
Fresh Re-Keying II: Securing Multiple Parties
against Side-Channel and Fault Attacks

Marcel Medwed, Christoph Petit, Francesco Regazzoni, Mathieu Renauld,
François-Xavier Standaert

UCL Crypto Group, Université catholique de Louvain.
Place du Levant 3, B-1348, Louvain-la-Neuve, Belgium.

Abstract. Security-aware embedded systems are widespread nowadays
and many applications, such as payment, pay-TV and automotive appli-
cations rely on them. These devices are usually very resource constrained
but at the same time likely to operate in a hostile environment. Thus,
the implementation of low-cost protection mechanisms against physi-
cal attacks is vital for their market relevance. An appealing choice, to
counteract a large family of physical attacks with one mechanism, seem
to be protocol-level countermeasures. At last year’s Africacrypt, a fresh
re-keying scheme has been presented which combines the advantages of
re-keying with those of classical countermeasures such as masking and
hiding. The contribution of this paper is threefold: most importantly, the
original fresh re-keying scheme was limited to one low-cost party (e.g.
an RFID tag) in a two party communication scenario. In this paper we
extend the scheme to n low-cost parties and show that the scheme is
still secure. Second, one unanswered question in the original paper was
the susceptibility of the scheme to algebraic SPA attacks. Therefore, we
analyze this property of the scheme. Finally, we implemented the scheme
on a common 8-bit microcontroller to show its efficiency in software.

Keywords: Side-channel attacks, Fault attacks, Re-keying, Masking,
Shuffling

1 Introduction

Ensuring security against physical (e.g. side-channel and fault) attacks is an
increasingly important challenge for cryptographic embedded devices. It is spe-
cially critical in applications requiring low-cost implementations. Indeed, most
solutions that have been introduced in the literature to prevent physical attacks
imply significant performance penalties, that may be too high for certain applica-
tions. For example, improving security against side-channel attacks is frequently
obtained by applying masking [4,10] or hiding [28,29] to the implementations.
Additionally, preventing fault attacks requires to include fault detection mecha-
nisms in the circuits [2,12]. In both cases, implementing these countermeasures
implies significant area or time overheads. Unfortunately, low-cost devices such
as smart cards, RFID tags or sensor nodes are also the ones for which the threat
of a physical attack is the most realistic, when operated in hostile environments.

Since directly protecting cryptographic algorithms, such as the AES Rijn-
dael, against side-channel and fault attacks is difficult, an alternative approach
is to design encryption mechanisms that can be more easily protected in this
case. One important line of research, denoted as leakage-resilient cryptography,
aims at combining such new designs with a proof of security, using the formalism
of modern cryptography. For example, this approach has been applied to new
stream cipher constructions [6,21,31]. But as discussed in [26,27], present proof
techniques have limited practical relevance, as they need to rely on assumptions
that may be difficult to fulfill by hardware designers. More important for our
present focus, these schemes are also quite inefficient, as their initialization im-
plies the execution of a pseudorandom function [5,27], which typically requires
the execution of n AES encryptions, with n the bit size of the initialization vec-
tor. A more practically-oriented line of research has been trying to embed the
block cipher in some protocol that makes it easier to protect. An example of such
an approach is the application of “all-or-nothing” transforms [17]. Here, the idea
is to modify the plaintexts and ciphertexts according to a (low-cost) mapping,
therefore preventing attacks based on known plaintexts/ciphertexts. Whereas
the scheme is efficient for long messages, the initialization effort might render
it impractical for smartcard and RFID applications. More recently, a fresh re-
keying scheme was presented at Africacrypt 2010 [19]. It combines the re-keying
used in leakage-resilient cryptography with easy to protect low-cost mappings in
order to remove the initialization overhead.

k

k∗

r

gk(r)

fk∗(m) cm

Fig. 1. Original (one party) fresh re-keying scheme.

The basic principle of this fresh re-keying scheme, that we further investigate
in this paper, is pictured in Figure 1. It essentially encrypts every message block
m under a fresh session key k∗, with a block cipher. The session key is generated
from the master key k and a public random nonce r, with a function g. At first
sight, it may seem that one just shifts the problem of protecting the block cipher
f against physical attacks to the one of protecting the function g. Interestingly,
it is argued in [19] that a proper selection of g may lead this scheme to be signif-
icantly easier to protect against such attacks than the underlying block cipher

2

f . Namely, g does not need to be cryptographically strong. It should only ensure
a strong diffusion between the master key k and the session keys k∗, while being
easy to protect against Differential Power Analysis (DPA). Assuming that these
conditions are respected, the only additional requirement for the global scheme
of Figure 1 to be secure against side-channel attacks is that the block cipher f
resists against SPA (i.e. side-channel attacks exploiting a single measurement) -
an easier task than preventing DPA. In addition, the re-keying mechanism natu-
rally prevents Differential Fault Analysis (DFA) and was shown to have limited
hardware cost. Following these interesting features, the present paper aims at
extending this analysis in three main directions:

1. In view of the difficulty to design leakage-resilient pseudorandom permu-
tations [5], the claim that a simple fresh re-keying scheme could be secure
against a wide class of side-channel and fault attacks appears quite provoca-
tive. In this respect, one important problem that was left open in the previous
work of Africacrypt is to evaluate if the cryptographically weak function g
could not be the target of advanced side-channel attacks (such as [20,23]),
taking advantage of its simple algebraic expression. We evaluate this concern
and suggest that it can be efficiently prevented by shuffling the implemen-
tation [11] (which is anyway required to prevent SPA).

2. The original Africacrypt scheme was limited to the protection of one party
in a communication protocol. This is because in Figure 1, it is crucial that
the random nonce r is chosen inside the protected device and cannot be ma-
nipulated from outside. For example, keeping r constant would completely
break the re-keying. While there exist many practical scenarios in which such
an asymmetric type of security is realistic (e.g. RFID readers can be pro-
tected with expensive means, only tags have strong cost constraints), there
also exist many where protecting multiple parties is necessary. For instance,
trends can be observed in which also constrained devices become readers,
e.g. mobile phones in NFC applications [22]. Furhtermore, automotive ap-
plications, where many low-cost devices need to communicate securely [13],
provide a strong motivation for developing such tools. As a result, we ex-
tend the re-keying scheme to multiple parties. In particular, this allows all
involved parties to derive a common session key in a side-channel protected
manner1. We show that the security of the new proposal is similar to the one
of the single-party case, while its performances only decrease linearly with
the number of parties.

1 This context can be seen as reminiscent of group key distribution. However, our
objectives are different in the sense that group key distribution typically aims at
ensuring cryptographic properties such as forward security, whereas our fresh re-
keying scheme “only” aims at preventing successful side-channel attacks against
the master key. It is an interesting open question to investigate whether one could
combine strong physical security guarantees and, e.g. forward secrecy. We note that
it would be surprising, as the relatively simple (linear) nature of the g function is
central in making it easy to protect against side-channel attacks.

3

3. Finally, since the use of dedicated solutions for protecting block cipher im-
plementations is mainly justified by strong cost constraints, we evaluate the
performances of our proposal in an AVR microcontroller. Our implemen-
tations consider different levels of masking and shuffling. We confirm their
low-cost nature by comparing them with the masked AES Rijndael software
implementation proposed at CHES 2010 [24]. These results nicely comple-
ment the ones in [19], where hardware implementations were considered.

2 Background: the Africacrypt 2010 scheme

The original scheme, as depicted in Figure 1, describes a physically secure en-
cryption which is for instance carried out inside an RFID tag. It consists of the
re-keying function g and a cryptographically secure encryption function f . At
every invocation of the scheme, g uses a symmetric master key k and a fresh
random nonce r to obtain a session key k∗ = gk(r). The random nonce r is
generated inside the device but is made public afterwards. The session key is
then used by f to perform an encryption. Thus, the ciphertext c is obtained as
c = fk∗(m). The function f is instantiated with a standardized algorithm, in our
examples we use the AES Rijndael. For such algorithms, it is also well known
how to protect them against SPA attacks (e.g. by shuffling [7,11]). Thus, the
main concern is a careful choice of g. In [19], g was chosen as:

g :
(
GF(28)[y]/(y16 + 1)

)∗ × (GF(28)[y]/(y16 + 1)
)
→ GF(28)[y]/(y16 + 1)

: (k, r)→ k · r.

That is, g takes two 128-bit operands, represented by polynomials in y of de-
gree 15 and coefficients in GF(28), and performs a polynomial multiplication to
obtain the session key. The key k is constrained to the invertible elements of
GF(28)[y]/(y16 +1); otherwise any master key k that is a divisor of 0 would only
lead to session keys that are also divisors of 0. As shown in the original paper,
this choice of g has some very advantageous properties. Most important, it pro-
vides sufficient diffusion such that “divide-and-conquer” attacks on the master
key become computationally infeasible. Second, the function has homomorphic
properties which allows sound protection against higher-order differential at-
tacks [4]. In particular, the key can be split into t+ 1 shares:(

k1 = b1, k2 = b2, · · · , kt = bt, kt+1 = k ⊕
t⊕
i=1

bi

)
,

in order to obtain the session key as:

k∗ =

t+1⊕
i=1

r · ki.

4

Such a masking thwarts tth-order attacks2. Third, as the arithmetic in the pro-
posed algebra is carry-free, shuffling can be efficiently applied to thwart SPA
attacks. Finally, the function can also benefit from hardware countermeasures
(such as secure logic styles) at low-costs thanks to its regular structure.

3 Security of g against algebraic SPA

In this section, we analyze the security of the original fresh re-keying scheme
from [19] against side-channel attacks that exploit the algebraic structure of
the target algorithm. We first show that, if no attention is paid, block ciphers
protected by a re-keying scheme can still be vulnerable to algebraic side-channel
attacks, due to the simple algebraic structure of the re-keying function g. Next,
we suggest that a shuffling of the operations would prevent this kind of attacks
(as it prevents most algebraic side-channel attacks, in fact).

In the rest of the paper, we will assume that the encryption function f is
the AES Rijndael, and that the side-channel attacks are performed in a known
plaintext context. In this setting, the re-keying function g can be written as a
system of linear equations over GF(28)[y]/(y16 + 1). Let us call k the vector
containing the 16 bytes k.,j (0 ≤ j ≤ 15) of the master key k, and k∗

i (resp. ri)
the vector containing the 16 bytes k∗i,j (resp. ri,j) of the ith session key generated
from the same master key (resp. nonce used). The bytes of the nonces are known,
the bytes of the master and session keys are unknown. Hence, the system of
equations linking a session key k∗i to the master key k and the nonce ri is:

Ri.k = k∗
i (1)

ri,0 ri,15 ri,14 · · · ri,1
ri,1 ri,0 ri,15 · · · ri,2
ri,2 ri,1 ri,0 · · · ri,3

...
...

...
. . .

...
ri,15 ri,14 ri,13 · · · ri,0

 .

k.,0
k.,1
k.,2

...
k.,15

 =

k∗i,0
k∗i,1
k∗i,2

...
k∗i,15

 . (2)

This system can be represented using a block matrix:

[
Ri | I

]
.

[
k
k∗
i

]
=
[
0
]
, (3)

with I the identity matrix. It is an homogeneous system of 16 linear equations
in 32 unknown variables (the bytes of k and k∗

i). For each additional session key
produced from the same master key, we can add 16 new equations in 16 new

2 In the original scheme, the nonce is shared rather than the key. However, this leads
to a first-order leakage if a master key byte is zero, similar as observed in [9].

5

variables (the bytes of k∗
i+1) to the system:

R1 I 0 · · · 0
R2 0 I · · · 0
...

...
...

. . .
...

Rn 0 0 · · · I

 .

k
k∗
1

k∗
2
...

k∗
n

 =
[
0
]
. (4)

As such, this system is underdefined. We need at least 16 bytes of information
about the session keys k∗

i in order to identify the value of the master key k3. The
easiest way to solve this system is thus to find 16 additional linear equations,
involving one or more bytes of k∗

i . For this purpose, a straightforward approach
is to use side-channel leakage in order to learn session key bytes. Usually, side-
channel leakages do not provide the exact data processed by a device, but some
information about it. For example, one could assume that three leakage points are
obtained, for each session key byte, as illustrated in Figure 2. They correspond to
(1) the output byte of the fresh re-keying multiplication itself (k∗i,j), (2) the XOR
operation between this byte and a known plaintext byte (Pi,j⊕k∗i,j), and (3) the
output of the AES S-box (S(Pi,j ⊕ k∗i,j)). By combining these three Hamming
weight values, it is possible to identify a unique valid value for the session key byte
in approximately 16% of the cases. As a result, only 11 encryptions are required
to get 16 session key bytes with probability higher than 0.99. Naturally, these
simple estimations assume that the Hamming weights are perfectly recovered,
while actual attacks may be affected by noise. Nevertheless, they show that
algebraic attacks must be considered in the analysis of fresh re-keying schemes.

⊕ SPi,j

k∗
i,j

S(Pi,j ⊕ k∗
i,j)

: WH leakages

Fig. 2. Three interesting leakage points in the first AES round.

Another possibility is to use Side-Channel Collision Attacks (proposed against
the DES in [25], and enhanced in [14]). For example, in [3], the author introduces
the notion of generalized internal collisions for the AES. A generalized internal
collision occurs when two AES S-boxes are evaluated on the same input. These
two S-boxes can be located in the same round, in two different rounds or even
in two different encryptions. If all the AES S-boxes are implemented in a similar
way, the computation of the same value should give rise to similar power con-
sumption traces, making the collision detection possible. If a collision is detected

3 ignoring the fact that the entropy of k is slightly less than 16 bytes.

6

between two S-boxes of the first AES round, we translate this information into:

Pi1,j1 ⊕ k∗i1,j1 = Pi2,j2 ⊕ k∗i2,j2 ⇔ k∗i1,j1 = Pi1,j1 ⊕ Pi2,j2 ⊕ k∗i2,j2 ,

Hence, 16 collisions would be sufficient to solve the system of Equation (4).
The average number of collisions for ne encryptions can be computed using
the birthday paradox (see [1]): E(N(ne)) = 16ne − 256 + 256(1 − 1/256)16ne .
Simulations show that less than 10 encryptions are sufficient to reach the 16
required collisions with high probability.

Summarizing, a straightforward implementation of the re-keying scheme is
susceptible to algebraic type of attacks. Importantly, this does not contradict the
security analysis in [19], as these attacks can be seen as SPA against the AES
function. However, they clearly exhibit the importance of explicit SPA resistance
of the block cipher used in the scheme. In a very similar way, fresh re-keying
implies executing the AES key scheduling algorithm, in which case Mangard’s
SPA attack is another possible threat [15] (or similarly [30]).

On the positive side, and as discussed in this previous work, SPA attacks
are relatively easy to counteract (compared to DPA). First, they are typically
applicable in software implementations with small (e.g. 8-bit) buses. Second, in
case small data buses are considered, they are efficiently prevented by shuffling
the operations [7,11]. In this respect, it is worth mentioning that, in order to
allow secure implementations, the interaction between the f and g functions
needs to remain shuffled (which will be ensured in the software implementations
of Section 5). Eventually, we also note that the AES Rijndael may not be the
most suitable block cipher for efficient shuffling, because of its non-regular and
sequential key scheduling algorithm.

4 Extending the Africacrypt scheme to n parties

In this section, we present two possible extensions in order to enable the use of
fresh re-keying amongst n parties. The first scheme is a straightforward extension
of the original scheme and uses n master keys. The second one allows the same
functionality but uses only one master key. We show that their security is similar
to the one of the original scheme. This will be done in two steps. First, we
demonstrate that the session keys are still uniformly distributed and cannot be
biased by an adversary controlling all but one of the nonces involved in the re-
keying. Second, we argue that the requirement for the diffusion between k and
k∗ which is the core of the security argument in [19] is still fulfilled.

4.1 Scheme 1: Using n master keys

The first solution to the extension problem consists in instantiating n original
fresh re-keying schemes with independent master keys. Every party possesses
all n master keys and serves as master (that is, it generates the nonce) for
one instance and as slave (that is, it receives the nonce from outside) for all

7

c mm

k∗ k∗

r
s

fk∗(m)

gk,ℓ(r, s) gk,ℓ(r, s)

f−1

k∗ (m)

Fig. 3. Basic extension to two parties using two master keys.

other n− 1 instances. The shared session key is derived as the sum of all the n
independent session keys, from the n instances. Like in the original scheme, the
master keys are constrained to the invertible elements of GF(28)[y]/(y16 + 1).
Figure 3 illustrates the principle for two master keys k and `. In a first step,
the parties generate and exchange the nonces r and s. Next, the session key is
computed as k∗ = k · r + ` · s.

4.2 Scheme 2: Using a single master key

The second scheme is similar to the first scheme, except that only one master key
k ∈

(
GF(28)[y]/(y16 + 1)

)∗
is shared amongst the parties. In particular, every

party is enumerated with a unique value i ∈ [1, n]. The session key is derived as:

k∗ =

n⊕
i=1

ri · ki,

where ri denotes the nonce generated by party i and ki denotes the ith power of
the master key. Note, that in this scheme, the order of k needs to be greater n. For
two parties the session key is derived as k∗ = k · r+k2 · s. As for the i values, we
assume that the parties are enumerated statically. Such an assumption already
covers many scenarios. In a tag-reader scenario, the roles can be assigned in the
specification. In car like scenarios, the devices are rarely replaced and thus can
be set up by the manufacturer or a certified garage. However, ad-hoc negotiation
of the i values would be interesting to cover arbitrary applications. We leave the
evaluation and selection of appropriate negotiation protocols for further research.

4.3 Security model

The challenge when designing an n-party fresh re-keying scheme lies in the fact
that each party is provided with n− 1 nonces from outside. Thus, an adversary
potentially has control over n− 1 out of n nonces. Compared to the single-party
case, there are two main properties that need to be verified. First, it should still
hold that the adversary controlling the external nonces is not able to significantly
bias the session key distributions (e.g. he should not be able to set them to

8

a constant value). Second, it should also hold that there is a strong diffusion
between the master key and the session keys (i.e. it should not be possible to
guess one byte of session key, excepted by guessing most of the master key).
In the following, we show that these conditions are respected in a model where
the adversary can eavesdrop the communications and modify the nonce values
received by each party. By contrast, he cannot access the master key and he
cannot change the nonce value that is generated internally by the target device.

4.4 Security of Scheme 1

Our analysis will be done in two steps. First, and for illustration, we will con-
sider an adversary trying to set the session key to a constant value. We show in
Lemma 1, that this is impossible without already possessing substantial infor-
mation about the master keys. In other words, in order to fix the session key, the
quotient of the two master keys has to be guessed correctly. This gives intuition
that biasing the session keys is a difficult problem. Next, we consider a more re-
alistic adversary who is just trying to bias the session key distribution. Lemma 2
shows that, whatever the distribution of the external nonces, the session key is
close to uniformly distributed given that the nonce generated within the target
device is uniformly distributed.

For simplicity, the following lemmata consider the two-party case. Proofs can
be extended easily to the general case. Let rj and sj be the nonce values gener-
ated during the jth execution of the re-keying, and let k∗j be the corresponding
session key. We prove the security of the party generating sj .

Lemma 1 If the adversary is able to keep k∗ constant, then he also knows `/k.
Reciprocally, if the adversary knows k/`, then he can keep k∗ constant.

Proof: Suppose:
k∗ := kr1 + `s1 = kr2 + `s2.

Then assuming s1 + s2 is an invertible element4, we get:

`/k = (r1 + r2)/(s1 + s2),

and the adversary can compute this value since he knows r1, r2, s1, s2. On the
other hand, if the adversary knows `/k, then he can choose:

r2 := r1 + (s1 + s2)`/k, (5)

in order to keep k∗ constant. �

4 The proof can be slightly adapted when y + 1 divides s1 + s2, either by considering
the quotient `/k instead, or by dividing both r1 +r2 and s1 +s2 by a common power
of y + 1. Alternatively since the nonces are randomly chosen and a large majority of
them produce an invertible s1 + s2, the adversary can simply wait until s1 + s2 is
invertible.

9

More generally, let us now define δ := (r1 +r2)/(s1 +s2). Since the adversary
knows r1, s1 and s2, choosing r2 is equivalent to choosing δ (from his point of
view). In the following lemma, we show that the distribution of k∗2 + k∗1 cannot
be biased by the adversary unless he has some information on the value δ+ `/k.

Lemma 2 Let the nonces be uniformly distributed and further let 0 ≤ e < 16 be
the maximal power of y+1 dividing `/k+ δ. Then the value k∗2 +k∗1 is uniformly
distributed in the set:

Ke := {(y + 1)ep(y)|deg(p) < 16− e, (y + 1) 6 |p},

given that the nonces si are uniformly distributed.

Proof: We have:

k∗2 = kr2 + `s2

= kr1 + `s1 + k(r2 + r1) + `(s2 + s1)

= k∗1 + k(`/k + δ)(s1 + s2),

hence:

k∗2 + k∗1 = (y + 1)ek
`/k + δ

(y + 1)e
(s2 + s1).

By definition, k `/k+δ(y+1)e is an invertible element of GF(28)[y]/(y16 + 1). As a con-

sequence, for any k∗12 ∈ Ke, we have:

k∗2 + k∗1 = k∗12 ⇔ s2 ∈
{
s1 + k∗12k

−1 (y + 1)e

`/k + δ
+ (y + 1)16−eq(y)|deg(q) < e

}
.

We see that each k12 value corresponds to 2e values for s2. Since s2 is chosen
randomly and cannot be controlled by the adversary, we obtain the result. �

Intuitively, Lemma 2 implies that the adversary cannot affect the distribution
of k∗2 + k∗1 without affecting the distribution of `/k. Since the adversary has a
priori no information at all about `/k, all he can do is to try random values for
δ and hope that he guessed `/k up to some large power of y + 1. This way, the
adversary has no way to decrease the entropy of k∗2 + k∗1 . Indeed, k∗2 + k∗1 only
belongs to Ke (that has size (28−1)28(15−e)) with a probability 2−8e−2−8(e+1).

4.5 Security of Scheme 2

Scheme 2 can be seen as a particular case of Scheme 1 where ` = k2:

k∗i = kri + k2si.

Since the adversary could target both parties, we consider two cases:

1. s is chosen randomly and then r is chosen by the adversary.

10

2. r is chosen randomly and then s is chosen by the adversary.

The arguments of Section 4.4 also apply to both cases. In the first case, we define
δ := (r1 + r2)/(s1 + s2) and obtain:

k∗2 + k∗1 = k(s1 + s2) (δ + k) .

Using an argument similar to the one in Lemma 2, we have that the adversary
cannot modify the distribution of k∗2 + k∗1 without modifying the distribution of
δ+ k, which requires knowing some information about k. In the second case, we
define δ := (s1 + s2)/(r1 + r2) and obtain:

k∗2 + k∗1 = k2(s1 + s2)
(
δ + k−1

)
.

Again by adapting Lemma 2, we see that the adversary cannot modify the dis-
tribution of k∗2 +k∗1 without modifying the distribution of δ+k−1, which requires
knowing some information about k.

4.6 Security against divide-and-conquer attacks

Most DPA attacks considered in the literature are based on a divide-and-conquer
approach. In [19], it is argued that fresh re-keying prevents the application of
such a strategy, because every bit of the session key is a sum of half of the master-
key bits on average. In addition, since DPA attacks usually require more than
one power trace to be successful, this subset changes for every encryption, as
long as the nonces are uniformly distributed. Thus, after only a few encryptions,
the union of those subsets almost covers the whole master key. In practice, this
means that an adversary needs to guess almost all 128 master key bits in order
to build 8-bit hypotheses for the session key. More generally, it was shown in [19]
that, whatever are the traces selected by the adversary (e.g. those obtained from
low Hamming weight nonces), it remains computationally intensive to guess one
byte of the session keys. We already showed in the previous section that the
control over the external nonces does not allow the adversary to efficiently bias
the session keys. As a result, the argument of security against divide-and-conquer
attacks for the single party case directly extends to the multi-party case. The
best adversarial strategy is to set all the nonces under control to zero and,
for the remaining (uncontrolled) nonce, to apply the strategy described in the
Africacrypt 2010 paper.

4.7 SCA security of the extended function g

Since the function g has a homomorphic property it can be easily shown that
there is no leakage of order smaller t + 1 with t as the masking order. Further-
more, as shown in the previous subsection, for the final session key, we can rely
on the diffusion property after unmasking. However, what has to be considered
separately is the unmasking of the different session key contributions. In par-
ticular, if an adversary chooses a nonce s in such a way that only one byte is

11

non-zero, every byte of the product involving s depends only on one master-key
byte. Thus, after unmasking the product, it is possible to directly build hypothe-
ses for a single master key byte. When implementing the full scheme, one would
process the uniform nonce first and then accumulate the shares of the biased
product to obtain the final session key. For example let x = r ∗ k and y = s ∗ `
and further let r be the uniformly distributed nonce and s be the biased nonce
with only one non-zero byte. Finally, let x be shared as x = x1 + x2 + x3. Then
after the first multiplication, the session-key register will hold the intermediate
values (1)x, (2)x+y1, (3)x+y1 +y2, and finally (4)x+y. This shows that inde-
pendently of the masking order, if we implement the scheme straightforwardly
there will always be a second-order leakage, namely the joint leakage of (1)x and
(4)x+y. Furthermore, these leakage samples are only shuffled over 16 positions.

In order to fix this flaw, the unmasking has to be done in an interleaved
manner. That is, first all shares with index one are accumulated, afterwards all
shares with index two and so on. For the above example, this means that the
session key register will hold the values (1)x1, (2)x1+y1, (3)x1+y1+x2, (4)x1+
y1+x2+y2, (5)x+y1+y2, and finally (6)x+y. In order to attack y an adversary
would need to for instance use the joint distribution of (6)x+ y, (1)x1, x2, and
x3, the dimension of which is greater than t.

5 Software implementation in an AVR microcontroller

In this section we will discuss an 8-bit software implementation of the fresh
re-keying scheme. As a target platform we chose the AVR microcontroller ar-
chitecture and in particular the model ATmega128. We target this architecture
since it is very common in constrained platforms such as smart cards, which are
the ones which will benefit most from our protection scheme.

The selected AVR microcontroller features an 8-bit datapath, 32 general
purpose registers and four kilobytes of SRAM. Furthermore, we can rely on four
kilobytes of EEPROM and 128 kilobytes of Flash program memory. Finally,
most of the instructions finish within a single clock cycle. Unfortunately, our
target platform does not feature a hardware random number generator (RNG).
Therefore, we state the performance of our implementation in two numbers.
First the number of clock cycles assuming that reading a random byte takes 2
clock cycles and second the explicit number of RNG calls needed throughout the
execution. This allows a cycle estimation for platforms which do provide such
an RNG.

5.1 Multiplication

The basic implementation of the function g relies on a product scan algorithm to
implement the polynomial multiplication. That is, every byte ci of the product
c = a∗b is calculated as ci =

∑15
j=0 a(i−j mod 16) ∗ bj . The GF(28) multiplication

is implemented using two lookup tables, a 256 byte large logarithm table (LOG)
and the corresponding inverse logarithm table (ILOG). In the logarithm table,

12

−∞ (LOG[0x00]) is encoded as 0xff. In order to get a conditional-branch free
multiplication, we rely on Algorithm 1.

Algorithm 1 Branch-free multiplication

Require: a’ ← LOG[a], b’ ← LOG[b] with a, b ∈ GF(28)
Ensure: pp = a ∗ b
1: pp← ILOG [a′ + b′]
2: zfa← ZF(a′ − 0xff) // ZF ... AVR’s zero flag
3: zfb← ZF(b′ − 0xff)
4: pp← pp · (1− (zfa OR zfb))
5: return pp

5.2 Shuffling of the fresh re-keying

The function g needs to be shuffled for two reasons. First, the noise introduced
by shuffling is vital for the impact of masking. Second, in order to prevent attacks
as described in Section 3, the position of the leakage samples within the power
trace needs to be uncertain. Since g relies on carry-free arithmetic, shuffling
can be done efficiently. In this section we describe the two different parts of the
polynomial multiplication where we apply shuffling and also discuss two different
shuffling techniques. Thus, we provide four different levels of shuffling.

The most important part of the algorithm to shuffle is the processing of
the product bytes itself, that is the order in which the ci bytes are computed.
This significantly reduces the information an SPA adversary can learn about the
product. In particular, it leaves such an adversary with a probability of 1/16
for gaining information about a specific byte. In addition, it is also possible to
shuffle the processing of the partial products corresponding to one product byte.
Also here, 16 positions can be shuffled, which results in a total randomization
of the partial products over 256 positions.

Internally, both parts of the algorithm are implemented as loops where each
iteration operates on independent data. Thus, the simplest way of shuffling is to
add an offset modulo 16 to the loop counter. For the bytes of the product, we just
start from cr and run through to c(r+15 mod 16), for a randomly chosen r. For
the partial products of one product byte, and a randomly chosen starting offset
s, this would mean ci =

∑15
j=0 a(i−(j+s mod 16) mod 16) ∗ b(j+s mod 16). From an

overhead point of view, shuffling using a random starting index is negligible.
As a second shuffling method, we indirectly address the product bytes and

the operand bytes. The bytes of the product are thus addressed by cri where r is
now a random permutation of the sequence 0, . . . , 15. For the partial products of
one product byte this would mean ci =

∑15
j=0 a(i−sj mod 16) ∗ bsj , for a random

permutation s. The generation of such a random permutation is significantly
more expensive than generating a random starting offset as in the first strategy.
In particular, we start with the sequence 0, . . . , 15 and sample n random bytes.
For every such random byte we take the four MSbs as position one and the four

13

LSbs as position two. Afterwards, we swap the entries at those positions. In gen-
eral, the generation of a permutation has a quadratic complexity, thus n = 162.
However, this results in 7 160 clock cycles just to generate one permutation of
which we need 17 in total. In order to allow a more flexible tradeoff, we also
introduce an intermediate solution which sets n to 162 for the first permuta-
tion and derives all consecutive ones from the first permutation by swapping 16
random pairs.

For the generation of noise, the two approaches yield similar results, however,
if the aim is to prevent SPA attacks, there is a significant difference. In general,
if all 16 product bytes need to be recovered within a single trace, the time
complexity is 16 for the random starting index and 16! for the full permutation.
Since the described SPA attack needs t > 1 traces, we can estimate the time
complexity of the attacks as 16t and 16!t respectively. Therefore, for small values
of t, a random starting index might not be sufficient to shuffle the product bytes.

5.3 Shuffling of the AES

The AES Rijndael algorithm features a 16 bytes state, thus shuffled implemen-
tations usually shuffle these 16 positions plus sometimes additional dummy op-
erations. However, when it comes to the key schedule, only four positions can be
shuffled. Therefore, one option in a standard implementation is to store all the
round keys in the device instead of computing them on the fly. Unfortunately, we
cannot rely on this strategy as we never reuse the same key. As a result we have
to introduce three additional key schedules which operate on random dummy
data. This allows us again to shuffle over 16 positions and thus achieve the same
security level as for the remainder of the algorithm. We implemented a version
of the AES which uses fully indirect addressing for all the operations. This al-
lows having complete control over the processed bytes, but negatively affects
the performance. In fact our implementation can complete a whole encryption,
including one permutation generation, in 30,713 clock cycles.

5.4 Performance results

Table 1 summarizes the different performance numbers for a single polynomial
multiplication when implemented using different levels of shuffling. RSI stands
for random starting index and RP-n for random permutation, the generation of
which used n swap operations. In addition we state the number of RNG calls. In
our implementation, those calls are included with a factor of two in the number
of clock cycles. It can be seen that the execution time of one multiplication
heavily depends on the way the shuffling is implemented. In order to prevent
SPA attacks and to add sufficient noise against DPA attacks we rely on the
third solution (RP-256 + RSI) for all further evaluations.

Implementing the masking is equivalent to performing t + 1 multiplications
for tth-order masking. The reason why first-order masking does not take twice as
long as the unmasked version is that we reuse the permutation for the product
bytes. We settled for this solution as it provides a good security vs. performance

14

Product bytes Partial products Clock Calls Code size RAM usage
shuffling shuffling cycles to RNG (bytes) (bytes)

- - 13,400 16 754 48
RSI RSI 15,032 33 760 48
RP-256 RSI 22,199 288 904 64
RP-256 RP-16 29,688 528 1008 80
RP-256 RP-256 137,208 4368 1008 80

Table 1. Implementation results for the polynomial multiplication for different
levels of shuffling: RSI = random starting index, RP-16 = random permuta-
tion generated with 16 swap operations, and RP-256 = random permutation
generated with 256 swap operations.

tradeoff. However, the scheme could be implemented using various other trade-
offs, which generally compare favorably with the straightforward protection of a
block cipher against side-channel attacks, as will be discussed next.

In order to finalize the two n-party schemes, we need to perform n masked
multiplications for Scheme 1 and 2n − 1 multiplications for Scheme 2, if the
powers of k are computed on the fly. If the powers of k are precomputed, the
execution times of the schemes are equivalent. As for the RAM usage, we need
n times the RAM, as the n multiplications need to be performed in parallel to
allow interleaving the shares (as discussed in Section 4.7). Only the 16 bytes for
the session key accumulation can be shared.

Finally, we compare the total performance of our scheme with the provable
secure AES implementation of CHES 2010 [24]. Their results have been recently
improved [8] but this paper states only figures for the masked S-box and not for
the entire cipher, therefore we still use the figures from the CHES publication. For
third-order masking, the implementation of Rivain and Prouff takes 470k clock
cycles. Compared to that, our implementation with third-order masking and
shuffling takes 125k+31k=156k clock cycles if either Scheme 1 is used or Scheme
2 with precomputed powers of k. This shows the experimental evidence that fresh
re-keying is also attractive in software. Especially, because the performance scales
linearly with the masking order. For a larger number of involved parties though,
it would be favorable to have a hardware polynomial multiplier as in [19].

6 Future Research and Conclusions

In this paper we analyzed and extended the fresh re-keying scheme as intro-
duced at Africacrypt 2010. In particular, we extended their research on three
lines. First, we analyzed the scheme’s susceptibility to algebraic SPA attacks.
We showed that on the one hand, if no precautions are taken, such attacks can
be easily applied. On the other hand, the assumptions for such attacks are also
non-trivial, thus they can be efficiently prevented by shuffling. Second, we ex-
tended the scheme to n parties and showed that the security of the two proposed

15

masking order single multiplication Scheme 1 Scheme 2

w/o masking 22,199 48,398 66,597
1st-order 35,559 71,118 106,677

2nd-order 48,919 97,838 146,757

3rd-order 62,279 124,558 186,837

Table 2. Implementation results for the different masking orders with randomly
permuted product bytes (RP-256) and random starting indices for the partial
products (RSI).

extensions is similar to the one of the original scheme. From a performance point
of view the extensions scale linearly in n and our second scheme does not even
need additional key material. Third, we implemented the scheme on an 8-bit
microcontoller architecture in order to show its efficiency in software. Thus, the
paper shows that the fresh re-keying scheme seems to be an appealing choice to
provide side-channel security for automotive applications. That is, applications
where many low-cost parties need to communicate in a secure way.

Eventually, while the security versus performance results of the fresh re-
keying are pretty strong, it is important to note that the analysis of the scheme
combines several components. Namely, the overall resistance against side-channel
attacks relies on the provable secure masking for the multiplications, the impos-
sibility of biasing the session key, the interleaved recombination of the session key
shares and finally, the SPA security of all components. While present evaluation
does not reveal obvious weaknesses, a more formal evaluation of the proposed so-
lution, allowing to precisely understand and argue about the interaction between
these components, would be a nice scope for further research. Besides, another
interesting open problem would be to study the use of a randomness extractor as
re-keying function. As recently discussed in [18], such extractors have interesting
properties for leakage resilience, when implemented in hardware. Since they are
central elements in proofs of leakage resilience such as [6], their use for improving
the formal analysis of fresh re-keying schemes could be investigated as well.

Acknowledgements

The work was partly funded by the 7th framework European project TAMPRES,
the Belgian Fund for Scientific Research (FNRS-F.R.S.) and the Walloon Region
projects S@T Skywin and SCEPTIC.

References

1. The Department of Computer Science at Duke University, Discrete Mathemat-
ics for Computer Science lecture, Chapter 18: Probability in hashing, available
online at http://www.cs.duke.edu/courses/cps102/spring09/Lectures/L-18.

pdf, 2009.

16

http://www.cs.duke.edu/courses/cps102/spring09/Lectures/L-18.pdf
http://www.cs.duke.edu/courses/cps102/spring09/Lectures/L-18.pdf

2. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. Error Analysis and
Detection Procedures for a Hardware Implementation of the Advanced Encryption
Standard. IEEE Trans. Computers, 52(4):492–505, 2003.

3. A. Bogdanov. Improved Side-Channel Collision Attacks on AES. In C. M. Adams,
A. Miri, and M. J. Wiener, editors, Selected Areas in Cryptography, volume 4876
of Lecture Notes in Computer Science, pages 84–95. Springer, 2007.

4. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards Sound Approaches to
Counteract Power-Analysis Attacks. In M. J. Wiener, editor, CRYPTO, volume
1666 of Lecture Notes in Computer Science, pages 398–412. Springer, 1999.

5. Y. Dodis and K. Pietrzak. Leakage-Resilient Pseudorandom Functions and Side-
Channel Attacks on Feistel Networks. In T. Rabin, editor, CRYPTO, volume 6223
of Lecture Notes in Computer Science, pages 21–40. Springer, 2010.

6. S. Dziembowski and K. Pietrzak. Leakage-Resilient Cryptography. In FOCS, pages
293–302. IEEE Computer Society, 2008.

7. M. Feldhofer and T. Popp. Power Analysis Resistant AES Implementation for
Passive RFID Tags. In C. Lackner, T. Ostermann, M. Sams, and R. Spilka, editors,
Proceedings of Austrochip 2008, October 8, 2008, Linz, Austria, pages 1–6, October
2008. ISBN 978-3-200-01330-8.

8. L. Genelle, E. Prouff, and M. Quisquater. Montgomery’s Trick and Fast Implemen-
tation of Masked AES. In A. Nitaj and D. Pointcheval, editors, AFRICACRYPT,
volume 6737 of Lecture Notes in Computer Science, pages 153–169. Springer, 2011.

9. J. D. Golic and C. Tymen. Multiplicative Masking and Power Analysis of AES. In
B. S. K. Jr., Çetin Kaya Koç, and C. Paar, editors, CHES, volume 2523 of Lecture
Notes in Computer Science, pages 198–212. Springer, 2002.

10. L. Goubin and J. Patarin. DES and Differential Power Analysis (The ”Duplication”
Method). In Çetin Kaya Koç and C. Paar, editors, CHES, volume 1717 of Lecture
Notes in Computer Science, pages 158–172. Springer, 1999.

11. C. Herbst, E. Oswald, and S. Mangard. An AES Smart Card Implementation
Resistant to Power Analysis Attacks. In J. Zhou, M. Yung, and F. Bao, editors,
ACNS, volume 3989 of Lecture Notes in Computer Science, pages 239–252, 2006.

12. R. Karri, K. Wu, P. Mishra, and Y. Kim. Concurrent error detection schemes for
fault-based side-channel cryptanalysis of symmetric block ciphers. IEEE Trans.
on CAD of Integrated Circuits and Systems, 21(12):1509–1517, 2002.

13. K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental Security Anal-
ysis of a Modern Automobile. In IEEE Symposium on Security and Privacy, pages
447–462. IEEE Computer Society, 2010.

14. H. Ledig, F. Muller, and F. Valette. Enhancing Collision Attacks. In M. Joye
and J.-J. Quisquater, editors, CHES, volume 3156 of Lecture Notes in Computer
Science, pages 176–190. Springer, 2004.

15. S. Mangard. A Simple Power-Analysis (SPA) Attackon Implementations of the
AES Key Expansion. In P. J. Lee and C. H. Lim, editors, ICISC, volume 2587 of
Lecture Notes in Computer Science, pages 343–358. Springer, 2002.

16. S. Mangard and F.-X. Standaert, editors. Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, Au-
gust 17-20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer Science.
Springer, 2010.

17. R. P. McEvoy, M. Tunstall, C. Whelan, C. C. Murphy, and W. P. Marnane. All-or-
Nothing Transforms as a Countermeasure to Differential Side-Channel Analysis.
Cryptology ePrint Archive, Report 2009/185, 2009. http://eprint.iacr.org/.

17

http://eprint.iacr.org/

18. M. Medwed and F.-X. Standaert. Extractors against side-channel attacks: Weak
or strong? In proceedings of CHES 2011 (to appear), pages xxx–yyy.

19. M. Medwed, F.-X. Standaert, J. Großschädl, and F. Regazzoni. Fresh Re-keying:
Security against Side-Channel and Fault Attacks for Low-Cost Devices. In D. J.
Bernstein and T. Lange, editors, AFRICACRYPT, volume 6055 of Lecture Notes
in Computer Science, pages 279–296. Springer, 2010.

20. Y. Oren, M. Kirschbaum, T. Popp, and A. Wool. Algebraic Side-Channel Analysis
in the Presence of Errors. In Mangard and Standaert [16], pages 428–442.

21. K. Pietrzak. A Leakage-Resilient Mode of Operation. In A. Joux, editor, EU-
ROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 462–482.
Springer, 2009.

22. T. Plos and M. Feldhofer. Hardware Implementation of a Flexible Tag Platform
for Passive RFID Devices. In Proceedings of the 14th Euromicro Conference on
Digital System Design Architectures, Methods and Tools (DSD 2011), Oulu, Fin-
land, August, 2010, Proceedings, pages xxx–xxx. IEEE Computer Society, August
2011.

23. M. Renauld, F.-X. Standaert, and N. Veyrat-Charvillon. Algebraic Side-Channel
Attacks on the AES: Why Time also Matters in DPA. In CHES, pages 97–111,
2009.

24. M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. In
Mangard and Standaert [16], pages 413–427.

25. K. Schramm, T. J. Wollinger, and C. Paar. A New Class of Collision Attacks and
Its Application to DES. In T. Johansson, editor, FSE, volume 2887 of Lecture
Notes in Computer Science, pages 206–222. Springer, 2003.

26. F.-X. Standaert. Leakage Resilient Cryptography: a Practical Overview. invited
talk, ECRYPT Workshop on Symmetric Encryption (SKEW 2011), Copenhagen,
Denmark, February 2011. http://perso.uclouvain.be/fstandae/PUBLIS/96_

slides.pdf.
27. F.-X. Standaert, O. Pereira, Y. Yu, J.-J. Quisquater, M. Yung, and E. Oswald.

Leakage Resilient Cryptography in Practice. Towards Hardware Intrinsic Security:
Foundation and Practice (book chapter), pp 105-139, Springer, 2010.

28. K. Tiri and I. Verbauwhede. Securing Encryption Algorithms against DPA at
the Logic Level: Next Generation Smart Card Technology. In C. D. Walter, Çetin
Kaya Koç, and C. Paar, editors, CHES, volume 2779 of Lecture Notes in Computer
Science, pages 125–136. Springer, 2003.

29. K. Tiri and I. Verbauwhede. A Logic Level Design Methodology for a Secure
DPA Resistant ASIC or FPGA Implementation. In DATE, pages 246–251. IEEE
Computer Society, 2004.

30. J. VanLaven, M. Brehob, and K. J. Compton. Side Channel Analysis, Fault In-
jection and Applications - A Computationally Feasible SPA Attack on AES via
Optimized Search. In R. Sasaki, S. Qing, E. Okamoto, and H. Yoshiura, editors,
SEC, pages 577–588. Springer, 2005.

31. Y. Yu, F.-X. Standaert, O. Pereira, and M. Yung. Practical leakage-resilient pseu-
dorandom generators. In E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, edi-
tors, ACM Conference on Computer and Communications Security, pages 141–151.
ACM, 2010.

18

http://perso.uclouvain.be/fstandae/PUBLIS/96_slides.pdf
http://perso.uclouvain.be/fstandae/PUBLIS/96_slides.pdf

	Fresh Re-Keying II: Securing Multiple Parties against Side-Channel and Fault Attacks
	Marcel Medwed, Christoph Petit, Francesco Regazzoni, Mathieu Renauld, François-Xavier Standaert

