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Linear cryptanalysis is a powerful cryptanalytic technique that makes use of a
linear approximation over some rounds of a cipher, combined with one (or two)
round(s) of key guess. This key guess is usually performed by a partial decryp-
tion over every possible key. In this paper, we investigate a particular class of
non-linear boolean functions that allows to mount key-dependent approximations
of s-boxes. Replacing the classical key guess by these key-dependent approxima-
tions allows to quickly distinguish a set of keys including the correct one. By
combining different relations, we can make up a system of equations whose solu-
tion is the correct key. The resulting attack allows larger flexibility and improves
the success rate in some contexts. We apply it to the block cipher Q. In parallel,
we propose a chosen-plaintext attack against Q that reduces the required number
of plaintext-ciphertext pairs from 297 to 287.

1. INTRODUCTION

In its basic version, linear cryptanalysis is a known-plaintext attack that uses a linear
relation between input-bits, output-bits and key-bits of an encryption algorithm that
holds with a certain probability. If enough plaintext-ciphertext pairs are provided,
this approximation can be used to assign probabilities to the possible keys and to
locate the most probable one.
Non-linear approximations are commonly used in cryptanalysis in order to increase
the probabilities of linear approximations. The key-dependency of non-linear approx-
imations is mentioned in several papers and allows more flexibility in the attacks. In
this paper, we underline how a particular class of non-linear approximations can be
used to mount interesting key-dependent relations. Then, we combine these relations
to make up a system of equations whose solution is the secret key. It allows a great
flexibility in the number of key-bits we want to recover and improves the success
rate in some contexts. We apply the method to the block cipher Q, where potential
improvements exist in multiple approximations. We also improve the linear crypt-
analysis of Q by moving to the chosen-plaintext context.
This paper is organized as follows. Section 2 lists some previous works in the area of
cryptanalysis that are closely related to this paper. Section 3 explains the basic prin-
ciple of our attack. Section 4 describes the block cipher Q as well as an iterative linear
characteristic of the block cipher. We stress that moving to the chosen-plaintext con-
text can significantly improve the linear attack. Section 5 compares our key-dependent
attack with the classical attack against Q. Finally, section 6 poses some open problems
and underlines potential improvements. Conclusions are in section 7.



2. RELATED WORKS

Since the first description of linear cryptanalysis by Matsui [9], plenty of papers
tried to take advantage of the method in different attempts to break public ciphers
and some of these papers include theoretical improvements. We try here to list the
improvements that are directly connected to our work.
In 94, Nyberg [10] introduced the concept of linear hull and explains why the practical
success rate of the attack is sometimes better than theoretically predicted by Matsui.
In the same time, Kaliski and Robshaw [11] investigate the possibility to use multiple
linear approximations in order to improve this success rate. Although practical im-
provements in the cryptanalysis of DES are limited, their work underlines situations
where multiple approximations can be efficiently combined.
In 96, Knudsen and Robshaw [12] tried take advantage of non-linear approximations
to improve the probabilities of the characteristics used to approximate block ciphers.
They underlined the key-dependency of non-linear approximations and concluded that
the problem of connecting them together is complex. Practically, their improvements
are limited to the outer rounds of block ciphers. Shimoyama and Kaneko use similar
ideas to improve the cryptanalysis of DES in 98 [13].
In 2000, Knudsen and Mathiassen [14] illustrate that moving from the known plaintext
to the chosen plaintext context can improve matters in linear cryptanalysis. Finally,
we refer to the recent work of Parker and Raadum1 [7, 8], who generalize linear crypt-
analysis to larger fields than Z2.
This paper tries to take advantage of Z4 approximations when we directly recom-
bine them into the binary case. This allows to get several approximations with very
interesting biases. Then, we investigate the possibility to mount key-dependent re-
lationships and underline that these can help to quickly distinguish a small set of
keys including the correct one. By combining different approximations, we can find
a system of equations whose solution is the correct key. Potential advantages could
then be found in the large number of equations making up the system.
In terms of connections, these results are directly connected to Z4 cryptanalysis but
the recombination into the binary case can be viewed as a particular case of non-
linear approximations. However, our objective is to underline that the classical way
to perform the key guess, using a real s-box in the last round, is not necessarily the
best way to do it. Key-dependency in non-linear approximations offers interesting
alternatives. The combination of several equations is also closely related to multiple
approximations. Finally, we take advantage of the chosen-plaintext context in order
to improve the cryptanalysis of the block cipher Q.

3. BASIC PRINCIPLE

We assume that the reader is familiar with linear cryptanalysis as well as with its
improvements presented in section 2.

3.1 Z4 Approximations of s-boxes: Let’s take a simple 4-bit×4-bit substitution

1Technical reports of the NESSIE project.



box. For example:

SB = {0, 15, 11, 8, 12, 9, 6, 3, 13, 1, 2, 4, 10, 7, 5, 14} (1)

In a linear attack, we try to approximate this s-box with a linear boolean function.
For every output bit, there exist 24 different linear functions and if we combine out-
put bits together, we have 24 × 24 possible linear approximations of the s-box. The
problem of finding good linear approximations is easily done by exhaustive search.
Practically, the best linear approximations of SB holds with a bias ε = 4/16 2.
Obviously, other approximations are possible. For example, non-linear approxima-
tions offer more possibilities by combining XOR (or addition modulo 2) operations
with AND (or multiplication modulo 2) operations. The classical problem in non-
linear cryptanalysis is to combine these non-linear relations with key addition layers.
In linear cryptanalysis, key additions only influence the sign of the bias. When using
non-linear approximations, also the value of the bias is key-dependant.
In [7, 8], a generalization of the linear cryptanalysis in Z4 is proposed. We observed
that a simple recombination of this generalization into the binary case allows to ob-
serve very interesting biases. In this paper, we propose to approximate n-input s-boxes
with functions f : (Z4)

n → Z2 whose coefficients are in Z4 . We recombine symbols
(or function outputs) of Z4 into Z2 with the simple rule:

1. Symbols 0,1 in Z4 are 0 in Z2.

2. Symbols 2,3 in Z4 are 1 in Z2.

The obvious consequence of this generalization is a larger number of possible approx-
imations, moving from 2n in the binary case to 4n in Z4. However, this is nothing
else than a kind of non-linear cryptanalysis. Indeed, when we recombine into Z2,
coefficients 1 and 3 will give rise to quadratic terms and coefficients 2 and 3 to linear
terms. For example:

y1 = (3x0 + 2x1 + x2 + x3)mod4 (3)

in Z4 becomes3

y1 = x0 ⊕ x1 ⊕ x0x2 ⊕ x0x3 ⊕ x2x3 (4)

when we recombine4 it into Z2 and it holds with a bias ε = 6/16.

3.2 Key Dependent Approximations: Now the question remains: ”What can
we do with these non-linear relations?”. As the problem of combining non-linear
approximations together has not changed, we propose here to take advantage of the

2In this paper, we define the bias of a linear or Z4 approximation that holds with probability p
as ε = p− 1/2. This definition allows to determine the probability P of an approximation involving
several active s-boxes approximated with biases εi (pilling-up lemma):

P =
1
2

+ 2n−1
n∏

i=1

εi (2)

3We mean that both functions have the same truth table.
43x0 and 2x1 give rise to linear terms x0 and x1. Then we have 3 quadratic terms x0x2, x0x3

and x2x3 (because x2 and x3 have coefficient 1 and x0 has coefficient 3).
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Figure 1: Linear Cryptanalysis and Key Dependant Attack.

key-dependant behavior of these relations. We can easily investigate the influence of
this key addition on a non-linear approximation. for example, if the 4-bit input of the
s-box is XORed with 4 key-bits, we have:

z1 = 3.(x3 ⊕ k3) + (x2 ⊕ k2) + 2.(x1 ⊕ k1) + 3.(x0 ⊕ k0) (5)

The next table gives the probability that 5 holds depending on the key added:

K Probability K Probability K Probability K Probability
0 14/16 4 6/16 8 8/16 12 8/16
1 8/16 5 8/16 9 6/16 13 14/16
2 2/16 6 10/16 10 8/16 14 8/16
3 8/16 7 8/16 11 10/16 15 2/16

We observe that the largest bias (ε = 6/16) can happen for 4 different keys (0,2,13,15).
Remark that a coefficient 2 only introduce linear terms in the boolean function and
therefore, the associated key bits do not affect the magnitude of the bias. For example,
the bias magnitude of (4) is independent of bit k1 which cause K = 0 and K = 2 to
have the same bias magnitude.

Definition: Let equation Y be considered ”independent” of equation X if the highest
bias achieved by X suggest a set of k (in our example k = 4) keys, and the highest
bias achieved by Y suggest another set of keys, so that X and Y do not suggest the
same keys.

Definition: Let a complete set of equations be a set of equations where every one
of the 2n possible keys are suggested by only one equation.

A simple exhaustive search allowed us to find several complete sets of equations. For
a complete set of equations of SB, the biases are always distributed in the following
way:

ε(good.case) = ±6/16, ε(bad.case1) = ±0/16

ε(bad.case2) = ±0/16, ε(bad.case3) = ±2/16 (6)

Distinguishing the good case obviously involves determining that the key is in a 4-
element set.

3.3 An Attack using Key Dependent Approximations: In a classical lin-
ear cryptanalysis against a r-round block cipher, the attacker uses a (r − 1)-round



approximation. Then the ciphertext is partially decrypted through the final round
under every possible key in order to get the active bits of the linear approximations
at round r − 1. The linear approximation is checked for every possible key and the
correct key will cause the relation to hold more significantly. However, some wrong
keys will also cause the approximation to hold, but with a lower bias, as shown in
Figure 1. In our practical example with SB, the problem is to distinguish a curve
(representing the good key) that holds with a bias ε = ±8/16 from 6 curves with
bias ε = ±4/16 and 9 with bias ε = 0/16. The resulting success rate depends on the
probability that the linear approximation holds, the number of plaintext-ciphertext
pairs and the correlation between the different curves.

Computation of the Success Rate [9]: Let N be the number of given ran-
dom plaintext-ciphertext pairs and p be the probability that the linear approximation
holds (assume |p − 1

2
| is sufficiently small). Let q(i) be the probability that a wrong

key candidate K
(i)
w produces the same partial decryption in the final round than the

correct key Kg. Then, if q(i)’s are independent, the success rate of the attack is:
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In our alternative approach, the final round is replaced by a key-dependent Z4 approx-
imation. Then we decrypt the ciphertext under the 4 equations of a complete set and
one of these equations will cause the linear approximation to hold more significantly.
In our practical example with SB, the problem is to distinguish a curve (representing
the good 4-element set of keys) that holds with a bias ε = ±6/16 from 1 curve with
bias ε = ±2/16 and 2 with bias ε = 0/16. In section 5, we apply both approaches
to the block cipher Q and compare them. We also investigate how different sets of
equations can be combined to recover the key.

4. THE BLOCK CIPHER Q

4.1 Description: Q [3] is a block cipher submitted as a candidate to the NESSIE
project. It is already broken by differential and linear cryptanalysis [4, 5]. It has
a straightforward SPN structure with s-boxes based on those in Rijndael (The AES
selection) and Serpent, leaving out linear transformations excepted a simple permu-
tation of the bytes. As a result, its diffusion properties are suboptimal. Q has 128-bit
text and key blocks. The block is divided into 4 words and 16 bytes as shown in
Figure 2. The round function of Q is represented in Figure 3 and is repeated 8 or 9
times in order to get a secure cipher. In the round function, Bytesub is taken from
Rijndael. It substitutes the value of each byte independently. The bit-slice s-boxes
(SA and SB) are taken from Serpent. For i = 0, ..., 31, we construct a 4-bit input i by
taking bit i from every word, then we replace each input according to the s-box and
return the new bit values to their original place. Finally, the permutation changes the
order of the bytes in the words in the following way: word 0 is not changed, word 1 is
rotated by 1 byte: (4,5,6,7) becomes (7,4,5,6), word 2 is rotated by 2 bytes and word
3 is rotated by 3 bytes. All these transforms are combined with classical key addition
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Figure 2: Q Blocks.
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Figure 3: Q Round.

layers (KA,KB, KR). For clarity, we ignore the modifications of the first and final
rounds. Only a final key addition is added after the last s-box SB5.

4.2 A Simple and Iterative Linear Approximation: Due to the very simple
structure of Q, movements of bits and bytes are specific for every part of the round:

1. A vertical shift of bytes is achieved by the permutation only.

2. An horizontal shift of bytes is achieved by s-boxes SA and SB only.

3. Bit modifications inside one byte are achieved by Bytesub only.

Combining this observation with the absence of a specific diffusion layer, we can easily
build an iterative characteristic with only one active s-box in every layer of the cipher.
Our iterative characteristic uses the following approximations and we illustrate the
first round in Figure 4 where the grey bytes are active.

Bytesub:

1. Round 1 : x7 ⊕ x0 = y7, ε = 16/256. 3. Round 3 : x2 = y5, ε = 16/256.

2. Round 2 : x7 = y2, ε = 16/256. 4. Round 4 : x5 = y7, ε = 12/256.

SA and SB: (the same approximations are used in every round)

1. SA: x0 = y1, ε = 2/16. 2. SB: x1 = y0, ε = 2/16.
The output of round 4 can be linked to the input of round 2 if we want more rounds
to be approximated. On the same figure, we illustrate that by moving to a chosen
plaintext context, we can easily fix the input bits of Bytesub and SA in the first round
(black bytes are fixed). This provides a significant improvement of the probability that
the linear approximation holds by a factor 25. Equations 8, 9, give the probabilities
that our 4-round approximation holds in a known- or chosen-plaintext context.

Pknown.plaintext = 211.(
1

16
.
1

8
.
1

8
)3.(

12

256
.
1

8
.
1

8
) = 2−29.41 (8)

Pchosen.plaintext = 29.(
1

16
.
1

8
.
1

8
)3.16.8.(

12

256
.
1

8
.
1

8
) = 2−24.41 (9)

5The bias ε is defined in the appendix.
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Figure 4: Iterative characteristic and chosen plaintext effect.

Note that applying this simple observation to the best-known attack against 8 rounds
of Q [5], we can improve the probability of the approximation by a factor 25 and the
number of plaintext needed by about 210. The resulting attack would need about 287

chosen-plaintexts to reach a success rate of 98.4%. The 32 fixed bits leave us with 296

chosen-plaintexts to mount an attack and therefore do not restrict the plaintext area
too much.

Finally, it is important to note that by changing approximations of SA and SB (with
the same biases), we can easily construct similar characteristics where we change the
last active s-box SB6. Every one of these characteristics allow to recover 4 different
key bits with the same plaintext-ciphertext set. For example,by simply changing the
approximation of SA in the final round, (x0 = y1, x0 = y2 and x0 = y3 have the same
bias), we could have bytes 4, 9 and 14 active in the last round and recover 12 key
bits. More approximations exist if more bits are needed. Every attempt to recover 4
key bits is an independent experiment and if p is the probability to recover 4 key bits,
the probability to recover 4 × n key bits equals the probability that the n attempts
success: P = pn.

5. A CHOSEN-PLAINTEXT ATTACK AGAINST 4 ROUNDS OF Q

5.1 Comparison: In this section, we evaluate the success rate of our attack
against 4 rounds of Q and compare it to a classical key guess.
In the classical case, we have 9 active s-boxes because the first Bytesub and SA are
fixed and the last SB is used to perform the key guess. The resulting probability is:

Pchosen.plaintext = 28.
1

8
.(

1

16
.
1

8
.
1

8
)2.(

12

256
.
1

8
) = 2−22.41 (10)

As mentioned in section 3, the keys are correlated in the following way: the correct
key exhibits the best bias (±8/16), 6 wrong keys exhibit a bias ±4/16 and the 9 last
ones have a bias ±0/16.

When using a key-dependent approximation with bias ε = ±6/16 in the last round, we
have 10 active s-boxes because only the first Bytesub and SA are fixed. The resulting

6The same reason causes a significant linear hull effect.



Method/N 242 243 244 245 246 247 248 249

Classical 11.17 16.36 25.08 38.62 56.71 76.57 92.73 99.31
Key-dep 25.51 32.26 42.61 57.43 75.31 90.61 98.11 99.86

Table 1: Success rate of both methods (given in %).

probability is:
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The next table indicates a possible complete set of equations and the keys suggested
by every equation:

Equation Keys suggested
x1 = 3y3 + y2 + 2y1 + y0 0,2,13,15
x1 = y3 + 2y2 + 2y1 + y0 1,3,5,7
x1 = y3 + y2 + 2y1 + 3y0 4,6,9,11

x1 = 3y3 + 2y2 + 2y1 + 3y0 8,10,12,14

For every key, these equations are correlated in the following way: the correct equa-
tion exhibits the best bias (±6/16), one wrong equations exhibit a bias ±2/16 and
the 2 last ones have a bias ±0/16.

From this, we can evaluate the success rate of both methods, as shown in Table 1,
where N is the number of plaintext-ciphertext pairs. Our method is obviously faster
because we only distinguish a 4-element set including the correct key, in place of the
correct key itself in a classical linear cryptanalysis.

5.2 How to Find More Bits: The previous section underlines that we can quickly
distinguish a 4-element set of keys using a key-dependent approximation of s-box SB.
Then, the problem becomes to decrease the size of this key-set. Practically, this in-
volves the use of other complete sets of equations and we illustrate this in Figure 5.
For the input bit x1 of SB, we found 12 equations, making up 3 complete sets (1,2,3)
of equations. As every key is suggested by a different combination of these equations,
we can recover the key as soon as all our 3 complete sets suggest the good 4-element
set of keys. These 3 complete sets have the same success rate (say sr). Considering
them as independent experiments, the probability that they all suggest the correct key
would be sr3. We observe that after a certain level of computations (about N = 242 in
our example), this is more efficient that the classical key guess. Note that in practice,
these complete sets are not independent7 but we also found approximations involving
other bits as we will explain in the next section. Another interesting point is the ob-
servation that some situations can never appear. Imagine that, after a certain level of
computations, the first set suggests equation 1a and the second set suggests equation
2b. As they have no common keys, we obviously know that one (or both) of these
experiments are wrong.

7All these equations involve the same bits.
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Figure 5: 3 Complete Sets of Equations involving x1 and the Suggested Keys.

6. OPEN QUESTIONS AND IMPROVEMENTS

At this time, we have shown that the way to perform the final key guess in linear
cryptanalysis does not necessarily involve the use of a real s-box. Situations where we
use a non-linear key-dependent approximation to guess the key could be useful and at
least, this method offers a great flexibility compared to the original one. The princi-
pal open problem is to investigate if this can help to make an efficient use of multiple
approximations. This last point would be a great improvement as we demonstrate
now.
In the preceding section, we investigated an efficient combination of 3 complete sets
of equations, allowing to recover the 4 key-bits at the input of a non-linearly ap-
proximated s-box. These 12 equations all involve the same input and output bits.
However, our exhaustive search allowed us to find other complete sets of equations,
involving different input bits. As we suggest in section 4, it is also possible to find
other linear approximations by simply changing the way we approximate SA and
SB. Consequently, we can connect different linear approximations with our addi-
tional complete sets. Practically, for the same s-box SB, we found 9 complete sets of
equations, including the 3 sets of Figure 5. As a result, we have a large redundancy
in the information we get from a plaintext-ciphertext pair. The way we could com-
bine this additional information is an open problem and of course, is very similar to
the combination of multiple approximations in linear cryptanalysis, perhaps with a
slightly different point of view.
Another open question concerns the choice of non-linear approximations. We inves-
tigated a particular case of quadratic relations, where our boolean functions can be
represented as functions in Z4. Other approximations are possible and perhaps allow
better results. Algebraic descriptions of block cipher components, as presented in [15],
could for example be useful.



Finally, our investigations were limited to the final round of the block cipher Q. This
allowed to evaluate a different way to guess the key. Previous papers presented differ-
ent methods to use non-linear approximations in order to improve linear cryptanalysis.
Most of these techniques could be combined with this work.

7. CONCLUSIONS

We explored a different way to perform the key guess in linear cryptanalysis. It allows
great flexibility because the key is dynamically specified when additional plaintext-
ciphertext pairs are provided. From a 4-element set including the correct key, we limit
the set to 2 elements and finally recover the key itself.

In practice, we used a particular class of non-linear approximations to make up a
system of equations whose solution is the secret key. An advantage is to be found in
the large number of possible approximations (from 2n to 4n). As a consequence, we
found a large number of equations that over-define the system. The best use of these
multiple approximations is an open problem.

Compared to classical cryptanalysis, we improved the probability of success after a
number of plaintext-ciphertext pairs is provided. We also have additional information
because some solutions of the system are not allowed, informing the attacker about
possible wrong experiments. Finally, we suggested a chosen-plaintext attack against
the block cipher Q that reduced the required number of plaintext-ciphertext pairs
from 297 to 287.
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