The Eurocrypt 2009 Evaluation Framework for SCAs, Revisited

F.-X. Standaert

UCL Crypto Group, Université catholique de Louvain

LIRMM, Montpellier, France, July, 2012 SKLOIS, Bejing, China, August 2012

Outline

- The big picture
- Motivating worst case evaluation
- Applying the framework
 - Information theoretic analysis
 - Introduction
 - In practice
 - Main theorem
 - Examples of applications
 - Security analysis
- Which statistical tools to use?
- Conclusion

Outline

- The big picture
- Motivating worst case evaluation
- Applying the framework
 - Information theoretic analysis
 - Introduction
 - In practice
 - Main theorem
 - Examples of applications
 - Security analysis
- Which statistical tools to use?
- Conclusion

SCA evaluation framework [1]

Three main ingredients : *design* (e.g. AES in a μ controller), *leakage function* (e.g. power cons. + scope), *adversary*

UCL Crypto Group

Definition of the adversary

- Adv(p, d, n, t, m, s)
 - p : profiled or non-profiled attack
 - d : data complexity (excludes repetition)
 - n : number of measurements (includes repetition)
 - t : time complexity
 - m : memory complexity
 - ► *s* ∈ unknown/known/chosen plaintexts/ciphertexts

Definition of the leakage function

- Formally, $L(\delta, \Sigma, \rho)$
 - $\blacktriangleright~\delta$: configuration of the target device
 - Depends on the public input x and secret input k
 - ▶ May depend on a random (non-physical) parameter *r*
 - Σ : measurement setup
 - ρ : physical randomness

Definition of the leakage function

- Formally, $L(\delta, \Sigma, \rho)$
 - δ : configuration of the target device
 - Depends on the public input x and secret input k
 - ▶ May depend on a random (non-physical) parameter *r*
 - Σ : measurement setup
 - ρ : physical randomness
- Additional informal classification :
 - Independent noise : if $L(x, k, \rho) = f(x, k) + g(\rho)$
 - Variability : if $L(x, k, \rho)$ is different for "similar" chips
 - Linear : if f(x, k) is a linear function of x, k
 - Non-linear : if f(x, k) is a non-linear function of x, k

Specification of the design

- Cryptographic algorithm
- Target device and technology
- Type of countermeasures inserted, e.g.
 - Noise addition
 - Masking
 - Time randomization
 - Dual-rail logic styles
 - Re-keying
 - ▶ ...

Message #1

- SCA depend on many parameters
- Any comparison should fix all of them but one
- e.g. impact of a countermeasure
 - Best analyzed on the same device & with the same setup as the unprotected implementation

Outline

- The big picture
- Motivating worst case evaluation
- Applying the framework
 - Information theoretic analysis
 - Introduction
 - In practice
 - Main theorem
 - Examples of applications
 - Security analysis
- Which statistical tools to use?
- Conclusion

How not to evaluate

Launch a single attack with an arbitrary distinguisher

How not to evaluate

Launch a single attack with an arbitrary distinguisher

First issue : no statistical confidence in the evaluation

A first improvement

Repeat the attack and estimate a success rate

A first improvement

Repeat the attack and estimate a success rate

Second issue : arbitrary adversary (maybe suboptimal)

A first improvement

Repeat the attack and estimate a success rate

A stronger adversary may invalidate the evaluation

A second improvement

Apply an "optimal" template attack

Message #2

- Worst case evaluation
 - Anticipates "all" side-channel adversaries
 - Adds security margins to the implementations
 - Practical adversaries may be suboptimal
 - Represents the designer's point of view
- Profiling is (provably) needed for this purpose [2]

Outline

- The big picture
- Motivating worst case evaluation
- Applying the framework
 - Information theoretic analysis
 - Introduction
 - In practice
 - Main theorem
 - Examples of applications
 - Security analysis
- Which statistical tools to use?
- Conclusion

The starting point

- Why do we need it?
 - All the quantified data of a worst case evaluation is contained in security metrics (e.g. success rates)

The starting point

• Why do we need it?

UCL Crypto Group

 All the quantified data of a worst case evaluation is contained in security metrics (e.g. success rates)

- $\bullet \ \ \mathsf{But evaluating} = \mathsf{quantifying} + \mathsf{understanding}$
- Remaining issue : why is the attack successful ?
 - Information theoretic analysis helps understanding

Estimation issues

- ► Information theoretic analysis = estimating the information leakage ⊥ of the adversary
- But estimating the mutual information between arbitrary distributions is notoriously hard
 - Estimators are biased & distribution-dependent

Estimation issues

- ► Information theoretic analysis = estimating the information leakage ⊥ of the adversary
- But estimating the mutual information between arbitrary distributions is notoriously hard
 - Estimators are biased & distribution-dependent
- ► Good news : side-channel attacks need a model
 - i.e. an estimation of the leakage distribution
- Main idea : estimate the mutual information from the "best available" profiled model (i.e. the worst case)

Definition

Information leakage on the secret key

$$\mathsf{H}[\mathcal{K}] - \sum_{k \in \mathcal{K}} \mathsf{Pr}[k] \sum_{l \in \mathcal{L}} \mathsf{Pr}_{\mathsf{chip}}[l|k] \cdot \log_2 \hat{\mathsf{Pr}}_{\mathsf{model}}[k|l],$$

Definition

- ► Information leakage on the secret key $H[K] - \sum_{k \in \mathcal{K}} \Pr[k] \sum_{l \in \mathcal{L}} \Pr_{chip}[l|k] \cdot \log_2 \hat{\Pr}_{model}[k|l],$
- where $\hat{\Pr}_{model}[k|l]$ is obtained by profiling the target device
- where $\Pr_{\text{chip}}[k|I]$ is obtained by sampling the target device

 \Rightarrow Two cases can happen

Case #1 : ideal evaluation

$\hat{\mathsf{MI}}(K; L) = \mathsf{H}[K] - \sum_{k \in \mathcal{K}} \mathsf{Pr}[k] \sum_{l \in \mathcal{L}} \mathsf{Pr}_{\mathtt{chip}}[l|k] \log_2 \hat{\mathsf{Pr}}_{\mathtt{model}}[k|l]$

\Rightarrow mutual information properly estimated

Case #2 : "biased" evaluation

$$\hat{\mathbb{M}}(K; L) = \mathbb{H}[K] - \sum_{k \in \mathcal{X}} \Pr[k] \sum_{l \in \mathcal{L}} \Pr_{\mathtt{chip}}[l|k] \log_2 \hat{\Pr}_{\mathtt{model}}[k|l]$$
$$\hat{\mathbb{P}}I$$

perceived information = estimator for the mutual information biased by the adversary's model

Message #3

- In general, MI(K; L) cannot be exactly computed
- But we can sometime be sufficiently close
 - (see the "tools" section)
- Goal of an evaluator : be as close as possible
 - Again motivates the use of profiling

Outline

- The big picture
- Motivating worst case evaluation
- Applying the framework
 - Information theoretic analysis
 - Introduction
 - In practice
 - Main theorem
 - Examples of applications
 - Security analysis
- Which statistical tools to use?
- Conclusion

Two-step process

- Step 1 : estimate the leakage model Pr_{model}[k|I]
 - e.g. with Gaussian templates, linear regression [3] (or Gaussian Mixtures, SVMs, ...)
- Step 2 : estimate $\hat{PI}(K; L)$ by sampling $\hat{Pr}_{chip}[k|I]$
 - i.e. by generating actual measurements

Two-step process

- Step 1 : estimate the leakage model Pr_{model}[k|I]
 - e.g. with Gaussian templates, linear regression [3] (or Gaussian Mixtures, SVMs, ...)
- Step 2 : estimate $\hat{PI}(K; L)$ by sampling $\hat{Pr}_{chip}[k|l]$
 - i.e. by generating actual measurements

Note : measurements to estimate the leakage model and to estimate Pl(K; L) must be different

- 4 key candidates with correct key k = 1
- $\sum_{l \in \mathcal{L}} \Pr_{\text{chip}}[l|k=1] \log_2 \hat{\Pr}_{\text{model}}[k=1|l]$ estimation

- 4 key candidates with correct key k = 1
- $\sum_{l \in \mathcal{L}} \Pr_{\text{chip}}[l|k=1] \log_2 \hat{\Pr}_{\text{model}}[k=1|l]$ estimation

- 4 key candidates with correct key k = 1
- $\sum_{l \in \mathcal{L}} \Pr_{\text{chip}}[l|k=1] \log_2 \hat{\Pr}_{\text{model}}[k=1|l]$ estimation

$$\begin{array}{ccccccc} k = 0 & k = 1 & k = 2 & k = 3 \\ l_1 & \hat{p}_0^1 & \hat{p}_1^1 & \hat{p}_2^1 & \hat{p}_3^1 \\ l_2 & \hat{p}_0^2 & \hat{p}_1^2 & \hat{p}_2^2 & \hat{p}_3^2 \end{array}$$

- 4 key candidates with correct key k = 1
- $\sum_{l \in \mathcal{L}} \Pr_{chip}[l|k=1] \log_2 \hat{\Pr}_{model}[k=1|l]$ estimation

- 4 key candidates with correct key k = 1
- $\sum_{l \in \mathcal{L}} \Pr_{chip}[l|k=1] \log_2 \hat{\Pr}_{model}[k=1|l]$ estimation

$$k = 0 \qquad k = 1 \qquad k = 2 \qquad k = 3$$

$$l_1 \qquad \hat{p}_0^1 \qquad \hat{p}_1^1 \qquad \hat{p}_2^1 \qquad \hat{p}_3^1$$

$$l_2 \qquad \hat{p}_0^2 \qquad \hat{p}_1^2 \qquad \hat{p}_2^2 \qquad \hat{p}_3^2$$

$$l_3 \qquad \hat{p}_0^3 \qquad \hat{p}_1^3 \qquad \hat{p}_2^3 \qquad \hat{p}_3^3$$

$$\dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$

$$l_N \qquad \hat{p}_0^N \qquad \hat{p}_1^N \qquad \hat{p}_2^N \qquad \hat{p}_3^N$$

$$\Rightarrow \frac{1}{N} \sum_{i=1}^N \log_2 \hat{p}_i^i$$

• MI/PI metrics \neq Gierlichs et al.'s MIA [4]

- MI/PI metrics \neq Gierlichs et al.'s MIA [4]
- MIA is a non-profiled distinguisher
- ► MI/PI metrics are *profiled* (worst case) eval. criteria

- MI/PI metrics \neq Gierlichs et al.'s MIA [4]
- MIA is a non-profiled distinguisher
- ► MI/PI metrics are *profiled* (worst case) eval. criteria
- MIA requires to define a *target operation*
- MI/PI metrics are best estimated when capturing the key leakage from *all intermediate computations* [5]

- MI/PI metrics \neq Gierlichs et al.'s MIA [4]
- MIA is a non-profiled distinguisher
- ▶ MI/PI metrics are *profiled* (worst case) eval. criteria
- MIA requires to define a *target operation*
- MI/PI metrics are best estimated when capturing the key leakage from *all intermediate computations* [5]
- The MIA distinguisher provides a lower bound of the actual information leakage given by the MI/PI metrics

Outline

- The big picture
- Motivating worst case evaluation
- Applying the framework
 - Information theoretic analysis
 - Introduction
 - In practice
 - Main theorem
 - Examples of applications
 - Security analysis
- Which statistical tools to use?
- Conclusion

Main theorem (informal)

- PI(K; L) is directly proportional to the success rate of an adversary using Pr_{model}[k|I] as template
- e.g. PI(K; L) in function of the noise variance

As a result

Left of the intersection

• Countermeasure #2 more secure than first one

As a result

Right of the intersection

• Countermeasure #1 more secure than first one

In other words

• MI(K; L) measures the worst case data complexity

In other words

PI(K; L) is the evaluator's best estimate

Relation with data complexity

Theorem only proven in very specific cases

Relation with data complexity

Theorem only proven in very specific cases

UCL Crypto Group

But holds surprisingly well in all real-world settings

Message #4

- A single success rate curve does not reveal a trend nor an explanation about a leaking device
- Most intuition regarding the data complexity of of a side-channel attack can be extracted by plotting PI(K; L) in function of a noise variable
- PI(K; L) curves are easier to sample than the average data complexity to reach a given success rate

Outline

- The big picture
- Motivating worst case evaluation
- Applying the framework
 - Information theoretic analysis
 - Introduction
 - In practice
 - Main theorem
 - Examples of applications
 - Security analysis
- Which statistical tools to use?
- Conclusion

Example #1 : masking

- Main idea : split the sensitive data in r shares
- If "perfect" implementation, the data complexity to break masking is proportional to (σ²_n)^r
 - ▶ Perfect ≈ if the smallest-order key-dependent moment in the leakage distribution is r
 - Essentially depends on the hardware (e.g. glitches or early propagation make implementations imperfect)

Information theoretic intuition [6]

▶ Smallest-order key-dept. moment = slope of the curve

UCL Crypto Group

Information theoretic intuition [6]

Flaws due to physical defaults can be detected

Example #2 : time randomization

- Random delays, unstable clock, shuffling, ...
- Essentially adds noise to the implementation

Information theoretic intuition [7]

e.g. shuffling can give rise to a Y-axis shift

Information theoretic intuition [7]

Main issue : highly dependent on signal processing

Example #3 : dual rail logic styles

- Main idea : have constant activity within the implementation in order to
 - 1. Modify the leakage models (i.e. avoid simple models such as Hamming weight/distance)
 - 2. Reduce the data dependencies in the leakages
- Practical limitation : usually implies strong hardware constraints (i.e. need to "balance" the wires)

Information theoretic intuition [8]

• Reduced data dependencies \Rightarrow X-axis shift

Example #4 : *variability*

- Leakage function can be \neq for \neq "similar" chips
 - ▶ e.g. because of manufacturing process
- Raises new questions regarding profiled attacks
 - e.g. profile *n* chips, attack another chip
 - How large should *n* be?
- Variability may create a gap between MI and PI

Information theoretic intuition [9]

- Worst case may be harder to exploit by adversaries...
- ... but remains the most reliable evaluation metric !

UCL Crypto Group

Message #5

- PI(K; I) provides a unifying view of countermeasures
- Only masking can lead to exponential security increase
- Again, beware of "false sense of security"
 - $PI(K; L) \neq MI(K; L)$
 - Significant differences may be due to signal processing, bad assumptions on the leakage, ...
 - Measurement setup also matters (a lot)

Outline

- The big picture
- Motivating worst case evaluation
- Applying the framework
 - Information theoretic analysis
 - Introduction
 - In practice
 - Main theorem
 - Examples of applications
 - Security analysis
- Which statistical tools to use?
- Conclusion

The starting point

- Why do we need it?
 - Information theoretic curves capture most intuition about the data complexity of worst-case attacks

The starting point

- Why do we need it?
 - Information theoretic curves capture most intuition about the data complexity of worst-case attacks

- But side-channel attacks also depend on time
- And evaluating multiple (not only worst-case) adversaries may be revealing as well [10]

Example #1 : masking

 If the r shares are manipulated in different clock cycles (i.e. in software, typically), finding these cycles requires testing N^r r-uples of time samples

Example #2 : key enumeration [11]

Significant impact on the success rates

Example #2 : key enumeration [11]

Missing data can always be traded for computations

UCL Crypto Group

Example #3 : other attacks

Non-profiled attacks can be significantly less efficient

Message #6

- Security analysis : necessary complement to IT analysis
- It allows highlighting the gap between profiled and (usually more realistic) non-profiled attacks
- It incorporates time complexity in the evaluations
 - ► Adversaries can enumerate up to 2⁵⁰-2⁶⁰ keys
 - Evaluate success rates of high orders !

Outline

- The big picture
- Motivating worst case evaluation
- Applying the framework
 - Information theoretic analysis
 - Introduction
 - In practice
 - Main theorem
 - Examples of applications
 - Security analysis
- Which statistical tools to use?
- Conclusion

How to evaluate the metrics?

- Implies to determine good statistical tools
 - Critical point : pdf estimation problem
- Tools are highly dependent on the contexts
- A few examples next...

Examples

	profiled attacks	non-profiled attacks
unprotected device, univariate leakage		
unprotected device, multivariate leakage		
dual-rail pre-charged implementation		
time randomizations		
masking		
combination of countermeasures		

- Different types of implementations & countermeasures
- ▶ Which cases are "easy to evaluate?"

Examples

	profiled attacks	non-profiled attacks
unprotected device, univariate leakage		
unprotected device, multivariate leakage		
dual-rail pre-charged implementation		
time randomizations		
masking		
combination of countermeasures		

- Most distinguishers are asymptotically equivalent
- ... if provided with the same leakage model [12]

Examples

	profiled attacks	non-profiled attacks
unprotected device, univariate leakage		
unprotected device, multivariate leakage		
dual-rail pre-charged implementation		
time randomizations		
masking		
combination of countermeasures		

- ▶ PCA, LDA, ... useful in the profiled case
- Dimensionality reduction uneasy in non-profiled case

Examples

	profiled attacks	non-profiled attacks
unprotected device, univariate leakage		
unprotected device, multivariate leakage		
dual-rail pre-charged implementation		
time randomizations		
masking		
combination of countermeasures		

- Same tools as for an unprotected device
- Non-linear leakage functions require profiling

Examples

	profiled attacks	non-profiled attacks
unprotected device, univariate leakage		
unprotected device, multivariate leakage		
dual-rail pre-charged implementation		
time randomizations		
masking		
combination of countermeasures		

- Uneasy to evaluate for both types of attacks
- Signal proc. completely removes some countermeasures

Examples

	profiled attacks	non-profiled attacks
unprotected device, univariate leakage		
unprotected device, multivariate leakage		
dual-rail pre-charged implementation		
time randomizations		
masking		
combination of countermeasures		

- Becomes measurement intensive as r increases
- No solution is always optimal in the non-profiled case

Examples

	profiled attacks	non-profiled attacks
unprotected device, univariate leakage		
unprotected device, multivariate leakage		
dual-rail pre-charged implementation		
time randomizations		
masking		
combination of countermeasures		

- Specially hard if the design is unknown
- Large distance btw. profiled & non-profiled cases

Outline

- The big picture
- Motivating worst case evaluation
- Applying the framework
 - Information theoretic analysis
 - Introduction
 - In practice
 - Main theorem
 - Examples of applications
 - Security analysis
- Which statistical tools to use?
- Conclusion

Conclusions (I)

- Evaluation of DPA quite well understood in theory
 - Which metrics to use and why
 - Perceived information quantifies implementations
 - Success rates quantify adversaries
- ► But ∃ many open question related to the best statistical tools needed to estimate the metrics

Conclusions (II)

- Evaluators should always try to understand from where a "false sense of security" could come from
 - Perceived information can also be used to compare different laboratories (i.e. how good are they in extracting information from an implementation?)

Conclusions (III)

- Side-channel attacks are more than divide-and-conquer
- Next challenge : combinations with cryptanalysis
 - Collision attacks
 - Algebraic attacks
 - ▶ ...

THANKS

e-mail : fstandae@uclouvain.be web page : http ://perso.uclouvain.be/fstandae/

UCL Crypto Group

Evaluation of Side-Channel Attacks - Summer 2012

Bibliography

 F.-X. Standaert, T.G. Malkin, M. Yung, A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks, in the proceedings of Eurocrypt 2009, Lecture Notes in Computer Science, vol 5479, pp 443-461, Cologne, Germany, April 2009, Springer.

2. C. Whitnall, E. Oswald, F.-X. Standaert, *The Myth of Generic DPA... and the Magic of Learning*, cryptology e-Print archive, report 2012/038.

3. F.-X. Standaert, F. Koeune, W. Schindler, *How to Compare Profiled Side-Channel Attacks*, in the proceedings of ACNS 2009, Lecture Notes in Computer Science, vol 5536, pp 485-498, Paris, France, June 2009, Springer.

 N. Veyrat-Charvillon, F.-X. Standaert, Mutual Information Analysis : How, When and Why?, in the proceedings of CHES 2009, Lecture Notes in Computer Science, vol 5747, pp 429-443, Lausanne, Switzerland, September 2009, Springer.

 F.-X. Standaert, C. Archambeau, Using Subspace-Based Template Attacks to Compare and Combine Power and Electromagnetic Information Leakages, in the proceedings of CHES 2008, Lecture Notes in Computer Science, vol 5154, pp 411-425, Washington DC, USA, August 2008, Springer.

6. F.-X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed, M. Kasper, S. Mangard, *The World is Not Enough : Another Look on Second-Order DPA*, in the proceedings of Asiacrypt 2010, Lecture Notes in Computer Science, vol 6477, pp 112-129, Singapore, December 2010, Springer.

Bibliography

7. N. Veyrat-Charvillon, M. Medwed, S. Kerckhof, F.-X. Standaert, *Shuffling Against Side-Channel Attacks* : a Comprehensive Study with Cautionary Note, preprint, 2012.

M. Renauld, D. Kamel, F.-X. Standaert, D. Flandre, *Information Theoretic and Security Analysis of a 65-nanometer DDSLL AES S-box*, in the proceedings of CHES 2011, Lecture Notes in Computer Science, vol 6917, pp 223-239, Nara, Japan, September 2011, Springer.

 M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, D. Kamel, D. Flandre, A Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale Devices, in the proceedings of Eurocrypt 2011, Lecture Notes in Computer Science, vol 6632, pp 109-128, Tallinn, Estonia, May 2011, Springer.

10. F.-X. Standaert, B. Gierlichs, I. Verbauwhede, Partition vs. Comparison Side-Channel Distinguishers : an Empirical Evaluation of Statistical Tests for Univariate Side-Channel Attacks against Two Unprotected CMOS Devices, in the proceedings of ICISC 2008, Lecture Notes in Computer Science, vol 5461, pp 253-267, Seoul, Korea, December 2008, Springer.

11. N. Veyrat-Charvillon, B. Gerard, M. Renauld, F.-X. Standaert, An Optimal Key Enumeration Algorithm and its Application to Side-Channel Attacks, cryptology e-Print archive, report 2011/610.

12. S. Mangard, E. Oswald, F.-X. Standaert, One for All - All for One : Unifying Standard DPA Attacks, in IET Information Security, vol 5, issue 2, pp 100-110, June 2011.

