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SCA evaluation framework [1]

Three main ingredients : design (e.g. AES in a µcontroller),
leakage function (e.g. power cons. + scope), adversary



UCL Crypto Group
Microelectronics Laboratory Evaluation of Side-Channel Attacks - Summer 2012 4

Definition of the adversary

I Adv(p, d , n, t,m, s)
I p : profiled or non-profiled attack
I d : data complexity (excludes repetition)
I n : number of measurements (includes repetition)
I t : time complexity
I m : memory complexity
I s ∈ unknown/known/chosen plaintexts/ciphertexts
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Definition of the leakage function

I Formally, L(δ,Σ, ρ)
I δ : configuration of the target device

I Depends on the public input x and secret input k
I May depend on a random (non-physical) parameter r

I Σ : measurement setup
I ρ : physical randomness

I Additional informal classification :
I Independent noise : if L(x , k , ρ) = f (x , k) + g(ρ)
I Variability : if L(x , k, ρ) is different for “similar” chips
I Linear : if f (x , k) is a linear function of x , k
I Non-linear : if f (x , k) is a non-linear function of x , k
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Specification of the design

I Cryptographic algorithm

I Target device and technology
I Type of countermeasures inserted, e.g.

I Noise addition
I Masking
I Time randomization
I Dual-rail logic styles
I Re-keying
I . . .
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Message #1

I SCA depend on many parameters

I Any comparison should fix all of them but one

I e.g. impact of a countermeasure
I Best analyzed on the same device & with the same

setup as the unprotected implementation
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How not to evaluate

I Launch a single attack with an arbitrary distinguisher

I First issue : no statistical confidence in the evaluation



UCL Crypto Group
Microelectronics Laboratory Evaluation of Side-Channel Attacks - Summer 2012 9

How not to evaluate

I Launch a single attack with an arbitrary distinguisher

I First issue : no statistical confidence in the evaluation



UCL Crypto Group
Microelectronics Laboratory Evaluation of Side-Channel Attacks - Summer 2012 10

A first improvement

I Repeat the attack and estimate a success rate

I Second issue : arbitrary adversary (maybe suboptimal)
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A first improvement

I Repeat the attack and estimate a success rate

I A stronger adversary may invalidate the evaluation
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A second improvement

I Apply an “optimal” template attack
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Message #2

I Worst case evaluation
I Anticipates “all” side-channel adversaries
I Adds security margins to the implementations

I Practical adversaries may be suboptimal

I Represents the designer’s point of view

I Profiling is (provably) needed for this purpose [2]
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The starting point

I Why do we need it ?
I All the quantified data of a worst case evaluation is

contained in security metrics (e.g. success rates)

I But evaluating = quantifying + understanding
I Remaining issue : why is the attack successful ?

I Information theoretic analysis helps understanding
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Estimation issues

I Information theoretic analysis = estimating the
information leakage ⊥⊥ of the adversary

I But estimating the mutual information between
arbitrary distributions is notoriously hard

I Estimators are biased & distribution-dependent

I Good news : side-channel attacks need a model
I i.e. an estimation of the leakage distribution

I Main idea : estimate the mutual information from the
“best available” profiled model (i.e. the worst case)
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Definition

I Information leakage on the secret key

H[K ]−
∑
k∈K

Pr[k]
∑
l∈L

Prchip[l |k] · log2 P̂rmodel[k|l ],

I where P̂rmodel[k |l ] is obtained by profiling the target device

I where Prchip[k|l ] is obtained by sampling the target device

⇒ Two cases can happen



UCL Crypto Group
Microelectronics Laboratory Evaluation of Side-Channel Attacks - Summer 2012 16

Definition

I Information leakage on the secret key

H[K ]−
∑
k∈K

Pr[k]
∑
l∈L

Prchip[l |k] · log2 P̂rmodel[k|l ],

I where P̂rmodel[k |l ] is obtained by profiling the target device

I where Prchip[k|l ] is obtained by sampling the target device

⇒ Two cases can happen



UCL Crypto Group
Microelectronics Laboratory Evaluation of Side-Channel Attacks - Summer 2012 17

Case #1 : ideal evaluation

P̂rmodel = Prchip

M̂I(K ; L) = H[K ]−
∑

k∈K Pr[k]
∑

l∈L Prchip[l |k] log2 P̂rmodel[k |l ]

Perfect profiling phase

⇒ mutual information properly estimated
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Case #2 : “biased” evaluation

P̂rmodel = Prchip

M̂I(K ; L) = H[K ]−
∑

k∈X Pr[k]
∑

l∈L Prchip[l |k] log2 P̂rmodel[k |l ]

Variability

Bounded profiling phase

Simpler model

P̂I

perceived information = estimator for the mutual
information biased by the adversary’s model
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Message #3

I In general, MI(K ; L) cannot be exactly computed
I But we can sometime be sufficiently close

I (see the “tools” section)

I Goal of an evaluator : be as close as possible
I Again motivates the use of profiling
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Two-step process

I Step 1 : estimate the leakage model P̂rmodel[k |l ]
I e.g. with Gaussian templates, linear regression [3]

(or Gaussian Mixtures, SVMs, . . . )

I Step 2 : estimate P̂I(K ; L) by sampling P̂rchip[k |l ]
I i.e. by generating actual measurements

I Note : measurements to estimate the leakage model
and to estimate P̂I(K ; L) must be different
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Example

I 4 key candidates with correct key k = 1

I
∑

l∈L Prchip[l |k = 1] log2 P̂rmodel[k = 1|l ] estimation

k = 0 k = 1 k = 2 k = 3
l1 p̂1

0 p̂1
1 p̂1

2 p̂1
3

l2 p̂2
0 p̂2

1 p̂2
2 p̂2

3

l3 p̂3
0 p̂3

1 p̂3
2 p̂3

3

. . . . . . . . . . . . . . .
lN p̂N

0 p̂N
1 p̂N

2 p̂N
3

⇒ 1
N

∑N
i=1 log2 p̂i

1
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Note

I MI/PI metrics 6= Gierlichs et al.’s MIA [4]

I MIA is a non-profiled distinguisher

I MI/PI metrics are profiled (worst case) eval. criteria

I MIA requires to define a target operation

I MI/PI metrics are best estimated when capturing the
key leakage from all intermediate computations [5]

I The MIA distinguisher provides a lower bound of the
actual information leakage given by the MI/PI metrics
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Main theorem (informal)

I PI(K ; L) is directly proportional to the success rate of
an adversary using P̂rmodel[k |l ] as template

I e.g. PI(K ; L) in function of the noise variance
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As a result

I Left of the intersection

I Countermeasure #2 more secure than first one
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As a result

I Right of the intersection

I Countermeasure #1 more secure than first one
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In other words

I MI(K ; L) measures the worst case data complexity
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In other words

I PI(K ; L) is the evaluator’s best estimate
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Relation with data complexity

I Theorem only proven in very specific cases

I But holds surprisingly well in all real-world settings
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Message #4

I A single success rate curve does not reveal a trend
nor an explanation about a leaking device

I Most intuition regarding the data complexity of of a
side-channel attack can be extracted by plotting
PI(K ; L) in function of a noise variable

I PI(K ; L) curves are easier to sample than the average
data complexity to reach a given success rate
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Example #1 : masking

I Main idea : split the sensitive data in r shares

I If “perfect” implementation, the data complexity to
break masking is proportional to (σ2

n)r

I Perfect ≈ if the smallest-order key-dependent
moment in the leakage distribution is r

I Essentially depends on the hardware (e.g. glitches or
early propagation make implementations imperfect)
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Information theoretic intuition [6]

I Smallest-order key-dept. moment = slope of the curve
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Information theoretic intuition [6]

I Flaws due to physical defaults can be detected
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Example #2 : time randomization

I Random delays, unstable clock, shuffling, . . .

I Essentially adds noise to the implementation
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Information theoretic intuition [7]

I e.g. shuffling can give rise to a Y-axis shift
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Information theoretic intuition [7]

I Main issue : highly dependent on signal processing
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Example #3 : dual rail logic styles

I Main idea : have constant activity within the
implementation in order to

1. Modify the leakage models (i.e. avoid simple models
such as Hamming weight/distance)

2. Reduce the data dependencies in the leakages

I Practical limitation : usually implies strong hardware
constraints (i.e. need to “balance” the wires)
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Information theoretic intuition [8]

I Reduced data dependencies ⇒ X-axis shift
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Example #4 : variability

I Leakage function can be 6= for 6= “similar” chips
I e.g. because of manufacturing process

I Raises new questions regarding profiled attacks
I e.g. profile n chips, attack another chip

I How large should n be ?

I Variability may create a gap between MI and PI
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Information theoretic intuition [9]

I Worst case may be harder to exploit by adversaries. . .

I . . . but remains the most reliable evaluation metric !
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Message #5

I PI(K ; l) provides a unifying view of countermeasures

I Only masking can lead to exponential security increase

I Again, beware of “false sense of security”
I PI(K ; L) 6= MI(K ; L)
I Significant differences may be due to signal

processing, bad assumptions on the leakage, . . .
I Measurement setup also matters (a lot)
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The starting point

I Why do we need it ?
I Information theoretic curves capture most intuition

about the data complexity of worst-case attacks

I But side-channel attacks also depend on time

I And evaluating multiple (not only worst-case)
adversaries may be revealing as well [10]
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Example #1 : masking

I If the r shares are manipulated in different clock cycles
(i.e. in software, typically), finding these cycles requires
testing N r r -uples of time samples
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Example #2 : key enumeration [11]

I Significant impact on the success rates
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Example #2 : key enumeration [11]

I Missing data can always be traded for computations
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Example #3 : other attacks

I Non-profiled attacks can be significantly less efficient
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Message #6

I Security analysis : necessary complement to IT analysis

I It allows highlighting the gap between profiled and
(usually more realistic) non-profiled attacks

I It incorporates time complexity in the evaluations
I Adversaries can enumerate up to 250-260 keys
I Evaluate success rates of high orders !
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How to evaluate the metrics ?

I Implies to determine good statistical tools
I Critical point : pdf estimation problem

I Tools are highly dependent on the contexts

I A few examples next. . .
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Examples

I Different types of implementations & countermeasures

I Which cases are “easy to evaluate ?”
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Examples

I Most distinguishers are asymptotically equivalent

I . . . if provided with the same leakage model [12]
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Examples

I PCA, LDA, . . . useful in the profiled case

I Dimensionality reduction uneasy in non-profiled case
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Examples

I Same tools as for an unprotected device

I Non-linear leakage functions require profiling
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Examples

I Uneasy to evaluate for both types of attacks

I Signal proc. completely removes some countermeasures
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Examples

I Becomes measurement intensive as r increases

I No solution is always optimal in the non-profiled case
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Examples

I Specially hard if the design is unknown

I Large distance btw. profiled & non-profiled cases
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Conclusions (I)

I Evaluation of DPA quite well understood in theory
I Which metrics to use and why

I Perceived information quantifies implementations
I Success rates quantify adversaries

I But ∃ many open question related to the best
statistical tools needed to estimate the metrics
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Conclusions (II)

I Evaluators should always try to understand from where
a “false sense of security” could come from

I Perceived information can also be used to compare
different laboratories (i.e. how good are they in
extracting information from an implementation ?)
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Conclusions (III)

I Side-channel attacks are more than divide-and-conquer

I Next challenge : combinations with cryptanalysis
I Collision attacks
I Algebraic attacks
I . . .
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