory structures. In contrast, we claim that lightweight hash implementations can
benefit even more from careful memory design.

There are generally three types of read/write memory in ASIC standard-cell
technologies shown in Table 4. Flip-flops, SRAMs, and register files each repre-
sent a different configuration of memory cells. They each have a different density
(GE/bit) and power dissipation. In addition, SRAMs and register files typically
require a minimum size, defined by the technology library used. Considering our
earlier discussion on architecture folding, register files and SRAMs obviously will
be very useful to support vertical folding.

To summarize the selection of memory structures, for lightweight hash de-
signs Register File (RF) is the ideal memory structure if the required memory
size fits in the applicable range and configurations. Fig. 11 represents our key
observations so far.

8

8
8 8

8

8

8 8

8

b a

c d

8

8
8 8

8

b a

Control

Unit0

c d

4

4
4 4

4

b a

Control

Unit0

c d
8

8

8

8

4

4

4

4
Control

Unit1

Example Datapath A. Horizontal Folding

(reuse ALUs)

B. Vertical Folding

(bit-slicing)

IN IN IN

OUT OUT OUT

Fig. 10. The two techniques of datapath folding.

ECRYPT Workshop on Lightweight Cryptography - November 2011 251

Technology Dependence of Lightweight Hash Implementation Cost 17

Table 4. Compare the characteristics of different memory structures in typical
ASIC standard-cell technologies [18]. (*: the size parameters are for Artisan
standard library 130nm SRAM and Single-Port Register File generation.)

Flip-Flops SRAM Register File

Density Low High Medium High
Power High Medium Low
Speed Low High Medium

Latency None 1 clock cycle 1 clock cycle
*Size Range No limit 512 bits (256 words×2 bits) 64 bits (8 words×8 bits)

to 512 kbits to 32 kbits
Application Very small Large size Small-to-Medium

size memory memory size memory

If an algorithm has limited state size, and a register file cannot be used,
then lightweight hardware implementation is mainly about the tradeoff between
datapath folding and control overhead. However, as shown in Fig. 11, if an
implementation can use a register file, then the cost of storage should be included
in the area tradeoffs. Also, we will show that the impact of low-level memory
implementation can be substantial, and that it can affect design decisions.

From the hardware engineers’ perspective, following the curves in Fig. 11,
one can make optimization decisions according to different hash specifications
at different levels. If low cost is the primary target, one may also follow this
graph to check whether your design is at the optimal point. By fully analyzing
the interactions between bit-slicing and register file configurations under a target
ASIC technology, one may gain a better understanding of when bit-slicing will
become meaningful.

Bit Width of Datapath

 A
re

a

N bit N/2 bit N/4 bit M bit 1 bit 2 bit 4 bit

Ctrl-ALU

Tradeoffs

Ctrl-ALU-MEM

Tradeoffs
Core ALU

Control Logic

Memory

∆ Area_MEM (+ / −)

∆ Area_CTRL (+)

∆ Area_ALU (−)

Flip-Flops

Register File

Flip-Flops

Fig. 11. The cost model for lightweight hash designs.

ECRYPT Workshop on Lightweight Cryptography - November 2011 252

18 X. Guo and P. Schaumont

B. Summary of Lightweight Hash Implementations

Lightweight hash function designs fall in two research categories: lightweight
hash proposals and lightweight implementation techniques.

Since DM/H/C-PRESENT [12] hash functions were proposed at CHES2008,
we have seen several new lightweight hash proposals afterwards. DM/H/C-
PRESENT [12] hash functions based on PRESENT block cipher and optimize
for different hash constructions. Digest sizes from 64 bits to 192 bits can be
achieved for a hardware cost of 2213 GEs (gate-equivalent) to 4600 GEs in 180
nm technology. ARMADILLO [14] hash family was first proposed at CHES2010
as a dedicated hardware optimized hash proposal. It provides several variants
providing digests between 80 and 256 bits with area between 2923 and 8653
GEs. The Quark [1] hash family is based on a sponge construction with a digest
size from 128 bits to 224 bits and area from 1379 GEs to 4640 GEs in 180 nm
technology. The most recently published SPONGENT [16] and PHOTON [13]
hash families are also based on sponge construction, and for the first time both
of them offer one variant under 1000 GEs. SPONGENT is based on a wide
PRESENT-type permutation with a digest size from 88 to 256 bits with very
small footprint in hardware from 738 to 1950 GEs, respectively. PHOTON has
an AES-like internal permutation and can produce digest size from 64 to 256
bits with very close hardware cost as SPONGENT from 865 to 2177 GEs.

The ongoing SHA-3 competition aims at selecting the next generation of hash
standard for general applications with high demands on security requirements.
According to [19,20,21], the five SHA-3 finalists in the current phase and even the
fourteen Second Round SHA-3 candidates [22,23] are unlikely to be considered
as lightweight hash candidates due to their high cost in hardware (more than
10,000 GEs) [1]. Nevertheless, we expect there will be additional effort dedicated
to lightweight implementations of SHA-3 finalists. For some earlier work on
existing hash standards, the smallest SHA-1 implementation with 160 bits digest
costs 5,527 GEs in 130 nm technology [8]; SHA-256 with 256 bits digest can be
implemented with 8,588 GEs in 250 nm technology [24].

To summarize previous works, two observations can be made. First, the new
lightweight hash proposals emphasize the design of simplified hash core func-
tions, rather than optimizing the implementation. Second, existing lightweight
implementations focus on fine-grained or algorithm-specific optimizations. They
do not provide general guidelines of how a given hash algorithm can benefit most
from high level hardware architectural optimizations and low level technology
optimizations.

Our work is complementary to the previous work. In this paper, we focus on
the technology impacts to the cost analysis of lightweight hash designs and their
relation to lightweight hash implementation techniques. Indeed, mapping a stan-
dard hash algorithm into a lightweight implementation is at least as important
as stripping down hash algorithms into lightweight-security versions.

Comparison between existing lightweight hash designs and the lightweight
optimization of CubeHash described in this work can be found in the graph
below:

ECRYPT Workshop on Lightweight Cryptography - November 2011 253

Technology Dependence of Lightweight Hash Implementation Cost 19

1
6
0
0
 1

8
8
6
 8

6
5
 1

1
2
2
 2

3
3
0

1
3
7
9

4
3
5
3
 1

3
9
6

1
7
0
2

5
4
0
6
 4

6
0
0

1
7
3
6

2
2
9
6

2
1
7
7

8
6
5
3

2
5
2
0

7
3
8

1
0
6
0

5
0
9
0

1
3
2
9

5
5
2
7

1
7
2
8

1
9
5
0

5
9
8
8

6
6
2
5

 7
6
2
7
 8

3
7
1

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

Area [GEs]

3
2

3
2

4
0

6
4

6
4

6
4

6
4

8
0

8
0

8
0

9
6

1
1
2

1
1
2

1
2
8

1
2
8

3
2

4
0

6
4

6
4

8
0

8
0

1
1
2

1
2
8

2
5
6

2
5
6

2
5
6

2
5
6

6
4

6
4

6
4

1
1
2

1
2
8

1
2
8

1
2
8

1
2
8

1
6
0

1
6
0

1
9
2

1
9
2

2
2
4

2
2
4

2
5
6

6
4

8
0

1
2
0

1
2
8

1
4
4

1
6
0

2
0
8

 2
4
0

3
8
4

3
8
4

3
8
4

3
8
4

0

1
0
0

2
0
0

3
0
0

4
0
0

C
o
llisio

n
 B

its
P

reim
ag

e B
its

Security Bits [bits]

5
4
7

5
5
9

7
0
8

9
9
6

5
5
9

5
4
4

2
5
6
 1

3
3
2
 7

0
4

3
2
0
 3

3
3
8
 1

7
1
6
 1

0
2
4
 9

9
6

5
1
2

9
0
0

9
9
0
 2

3
8
0
 1
0
0
0
 3

9
6
0

3
4
4

7
2
0
0

9
5
2
0

1
0
2
4

5
1
2

5
1
2

2
5
6

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

Latency [cycles]

1
3
0
 n

m

1
8
0
 n

m

Fig. 12. Summary of existing lightweight hash implementations (see Table 3 for
more comparison metrics).

ECRYPT Workshop on Lightweight Cryptography - November 2011 254

Enabling Standardized Cryptography on

Ultra-Constrained 4-bit Microcontrollers⋆

Tino Kaufmann1,⋆⋆ and Axel Poschmann2

1 Gemalto, Singapore
2 PACE, Nanyang Technological University, Singapore

tino.kaufmann@gemalto.com

aposchmann@ntu.edu.sg

Abstract. 4-bit microcontrollers (MCUs) are among the simplest, cheap-
est and most abundant computing devices that are embedded in a wide
variety of daily-life objects. These objects, when connected to a network,
could become a substantial part of the Internet of Things. Despite the
fact that quite a number of applications are security sensitive, no imple-
mentation of standardized cryptography has been available yet. In this
work we present the first implementation of the Advanced Encryption
Standard (AES) on a 4-bit MCU and thus, by closing this gap, enable se-
curity functionalities on myriads of legacy devices. Besides, we describe
the first software implementation of PRINTcipher, a recently proposed
block cipher optimized for printed electronics. We describe and apply
various optimization techniques to develop time and code-size efficient
implementations on the MARC4. As a result we gain the most energy
efficient implementations of a cryptographic algorithm on a 4-bit MCU.

Key words: 4-bit microcontroller, AES, PRINTcipher, lightweight soft-
ware implementation

1 Introduction

4-bit microcontrollers (MCUs) are among the simplest, cheapest and most abun-
dant computing devices that are embedded in a wide variety of daily-life items
ranging from toys and watches to home appliances. Furthermore, 4-bit MCUs
are also embedded in security sensitive applications, such as remote access and
control systems, banking tokens, pervasive healthcare, car immobilizers, and all
kind of sensors, such as Tire Pressure Monitoring systems (TPMS) of cars [2].3

The later use-case is expected to increase significantly since the U.S. Gov-
ernment passed the “Transportation Recall Enhancement, Accountability, and
Documentation” Act (Tread Act) in the year 2000, stating that it is mandatory

⋆ The authors were supported in part by the Singapore National Research Foundation
under Research Grant NRF-CRP2-2007-03.

⋆⋆ The work was done while the author was at PACE, NTU.
3 Please note that modern TPMS also use 8-bit MCUs.

ECRYPT Workshop on Lightweight Cryptography - November 2011 255

for every new car in the U.S. to be equipped with a TPMS [24]. From the begin-
ning of 2012, new passenger cars in the European Union also need to be fitted
with TPMS systems [28]. However, in a recent attack on TPMS, Rouf et al. were
even able to force the emergency flat tire warning LED to flash from a remote
by-passing car just by sending fake sensor readings [23].

Though this real-world example highlights the strong needs for security and
safety on these ultra-constrained devices, cryptography is barely used for TPMS
or other applications of 4-bit MCUs. In fact, the first implementation of a cryp-
tographic algorithm on a 4-bit MCU was published in 2009 [29]. The authors
chose ATMEL’s MARC4 MCU [1] and the block cipher PRESENT [7], as it uses
4-bit S-boxes and they assumed this to be an advantage over 8-bit S-boxes as
used in e.g. the Advanced Encryption Standard (AES) [20]. Shortly after this
proof-of-concept, the newly proposed, and already broken [17], lightweight block
cipher HUMMINGBIRD [11] has been implemented on the same MCU.

In contrast, there is a rich literature on efficient implementations on 8-bit
MCUs, and so it is no wonder that there are highly efficient implementations
available. Rinne et al. describe a speed-optimized implementation of the AES on
an 8-bit AVR microcontroller that requires 3,766 clock cycles for encryption,
while at the same time occupying 3,410 bytes of memory [22]. On a PIC16xxx
microcontroller AES requires only 1,274 bytes of program memory (ROM), 38
bytes of data memory (RAM) and 5,273 cycles to encrypt one block [18]. Recall
that our goal was not to compete against these highly efficient AES implementa-
tions on 8-bit MCUs, but rather to enable standardized cryptography on 4-bit
microcontrollers.

Thus our main contribution is to present the first implementation of AES

on a 4-bit MCU. Besides, we also describe the first software implementation
of PRINTcipher, a recently proposed [14] block cipher optimized for printed
electronics, which are hailed to be enablers for the Internet of Things [26].
We provide a variety of timing-attack resistant implementations optimized for
speed or code size, offering encryption-only, decryption-only, or encryption-and-
decryption functionality. We also investigated bit-sliced implementations, how-
ever, only PRINTcipher fit into the scarce memory resources. Our AES implemen-
tations are up to approximately 3 times faster than HUMMINGBIRD and around 8
times faster than PRESENT, while our PRINTcipher implementations need by far
the least amount of code size compared to any other implemented block cipher
on a 4-bit MCU.

To summarize our contribution, by implementing AES on a 4-bit MCU, we
enable security functionalities -such as secure code update, authentication, con-
fidentiality etc.- based on standardized cryptography on these ultra-constrained
yet vastly deployed devices. Thus, myriads of legacy devices already deployed
over the last couple of decades, and gradually becoming part of the Internet of
Things, might benefit from our implementation.

One might argue that Moores Law will provide abundant computing power
in the near future. However, Moores Law needs to be interpreted contrary here:
rather than doubling the performance, it will halve the price for constant com-

ECRYPT Workshop on Lightweight Cryptography - November 2011 256

puting power each 18 months. As a consequence, cheaper, i.e. lightweighter,
applications can always be deployed earlier than costlier applications, and hence
will always be of high demand [21].

The remainder of this paper is organized as follows: in Section 2 the MARC4
microcontroller, the tool chain to program it and the qFORTH programming
language are described. Then the block ciphers AES and PRINTcipher are recalled
briefly in Section 3. Subsequently, in Sections 4 and 5, the evolution of our näıve
AES and PRINTcipher implementations to their speed and code-size optimized
implementations is described. In Section 6, we discuss our results and compare
them with HUMMINGBIRD and PRESENT. The paper is concluded in Section 7.

2 MARC4 Microcontroller

In this section we describe the MARC4 starter kit, before we detail the MARC4
microcontroller, and finally introduce the programming language qFORTH.

2.1 The MARC4 Starter Kit

A complete programming kit for the MARC4 microcontroller comes with At-
mels MARC4 Starter Kit. It includes a software suite (based on the Microsoft
Windows operating system) with an integrated qFORTH compiler, a flash pro-
grammer [4], and a simulator to test the MARC4 core functionalities. The hard-
ware components of the MARC4 Starter Kit are a programmer, a ready-to-run
application board, and 5 samples of the ATAM893-D microcontroller.

2.2 The MARC4 Microcontroller

The MARC4 ATAM893-D microcontroller consists of a stack based 4-bit CPU
core which is based on a Harvard architecture with 4 Kbytes of ROM (extensible
to 10 Kbytes) and a RAM size of 256·4-bit. It inherits a Reduced Instruction Set
Computing (RISC) core, with 72 8-bit instructions. These instructions are opti-
mized for the qFORTH language. The MARC4 does also contains an EEPROM,
as well as several on-chip peripherals, such as bidirectional I/O ports, timer and
counters [1].

The supply voltage for the MARC4 ranges from 1.8V to 6.5V, with a current
consumption of less than 1mA in active mode [2]. Due to its low power consump-
tion, high speed, and its operability in a wide range of temperatures, ranging
from -40 to 125 degree Celsius, the ATAM893-D can be used in a wide variety of
applications. It can be found in home automation systems, such as remote door
openers, it is used for industrial applications, such as remote control systems
(e.g. cranes), as well as in the automotive industry, where it can be found in
remote keyless entry and tire pressure monitoring systems [2].

Core Components The core components of the MARC4, includes the Read
Only Memory (ROM), Random Access Memory (RAM), the RAM address reg-
isters, the Condition Code Register (CCR), the Arithmetic Logic Unit (ALU)
and its interrupt structure [1]. A depiction of the MARC4 core is presented in
Figure 5 in the Appendix.

ECRYPT Workshop on Lightweight Cryptography - November 2011 257

– Data Memory (RAM) - The MARC4 contains a 256·4-bit wide Random
Access Memory (RAM). The RAM is used as data memory and for the
Expression and the Return stack. With the help of the 8-bit RAM address
registers X and Y any 4-bit element in the RAM can be accessed. Another
way to access the RAM is by either using the Expression Stack Pointer (SP)
or the Return Stack Pointer (RP) [3].

– Program Memory (ROM) - The programmed code for the MARC4 is stored
in the ROM. The ROM consists of a basebank with a size of 4 Kbytes
and four ROM banks, each of size 2 Kbytes. The code within the banks is
accessed by the MARC4 Program Counter (PC). With the basebank and
the four ROM banks a theoretical maximum of 12 Kbytes program code can
be accessed and stored. Since 2 Kbytes are reserved for testing purposes, or
for predefined start addresses for the interrupt service routines, the effective
memory size is 10 Kbytes [1].

– Stacks - The MARC4 contains two stacks, the expression and the return
stack, which are addressed by the Expression Stack Pointer (SP) and Return
Stack Pointer (RP), respectively. The operands for all arithmetic, I/O, and
memory operations, are provided by and returned to the expression stack.
The element on top of the expression stack is denoted as Top of Stack, and
abbreviated as TOS. The element on the second highest position is denoted
as TOS-1, and so forth. For storing the return addresses of functions and
interrupts, the return stack is used [1].

– ALU - All arithmetic operations are conducted by the ALU of the MARC4.
The ALU takes the TOS and TOS-1 as inputs and writes the result of the
operation back on TOS.

– Interrupts - The MARC4 has an integrated interrupt controller and a total
of eight interrupts, while each interrupt is assigned with a different priority.

It is hereby possible to generally activate or deactivate the interrupts for the
MARC4, or individually for each of the eight interrupts. All of the MARC4
interrupts can be triggered by internal and external hardware, or by a soft-
ware interrupt [1].

Peripheral Communication The MARC4 contains a total of 16 bi-directional
I/Os in five ports (port1, port2, port4, port5, and port6). All ports can be used
by the MARC4 to receive and send data. Since each port has its own bitwise
programmable port control register, it is possible to set each of the 16 pins as
input or output [3].

2.3 Programming Language

In contrast to many other microcontrollers, the MARC4 is not programmed
in assembly, but in qFORTH. This high-level programming language is a 4-
bit version of the FORTH-83 standard [27]. It is a stack-oriented programming
language that operates on Reverse Polish Notation (RPN) [8]. In this section we
will give a brief description of the qFORTH language and present some of the
differences to the programming language C.

ECRYPT Workshop on Lightweight Cryptography - November 2011 258

Reverse Polish Notation In languages using RPN all operands are first
pushed on the stack before an operand will fetch and process them. After the
operation has been finished the result will be pushed on the stack again. Exam-

ple If we want to add 3 to the value of 4 we would normally write : 3 + 4
In RPN we would write the same operation using the following order: 3 4 +.

Introduction to qFORTH The stack-based qFORTH language uses the de-
scribed expression stack to perform arithmetic operations on data. Data in
qFORTH is in general considered as unsigned integer values, for both mem-
ory addresses or data values. The expression stack is hereby used to fetch the
input data for an arithmetic operation and to temporarily store its result, before
it is written back to a variable [1].

Due to the RPN used for the MARC4 it is necessary to first write the data
on the stack before they can be manipulated. Basic stack operations, s.a. SWAP,
as well as basic arithmetic and logical operations, s.a. ADD, XOR, ROL etc. re-
quire 1 clock cycle, assuming that the data is available on TOS (and TOS-1,
respectively). Once the X register has been set, it takes 1 clock cycle for memory
read/write operations (2 clock cycles if X register was not set).

qFORTH vs. C Common structures of languages, such as C can also be found
in qFORTH. These include, but are not limited to, conditional, loop and compar-
ison structures. Since qFORTH is a stack based language, its structures follow
a different syntax compared to its equivalent structures used in non stack based
languages, such as C. Table 1 presents the qFORTH syntax for various condi-
tional and loop structures, in comparison to its C language equivalents.

Table 1. Comparison of the qFORTH and C language syntaxes for various structures,
based on [1] and [5].

Structure qFORTH C

Conditional structures

IF
< cond > IF IF (< cond >)

< ops > THEN {< ops >}

IF...ELSE
< cond > IF < ops > IF (< cond >)< ops >
ELSE < ops > THEN ELSE {< ops >}

LOOP control structures

WHILE LOOP
BEGIN < cond > WHILE (< cond >)

WHILE < ops > REPEAT {< ops >}

FOR LOOP
< limit >< start > DO FOR (< start >;< limit >

< ops >< offset > +LOOP ;< offset >){< ops >}

3 Introduction to AES and PRINTcipher

In this section we will briefly recall the block ciphers AES and PRINTcipher.

3.1 The Advanced Encryption Standard

The Advanced Encryption Standard (AES) is a symmetric block cipher with a
block size b of 128 bits and a key size of 128, 192 or 256 bits, called AES-128,
AES-192, and AES-256, respectively [20]. Since AES-128 has been implemented
for the MARC4, the remainder of the AES description will only focus on the
algorithm with a 128 bit key size. Two states are needed for the AES, the key

ECRYPT Workshop on Lightweight Cryptography - November 2011 259

and the cipher state. Each state consists of r=4 rows and c=4 columns. The
indexes of the state elements of the cipher state are denoted as s[r, c] with s[r, c]
∈ S, S being the cipher state. The state elements of the key state are denoted
as k[r, c] with k[r, c] ∈ K, K being the key state [20]. An AES round is composed
of the following four operations applied to S in consecutive order:
– SubBytes Every byte of S is substituted independently with its correspond-

ing entry of the 8-bit AES S-box.
– ShiftRows A cyclic shift of the state bytes s[r, c] ∈ S, with 0 ≤ r, c ≤ 3

is performed to compute the state array elements s′[r, c], with s′[r, c] =
ShiftRows(s[r, c]) = s[r, c− rmod 4].

– MixColumns The MixColumns layer is the only AES operation that does
not operate on a byte, but column level. It can be described as a matrix
multiplication, of a fixed matrix M and the cipher state S.

S′ =

M︷ ︸︸ ︷
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·S
– KeyAddition XOR of all cipher state elements s[r, c] with their correspond-

ing round dependent key state elements k[r, c].

AES consists of an initial round, followed by 9 consecutive rounds and a final
round. The initial round is composed of the KeyAddition operation, while for
the final round, all but the MixColumns layer are performed. The interested
reader is referred to [20] and [10] for further details on AES.

The AES Key Schedule generates all round keys and applies the following
operations to K : Its last column entries are first rotated by one byte and subse-
quently substituted by the same S-box as used in the cipher-state computation.
Then a round counter is added to K[0,3] and finally the result is added to col-
umn c0. The remaining three columns ci, with 1 ≤ i ≤ 3, are obtained by the
computation of ci ← ci ⊕ ci−1.

3.2 PRINTcipher

PRINTcipher [14] is a recently developed block cipher designed for ultra-constrai-
ned devices and in particular for printed electronics. It encrypts blocks of size b,
with b=48 or 96 bits, denoted as PC-48 and PC-96, through r = b rounds with
the help of a key K of size 5

3
· b = 80/160 bits. K is hereby the concatenation

of two subkeys sk1 and sk2, where sk1 has a size of b bits and sk2 = 2

3
· b

bits respectively [14]. One round of PRINTcipher consists of the following five
consecutive layers:

– Key Addition Performs a bitwise XOR of all cipher state bits with their
corresponding sk1 entries.

– Permutation A function F performing a b to b-bit permutation of each bit
i of the cipher state.

ECRYPT Workshop on Lightweight Cryptography - November 2011 260

– Round Counter Addition For each round r a counter RCr is added to
the lowest i bits of the cipher state, with i = 6 for PC-48 and i = 7 for PC-96
respectively. The round counter is updated at the beginning of each round
and is created by a linear feedback shift register.

– Keyed Permutation Performs a key dependent (i.e. dependent on key sk2)
permutation of the cipher state bits. The cipher state is hereby divided into
words i of size 3, whereas sk2 is divided into words j of size 2. Depending
on j, the positions of the 3 bits (bit2— bit1—bit0) within i are permuted.

– Substitution PRINTcipher operates on 3-bit S-boxes which map the inputs
x to their corresponding outputs S[x].

As one of the design features, PRINTcipher has no key-schedule. The in-
terested reader is referred to [14] for further details. A recent cryptanalysis of
PRINTcipher by Leander et al., identified a subset of weak keys of PRINTcipher
susceptible to chosen plaintext distinguishing attacks. In addition, the authors
have also proposed a countermeasure to thwart their attack on PRINTcipher

which only consists of assigning two counter bits to each S-box [16].

4 Implementation of AES

Starting from our first AES implementation approach, subsequently denoted as
näıve implementation, the AES encryption routines and their optimizations will
be presented in detail. Optimizations for our implementation include methods
to achieve a timing-attack resistant implementation that is optimized for either
high speed or small code size.

To implement the 128 bit AES cipher states and key states for a 4-bit archi-
tecture it is necessary to realize each of the 8-bit AES state entries as two 4-bit
values statercn, where n = 0,1 denotes the high or low nibble (similarly k[r,c] is
mapped to wrcn).

4.1 Näıve implementation

In the following, we will give a brief overview of our näıve AES implementation
and summarize the implementation results in Table 2.
Substitution Layer Lookup tables are, contrary to most other MARC4 con-
structs, operating on 8 bit, which allows to store the 8-bit entries of the AES

substitution tables directly in the ROM of the microcontroller. The 256 entries
of the AES S-box are split into i tables sboxi, with 0≤ i ≤15, each containing
16 entries that are stored consecutively in the ROM starting from the address
200h. With the help of two temporary variables, temp (addresses sboxi) and
temp2 (contains sboxi entries), the address offset for each of the 256 S-box
entries is computed. By adding the offset to the ROM address containing the
first S-box element (200h) we can obtain the substituted values for each cipher
state. The substitution itself is realized with the help of two functions, Sub-
Bytes and Sbox. The SubBytes operation gets the cipher state values and stores
them in temp and temp2. These serve as input for the Sbox function. The näıve
implementation performs the substitution layer as a case statement that first
pushes the base ROM address and the address of the corresponding sboxi on

ECRYPT Workshop on Lightweight Cryptography - November 2011 261

the stack (2︸︷︷︸
TOS−2

temp︸ ︷︷ ︸
TOS−1

0︸︷︷︸
TOS

) followed by the addition of the second offset temp2

(2︸︷︷︸
TOS−2

temp︸ ︷︷ ︸
TOS−1

temp2︸ ︷︷ ︸
TOS

). Depending on the value of temp, a different amount of cy-

cles is needed to substitute one cipher state, which can be exploited by timing
attacks. A high level overview of the substitution function is depicted in Figure
1.

1. Push value of temp on TOS

(e.g. temp = C16)

TOSC

0

C

2

TOS

TOS-1

TOS-2

3. Push value of

temp2 on TOS

(e.g. temp2 = 8)

8

0

C

TOS

TOS-1

TOS-2

2

8

C

2

TOS

TOS-1

TOS-2

4. Add value of temp2 to

ROM address of sboxC

5. Perform table-lookup 8

E

sboxC

RAM address

BA 78

2C0 2C1

E8

2C8

8A

2CF

TOS

TOS-1

2. Once caseC is found, get

the 12-bit address of sboxC

and push it on the Stack

Fig. 1. High level overview of the näıve AES SubBytes implementation, with example
values temp=C16 and temp2=8.

ShiftRows For the ShiftRows layer, the values of each s[r, c] of the rows 1-3 are
first pushed on the stack and afterward written back to their new cipher state
entries.

MixColumns The MixColumns multiplications are implemented by making
use of simple shift and XOR operations. The coefficients of M are either one, two
or three, and have been implemented using the techniques described in [25]. A
multiplication with two is a simple left shift of the 8-bit on TOS and TOS-1 by
one bit. In case TOS was greater than 7, we additionally need a modulo reduction
step, that is an XOR with the 8-bit word “1B”. This procedure is also known as
the xtime step. A multiplication with three is simply multiplying the 8-bit value
with two and afterward add the result to its original. For our implementations,
we did not precompute and store the xtime results in lookup tables but computed
them on the fly in order to minimize the code size. In order to check whether we
have to perform the modulo reduction step, we have to first know whether the
high nibble is greater than 7. In the näıve implementation of the MixColumns
layer this was done with an IF...ELSE structure, which is data dependent and,
hence, vulnerable against timing attacks.

KeyAddition And Key Update Before the key state can be added to the
cipher state, it is necessary to first update all key states with a new set of keys, for
all but the initial AES round. This is done within the AES Key Schedule function.
A part of the Key Schedule operation is hereby the substitution of the last row
of the key state with the help of the Sbox function. After the new keys have been

ECRYPT Workshop on Lightweight Cryptography - November 2011 262

computed, they are applied to the state entries. Since the execution time of the
Sbox function for the näıve Substitution layer is not fixed, a non-fixed time is
also needed to update the key state which makes the näıve KeyAddition layer
vulnerable against timing attacks.

Implementation results of the näıve AES Encryption Routine All in all
our näıve implementation requires 2,666 bytes of memory and between 34,233
and 46,297 clock cycles for encrypting one block. Table 2 presents the implemen-
tation results for the näıve AES encryption routine layers.

Table 2. Implementation results for the näıve AES encryption routine layers.

Layer Code size (bytes) Time (cycles)

SubBytes 422 677-1,573
ShiftRows 66 68

MixColumns 953 2,353-2,449
KeyAddition 619 511-735

4.2 Speed Optimization

In the following paragraphs we will describe the iterative approach to find a
speed-optimized AES implementation. For all speed-optimized AES and PRINTci-

pher implementations we realized their rounds as subroutines in which we se-
quentially hardcoded their layers.

The Substitution Layer and ShiftRows Optimization Process

We took the following four steps to gain a speed improvement of up to 85% and
a code-size reduction of up to 75% for the Substitution and ShiftRows layers.
An overview of the speed and code-size improvements for each of the four steps
is presented in Table 3.
I Omitting the Case Structure Since the table lookup can be performed
directly after the three words, 2, temp, and temp2 have been pushed on the stack
we can omit the case structure. As a consequence, there is no data-dependent
time consumption anymore and, hence, the substitution layer is resistant against
timing attacks.
II Direct ROM Addressing Instead of first storing s[r, c] in two temporary
variables, it is possible to directly push s[r, c] on the stack, process them within
the Sbox function and then store the substituted values back in s[r, c].
III Consecutive Substitution using Fixed RAM Addressing of Vari-

ables The previous implementation of the substitution layer substituted one
cipher state (2 nibbles) at a time and wrote the result back afterward. The dis-
advantage of this approach is the fact that we have to reset the X register content
after every 8-bit substitution, since X contains the lower address of the substi-
tuted nibble, which is two addresses away from the next value to be substituted.
In order to further reduce the time consumption of the substitution layer it is
necessary to adjust the processing order within the SubBytes function. Instead

ECRYPT Workshop on Lightweight Cryptography - November 2011 263

of substituting and writing back one state entry at a time, it is more efficient to
first substitute all values and afterward write them back in reverse order. This
requires us to store the variables at consecutive memory addresses.
IV Combining the SubBytes and ShiftRows Layers After the cipher state
values have been substituted they are located on the stack and can directly be
written back to their shifted locations.

Table 3. Time and code sizes of the final optimized combined AES SubBytes and
ShiftRows implementation in comparison to its previous, and its näıve implementations.

SubBytes+Shiftrows

Implementation Difference (%)

Näıve I

Time (cycles) (677 to 1,573) + 68 485+68 -25.78 to -66.30

Code size (bytes) 422 + 66 205 + 66 -44.37

I II

Time (cycles) 485+68 277+68 -37.61

Code size (bytes) 205 + 66 133+66 -26.57

II III

Time (cycles) 277+68 261+68 -4.64

Code size (bytes) 133+66 133+66 -0.00

III IV

Time (cycles) 261+68 246+5 -23.71

Code size (bytes) 133+66 118+5 -38.19

Näıve IV

Time (cycles) (677 to 1,573) + 68 246+5 -66.31 to -84.70

Code size (bytes) 422 + 66 118+5 -74.80

MixColumns Layer

A more efficient way to check whether the high nibble is greater than 7 prior
to the xtime calculation is to use MARC4 CCR register instead of an IF...ELSE
structure. The CCR register contains a carry bit that is set whenever an oper-
ation causes an overflow of a MARC4 word. Is the carry bit set after the high
nibble was multiplied by two, the modulo reduction step has to be performed,
which consumes 5 clock cycles for the IF branching. The ELSE branch, however,
only requires 2 clock cycles, hence three nop operations are inserted to ensure
data-independent timing. To further speed up the MixColumns layer we applied
the efficient MixColumns layer implementation technique proposed in [10] and
presented in (1). With our speed optimized MixColumns layers we achieved a
57% speed up with a code-size increase of 69%.

Pseudo-code for the efficient implementation of the AES MixColumns layer:
t ← column0 ⊕ column1 ⊕ column2 ⊕ column3 (1)

u ← column0

v ← (column0)⊕ (column1) · 2; column0 ← column0 ⊕ v ⊕ t

v ← (column1)⊕ (column2) · 2; column1 ← column1 ⊕ v ⊕ t

v ← (column2)⊕ (column3) · 2; column2 ← column2 ⊕ v ⊕ t

v ← (column3)⊕ (u) · 2; column3 ← column3 ⊕ v ⊕ t

ECRYPT Workshop on Lightweight Cryptography - November 2011 264

KeyAddition and KeyUpdate

A part of the round key computation is the substitution of the last row of the key
state [20]. Here we benefit from the optimizations of the Sbox routine described
above and as a result derive a smaller and faster KeyAddition routine that is also
resistant against timing attacks. After the key state has been updated, the new
key is XORed to the state entries (+53% speed up and 49% code-size reduction).

The total code size of the speed-optimized encryption routine is slightly
higher (around 3%) than the one of the näıve implementation. This is due to the
increased size of the speed-optimized MixColumns layer. On the other hand, we
were able to reduce the encryption time with our speed-optimized implementa-
tion by around 54% to 66%, compared to the näıve AES encryption routine.

4.3 Code-Size Optimization

The foundation of the AES code-size optimization process is the speed-optimized
AES implementation. To reduce the code size for our implementations, it is nec-
essary to avoid that repeating operations result in repeating source code, but
instead are processed within loop constructs whenever possible. We have there-
fore coded the rounds for all code-size optimized AES and PRINTcipher imple-
mentations as loops. The operations within the different layers of a round are
realized as subroutines that are processed within loops again to minimize their
code size.

For the speed optimization it is convenient to make use of variables to load
and store values, instead of directly working with the X and Y registers. During
compilation, these are automatically converted to operations, in which either the
X or Y register is used instead of the user defined variables. A major advantage
of using the X and Y RAM address registers instead of defined variables is the
fact, that it is possible to work and iterate over neighboring RAM addresses,
which allows to significantly reduce the code size.

An overview of all code size and speed-optimized AES and PRINTcipher im-
plementations is presented in Table 7 in the appendix. As one can see, the time
for the code-size optimized implementation of the AES encryption routine is in-
creased by around 50%, in comparison to its speed-optimized implementation,
while its code size is reduced by around 58%.

5 Implementation of PRINTcipher

In the following section we will describe the evolution of our PRINTcipher im-
plementations from a näıve approach to our speed and code-size optimized en-
cryption and decryption routines. Due to the high similarity between PC-48 and
PC-96, we are omitting the description of the latter. The implementation results
for their speed and code-size optimized implementations are presented in Ta-
ble 5, together with the combined encryption and decryption routines and our
bit-sliced PC-48 implementations.

5.1 Näıve implementation

Our näıve implementation of PRINTcipher was far more advanced than the näıve
implementation of AES, since we incorporated many of the tricks straight from

ECRYPT Workshop on Lightweight Cryptography - November 2011 265

the beginning. We have applied all the previously described optimization tech-
niques I - III to PRINTcipher, and of course inserted nop operations to ensure
data-independent timing. In contrast to AES, our näıve PRINTcipher implemen-
tation was already timing-attack resistant.
Key Addition Within the PRINTcipher Key Addition layer all sk1 bits are
added to their corresponding cipher state bits. The X and Y registers are first
filled with the addresses of the lowest cipher and key words, added, and afterward
written back. Afterward it is possible to iterate over X and Y to compute the
remaining 11 cipher/key pairs.
Permutation Layer The PRINTcipher Permutation layer performs a 1 to 1
bit permutation. Since it is not possible to access a single bit of a qFORTH
word directly, but only the complete 4-bit word, various manipulations have to
be performed on each word to access and permute each cipher state bit. We
are hereby not permuting the bits of just a single state one after another, but
permute three states at a time. Figure 2 displays the mapping of F(i) for three
states of our 4-bit word implementation of the PRINTcipher Permutation layer.

Bit 9 Bit 10Bit 11 Bit 8 Bit 0 Bit 1Bit 2Bit 3 Bit 6 Bit 7 Bit 4Bit 5

Bit 17 Bit 18Bit 19 Bit 16 Bit 0 Bit 1Bit 2Bit 3 Bit 32 Bit 33Bit 34Bit 35

state8 state4 state0

state2 state1 state0

Fig. 2. Mapping of each bit i of the PRINTcipher -48 Permutation layer for a 4-bit
word implementation.

Round Counter Addition The round counter is added to the lowest 6 bits of
the cipher state. The 48 round counters are stored in three tables, each containing
16 values, in the ROM of the MARC4.
Keyed Permutation For the Keyed Permutation layer, three consecutive ci-
pher state bits are permuted at a time, depending on the value of two sk2 bits.
This is done by the keyperm function, as part of the Keyed Permutation layer.
The cipher states as well as the pkey states have to be preprocessed by shifting
the necessary bits for the keyperm function in temporary variables. The two pkey
bits for each keyed permutation operation are shifted into the variable temp and
three bits of the cipher state bits are shifted into temp2, respectively. Depending
on the value of temp, the three bits in temp2 are permuted among another.
Substitution Layer PC-48 makes use of a 3- to 3-bit S-box, that is applied
in parallel 16 times to all 48 cipher state bits. Since the cipher state bits are
stored in 4-bit words, we can not perform the substitution on the complete 4-bit
word, but first have to shift the corresponding 3-bits of each cipher state into
a temporary variable and afterward write it back to its 4-bit entry. Figure 3
displays the mapping of the cipher state bits to their S-boxes.

Implementation results for the Näıve PRINTcipher Encryption Routine

The implementation results for the näıve PRINTcipher encryption layers are

ECRYPT Workshop on Lightweight Cryptography - November 2011 266

Bit 0Bit 1Bit 2Bit 3Bit 4 Bit 5Bit 6 Bit 7Bit 8Bit 9Bit 10Bit 11

State 2 State 1 State 0

S-box 0S-box 1S-box 2S-box 3

Fig. 3. Mapping of the 4-bit cipher states to the 3- to 3-bit S-box.

summarized in Table 4. All in all our näıve implementation requires 1,397 bytes
of memory and 89,726 clock cycles for encrypting one block.

Table 4. Implementation results for the näıve PC-48 encryption layers.

Layer Code size (bytes) Time (cycles)

Key Addition 52 54
Round Constant Addition 62 26

Permutation 300 382
Keyed Permutation 445 931

Substitution 324 468

5.2 Speed optimization

We took the following three steps to gain a speed improvement of up to 66% for
the PRINTcipher implementations.

I Combining the Keyed Permutation and SubBytes Layer

As stated in [14], it is possible to combine the Keyed Permutation and the Sub-
stitution layer, to a new Combined Substitution layer using four virtual S-boxes
V0[x] - V3[x] (+21% speed up).
II 3-Bit Word Implementation

The näıve implementations of PRINTcipher were based on the idea of using the
complete wordsize (4-bit) of the MARC4 for its implementation. The advantage
of such an approach is the minimized amount of storage variables for the cipher
state bits and sk1. However, since most layers of PC-48 (and PC-96) are operat-
ing on 3-bits, there is a large conversion overhead (both in code size and in time)
from a 4-bit representation to a 3-bit representation and vice versa. Thus, by
using a 3-bit representation, that is only the 3 LSBs of every variable are used,
we were able to significantly reduce the time and code size of our PRINTcipher
implementations (+27% speed up).
III Merging the Key Addition layer with the Virtual S-boxes

Our first optimization combined the Keyed Permutation with the Substitution
layer and resulted in four virtual S-boxes V0 to V3 as proposed by the design-
ers of PRINTcipher in [14]. A possibility to further speed up the PRINTcipher

implementation is to change the processing order of the PRINTcipher layers of
one round and merge the Key Addition layer with the Combined Substitution

ECRYPT Workshop on Lightweight Cryptography - November 2011 267

layer. Instead of performing the Key Addition layer prior to the Permutation
layer we are swapping their order and perform the Permutation layer first. This
step requires us to permute the sk1 bits once, to ensure that we are applying
the correct sk1 bits to the cipher state bits. Since the Round Constant Addition
and Key Addition layer both just perform XOR operations that do not effect the
structure of the cipher or key bits, we can also swap their order. The processing
order within one PRINTcipher encryption round is now:

Permutation → RC Addition → Key Addition → Combined Substitution

We can now combine the Key Addition with the Combined Substitution layer
in the following way: All entries of each of the four Vi are added with all possible
3-bit values of sk1. As a result we have to store 32 virtual S-boxes in the ROM.
By this, we can execute the Keyed Permutation, Substitution, and Key Addition
layers for each 3-bit cipher state entry at once by a single table lookup (+42%
speed up).

Throughout the optimization process from a näıve to a speed-optimized im-
plementation a significant time reduction of almost 66% was achieved for the
encryption routine of PC-48, while reducing its code size by around 11%. For
the speed optimized decryption routine of PC-48, we reduced the time and code
size by around 63% and 6%.

5.3 Code-size optimization

Starting from the 3-bit word optimization we have developed code-size opti-
mized implementations for the PC-48 using similar techniques as for the AES

routines. The code optimized implementation scales nicely, since it needs around
double the time to encrypt/decrypt a 48 bit message in comparison to its speed-
optimized counterpart, with a code size that is only 39% of the speed-optimized
implementation.

5.4 Bit-sliced implementation

Introduction to Bit-slicing The term bit-slicing describes an implementation
technique, presented by Eli Biham in the year 1997 [6]. The idea is to change the
order of the bits in such a way, that an n-bit CPU can be viewed as a collection
of n one-bit processors. The processor is hereby viewed as a Single-Instruction-
Multiple-Data (SIMD) processor [13]. By this, it is possible to perform single-
bit operations, such as permutations, XORs, and so forth, in parallel which can
considerably reduce the time consumption of an implementation. The interested
reader is referred to [6], [9], and [13] for further details on bit-slicing and the
SIMD architecture.
Bit Order The PC-48 cipher state consists of 48 bits, stored in 12 words. The
MARC4 word size of 4-bit allows us to compute 4 slices at a time. For these, a
total of 48 4-bit words are needed. Before we can start the actual enciphering or
deciphering of the four slices it is necessary to reorder them first. The lowest bit
of the first cipher/sk1 state is stored at the lowest position of state0/subkey0.
The bit on position 1 is written to the lowest position of state1 and so forth.
This is done for all of the 4 bit positions of each of the 48 4-bit words.

ECRYPT Workshop on Lightweight Cryptography - November 2011 268

The 32 sk2 bits are hereby not written to 32, but 16 words (pkey0 to pkey15),
each containing two sk2 bits, to allow an efficient implementation of the Keyed
Permutation layer. The initial reordering of the 48 cipher state/sk1 bits and the
32 sk2 bits and their inverse reordering at the end of the encryption needs a
total 3,285 cycles and consumes 1,437 bytes of code size.
Key Addition The Key Addition layer operation is equivalent to its counterpart
of the speed-optimized PRINTcipher layer with the only difference that we have
a total of 48 state and keywords to process.
Permutation Layer Due to the fact that the corresponding bits of each slice
are all stored in the same cipher state, we can implement the Permutation layer
by just pushing all the 46 cipher states we want to permute on the stack (state1
to state46) and afterward write them back to their permuted positions1.
Round Counter The 6-bit round counter (x5x4x3x2x1x0) is added to the low-
est 6 cipher states. The formulas to implement the PC-48 Round Counters for
the encryption and decryption routines are introduced in [14] and presented as
follows:

Encryption: Decryption:
t = 1 + x5 + x4 t = 1 + x5 + x0

xi = xi − 1 xi = xi + 1
x0 = t x5 = t

Keyed Permutation For the Keyed Permutation layer, three cipher state bits
are pushed on the stack, permuted by the 2-bit value of their corresponding
permutation key and afterward written back.
Substitution Layer For the non bit-sliced implementation, the substitution
layer is realized by table lookup operations. A table lookup implementation for
the bit-sliced implementation would be very inefficient, since input bits for the
S-boxes would have to be combined using bits of different variables and therefore
involve various manipulations of the cipher states to address the correct bits for
each substitution. For an efficient implementation of the substitution layer, it is
necessary to find an alternative to the use of S-boxes. A suitable approach is to
convert the PRINTcipher encryption and decryption S-boxes to their algebraic
normal forms and operate on them [6]. The translation from the S-boxes to their
algebraic normal forms was conducted with the help of the Sbox2ANF Python
script [30]. The algebraic normal form for the PRINTcipher encryption routine
is hereby presented in (2).

The 3-bit S-box input x that is mapped to S[x] consists of the concatenation
of the bits x2, x1 and x0, where x2 = MSB of x and x0 = LSB of x and
S[x] = S[x2]|S[x1]|S[x0].

Algebraic normal form representation of the encryption S-box:

S[x0] = x0 ⊕ x1 ⊕ x2 ⊕ x1 · x2 (2)

1 The two cipher state words state0 and state47 are not pushed on the stack since
their entries remain unchanged.

ECRYPT Workshop on Lightweight Cryptography - November 2011 269

S[x1] = x1 ⊕ x2 ⊕ x0 · x2

S[x2] = x0 · x1 ⊕ x2

The implementation results for the bit-sliced PRINTcipher implementation
(including the time and space consumption for the initial and inverse reordering
of the cipher/key states) are presented in Table 7 (PC-48-B).

6 Results and Discussion

In this section we are going to compare our implementations of the AES and
PRINTcipher algorithms on the MARC4 with all other published crypto im-
plementations for that microcontroller. These are to our best knowledge, only
HUMMINGBIRD [12], which is already broken [17], and PRESENT [29]. We focus
on three main optimization goals for cryptographic implementations on con-
strained environments: achieving an either small code size, high throughput, or
high throughput with respect to a small code size implementation. Table 5 com-
pares our results to previous work with respect to key length, block length, code
size, cycles per block, cycles per byte, throughput and code cycles. We also pro-
vide estimated energy per bit consumptions based on the following calculation:
Energy/bit = 1.8V ∗200µA∗cycles

1MHz∗blocksize .

6.1 Notation

We use the following notation: E denotes encryption, D denotes decryption, ED
denotes combined encryption and decryption, ED/E stand for the encryption
routine of the combined ED implementation and ED/D for the decryption rou-
tine of it, respectively; an appended -A stands for code-size optimized, -S for
speed optimized; -P/-N denote precomputed/non precomputed last round key
for the decryption routine; -B denotes a bit-sliced implementation. For example,
AES-ED/E-A-P denotes an AES encryption routine of the combined encryption
and decryption implementation (ED/E) that is code-optimized (A) and uses
precomputed last round keys for the decryption routine (P).

6.2 Code-Size Optimized

Compared with PRESENT and HUMMINGBIRD, our PC-48-A implementations need
around 42% and 68% less code size for the encryption and around 48% and
68% less code size for the decryption routines, respectively. While a comparison
of the decryption routines of our code-size optimized AES implementation and
HUMMINGBIRD shows that both implementations have roughly the same code size
(1,637 and 1,559 bytes, respectively), a significant difference can be found for the
encryption routines, where our AES encryption routine needs 34.03% less code
size compared to HUMMINGBIRD.

6.3 Speed Optimized

For some applications with very few data to encrypt it might be important
to have a low encryption/decryption time for a single message, which can be

ECRYPT Workshop on Lightweight Cryptography - November 2011 270

measured by cycles per block. Naturally, it depends on the block size of the
block cipher used whether the message can fit into one block or not. Since,
AES, HUMMINGBIRD, PRESENT, and PRINTcipher have different block sizes, we
also provide cycles per byte and the throughput at 1 MHz (in kilo bits per
second) in Table 5 to have a fair comparison. While our speed optimized AES

implementations are among the ones with the largest code size, they are also
the fastest implementations. For both optimization goals, the relative rankings
for HUMMINGBIRD1 and PRESENT are somewhat similar in comparison with AES

and PRINTcipher implementations. It is noteworthy to stress that our code size
optimized AES encryption routine is the second fastest implementation, while
having a reasonable code size.

6.4 Throughput per Code Size Optimized

Inspired by the time-area product metric for hardware implementations, we in-
troduce a new metric for software implementations, which binds the time to the

code size: code cycles = block size
cycles/block·code size

.

Table 5. Comparison of the encryption and decryption routines for AES, HUMMINGBIRD,
PRESENT, and PRINTcipher. See Section 6.1 for notation.

KeyBlock Code Cycles Cycles Tp Energy/bit Code Rel.

Encryption size size size per per @ 1 Mhz @ 1 Mhz Cycles Code Tp Code

routine (bit) (bit) (byte) Block byte (kbit/s) (nJ) (·106) cycles size

PC-48 E-A 80 48 490 62,490 10,415 0.76 469 1.57 0.33 0.09 1.00

PC-48 E-S 80 48 1,250 30,079 5,013 1.60 226 0.68 0.27 0.20 2.55

PRES. [29] 80 64 841 55,734 6,967 1.15 314 0.94 0.29 0.14 1.72

PC-48 E-B 80 192 2,788 67,670 2,819 2.84 127 1.02 0.22 0.35 5.69

AES E-A 128 128 1,143 23,828 1,489 5.37 67 4.70 1.00 0.67 2.33

AES E-S 128 128 2,747 15,848 991 8.08 45 2.94 0.63 1.00 5.61

PC-96 E-A 160 96 761 245,37020,448 0.39 920 0.51 0.11 0.05 1.55

PC-96 E-S 160 96 2,397 129,93610,828 0.74 487 0.31 0.07 0.09 4.89

Humm. [12] 256 16 1,532 5,773 2,887 2.77 130 1.81 0.39 0.34 3.13

Decryption

routine

PC-48 D-A 80 48 493 63,450 10,575 0.76 476 1.53 0.60 0.12 1.00

PC-48 D-S 80 48 1,280 31,375 5,229 1.53 235 1.20 0.47 0.25 2.60

PRES. [29] 80 64 945 65,574 8,197 0.98 369 1.03 0.41 0.16 1.92

PC-48 D-B 80 192 2,775 67,046 2,793 2.86 126 1.03 0.41 0.46 5.63

AES D-A-P 128 128 1,637 30,887 1,930 4.14 87 2.53 1.00 0.67 3.32

AES D-S-P 128 128 3,343 20,736 1,296 6.17 58 1.85 0.73 1.00 6.77

PC-96 D-A 160 96 794 247,48220,624 0.39 928 0.49 0.19 0.06 1.61

PC-96 D-S 160 96 2,408 130,99210,916 0.73 491 0.30 0.12 0.12 3.88

Humm. [12] 256 16 1,559 5,212 2,606 3.07 117 1.97 0.78 0.49 3.16

6.5 Discussion

As Figure 4 points out, all of our AES implementations are faster than any
other implemented cipher on the MARC4. The fastest implementation is AES-
E-S. The second fastest encryption only implementation is AES-E-A. It needs
around 50% more time to process a single byte (1,489 cycles/byte), but just

1 The throughput of the HUMMINGBIRD encryption and decryption routines, obtained
from [12] are without the initialization phase of 22,949 cycles.

ECRYPT Workshop on Lightweight Cryptography - November 2011 271

around 42% (1,143 bytes) of the code size of AES-E-S. A further comparison
of AES-E-A with the other implemented ciphers shows that it has a very good
overall performance.

In contrast to the broken HUMMINGBIRD, AES-E-A is not only around 48%
faster but also around 25% smaller. Despite an overhead in code size of around
36% of AES-E-A in comparison with PRESENT, we need around 79% less time
to encrypt a single byte. An even higher performance advantage can be seen
when comparing AES-E-A with the implementations of PC-48 and PC-96. The
code size of AES-E-A in comparison to PC-48-E-A is increased by 130% (50%
compared to PC-96-E-A), but its time is significantly reduced by a factor of
almost 6 (around 12.7 compared to PC-96-E-A). The advantages of AES-E-A
over the speed optimized PC-48 and PC-96 encryption routines are even more
obvious, since they are both slower and need more code size. A similar picture
can be drawn for the decryption routines, where both, our AES speed and code
size optimized routines are again the fastest among all implementations.

Figure 4 also presents the combined encryption and decryption implemen-
tations for AES and PRINTcipher. Their execution time is roughly the same as
the ones of their non combined counterparts. The encryption and decryption
routines have various synergies that can be exploited to efficiently include both
routines in a single implementation. The savings of all combined implementa-
tions over their encryption/decryption only routines are presented in Table 6 in
the Appendix.

7 Conclusions

We have implemented standardized cryptography on 4-bit microcontrollers for
the first time and also provided optimized and timing attack resistant implemen-
tations of the AES that are faster than any previously published implementations.
Besides, the energy consumption of only 45 nJ per bit is surprisingly low. We
hope that our implementations open the door for a wide variety of security func-
tionalities on one of the most abundant computing platforms. Especially legacy
devices already embedded in myriads of every-day objects and deployed over
the last couple of decades could benefit from additional security functionali-
ties, such as secure code update, authentication, confidentiality etc. Applying
countermeasures to secure our implementations against various side-channel at-
tacks, especially Simple Power Analysis (SPA) and Differential Power Analysis
(DPA) [15] was out of the scope of this work, but clearly is a next step for future
work. To the best of our knowledge, no previous work has been conducted on
asymmetric key cryptography for 4-bit MCUs. Due to its small key size, Elliptic
Curve Cryptography (ECC) [19] is a promising asymmetric key candidate. We
believe that ECC with a 160-bit curve can be implemented on a 4-bit MCU.

ECRYPT Workshop on Lightweight Cryptography - November 2011 272

References

1. Atmel Corporation. MARC4 4-Bit Microcontrollers - Programmers Guide, 2004.
2. Atmel Corporation. Zero-power Microcontrollers for Low-power and High-

temperature Applications, 2004.
3. Atmel Corporation. Flash Version for ATAR080, ATAR090/890, ATAR092/892,

and ATAM893-D, 2005.
4. Atmel Germany GmbH. MTP Programmer ICP I.
5. B. Kernighan and D. Ritchie. The C Programming Language Second Edition.

Prentice-Hall, Inc., Upper Saddle River, New Jersey, USA, 1988.
6. E. Biham. A fast new DES implementation in software. In Proceedings of FSE

1997, FSE ’97, Volume 1267 of LNCS, pages 260–272. Springer-Verlag, 1997.
7. A. Bogdanov, G. Leander, L. R Knudsen, C. Paar, A. Poschmann, M. J.B Robshaw,

Y. Seurin, and C. Vikkelsoe. PRESENT - an Ultra-Lightweight block cipher. In
Proceedings of CHES 2007, Volume 4727 of LNCS, pages 450–466. Springer-Verlag,
2007.

8. A.W. Burks, D.W. Warren, and J.B. Wright. An analysis of a logical machine using
parenthesis-free notation. Mathematical Tables and Other Aids to Computation, 8,
No.46(46):53–57, April 1954.

9. C. Paar. Lecture Notes: Imlementation of Cryptographic Schemes 2. Chair for
Embedded Security, Ruhr-Universität Bochum, August 2010.

10. J. Daemen and V. Rijmen. The Design of Rijndael: AES. The Advanced Encryption
Standard. Springer-Verlag, April 2002.

11. D. Engels, X. Fan, G. Gong, H. Hu, and E.M. Smith. Ultra-lightweight cryptog-
raphy for low-cost RFID tags: Hummingbird algorithm and protocol. Technical
report, Centre for Applied Cryptographic Research (CACR), 2009.

12. X. Fan, H. Hu, G. Gong, E.M. Smith, and D. Engels. Lightweight implementation
of Hummingbird cryptographic algorithm on 4-bit microcontrollers. International
Conference for Internet Technology and Secured Transactions, 2009. ICITST 2009,
pages 1–5, Nov. 2009.

13. M.J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Trans-
actions on Computers, C-21(9):948–960, September 1972.

14. L. Knudsen, G. Leander, A. Poschmann, and M.J.B. Robshaw. PRINTcipher: A
Block Cipher for IC-Printing. In Stefan Mangard and Francois-Xavier Standaert,
editors, Proceedings of CHES 2010, Volume 6225 of LNCS, pages 16–32. Springer-
Verlag, 2010.

15. P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Michael J. Wiener,
editor, CRYPTO ’99, Volume 1666 of LNCS, pages 388–397. Springer-Verlag, 1999.

16. Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik Zen-
ner. A cryptanalysis of printcipher: the invariant subspace attack. In Proceedings
of the 31st annual conference on Advances in cryptology, CRYPTO’11, pages 206–
221, Berlin, Heidelberg, 2011. Springer-Verlag.

17. M-J O.Saarinen. Cryptanalysis of Hummingbird-1. In Proceedings of FSE 2011,
volume 6733 of LNCS, pages 328 – 341. Springer-Verlag, 2011.

18. Microchip Technology Inc. AN821: Advanced Encryption Standard Using the
PIC16XXX, 2002.

19. V.S. Miller. Use of elliptic curves in cryptography. In CRYPTO ’85, Volume 218
of LNCS, pages 417–426. Springer-Verlag, 1986.

20. National Institute of Standards and Technology. Announcing the Advanced En-
cryption Standard (AES). Federal Information Processing Standards (FIPS) Pub-
lication 197, November 2001.

ECRYPT Workshop on Lightweight Cryptography - November 2011 273

21. Axel Poschmann. Lightweight Cryptography - Cryptographic Engineering for a
Pervasive World. Number 8 in IT Security. Europäischer Universitätsverlag, 2009.
Published: Ph.D. Thesis, Ruhr University Bochum.

22. S. Rinne, T. Eisenbarth, and C. Paar. Performance Analysis of Contemporary
Light-Weight Block Ciphers on 8-bit Microcontrollers. In ecrypt workshop SPEED,
2007.

23. I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser, W. Trappe,
and I. Seskar. Security and privacy vulnerabilities of in-car wireless networks: a
tire pressure monitoring system case study. In Proceedings of USENIX’10, pages
323–338, Berkeley, CA, USA, 2010.

24. Senate and House of Representatives of the United States of America. Trans-
portation Recall Enhancement, Accountability, And Documentation (TREAD)
Act, 2000.

25. W. Stallings. Cryptography and network security: principles and practice.
The William Stallings Books on Computer and Data Communications. Pear-
son/Prentice Hall, Upper Saddle River, New Jersey, USA, 2006.

26. H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé. Vision and challenges
for realising the internet of things. Cluster of European Research Projects on the
Internet of Things, European Commision, 2010.

27. Forth Standards Team. FORTH-83 Standard. Mountain View Press, 1983.
28. The European Parliament - EC 661/2009. Concerning type-approval requirements

for the general safety of motor vehicles, their trailers and systems, components and
separate technical units intended therefor, July 2009.

29. M. Vogt, A. Poschmann, and C. Paar. Cryptography is Feasible on 4-Bit Micro-
controllers - A Proof of Concept. In International IEEE Conference on RFID,
pages 267–274, Orlando, USA, April 2009.

30. B. Zhu. Shanghai Jiao Tong University, Cryptography and Information Security
Lab, A Simple Python Script for Translating Sbox to ANF Boolean Functions.
http://cis.sjtu.edu.cn/index.php/A Simple Python Script for Translating Sbox
to ANF Boolean Functions.

ECRYPT Workshop on Lightweight Cryptography - November 2011 274

Appendix

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000

C
od

e
si

ze
 (

by
te

s)

Cycles / byte

Encryption Code size vs Cycles / byte - Implementation Results

AES-E-A

AES-E-S

PC-48-E-A

PC-48-E-S

PC-96-E-A

PC-96-E-S

PRESENT

Hummingbird

Bit-sliced PC-48-E

Bit-sliced PC-48-ED/E
AES-ED/E-S-P

AES-ED/E-A-P

PC-48-ED/E-S

PC-48-ED/E-A

PC-96-ED/E-S

PC-96-ED/E-A

AES
AES-ED/

PC-48
PC-48/ED

PC-96
PC-96/ED

Hummingbird
Present

Fig. 4. Code size vs cycles per byte for the speed and code size optimized encryption
routines for AES, HUMMINGBIRD, PC-48, PC-96, and PRESENT.

Table 6. Comparison of the code sizes of the combined encryption and decryption
routines and the accumulated code sizes of combining their encryption/decryption only
routines.

Opt. Routine
Code size

Sum Comb.
Diff.

(bytes) (%)

AES
Speed

Enc. 2,747
6,090 3,616 -40.62

Dec. 3,343

Code Enc. 1,143
2,780 1,775 -36.15

size Dec. 1,637

PC-48

Speed
Enc. 1,250

2,530 2,339 -7.55
Dec. 1,280

Code Enc. 490
983 799 -18.72

size Dec. 493

PC-96

Speed
Enc. 2,397

4,805 3,519 -26.76
Dec. 2,408

Code Enc. 761
1,555 1,232 -20.77

size Dec. 794

PC-48-B
Enc. 2,788

5,563 3,461 -37.79
Dec. 2,775

ECRYPT Workshop on Lightweight Cryptography - November 2011 275

Fig. 5. MARC4 core [1].

Table 7. Time, code size, and throughput for the speed and code-size optimized,
single and combined implementations. E = encryption only, D = decryption only, ED
= combined encryption and decryption, ED/E = encryption routine of the combined
ED implementation, ED/D = the decryption routine of ED; -A = code-size optimized,
-S = speed optimized; -P/-N = precomputed/non precomputed last round key for the
decryption routine; -B = bit-sliced implementation.

AlgorithmOptimization Time Code sizeTp @500 Khz Max Stack depth
(cycles) (bytes) (kbit/s) Exp. (S0)Ret. (R0)

AES

E-S 15,848 2,747 4.04 33 16
E-A 23,828 1,143 2.69 33 24

D-S-P 20,736 3,343 3.09 33 16
D-S-N 22,944 3,509 2.79 33 16
D-A-P 30,887 1,637 2.07 33 24
D-A-N 34,010 1,712 1.88 33 16

ED/E-S-P 15,977 3,616 4.01 33 20
ED/E-S-N 15,977 3,679 4.01 33 20
ED/D-S-P 20,801 3,616 3.08 33 20
ED/D-S-N 23,051 3,679 2.78 33 20
ED/E-A-P 24,012 1,775 2.67 33 24
ED/E-A-N 24,012 1,827 2.67 33 24
ED/D-A-P 31,054 1,775 2.06 33 24
ED/D-A-N 34,432 1,827 1.86 33 24

PC-48

E-S 30,079 1,250 0.80 19 5
E-A 62,490 490 0.38 19 11
D-S 31,375 1,280 0.76 19 5
D-A 63,450 493 0.38 19 11

ED/E-S 30,148 2,339 0.80 24 6
ED/D-S 31,450 2,339 0.76 24 6
ED/E-A 73,464 799 0.33 24 12
ED/D-A 74,423 799 0.32 24 12

PC-48-B

E 67,670 (4 slices) 2,788 1.42 51 16
D 67,046 (4 slices) 2,775 1.43 51 16

ED/E 67,963 (4 slices) 3,461 1.41 56 20
ED/D 67,964 (4 slices) 3,461 1.41 56 20

PC-96

E-S 129,936 2,397 0.37 35 5
E-A 245,370 761 0.20 35 11
D-S 130,992 2,408 0.37 35 5
D-A 247,482 794 0.19 35 11

ED/E-S 139,568 3,519 0.34 40 6
ED/D-S 140,625 3,519 0.34 40 6
ED/E-A 288,800 1,232 0.17 40 12
ED/D-A 289,370 1,232 0.17 40 12

ECRYPT Workshop on Lightweight Cryptography - November 2011 276

Elliptic Curve Cryptography in JavaScript

Laurie Haustenne, Quentin De Neyer, and Olivier Pereira?

Université catholique de Louvain
ICTEAM – Crypto Group

B-1348 Louvain-la-Neuve – Belgium

Abstract. We document our development of a library for elliptic curve
cryptography in JavaScript. We discuss design choices and investigate
optimizations at various levels, from integer multiplication and field se-
lection to various fixed-based EC point multiplication techniques.
Relying on a small volume of public precomputed data, our code provides
a speed-up of a factor 50 compared to previous existing implementations.
We conclude with a discussion of the impact of our work on a concrete
application: the Helios browser-based voting system.

1 Introduction

Current browsers offer fairly limited support for performing cryptographic oper-
ations on the client-side of web applications. The support of the TLS/SSL proto-
cols enables secure client-server communications, but these protocols can only be
useful in settings where the server is trusted by the client, and the implemented
cryptographic libraries are not exposed for other uses by web applications.

There are numerous applications, however, in which it is not desirable to
ask web application users to trust a server. E-voting is one of them: encrypting
ballots on the client side using a key that does not allow the server to decrypt
the vote content not only limits the trust that the voters need to place in the
voting server, but also substantially decreases the incentives for an attacker
to hack the voting server, since the server then only sees information that it
cannot interpret. While e-voting was the initial motivation for our work, being
able to run cryptographic protocols on the client-side also offers very interesting
perspectives for many other web applications, e.g., browser synchronization [18]
or auctions [6].

The JavaScript engine appears to be the most convenient choice for comput-
ing on the client side of web applications: a JavaScript engine is provided with all
major browsers. The interest of a cryptographic library in JavaScript is however
not limited to browsers, as JavaScript is also available and increasingly used
in other contexts in which cryptography is useful: one can think for instance
about documents such as PDF or OpenOffice files, but also about server-side
environments like Node.js.

? Olivier Pereira is a Research Associate of the Belgian Funds for Scientific Research
F.R.S.-FNRS.

ECRYPT Workshop on Lightweight Cryptography - November 2011 277

These various applications indicate that cryptographic libraries in JavaScript
would be very useful, and it is therefore not surprising that various such libraries
have been proposed already [4, 10, 20–22]. Even though some of these libraries
offer some level of support for ECC, the design criteria of these libraries are
essentially undocumented.

Running cryptographic operations in JavaScript in a browser presents con-
straints that are quite different from those appearing in classical cryptographic
applications. On the one hand, despite tremendous improvements during the last
two years, the performance of JavaScript code remains extremely low compared
to optimized compiled code executed on the same computer. On the other hand,
compared to other slow platforms like smart-cards, browsers offer an amount of
memory that is larger by orders of magnitude. Such constraints motivated our
independent study.

Our contributions. We present our development of elliptic curve cryptographic
primitives in JavaScript, offering the first documented study on this topic. In
particular:

– We compare several integer multiplication algorithms, determining when the
grade-school multiplication technique becomes outperformed by asymptoti-
cally more efficient algorithms like the Karatsuba multiplication.

– We compare the performances of operations in various finite fields (binary,
prime order, OEF).

– We define new NIST-style elliptic curves that are optimized for JavaScript
implementation.

– We compare several fixed-base point multiplication algorithms, and deter-
mine which ones are the most efficient as a function of the number of points
that one desires to store during precomputation.

Our implementation of EC point multiplication is more than 50 times faster
than the most efficient stable one [22], offering comparable security levels. We
stress however that this implementation does not rely on precomputation, while
we rely on a small volume of public precomputed data.

The remaining parts of this document are organized as follows. In Section 2,
we document our experiences with integer multiplication and various field oper-
ations, leading to the selection of new curves. In Section 3, we discuss various
point multiplication strategies. We then discuss applications of our work in the
context of voting protocols in Section 4, and conclude.

2 Field operations

We discuss the results of our investigation of arithmetic in prime fields. Our
investigation however also involved binary and optimal extension fields, but they
showed to be less efficient for our purpose. A summary of our results for these
other types of fields is provided at the end of this section, and a detailed account
is available in a separate report [12].

ECRYPT Workshop on Lightweight Cryptography - November 2011 278

2.1 Big integer representation

JavaScript does not offer any support for the manipulation of big integers: one
single numeric literal exists [14], and numbers are represented as IEEE-754 dou-
bles.

In order to tackle this limitation, various strategies have been adopted.
One possibility is to use the LiveConnect feature of web browsers that enables
JavaScript to intercommunicate with a Java Virtual Machine: support for big in-
tegers and for basic operation on these integers is then provided by the JVM. This
is the approach that was adopted in the Helios voting system for instance [1, 2, 8]:
Helios performs big integer manipulations like modular exponentiation through
LiveConnect, but all higher level algorithms (ElGamal, . . .) are implemented in
JavaScript directly. While this allows taking benefit of the JVM, this approach
is also fairly limited in terms of algorithmic efficiency since only basic modular
exponentiation is available: more efficient algorithms, for fixed-based exponenti-
ation or multi-exponentiation for instance, are therefore not used.

Another approach, which became practical very recently due to the tremen-
dous performance improvements of the JavaScript engines available in the major
browsers, is to develop a pure JavaScript big integer library (educational imple-
mentations of such libraries have however been available for quite a long time).
This is the approach we want to adopt here, as it removes the dependence of
any external browser plug-in.

We take as our starting point the JSBN library by Tom Wu [22], which is,
to the best of our knowledge, the most advanced big integer JavaScript library.
In this library, big integers are stored as arrays of smaller integers, the length of
which depends on the detected browser. Indeed, while JavaScript exposes signed
32 bits integers, considerable slowdowns appear when one computes with integers
that come close to these 32 bits, as demonstrated in Table 1. Our experiments
show that using arrays of 28 bit integers provides the most efficient results that
are usable on the major browsers. For these measurements, we used an average
netbook: Intel Core 2 Solo processor SU3500 (1.4 GHz) running Windows Vista.
The browser version were as follows: FFX: Mozilla FireFox 4.0.1; IE: Internet
Explorer 9.0.1; CHR: Google Chrome 11.0.696.71; SAF: Safari 5.0.5.

Table 1. Timings for multiplication in µs

FFX IE CHR SAF

28 bit words 5.3 7.6 3.2 8.2
30 bit words 13 16 4.3 12

As a result, in order to be able to exploit the integer representation in the
choice of the field in which we compute, we decided to only use the 28 bits
representation instead of having an adaptive integer representation according to
the browser type.

ECRYPT Workshop on Lightweight Cryptography - November 2011 279

2.2 Integer Multiplication

JSBN uses long (or grade-school) multiplication. It was not clear however whether
performance improvements could come from using asymptotically more efficient
algorithms. Therefore, we implemented the classical Karatsuba algorithm [15],
which allows moving from O(n2) complexity to approximately O(n1.585) com-
plexity.

We provide an typical depiction of our experiments results in Figure 1, based
on the Safari browser. As can be observed on this picture, Karatsuba multiplica-
tion becomes efficient for integers that are more than 1300 bits long. This bound
is however strongly dependent of the browser that is used: on Firefox 3.6.23, the
switch happens for 600 bit integers, while it happens only for integers around
1800 bit long on Chrome 14 (on the same Ubuntu laptop).

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

0.1

0.2

0.3

Integers size (bits)

T
im

e
(m

s)

Karatsuba

Classical

Fig. 1. Karatsuba multiplication becomes efficient around 1300 bit integers on our
netbook running Safari.

While these integer lengths remain considerably longer than the integers we
will manipulate for elliptic curve operations, this supports the adoption of Karat-
suba multiplication (or of variants of it, e.g., Knuth or Toom-Cook) if one wishes
to perform operations on larger integer. This might happen for cryptographic
protocols that rely on the hardness of factoring, e.g., RSA encryption which was
part of the motivations for the JSBN library, or Paillier encryption, but also if
one desires to work in subgroups of Z∗

p for instance.

Nevertheless, for our purpose, we adopted standard grade-school multipli-
cation. It would be interesting to see whether its efficiency could be further
improved by using scanning techniques such as those proposed in [13] for in-
stance.

ECRYPT Workshop on Lightweight Cryptography - November 2011 280

2.3 Modular reductions

While computing in a prime field Fp, reduction modulo p is a common and poten-
tially expensive operation. In order to mitigate the cost of modular reductions,
various ECC standards recommend using specially chosen primes that facilitate
those reductions. For instance, the NIST prime p224 is equal to 2224−296+1 [19],
in which we can observe that both 224 and 96 are multiples of 32, an expected
word size for most implementations.

This 32-bit oriented choice is however clearly not optimal in our case, since
our computation is based on 28-bit words. As a result, we looked for similar
pseudo-Mersenne primes and found that p28224 = 2224 + 2140 + 256 + 1 is the
prime integer with the fewest non-zero coefficients bi in the set of integers of the
form 2224 + b72196 + b62168 + b52140 + b42112 + b3284 + b2256 + b1228 + b0 with
bi ∈ {−1, 0, 1}.

The JSBN library does not take into account the specific structure of the
modulus when it performs reduction, and therefore does not exhibit any per-
formance change when using p28224instead of p224. Substantial changes appear,
though, when using a specific modular reduction function, tailored for p28224.

The resulting performance of the prime field operations is given in Table 2, in
which all timings include modular reduction. The squaring and inversion imple-
mentations are those from the JSBN library (except for the reductions), that is,
the squaring is based on [17, Algorithm 4.16], and the inversion on [17, Algorithm
4.61].

Table 2. Timings for modular prime field operations in µs

FFX IE CHR SAF

addition 0.28 0.34 0.13 0.41
multiplication 5.9 7.7 3.4 10

squaring 4.9 6.2 3 8.5
inversion 900 1050 550 1100

This table shows fairly important discrepancies between the browsers. These
values can however change substantially with browser updates. As expected, the
inversion operation is by far the most expensive.

2.4 Result outline in other fields

Binary field arithmetic is typically slower than prime field arithmetic in software
since integer multiplication is directly provided by processors and more efficient
than repeated bitwise operations. As a result, multiplication showed to be on
average 10 times slower on binary fields than on prime fields.

We also investigated optimal extension fields (OEF) [3]. These provide per-
formances that are slightly slower than those of prime field arithmetic, except
for inversion which is a bit more than 10 times faster.

ECRYPT Workshop on Lightweight Cryptography - November 2011 281

Our efficiency measurements are summarized on a logarithmic scale in Fig-
ure 2 and detailed in [12]. The relative performance of operations in these fields is
essentially in line with traditional results appearing in the literature for software
implementation [11].

Fig. 2. Timing comparison of different field operations, in µs.

Since the main benefit of OEF, i.e., inversion, is not of interest for our ap-
plications, and since elliptic curves on OEF remain more experimental (they do
not appear in the main ECC standards), we decided to adopt the prime field
Fpwith our specially chosen prime p28224for the rest of our work.

3 Curve selection and operations

3.1 Curve selection

We selected a NIST-style pseudo-random curve [19] for p28224, that is, a curve
of the form E : y2 = x3 − 3x + b mod p28224 of prime order n with base point
(Gx, Gy). Our curve has the following parameters:

– b = 13675174559945691270660091572714686899958220410447750995672981802966
– n = 26959946667150639794667016480816204352639545292933842228829888218579
– Gx = 15022218326251922240529090945393257414013962585837380057002596801053
– Gy = 24039939147593575364998439277103263076917813793017813680357106378307

3.2 Choice of coordinates

The choice of a specific point representation has a substantial impact on the
efficiency of point addition and doubling operations. Following the analysis pro-
vided by Hankerson et al. [11, Table 3.3], we decided to store points in affine
coordinates, which is also the most efficient from a memory point of view, and
to keep intermediate computation results in Jacobian coordinates. Using the al-
gorithms from [11], the performance of point addition and doubling appear in
Table 3. Investigating more recent techniques (e.g., those described in [5]), would
certainly provide new improvements.

ECRYPT Workshop on Lightweight Cryptography - November 2011 282

3.3 Point multiplication

The cryptographic protocols we consider involve a potentially large number of
point multiplications, but only with a very small number of fixed bases (2 for
ElGamal encryption for instance). Since a fairly large amount of memory is avail-
able in browsers for precomputation, exploring fixed-base point multiplication
algorithms is particularly promising.

These algorithms could be used in two ways: either the browser performs
precomputation himself and uses it later, or the precomputation is performed
on the server side and provided to the browser as part of the web application (it
could be certified and provided as part of the public key for instance).

We decided to adopt the second option, as requiring the browser to download
a few extra kilobytes of public information is not an issue in our context. To fix
the ideas, we decided to allow a volume of precomputed data of around 50 kB
per base point, which corresponds to the volume of a small photograph. As we
will see, a 10 times smaller volume of precomputed data already provides a very
substantial acceleration, and nothing prevents to enable browser-based precom-
putation in bandwidth constrained environments (though different algorithmic
choices should probably be made in that case).

We then explored various fixed point multiplication techniques, surveyed
in [11] for instance: fixed-base windowing [7] based on standard and NAF repre-
sentation and comb methods based on one or two precomputation tables (these
methods are also detailed in [12]).

The relative complexity of these fixed point multiplication techniques is de-
scribed in Figure 3, where the point doubling/addition ratio comes from our
measurements of Table 3. We can observe that the two windowing techniques
do not provide any extra benefit when more than 70 points are stored, while the
two comb methods keep improving, the one based on two tables (comb2) being
the most efficient. Generalization of the comb approach to more tables were also
explored [16], but do not provide any improvement for the data volumes we have
in mind.

Our limit of 50 kB of storage allows us to exploit more than 500 precomputed
points. In this case, the complexity of a point multiplication is slightly lower
than 50 point doubling operations. We observe that, by decreasing the number
of stored points by a factor 10, the point multiplication complexity increases by
a factor less than two, which might still be convenient if one desires to decrease
the volume of precomputed data.

3.4 Point multiplication efficiency

The performance of our point operations is given in Table 3, based on the same
computer and browser versions as before.

As before, those results are quite sensitive to the browser and computer that
are used. For instance:

ECRYPT Workshop on Lightweight Cryptography - November 2011 283

0 10 20 30 40 50 60 70 80 90 100

60

80

100

120

140

160

180

200

Number of stored points

C
o
m

p
le

x
it

y
(A
d
d

=
1
.2

,
D
ou
bl
e

=
1
)

Windowing

Naf-windowing

comb1

comb2

Fig. 3. Complexity of point multiplication as a function of the number of stored points.
Windowing methods reach a minimum around 60 points, while comb methods keep
improving.

Table 3. Timings for EC point operations in µs

FFX IE CHR SAF

addition 83 95 55 120
doubling 73 81 49 104

multiplication 3300 3300 1900 4200

– on a recent laptop (Intel Core i7-640M Processor at 2.8GHz) and using
Chrome 14, a point multiplication operation takes 550µs, which is already
almost 4 times faster than the time reported for Chrome in Table 3,

– on an iPad 2, a point multiplication takes 14100µs.1

Our implementation can also be compared to the one provided in the JSBN
library [22], which is based on standard NIST curves, uses NAF point multi-
plication, and does not use precomputation. The point multiplication that took
550µs on the recent laptop mentioned above takes then around 30000µs with
the JSBN implementation, presenting a slowdown of a factor 54 for the same
security level. This gain comes from the various changes we made compared to
the JSBN implementation: optimized modulus choice, specific modular reduction
algorithm, choice of point representation, and precomputation.

1 We thank Benôıt Dumoulin for taking this measurement.

ECRYPT Workshop on Lightweight Cryptography - November 2011 284

4 Application to e-voting

One possible use context for our ECC library is the Helios open-audit voting
system [1, 2, 8], which has been used with two different cryptographic protocols
on the client side:

1. The commonly deployed version, proposed in [2], is based on homomorphic
tallying and uses a variant of the CGS protocol of Cramer et al. [9].

2. For some elections, mixnet-based tallying has also been used [8].

The homomorphic tallying approach enables a very simple election workflow,
where the work of the election trustees is minimal: they only need to decrypt
the election outcome, which is even cheaper than preparing a ballot. However,
the ballot preparation procedure is fairly expensive for the voter, as it requires
the equivalent of 6 point multiplications per candidate.

This computational complexity was the actual motivation for the adoption
of a mixnet-based approach, when an election involving around 250 candidates
was organized: adopting mixnets reduced the amount of computation to the
equivalent of 5 point multiplications per ballot, but implied a substantially more
complicated tallying procedure, including the setup of mix servers and requiring
the trustees to decrypt all mixed ballots individually.

The fixed point multiplication techniques we explored in the previous section
are particularly suitable for the CGS protocol. Indeed, all point multiplications
are performed with respect to only two bases: a public group generator and an
ElGamal public key which is made of a single point.

Using the Chrome browser on the average netbook described with our pre-
vious measurements, the time required to perform 1500 point multiplications
when preparing a ballot for 250 candidates would be around 3 seconds, which is
quite usable. It is not even necessary to require the voter to wait during those
3 seconds, as all point multiplications can be made independent of the voter
choices, which can be encoded through point additions performed at the end of
the ballot preparation procedure. The point multiplication operations can then
be performed in separated worker threads while the voter performs his choices.

So, the library we presented in this paper provides an answer to the efficiency
concern in Helios for elections involving a large number of candidates, and is
expected to substantially increase the proportion of elections that can benefit
from the simplicity of homomorphic tallying procedures.

5 Conclusion

Starting from the work of Tom Wu in the JSBN library for the support of big
interger operations in JavaScript, we explored various strategies for the imple-
mentation of elliptic curve cryptography in pure JavaScript. Our resulting im-
plementation, relying on a limited amount of precomputed data, offers a speedup
of a factor 50 compared to the one proposed in the JSBN library. The efficiency
of our implementation opens the way of substantial improvements in various

ECRYPT Workshop on Lightweight Cryptography - November 2011 285

JavaScript applications, and we discussed the Helios voting system as an exam-
ple.

There are a number of directions that remain open for further research.

– We concentrated our effort on NIST-type elliptic curves. It would be very
interesting to explore whether other curve families would provide better re-
sults.

– Our library assumes that the precomputed data for fixed point multiplica-
tion are provided by an external application server. Including the cost of
precomputation in the choice of the point multiplication technique would be
another very interesting direction.

The adoption of our cryptographic library for real world applications remains
currently limited by the lack of availability of secure randomness in JavaScript.
Some efforts were already realized [4, 21], based on variants of the Fortuna design
for entropy accumulation. More recently, since version 11, the Chrome browser
exposes secure randomness through a new window.crypto.getRandomValues API,
which provides a much more convenient and reliable solution. We hope to see
secure randomness become available in other browsers within a near future.

Acknowledgments

We would like to thank Nicolas Veyrat-Charvillon for his support and the anony-
mous LC 2011 referees for their useful comments.

References

1. Ben Adida. Helios: web-based open-audit voting. In Proceedings of the 17th
USENIX Security Symposium, pages 335–348, Berkeley, CA, USA, 2008. USENIX
Association.

2. Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-Jacques Quisquater.
Electing a University President Using Open-Audit Voting: Analysis of Real-World
Use of Helios. In T. Moran D. Jefferson, J.L. Hall, editor, Electronic Voting Tech-
nology Workshop/Workshop on Trustworthy Elections. Usenix, August 2009.

3. Daniel V. Bailey and Christof Paar. Optimal extension fields for fast arithmetic
in public-key algorithms. In Hugo Krawczyk, editor, Advances in Cryptology -
CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, pages 472–485.
Springer, 1998.

4. Marco Barulli and Giulio Cesare Solaroli. Clipperz. http://www.clipperz.org.
Accessed on Oct 10, 2011.

5. Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on elliptic
curves. In Advances in Cryptology - ASIACRYPT 2007, volume 4833 of Lecture
Notes in Computer Science, pages 29–50. Springer, 2007.

6. Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas Toft. Secure multi-
party computation goes live. In Financial Cryptography and Data Security, pages
325–343, Berlin, Heidelberg, 2009. Springer-Verlag.

ECRYPT Workshop on Lightweight Cryptography - November 2011 286

7. Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and David Bruce Wilson.
Fast exponentiation with precomputation (extended abstract). In Advances in
Cryptology - EUROCRYPT ’92, volume 658 of Lecture Notes in Computer Science,
pages 200–207. Springer, 1992.

8. Philippe Bulens, Damien Giry, and Olivier Pereira. Running mixnet-based elections
with Helios. In H. Shacham and V. Teague, editors, Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections. Usenix, 2011.

9. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and opti-
mally efficient multi-authority election scheme. In Walter Fumy, editor, Advances
in Cryptology - EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer
Science, pages 103–118. Springer, 1997.

10. Zhi Guan, Zhen Cao, Xuan Zhao, Ruichuan Chen, Zhong Chen, and Xianghao Nan.
WebIBC: Identity based cryptography for client side security in web applications.
In 28th IEEE International Conference on Distributed Computing Systems (ICDCS
2008), pages 689–696. IEEE Computer Society, 2008.

11. Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to elliptic curve
cryptography. Springer-Verlag, 2004.

12. Laurie Haustenne and Quentin de Neyer. Elliptic curve cryptography in javascript
with application for eVoting. Master’s thesis, Universite catholique de Louvain,
2011.

13. Michael Hutter and Erich Wenger. Fast multi-precision multiplication for public-
key cryptography on embedded microprocessors. In Bart Preneel and Tsuyoshi
Takagi, editors, Cryptographic Hardware and Embedded Systems - CHES 2011,
volume 6917 of Lecture Notes in Computer Science, pages 459–474. Springer, 2011.

14. ECMA International. ECMAScript Language Specification – ECMA-262 rev. 5.1,
2011.

15. A. Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by auto-
matic computers. In Proceedings of the USSR Academy of Sciences, volume 145,
page 293–294, 1962.

16. Chae Hoon Lim and Pil Joong Lee. More flexible exponentiation with precompu-
tation. In Advances in Cryptology - CRYPTO ’94, volume 839 of Lecture Notes in
Computer Science, pages 95–107. Springer, 1994.

17. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, July 1999.

18. MozillaWiki. Weave cryptography developer overview. https://wiki.mozilla.

org/Labs/Weave/Developer/Crypto, February 2010. Accessed on Oct 10, 2011.
19. NIST. FIPS PUB 186-3 – Digital Signature Standard (DSS). http://csrc.nist.

gov/publications/fips/fips186-3/fips_186-3.pdf, 2009.
20. Dave Shapiro. RSA in JavaScript. http://ohdave.com/rsa/. Accessed on Oct 10,

2011.
21. Emily Stark, Michael Hamburg, and Dan Boneh. Symmetric cryptography in

Javascript. In Twenty-Fifth Annual Computer Security Applications Conference,
ACSAC 2009, pages 373–381. IEEE Computer Society, 2009.

22. Tom Wu. jsbn - BigIntegers and RSA in JavaScript. http://www-cs-students.

stanford.edu/~tjw/jsbn/. Accessed on Oct 10, 2011.

ECRYPT Workshop on Lightweight Cryptography - November 2011 287

	proceedings_preface_2
	papers
	1
	2
	3
	4
	5
	6
	High Speed Implementation of Authenticated Encryption for the MSP430X Microcontroller

	7
	Introduction
	Our contributions
	LPN, Ring-LPN, and Related Problems

	Definitions
	Rings and Polynomials
	Distributions
	Authentication Protocols

	Ring-LPN and its Hardness
	Hardness of LPN and Ring-LPN
	Ring-LPN with an irreducible f(X)
	Ring-LPN with a reducible f(X)

	Authentication Protocol
	The Protocol
	Analysis

	Implementation
	Implementation with a Reducible Polynomial
	Implementation with an Irreducible Polynomial
	Implementation Results

	Conclusions and open Problems
	Acknowledgements.
	References
	Man-in-the-Middle Attack

	8
	9
	10
	SPONGENT: The Design Space of Lightweight Cryptographic Hashing
	Andrey Bogdanov, Miroslav Kneževic, Gregor Leander, Deniz Toz, Kerem Varıcı, and Ingrid Verbauwhede

	11
	12
	13
	Introduction
	Previous Work
	Problem Overview
	Authentication Protocol Requirements
	Restrictions Due To CANBus
	Transmission with CAN+
	Problems with multi-node transmissions

	CANAuth Protocol
	Data Transmission and Frame Format
	Key Establishment
	Message Authentication
	Handling of Invalid Authentications
	A Note on Hardware Implementation Speed

	Security Properties
	Adversarial Model
	Denial-of-Service Attacks
	Protocol Security = HMAC Security
	Tamper Resistance
	Limitations on On-line Attack Speed

	Conclusion
	Acknowledgments
	References

	14
	Lightweight Hash Design Essentials: Bit-slicing and Memory Structures
	X. Guo and P. Schaumont
	Introduction
	Lightweight Hash Comparison Issues
	Area
	Power
	Latency
	Summary

	ASIC Library Dependent Cost Analysis of Quark
	Overview of Quark
	The Impact of Technology Nodes and Standard-Cell Libraries

	Storage Structure Dependent Cost Analysis of CubeHash
	Overview of CubeHash
	VLSI Implementations
	Quantify the Storage Structure Impact

	Conclusions

	15
	16

	white

