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Abstract. We propose a new countermeasure to protect block ciphers
implemented in leaking devices, at the intersection between One-Time
Programs and Boolean masking schemes. First, we show that this coun-
termeasure prevents side-channel attacks of all orders during the execu-
tion of a protected block cipher implementation, given that some secure
precomputations can be performed. Second, we show that taking advan-
tage of the linear diffusion layer in modern block ciphers allows deriving
clear arguments for the security of their implementations, that can be
easily interpreted by hardware designers. Masking with randomized look
up tables allows fast execution times but its memory requirements are
high and, depending on the block cipher to protect, can be prohibitive.
We believe this proposal brings an interesting connection between former
countermeasures against side-channel attacks and recent formal solutions
to cope with physical leakage. It illustrates the security vs. performance
tradeoff between these complementary approaches and, as a result, high-
lights simple design guidelines for leakage resilient ciphers.

Introduction

More than a decade after the introduction of Differential Power Analysis [19],
masking cryptographic implementations remains one of the most frequently con-
sidered solutions to increase security against such attacks. Its underlying princi-
ple is to randomize the sensitive data, by splitting it into d shares, where d− 1
usually denotes the order of the masking scheme. The masked data and individ-
ual mask(s) are then propagated throughout the cryptographic implementation,
so that recovering secret information from a side-channel trace should at least
require to combine the leakage samples corresponding to these d shares. This is
an arguably more difficult task than targeting single samples separately because
(1) more “points of interests” have to be identified in the leakage traces, (2)
if the masking scheme is properly designed, the mutual information between a
secret data and its physical leakage decreases with the amount of shares.

In practice, three main ways of mixing some input data and mask(s) have
been proposed in the literature. The first solution, usually referred to as Boolean
masking, is to use a bitwise XOR [5, 12]. Multiplicative masking was then pro-
posed as an efficient alternative for the AES, but suffers from some weaknesses,
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due to the easily distinguishable leakage when multiplying by zero [15]. Finally,
the affine masking introduced in [39], and further analyzed in [11], allows combin-
ing the advantages of Boolean and multiplicative masking from a security point
of view, but it implies costly re-computations during the encryption process.

Attacks against masked implementations range in two main categories. On
the one hand, physical imperfections such as glitches can lead to easily ex-
ploitable leakage, e.g. in the case of hardware implementations [20, 21]. On the
other hand, and more systematically, higher-order attacks that combine the leak-
age of multiple shares can be applied [23]. Non-profiled higher-order attacks using
Pearson’s correlation coefficient are discussed in [30] and their profiled counter-
part using templates proved their effectiveness in [28]. A careful information
theoretic and security analysis of higher-order Boolean masking can be found in
[38]. In view of these results, an important issue for circuit designers is to develop
efficient higher-order masking schemes. Schramm and Paar proposed one in [35],
purposed for software implementations, but it was subsequently shown to be se-
cure only for d = 2 [8]. Solutions based on Look Up Tables (LUT) are described
in [29], but they are hardly practical (for performance reasons) for any d > 2.
More recently, a provably secure and reasonably efficient higher-order masking of
the AES was proposed at CHES 2010 [34], which can be viewed as an adaptation
of Ishai et al.’s private circuits. Note that this state-of-the-art is not exhaustive
and many other variations of masking have been proposed, bringing different
tradeoffs between efficiency and security, e.g. [1, 16, 26, 27, 33].

In this paper, inspired by two recent works published at FOCS 2010 [4, 10],
we propose a new type of masking scheme, extending the power of precomputed
LUT. We show that it is possible to obtain security against side-channel attacks
of all orders, if some secure refreshing of the tables can be performed prior to
the encryption of the data. More specifically, we first show that the combination
of an input and mask can be secure against attacks of all orders in this case.
Then, we show that the use of Randomized Look Up Tables (RLUT) allows us
to extend this security guarantee to the implementation of any S-box. Finally,
we show that it is possible to design a substitution-permutation network relying
on these principles. Intuitively, these results are possible because in a RLUT
design, one of the shares is only manipulated during the secure precomputation,
and not during the encryption process. The key advantages of this approach are:

1. Contrary to all previous masking schemes, our proposal leads to secure imple-
mentations, even if implemented as a stand-alone solution. In particular, it
does not require to be combined with physical noise and the leakage function
can leak the full intermediate values during a cryptographic computation.

2. The only randomness to generate online (i.e. after the plaintext has been
chosen) is a single n-bit mask, where n is the block cipher bit size.

3. After precomputation is performed, the execution time of an encryption is
only moderately increased and similar to the one of first-order masking.

Quite naturally, our proposal also comes with two main drawbacks:
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1. The use of randomized tables implies a high memory cost, which strongly
depends on the block cipher size, and structure. For a number of modern
ciphers (and in particular, the AES Rijndael), it leads to unrealistic over-
heads. On the positive side, we show that it is possible to design ciphers for
which these overheads can be realistic for certain embedded devices.

2. The strong security argument that we prove relies on the strong assumption
that secure precomputations are performed in order to refresh random ta-
bles. However, we note that this requirement is not completely unrealistic,
and could typically correspond to a practical setting where a smart card is
operated in a safe environment between different transactions.

Interestingly, our proposed masking scheme is reminiscent of different recent
ideas in the area of secure implementations. First, it has remarkable similarities
with the One Time Programs (OTP) presented at Crypto 2008 [14], of which
a practical implementation has been analyzed at CHES 2010 [18]. As OTP,
RLUT exploit a significant precomputation power: randomized tables can in
fact be seen as analogous to a masked program, for which one only focuses on
preventing side-channel attacks (while the goal of OTP is more general). For this
purpose, we consider a practical scenario of challenge-response protocol, where
the inputs are provided by an untrusted environment, allowing their masking to
be performed online by the leaking device. By contrast, the implementation of
[18] assumed securely masked inputs. In addition, we argue that, besides security
proofs that require to precompute tables in a perfectly secure environment, the
refreshing of RLUT masking is also inherently easy to protect with heuristic
countermeasures like shuffling [16]. This allows a large range of tradeoffs, between
the formal security guarantee offered by a completely secure precomputation,
and different levels of practical security, if the refreshing of the randomized
tables is partially leaking. In this respect, we remark that exploiting a partially
leaky precomputation would anyway require sophisticated techniques, similar
to Side-Channel Analysis for Reverse Engineering (SCARE) [9, 31], that are an
interesting scope for further research. Second, the proposal in this paper shares
some design principles with white box cryptography, and its intensive use of
precomputed tables [40]. Examples of white box DES and AES designs can be
found in [6, 7]. Attacks against these white box designs can be found in [2, 13].
Note that these attacks against white-box designs do not imply side-channel
key-recovery, because of the relaxed adversarial power we consider. Essentially,
a RLUT implementation corresponds to a partially white box design, where
all intermediate computations can be leaked to the adversary, but where some
memory needs to remain secret. Third, RLUT masking can be seen as a variation
of the threshold implementations proposed by Nikova et al. [24, 25]. As in these
papers, we require three shares in our protected implementations, in order to
ensure independence between secret keys and physical leakages.

Summarizing, masking with randomized look up tables is an appealing con-
nection between practical countermeasures against side-channel attacks and re-
cent solutions designed to prevent physical leakages with the techniques of mod-
ern cryptography. By combining parts of the advantages of both worlds, our
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analysis leads to clear security arguments with majorly simplified proofs. Admit-
tedly, in terms of performances, it is not straightforwardly applicable to standard
algorithms and devices. But our results open the way towards new design prin-
ciples for low cost block ciphers, in which the complete countermeasure could be
implemented for certain sensitive applications requiring high security levels.

1 Masking keyed permutations

Most present block ciphers combine small keyed permutations pk : {0, 1}n ×
{0, 1}n → {0, 1}n. A usual way to implement such keyed permutations is to use
a non-linear S-box s, and to define pk(x) = s(x⊕ k). In this section, we start by
re-calling classical masking schemes to protect an S-box implementation.

The idea of masking, intuitively pictured in Figure 1, is to generate a (secret)
random mask m on chip and to combine it with an input x, using a mask function
g. Then, during the execution of the (e.g. S-box) computations, only the masked
values and masks are explicitly manipulated by the device. For this purpose, a
correction function c needs to be implemented, so that at the end of the compu-
tations, it is possible to remove the mask and output the correct ciphertext. For

Fig. 1. Masking keyed permutations.

example, in case of the keyed permutation in Figure 1, the correction function is
defined such that for all (x,m) ∈ {0, 1}2n, the following condition is respected:

pk(g(x,m)) = g(pk(x), c(g(x,m),m)).

We denote functions with sans serif fonts, random variables with capital letters
and sample values with small caps. For simplicity, we also denote the output
mask of an S-box as q = c(g(x,m),m). Following this description, three main
types of masking schemes have been proposed in the literature:

1. Boolean masking [5, 12], in which: g(x,m) = x⊕m,
2. multiplicative masking [15], in which:: g(x,m) = x ·m,
3. affine masking [39, 11], in which: ga(x,m) = a · x⊕m,

where ⊕ and · denote the addition and multiplication in the field GF (2n).
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2 Second-order side-channel attacks

It is easy to see that masking improves security against side-channel attacks. For
example, in Boolean masking, the distribution of the random variable x ⊕M ,
where x is fixed and M is uniformly distributed, is independent of x. This means
that if no information is leaked about M , nothing can be learned about x. It is
similarly easy to see that higher-order attacks that target the joint distribution
(x⊕M,M) overcome this limitation, since this distribution is not uniform over
{0, 1}2n and depends on x. In order to quantify how much masking reduces the
leakage, we perform the information theoretic evaluation proposed in [37]. For
this purpose, let us assume that some information is leaked about both g(x,m)
and m in Figure 1. As a case study, we can consider the frequently assumed
Hamming weight leakage, which gives rise to the variables L1 and L2 defined as:

L1 = WH(g(x,m)) +N,

L2 = WH(m) +N,

where WH is the Hamming weight function and N is a normally distributed
random variable, with mean 0 and standard deviation σn, representing the mea-
surement noise. In this context, it is possible to evaluate the mutual information:

I(X;L1, L2) = −
∑

x

Pr[x]
∫
l1

∫
l2

Pr[l1, l2|x] log2 Pr[x|l1, l2] dl1dl2.

The results of this information theoretic analysis for a 4-bit S-box are in Figure
2. Note that for affine masking, a third-order attack exploiting the leakage of a
could also be applied. It leads to the following observations. First, multiplicative
masking has a significantly higher information leakage, due to the “zero prob-
lem” detailed in [15]. Second, when noise increases, the slope of the information
curves becomes identical for Boolean and affine masking. This confirms previ-
ous analyzes in [34, 38], where it is shown that this slope essentially depends
on smallest order of a successful attack. The offset between both curves also
exhibits the better mix of leakage distributions that affine masking provides.

Note that this information theoretic analysis evaluates the leakage I(X;L1, L2).
But analyzing the S-box output leakage I(pk(X);L3, L4) would give rise to ex-
actly the same curves as in Figure 2. And assuming known plaintexts and a
secret key k, it can also be turned into key leakage I(K;X,L3, L4).

3 Randomized Look Up Tables

The previous higher-order attacks essentially take advantage of the fact that
all the shares in a masking scheme are manipulated by a leaking device when
computing, e.g. an S-box. Hence, by combining the leakage corresponding to
these shares, one can recover secret information. In this section, we show that
the use of carefully precomputed tables can significantly improve this situation.
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Fig. 2. Information theoretic evaluation of masking schemes.

As a starting point, just observe that any Boolean function of n1 bits to
n2 bits can be implemented as a (2n1 × n2)-bit table. Let us then consider a
(Boolean-inspired) masking scheme in which ga(x,m) = x⊕m⊕a. As in the case
of multiplicative masking in the previous section, we assume that the parameter
a is secret, with no information leakage. This can be simply implemented with
a (22n × n)-bit table. If a fresh new table (corresponding to a fresh random a)
is precomputed in a leakage-free environment, prior to any S-box computation,
a side-channel adversary would only be able to observe leakage of the form
(x⊕M ⊕A,M). The use of such randomized tables has two main advantages:

1. No higher-order attack can be applied, because one of the shares will never
be manipulated by the leaking device during the encryption process.

2. Most attacks exploiting parasitic effects in the hardware (e.g. glitches [20,
21]) are discarded, because only memory accesses are performed during the
encryption process (i.e. all leaky computations are precomputed).

3.1 Security model

Our security model is similar to the one introduced independently by Brakerski
et al. and Dodis et al. at FOCS 2010. As in these works, we consider that
some secure precomputation can be performed in a leakage-free environment.
But contrary to [18], this precomputation does not require the knowledge of the
input x. Once the precomputation task is finished, the actual computation can
then be launched in a leaking environment. As illustrated in Figure 3, for an S-
box execution, it only requires to perform three memory accesses, corresponding
to functions G1, R and C. In addition, our model for the leakage during this
evaluation phase is very general: any input/output of the tables that is accessed
during the S-box computation can be given to the adversary. In other words,
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there is no restriction on the amount of information leakage during the S-box
evaluation: even leakage functions L1, L2, L3, L4 that output the exact values of
the tables’ inputs and outputs should still give rise to a secure implementation.
On the other hand, memory cells that are not accessed during the execution
of the block cipher are assumed to be perfectly secure. Note finally that, as a
refreshing of the tables is performed prior to every S-box evaluation, the functions
G1, R, C and G2 appear as random ones to the adversary.

Fig. 3. Masking with Randomized LUT.

In practice, different alternatives are possible to refresh the tables. In the
rest of this paper, we mainly focus on a simple solution with minimum (but still
significant) randomness requirements. Namely, we refresh all random tables by
XORing a random mask at their output and then re-compute the correspond-
ing correction function. Intuitively, refreshing g1 and g2 is required to avoid
second-order leakages based on (L1, L2) or (L3, L4); having g1 independent of g2
is required to avoid fourth-order leakages taking advantage of the tables’ inputs
and outputs; and having a randomized permutation R is required to hide the
key. Our table refreshing and S-box evaluation are specified as follows1:

Algorithm 1 - Table refreshing.
- input: pk.

1. Pick a1
R←− {0, 1}n;

2. Pick a2
R←− {0, 1}n

3. Pick a3
R←− {0, 1}n;

4. Precompute g1(I, J) = I ⊕ J ⊕ a1;
5. Precompute r(I) = pk(I)⊕ a2;
6. Precompute g2(I, J) = I ⊕ J ⊕ a3;
7. Precompute c(I, J) = r(I)⊕ pk(I ⊕ J ⊕ a1)⊕ a3;
- output: g1, r, g2, c.

Note that g2 is not used explicitly during the S-box evaluation but it is necessary
to keep it in memory for unmasking, after a secure computation is completed.

1 Other, more expensive, types of randomization techniques exist and could be con-
sidered (e.g. pick up random permutations for r and use latin squares for g).
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Algorithm 2 - S-box evaluation on input x.
- input: g1, r, c.

1. Pick m
R←− {0, 1}n;

2. Compute g1(x, m);
3. Compute r(g1(x, m));
4. Compute c(g1(x, m), m);
- output: r(g1(x, m)), c(g1(x, m), m)

3.2 Secure S-box computation

The security of the S-box evaluation in Figure 3 is formalized as follows:

Lemma 1. Let g1 : {0, 1}2n → {0, 1}n, r : {0, 1}n → {0, 1}n, c : {0, 1}2n →
{0, 1}n and g2 : {0, 1}2n → {0, 1}n be four random tables generated according
to Algorithm 1. Let g1(x,m), m, g2(pk(x), q) and q, with q = c(g1(x,m),m), be
the four intermediate computations produced during the execution of Algorithm
2. Then, we have that the following (4-dimensional) distribution:(

G1(x,M),M,G2(pk(x), Q), Q
)
,

taken over the randomized functions G1,G2,R, with uniformly distributed A1, A2, A3

and M in Algorithms 1 and 2, is independent of (X,K) and uniform over {0, 1}4n.

Proof. Let us suppose that K and X are fixed to k and x. Let us also define:

L1 := G1(x,M) = x⊕M ⊕A1,

L2 := M,

L3 := r(G1(x,M)) = pk(G1(x,M))⊕A2 = pk(L1)⊕A2,

L4 := L3 ⊕ pk(x)⊕A3.

Clearly, L2 is uniformly distributed. Since A1 is distributed uniformly and in-
dependently of M , L1 is distributed uniformly and independently of L2. Since
A2 is distributed uniformly and independently of M and A1, L3 is distributed
uniformly and independently of L1, L2. Since A3 is distributed uniformly and
independently of M , A1 and A2, L4 is distributed uniformly and independently
of L1, L2, L3. Therefore, for any key k and input x, the variable (L1, L2, L3, L4)
is uniform. In particular, it is independent of the variables K,X. ut

This lemma guarantees that even a complete leakage of the intermediate com-
putations during the execution of Algorithm 2 does not allow to recover any
information at all on the actual S-box input x and secret key k.

4 Towards leakage resilient block ciphers

The previous section showed that precomputation allows implementing an S-box
securely in the model of Section 3.1. Interestingly, it provides a very simple coun-
terpart to OTP for such an elementary computation. Hence, a natural question
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is to know whether this secure S-box computation can be extended towards a full
block cipher. In this section, we answer this question positively and provide a
proof of security for a quite generic substitution-permutation network. We start
with the following definition of an iterated block cipher, from [32]:

Definition 1. An iterated block cipher is an algorithm that transforms a plain-
text block of fixed size n into a ciphertext of identical size, under the influence
of a key k, by the repeated application of an invertible transformation ρ, called
the round transformation. Denoting the plaintext with x1 and the ciphertext with
xNr+1, the encryption operation can be written as:

xi+1 = ρki
(xi), i = 1, 2, . . . Nr,

where the different ki are the round keys generated by a key scheduling algorithm.

We then define a slightly more specific iterated block cipher with linear diffusion:

Definition 2. An [n,m,Nr] iterated block cipher with linear diffusion is an Nr-
round, n-bit iterated block cipher in which the round functions are defined as:

ρki
(xi) = d(pki

(xi)),

where d denotes a bijective transform that is linear over GF (2n), i.e. d(x⊕ y) =
d(x)⊕ d(y), and pki

(xi) consists in the parallel application of an m-bit S-box s:

pki
(xi) = s(xi1 ⊕ ki1)||s(xi2 ⊕ ki2)|| . . . ||s(xi n

m
⊕ ki n

m
),

with xij representing the jth m-bit block of the input vector xi. We additionally
assume that the block size n is a multiple of the S-box bit size m.

Note that Definition 2 is not a strong restriction as most present block ciphers
(e.g. the AES Rijndael) are iterated ones with linear diffusion. Note also that
such block ciphers are mainly determined by two parameters: the number of
rounds Nr and the number of S-boxes per round Ns = n

m . We now show that,
independently of the linear diffusion transform, it is possible to implement an
iterated block cipher with linear diffusion securely, in the model of Section 3.1.

Figure 4 illustrates a secure implementation of block cipher with Ns = 2
and Nr = 2. It is essentially a straightforward extension of the previous secure
S-box computations, in which each S-box is protected with an independent set of
precomputed tables r and c. The S-boxes in the first round are protected exactly
as in the previous section. The S-boxes in the second (and following) round(s)
are protected according to the slightly modified algorithms 3 and 4 in appendix.
The main difference is that the input mask and masking function in the second
round are not picked up randomly but provided by the first round.

Theorem 1. An iterated block cipher with linear diffusion in which the S-boxes
in the first round are implemented following Algorithm 2, with the secure precom-
putation in Algorithm 1, the S-boxes in the other rounds are implemented follow-
ing Algorithm 4, with the secure precomputation in Algorithm 3, and such that:
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Fig. 4. Leakage resilient Substitution-Permutation Network.
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– The masking function g is the same before and after any linear transform d,
– Given an output mask m after the S-box in round i (i.e. before the d trans-

form), the input mask in round i+ 1 is computed as m′ = d(m),

has all its intermediate values generated by computations in Algorithms 2 and 4
uniformly distributed and independent of the input x and round keys ki.

Proof. For simplicity, we prove Theorem 1 using the notations of Figure 4, in
the case where Ns = 2 and Nr = 2. The proof trivially extends to larger number
of S-boxes and rounds. For this purpose, let us suppose that the inputs x0j ’s and
round keys kij ’s in Figure 4 are fixed. We show that the leakage (La

01, ..., L
b
22) is

independent of these inputs and keys and uniformly distributed over {0, 1}12.

We first denote the LSB and MSB parts of the diffusion function output as
d(i||j) = dH(i)||dL(j). Using Lemma 1, we directly obtain that the leakage vec-
tors (La

01, L
b
01, L

a
11, L

b
11) and (La

02, L
b
02, L

a
12, L

b
12) are uniformly distributed. The

two distributions are also independent, as they are produced by independently
generated tables. Let us now denote the fresh masks used in the generation of
tables r21 and r22 with Algorithm 3 as a21,2 and a22,2. And let us denote the fresh
masks used in the generation of tables g21,3 and g22,3 with Algorithm 3 as a21,3

and a22,3. Then, for any particular value (`a01, `
b
01, `

a
02, `

b
02) of the initialization

leakage vector and (`a11, `
b
11, `

a
12, `

b
12) of the first round leakage vector, the leakage

vector in the second round can be written as follows:

La
21 := pk21

(dH(`a11, `
a
12))⊕A21,2,

Lb
21 := La

21 ⊕ pk21
(x11)⊕A21,3,

La
22 := pk22

(dL(`a11, `
a
12))⊕A22,2,

Lb
22 := La

22 ⊕ pk22
(x12)⊕A22,3.

Again, these variables are independent and uniformly distributed, since A21,2,
A21,3, A22,2 and A22,3 are independent and uniformly distributed. ut

This theorem guarantees that even a complete leakage of the intermediate com-
putations when executing Algorithms 2, 4 and the diffusion transform in Figure
4 does not allow to recover any information on the actual intermediate values
xij ’s and round keys kij ’s. Intuitively, this result derives from the fact that, due
to its linearity, the diffusion transform is applied independently to the masked
intermediate values and masks. As applying a known bijection d to a known
value does not reveal any additional information, it has no impact on our proof.

5 Performance analysis

5.1 Memory requirements

Let us consider a block cipher with linear diffusion to be protected with the
RLUT countermeasure. Let us also consider the previously introduced parame-
ters: n-bit block size, Nr rounds, m-bit S-boxes, Ns = n

m S-boxes per round. The
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implementation of this block cipher will essentially be made of two parts: a table
map and a masked program. Intuitively, the table map contains all the random-
ness that is necessary to refresh the tables in a protected implementation. And
the masked program only contains the tables that will actually be used during
encryption. As detailed in the previous sections, our security proof only holds if
these values are refreshed prior to the encryption of any new plaintext.

The table map is illustrated in Figure 5 for a 3-round cipher with 5 S-boxes
per round. Each item in the map represents an m-bit value to be kept in memory.
Circles represent the random m-bit values used to generate the g tables. Squares
represent the random m-bit values used to generate the r tables. And stars
represent the round keys. As the figure illustrates, the total memory required to
store such a table map corresponds to (Ns · Nr) · 3 + Ns strings of m bits. For
example, the memory cost of the table map for a realistic cipher with parameters
n = 96, m = 3, Nr = 32, Ns = 32 is 9,312 bits. And the same memory cost for a
larger cipher with parameters n = 128, m = 4, Nr = 32, Ns = 32 is 12,416 bits.

Next to the table map, the masked program only contains the r and c tables
used for encrypting a plaintext. Note that no g function will be explicitly used in
the inner round computations. And for the initial masking and final unmasking,
it is possible to use a XOR operation (rather than a g table), as the plaintext
and ciphertext are supposed to be given to the adversary. This means storing
Ns ·Nr tables of size 2m ·m for the r functions, and Ns ·Nr tables of size 22m ·m
for the c functions. For example, the memory cost of the masked program for a
realistic cipher with parameters n = 96, m = 3, Nr = 32, Ns = 32 is 221,184
bits. And the same memory cost for a larger cipher with parameters n = 128,
m = 4, Nr = 32, Ns = 32 is 1,114,112 bits. Clearly, the storage of the c tables
is the most memory-consuming, because it has doubled-sized inputs.

Fig. 5. Masked tables map: circles represent the random m-bit values used to generate
the g tables, squares represent the random m-bit values used to generate the r tables,
stars represent round keys. Dark grey items require fresh randomness before encryption.
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5.2 Time complexity

Next to the memory requirements of a RLUT implementation, another impor-
tant parameter is the time complexity when refreshing it. First, the refreshing
of the table map requires two random strings per S-box and per round. This
implies a total of (Ns ·Nr) · 2 +Ns random number generations and memory ac-
cesses in order to overwrite previous data. Second, the refreshing of the masked
program requires to update the r and c tables. This task can be done in 2m

and 22m bitwise XOR operations per S-box, respectively. Roughly speaking, this
suggests that the complete refreshing of a RLUT implementation can be done
in approximately ((Ns · Nr) · 2 + Ns) + (Ns · Nr) · 2m + (Ns · Nr) · 22m ele-
mentary operations. Taking the previous exemplary ciphers with 3-bit and 4-bit
S-boxes, it means 75,808 and 280,608 elementary operations, respectively. Quite
naturally, the exact number of clock cycles required to perform these operations
highly depends on the available hardware. Interestingly, these refreshing tasks
are inherently parallelizable, which can be an advantage in certain devices.

5.3 On-chip randomization with shuffling

As discussed in the previous section, our proofs only hold if the refreshing of
Algorithms 1 and 3 can be performed in a safe environment. However, from a
practical point of view, it is interesting to observe that the RLUT countermeasure
also has convenient features to remain practically secure, even if its refreshing
is partially leaky. For example, this refreshing can be easily combined with the
shuffling countermeasure described in [16]. If we denote the number of m-bit
memory cells in a table map asNc, the use of a random pointer p R←− [1;Nc] allows
to refresh the table in a randomized way2. The practical security of the refreshing
could also be improved by replacing the randomized table r(I) = pk(I) ⊕ a,
with a

R←− {0, 1}m, by a random permutation r
R←− P: this would considerably

increase the workload of a guessing strategy in side-channel attack. In general,
targeting the (partially leaking) refreshing of a block cipher implementation
protected with RLUT masking would require to combine higher-order attacks
with techniques similar to SCARE [9, 31]. We leave the precise evaluation of this
advanced scenario as an interesting scope for further research.

In the same lines, we note that in practical implementations where also the
block cipher execution is partially leaking (while our proofs tolerate a full leak-
age of the intermediate values), it could be possible to refresh only parts of an
implementation. As most practical attacks preferably exploit the leakage in the
first or last rounds of a block cipher, this is a very convenient feature in order
to trade security for performance. One could also trade time for memory, by
re-computing some tables in the masked program “on-the-fly”, rather than stor-
ing them all. Summarizing, there exists a wide range of adaptations of RLUT
masking that could provide different levels of practical security.
2 In practical implementations, the generation of these random strings, as well as those

in a table map, could be performed with a low cost pseudorandom number generator.
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5.4 Comparison with other approaches

We first mention that comparisons with other countermeasures against side-
channel attacks are difficult, as the present proposal is not efficiently applicable
to all ciphers. For example, plugging 8-bit S-boxes such as the ones of the AES
Rijndael into the performance formulas of the previous section would lead to
unrealistic memory requirements. On the other hand, low cost block ciphers are
a very active research area and designs based on 4-bit S-boxes, such as PRESENT
[3], or even 3-bit S-boxes, such as SEA [36], have been proposed in the literature.
So the implementation of RLUT masking is possible for existing ciphers.

Besides, and as already mentioned in the introduction, our proposal has
strong connections with the OTP implementation described in [18]. We similarly
build masked programs, with two main differences. First, we consider random
tables rather than random gates. This makes the execution of a block cipher
protected with the RLUT countermeasure (which only requires Ns · Nr table
lookups and Nr applications of the d transform) much faster than a OTP. But
it implies larger memory requirements, as the cost of masking a m×m-bit table
grows with 22m ·m. Second, we take advantage of the specificities of modern block
ciphers, e.g. the linearity of their diffusion transform, that makes their protection
easier. As a side-result, we also obtain very simple security arguments and proofs.

The RLUT masking also shares objectives with the higher-order masking
scheme of Rivain and Prouff at CHES 2010. Their work describes protected AES
implementations for masking of orders d = 1, 2, 3. It is an interesting counterpart
to our proposal as it implies different types of overheads. [34] only increases the
code size moderately. Its main drawback is the execution time. For d = 3, it
multiplies the one of an unprotected implementation in an 8-bit smart card by
more than 100. By contrast, RLUT masking requires a large memory and allows
fast online encryption. The main difference between these approaches is their
security model: RLUT directly tackle attacks of all orders, while the higher-order
masking scheme in [34] uses the order d as a security parameter, which allows
to adapt the security level and performances depending on the applications.

Conclusion & open problems

Inspired by previous models and designs in the area of physically observable
cryptography, we proposed a new type of masking scheme, based on the use of
randomized look up tables. It illustrates that relatively simple principles can lead
to strong security guarantees. Admittedly, our solution is not directly applicable
to standard algorithms such as the AES Rijndael. But it highlights that the
structure of a block cipher has a strong impact on the possibilities to protect its
implementations against side-channel attacks. Hence, one important consequence
of these results is the statement of clear design principles for leakage-resilient
block ciphers. Namely, our analysis gives a strong motivation for designing low
cost block ciphers, with small (e.g. 3-bit, 4-bit) S-boxes, and powerful linear
transforms, achieving complete diffusion in a small number of rounds.
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A Modified Algorithms 1 & 2

Algorithm 3 - Table refreshing.
- input: pk, a1.

1. Pick a2
R←− {0, 1}n

2. Pick a3
R←− {0, 1}n;

3. Precompute r(I) = pk(I)⊕ a2;
4. Precompute g2(I, J) = I ⊕ J ⊕ a3;
5. Precompute c(I, J) = r(I)⊕ pk(I ⊕ J ⊕ a1)⊕ a3;
- output: r, g2, c.

Algorithm 4 - S-box evaluation on masked input g1(x,m) and mask m.
- input: r, c.
1. Compute r(g1(x, m));
2. Compute c(g1(x, m), m);
- output: r(g1(x, m)), c(g1(x, m), m)

Note that g1, g2 are not used explicitly during the S-box evaluation but must be
kept in memory for unmasking, after a secure computation is completed.
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