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Abstract Physically Unclonable Functions (PUFs) are

becoming popular tools for various applications such

as anti-counterfeiting schemes. The security of a PUF-

based system relies on the properties of its underlying

PUF. Usually, evaluating PUF properties is not sim-

ple as it involves assessing a physical phenomenon. A

recent work [1] proposed a generic security framework

of physical functions allowing a sound analysis of se-

curity properties of PUFs. In this paper, we specialize

this generic framework to model a system based on a

particular category of PUFs called Image-based PUFs.

These PUFs are based on random visual features of

the physical objects. The model enables a systematic

design of the system ingredients and allows for con-

crete evaluation of its security properties, namely ro-

bustness and physical unclonability which are required

by anti-counterfeiting systems. As a practical exam-

ple, the components of the model are instantiated by

Laser-Written PUF, White Light Interferometry eval-

uation, two binary image hashing procedures namely,

Random Binary Hashing and Gabor Binary Hashing

respectively, and code-o�set fuzzy extraction. We ex-

perimentally evaluate security properties of this exam-

ple for both image hashing methods. Our results show

that, for this particular example, adaptive image hash-

ing outperforms the non-adaptive one. The experiments

also con�rm the usefulness of the formalizations pro-

vided by [1] to a practical example. In particular, the

formalizations provide an asset for evaluating the con-

crete trade-o� between robustness and physical unclon-

ability. To the best of our knowledge, this experimental
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evaluation of explicit trade-o� between robustness and

physical unclonability has been performed for the �rst

time in this paper.
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1 Introduction

The growing trade in counterfeit goods continues af-

fecting the economy worldwide. Many ad-hoc meth-

ods have been proposed to avoid counterfeiting. Ex-

amples include so-called overt physical identi�ers such

as hologram and inks that visibly alter under light, or

so-called covert technology such as invisible inks, pro-

prietary photonic inks [2] and Radio Frequency Identi-

�cation (RFID) Tags [3]. Recently, Physically Unclon-

able Functions, or PUFs, have been introduced. Among

many other applications, they are proposed as an ef-

fective tool for anti-counterfeiting systems. A Physi-

cally Unclonable Function is a function that is embod-

ied in a physical structure and is easy to evaluate but

hard to clone. Early works that exploit the physical

properties of random structures for authentication pur-

poses date back to [4,5]. A formalization of this concept

was introduced as physical one-way functions [6, 7] or

physical random functions [8] and �nally Physical(ly)

Unclonable Functions, or PUFs. Examples of proposed

PUFs are optical PUF [7], Coating PUF [9], Silicon

PUF [8, 10, 11], SRAM PUF [12], Paper PUF [13�16],

Laser-Written PUF [17], etc. For detailed description of

various proposed PUFs, we refer to [18,19]. Generally, a

PUF interacts with stimuli (challenges) in an intricate

way, and leads to unique and unpredictable responses.

For anti-counterfeiting applications, the core concept of
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using PUF primitives is to rely on the unique physical

properties which are hard to clone. The PUF can be

either intrinsic in the product or extrinsic and glued

to the object. The general idea is to digitally sign the

product information (e.g. EPC code) together with the

identi�er extracted from the embedded PUF and use

this signature as the certi�cate of authenticity. The ver-

i�cation of the authenticity is carried out by validating

this certi�cate [20�24]. For more details on the design of

anti-counterfeiting system based on Image-based PUFs,

we refer to [25].

Some PUFs like Coating PUFs, Silicon PUFs, SRAM

PUF can be used beyond anti-counterfeiting applica-

tion, e.g., key generation algorithms, or in the design of

block ciphers ( [26�28]).

The key properties of PUFs required by most secu-

rity systems are robustness (reproducibility of responses

to the same challenge), unclonability, and unpredictabil-

ity (of PUF response for a new challenge). The evalua-

tion of these properties , specially unclonability, is not

trivial due to the fact that it relates to the physics and is

technology dependent. Yet, for cryptographic applica-

tions, the security must be ensured through evaluation

of formally-de�ned security properties. The recent ef-

fort made by Armknecht et al. [1] provided a generic

security framework that modularly captures the key

properties of PUFs, i.e., robustness, unclonability and

unpredictability, allowing a meaningful security analy-

sis of PUF-based constructions.

In this paper, we investigate a particular category of

PUFs hereafter called Image-based PUFs. Image-based

PUFs are based on random visual features of the phys-

ical objects which are assessed by imaging methods.

By imaging we mean any method that outputs images

representing 2D or 3D pro�le of the physical object.

It varies from the images taken with a simple digital

camera or camera phone to those acquired with a very

high resolution optical tomography device. The basic

idea relies on the fact that imaging can be performed

with a very high resolution such that the physical ran-

domness is present on the outcome image. In this case,

physically cloning the random pro�le yielding the same

(or very similar) image is either impossible or requires a

very high expense by a malicious party (counterfeiter).

There are two reasons why we specialize in Image-based

PUFs. First, Image-based PUFs are mainly targeted to

anti-counterfeiting applications. Indeed, the input to

the PUF is usually a �xed challenge and therefore a

mathematical clone can be created by imitating the re-

sponse of the PUF to this challenge 1. Consequently, the

unpredictability does not need to be studied and only

1 A mathematical procedure that yields the same challenge-
response behavior as the PUF e.g., a fake image.

minimum security properties, i.e., robustness and un-

clonability are considered. Second, the response of the

PUF is a real-valued image and a speci�c processing

(i.e., dimensionality reduction and binarization) needs

to be designed and integrated into the cryptographic

algorithms.

Several instances of Image-based PUFs have been

proposed. Paper PUF is an example where the intrinsic

random roughness of a paper (e.g., banknote, valuable

document, prescription paper) is employed as its phys-

ical identi�er [13, 14]. Various methods have been pro-

posed to evaluate paper random pro�le. Buchanan et

al. propose to scan a focused laser beam across a sheet

of white paper and continuously record the re�ected

intensity from di�erent angles by means of photo de-

tectors [14]. Clarkson et al. presented a low-cost evalua-

tion of paper random pro�le using commodity scanners.

They acquire 3D pro�le of a paper using the scans taken

from di�erent orientations of the paper in the scan-

ner [15]. Another approach was introduced in [16] where

the paper roughness is measured through its speckle

pattern when illuminated with a coherent light source.

Zhu et al. utilize random ink splatter occurring around

any printed characters on a paper [29]. In [23, 30, 31],

they propose adding extra randomness by pouring op-

tical �bers on the production of papers and utilize the

random distribution of �bers to construct the physical

identi�er of the paper. Phosphor PUF is also proposed

by [3, 32] where phosphor particles are blended with

the material with the cover of the product, e.g., plastic

cover to form the random pattern. Beekhof et al. utilize

the images taken with a simple camera phone from ran-

dom microstructures of various material surfaces such

as metal surface (e.g., on the back of the watch), leather

surface,... for identi�cation purpose [33]. In [17] Laser-

Written PUF has been proposed that utilizes the ran-

dom pro�le of the laser marks embedded on the sur-

face or bulk of the material. Note that, optical PUF

proposed by [7] can also be considered an Image-based

PUF, as its response is a speckle pattern represented

by an image. We also see later that some image hashing

procedures applied to optical PUFs such as Gabor Bi-

nary Hashing are also appropriate for most Image-based

PUFs. However, in this paper, as we believe that image-

based PUFs are mostly suitable for anti-counterfeiting

applications, we �x the challenge which is not usually

the case for optical PUFs. In fact, the existence of large

amount of unpredictable challenge response pairs allows

for using optical PUFs for more advanced security ap-

plications such as remote authentication [20] or secret

key generation [34].

The proposed procedures to deal with di�erent Image-

based PUFs are very diverse. The characterizations of
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their security properties are also carried out using vari-

ous approaches. In this paper, instead of introducing a

new PUF or a new post-processing method, we estab-

lish a uni�ed model to deal with most of existing and

new Image-based PUFs and describe a methodology to

experimentally analyze their security features. The con-

tributions of this paper are thus threefold. First, we

specialize the general framework of physical function

from [1] to build the model of Image-based physical

function system with a particular focus on image hash-

ing. Image-based physical function system consists of

Image-based PUF, evaluation procedure, image hash-

ing and fuzzy extraction. Second, we present a prac-

tical example of Image-based physical function system

by instantiating its components by Laser-Written PUF,

White Light Interferometry evaluation [17], two image

hashing methods namely, Random Binary Hashing [35]

and Gabor Binary Hashing [17, 21] respectively, and

code-o�set fuzzy extraction [36, 37]. Third, we provide

a comprehensive experimental characterization of secu-

rity properties of this practical example of Image-based

physical function system, i.e., robustness and physical

unclonability. The experimental characterization of the

explicit trade-o� between robustness and physical un-

clonability is of main interest for anti-counterfeiting ap-

plications and has been carried out for the �rst time,

to the best of our knowledge.

The paper is structured as follows. We start with

summarizing the general model of physical functions

[1] and the formalizations of security properties, i.e.,

robustness and physical unclonability in section 2. In

section 3, we present the specialization of the general

model to Image-based physical function system and de-

scribe its ingredients. In section 4, we instantiate the

components of Image-based physical function system.

The security properties of this example of physical func-

tion system, i.e., robustness and physical unclonability

are experimentally assessed in section 5.

Conventions

Let A be a probabilistic procedure. Then y ← A(x)
refers to the event that on input x, procedure A out-

puts a value which equals y. Let A and B be some

events, then Pr[A : B] denotes the conditional proba-

bility of A given B. The set B stands for the binary

set {0, 1}. We denote with ε the empty string. The

scalar product between two vectors u, v ∈ R2 reads

u·v = u1v1+u2v2. The 1-bit quantization function signb
is de�ned as signb(λ) = 1 if λ > 0 and 0 else, and for

u ∈ RK , signb(u) ∈ BK with (signb(u))i = signb(ui) for

1 ≤ i ≤ K. The Bernoulli random vector of size K with

±1 entries is de�ned as u ∈ {−1,+1}K with Pr[ui =

1] = Pr[ui = −1] = 0.5 and U = diag u is the diagonal

matrix such that Uii = ui. Let two vectors u, v ∈ RK ,
their Euclidean distance is denoted by dist(u, v) ,ÈPK

i=1(ui − vi)2 while their normalized angle distance

reads dist∠(u, v) , 1
π arccos

PK
i=1

uivi
‖u‖‖v‖ ∈ [0, 1] where

‖u‖ denotes the `2-norm of vector i.e., ‖u‖ =
ÈPK

i=1 |ui|2.
For s, t ∈ BK , their Hamming distance is denoted by

distH(s, t) ,
PK
i=1 si ⊕ ti ∈ [0,K].

2 Background

We brie�y describe the generic framework of physical

functions proposed by Armknecht et al. in [1] which is

specialized to Image-based PUFs in the next section.

This general framework, which is depicted in Fig. 1

shows modularly all components necessary for creating,

evaluating and post-processing the output of a physical

function.

In this section, we bring the formal de�nitions of the

model components and security properties, i.e., robust-

ness and physical unclonability 2. They are used later

to specify our Image-based physical function system,

and evaluate its security properties.

Creation process is usually performed by the manu-

facturer to produce a physical component and is de�ned

as:

De�nition 1 (Creation Process [1]) A creation pro-

cess Create is a probabilistic procedure that, on input

of a creation parameter αCR, produces a physical com-

ponent p

p← Create(αCR). (1)

Creation process is a probabilistic procedure be-

cause its output relates to some uncontrollable produc-

tion variability (creation noise). As a practical example,

consider an SRAM PUF [12]. The behavior of an SRAM

PUF is based on the random power-up values of SRAM

memory cells. The parameter αCR of the SRAM PUF

creation process includes the di�erent design options

for an SRAM cell and the controllable parameters of

the CMOS production process.

A Physical Function (PF) consists of a physical com-

ponent p which is evaluated by an evaluation procedure

Eval with the evaluation parameter αPF.

De�nition 2 (Physical Function [1]) Given a phys-

ical component p and an evaluation parameter αPF, a

physical function P is a probabilistic procedure

Pp,αPF
: X → Y, (2)

2 For detailed description of each component refer to [1].
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Fig. 1 Generic framework for physical functions [1].

where X denotes the set of challenges (stimulating sig-

nals) and Y the set of responses. Internally, a PF is the

combination of a physical component p and an evalua-

tion procedure Eval, i.e.,

y ← Pp,αPF
(x) = Evalp(αPF, x). (3)

In the case of SRAM PUF, the SRAM memory

address range is considered as the challenge x to the

PUF, and the power-up values of these cells are con-

sidered as the PUF response y [1]. The evaluation pa-

rameter αPF describes the settings of the measurement

process, e.g., typically the resolution of the analog-to-

digital converter.

Physical Function is also a probabilistic procedure

because on a single challenge, it may produce di�erent

outputs due to the uncontrollable random noise in the

Evaluation procedure (evaluation noise). The essential

assumption for all the PUF instances is that the cre-

ation noise (favorable noise) is higher than the evalua-

tion noise (undesired noise). This stems from the fact

that the evaluation process at the edge of technology is

usually more accurate than the creation process.

To compensate the evaluation noise, a PF is usu-

ally combined with an extraction algorithm. The ex-

traction algorithm maps slightly di�erent responses y

to the same challenge x to a unique output z according

to some extraction parameter αEX (e.g., number of out-

put bits). The Extract algorithm can be executed in two

di�erent modes: setup and reconstruction. If a challenge

x is requested for the �rst time, setup mode is used to

generate an output z and some appropriate helper data

h′ (helping to compensate the noise). Later, when chal-

lenge x is requested again together with helper data

h = h′, reconstruction mode is used to recreate z.

As explained above, a PF is usually coupled with an

appropriate extraction algorithm. Their combination is

considered as one single building block and is de�ned

as:

De�nition 3 (Physical Function System [1]) A

physical function system S is a probabilistic procedure

Sp,αPF,αEX : X × (H ∪ {ε})→ Z ×H, (4)

where X is the set of challenges,H the set of helper data

values, ε the empty string, and Z the set of outputs.

Internally, a PF system is the combination of a phys-

ical function P = Pp,αPF (De�nition 2) and an extrac-

tion algorithm Extract, i.e.,

(z, h′)←Sp,αPF,αEX(x, h)

= ExtractαEX(Pp,αPF(x), h).
(5)

If h = ε, then Extract is executed in setup mode and

generates a new helper data h′. In case h 6= ε, Extract
is executed in reconstruction mode and returns h′ = h.

In the following, we omit the internal components

and abbreviate S = Sp,αPF,αEX
.

The combination of all components described above

is called a Physical Function Infrastructure (PFI) where

the creation, evaluation and extraction parameters are

�xed.

De�nition 4 (Physical Function Infrastructure [1]

) A physical function infrastructure I refers to a �xed

creation process Create (De�nition 1) and the set of all

PF systems S (De�nition 3), where the physical com-

ponent p is the result of Create, i.e.,

IαCR = (Create, {Sp,αPF,αEX : p← Create(αCR)}) , (6)

where αCR, αPF and αEX are �xed.

In the rest of this section, we bring the description

and formal de�nitions of security properties of interest

for Image-based physical function system, i.e., robust-

ness and physical unclonability.
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Robustness

Robustness is evaluated by the probability to recon-

struct the output of a PF system that has been pro-

duced in setup mode. Formally it is de�ned as follows:

De�nition 5 (Robustness [1]) Let S be a PF sys-

tem (De�nition 3) and let x ∈ X be a challenge. The

challenge robustness of S w.r.t. x is de�ned as the prob-

ability

ρS(x) :=Pr [(z, h)← S(x, h) :

(z, h)← S(x, ε)] .
(7)

Physical Unclonability

To de�ne the property of Physical Unclonability, Arm-

knecht et al. �rst de�ned the notion of Physical Clone

[1]. They consider clones on the physical level only and

exclude mathematical clones. This de�nition also suits

for Image-based PUFs which, as mentioned previously,

are usually mathematically clonable 3.

De�nition 6 (Physical Clone [1]) Let ACR be a

set of creation parameters and let αPF and αEX be

a �xed evaluation and extraction parameters, respec-

tively. Moreover, let S = Sp,αPF,αEX
and S′ = Sp′,αPF,αEX

be two PF systems (De�nition 3), that are identical

except of their physical component, i.e., p 6= p′. Let

0 ≤ δ ≤ 1. We de�ne that S′ is a δ-clone of S w.r.t.

X ′ ⊆ X if for all x ∈ X ′ it holds that

Pr
�
(z, h)← S′(x, h) : (z, h)← S(x, ε)

�

≥ δ · ρS(x).
(8)

For simplicity, we write S′
δ,X ′

≡ S if Eq. 8 holds.

The reason to integrate the notion of robustness

ρS() into the de�nition of clones is that any PF system

should be formally seen as a clone of itself. Therefore,

the robustness marks a natural upper bound on �how

similar a clone can become�.

Cloning attacks might be of di�erent types:

� Selective cloning refers to the event that for a given

PF system S a clone S′ is constructed.
� Existential cloning: means that two arbitrary PF

systems S and S′ are produced, where one is the

clone of the other.

3 Note that most PUFs are mathematically clonable when us-
ing a �xed challenge.

Fig. 2 Existential unclonability security experiment
Experex-unclA (q).

For Image-based PUFs, we investigate the existential

physical unclonability as a worse case study.

Let us now bring the de�nition of existential un-

clonability, where the adversary A must produce two

arbitrary clones. In this scenario, which is depicted in

Figure 2, the adversary A can make at most q queries to

the Create process and ask for creation of physical com-

ponents for the set of creation parameters αCR ∈ ACR

and challenges X ′ ⊆ X . Then he outputs two arbitrary

clones p, p′.

De�nition 7 (Existential Physical Unclonability

[1]) Let ACR be a set of creation parameters and let

αPF and αEX be �xed parameters for the evaluation and

extraction procedures, respectively. Note that this im-

plicitly de�nes a family IACR
:= {IαCR

: αCR ∈ ACR}
of PF infrastructures (De�nition 4).

A family of PF infrastructures IACR is called (γ, δ, q)-

cloning-resistant w.r.t. X ′ ⊆ X , if

Pr
�
S′p′,αPF,αEX

δ,X ′

≡ Sp,αPF,αEX
:

(p, p′)← Experex-unclA (q);

p ∈ [Create(αCR)];αCR ∈ ACR;

p′ ∈ [Create(α′CR)];α
′
CR ∈ ACR

�
≤ γ.

(9)

This means: the probability that A generates, as

output of the security experiment depicted in Figure 2,

two physical components p and p′ which (i) imply δ-

clones on the PF system level and (ii) have been created

using creation parameters αCR ∈ ACR and α′CR ∈ ACR,

is less than γ.

For practical (i.e., experimental) assessment of phys-

ical unclonability of Image-based PUFs, we limit the

adversary to do what an honest manufacturer can do

by con�ning the possible creation parameters to that

of the honest manufacturer (ACR = {αCR}). We argue

that other scenarios are unlikely to happen. In other

scenarios the adversary tries di�erent creation param-

eters which are either in the same range of accuracy as

αCR or more accurate (with the aid of a more powerful

technology). We argue that the �rst case is expected

not to trigger collisions with PUFs produced using αCR
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4. The cost of second case is also expected to be pro-

hibitive, as a classical property of physically unclonable

functions.

3 Image-based Physical Function System

In this section, we specialize the generic model of physi-

cal functions (described in the above section) to Image-

based physical function systems.

Image-based physical function systems include an

Image-based physical function and an Image-based Ex-

traction including an image hashing and a typical fuzzy

extraction [36, 37]. Fig. 3 illustrates an Image-based

physical function system in setup and reconstruction

modes. For the sake of simplicity, the creation process

Create is not included in the model. In the following,

we describe the ingredients of the system in detail.

3.1 Image-based Physical Function

The physical component p (See Fig. 3) is a piece of a

physical object containing random visual features. The

challenge x is considered as the illumination used to

take the images. The illumination is characterized by

the type of light, its frequency, orientation, distance

from the source to the object etc. The response sig-

nal ỹ is the signal representing 2D or 3D pro�le of the

physical component. The Eval procedure (e.g., typically
an analog-to-digital converter or a digital camera) con-

verts the response signal ỹ to a digitized response (im-

age) y. Note that hereafter we use the notion y when

referring to PUF response in general. It represents ys
in setup mode or yr in reconstruction mode. The eval-

uation parameter αPF describes the setting of the Eval
procedure, e.g., typically the resolution of the imag-

ing tool. In the rest of this paper, we assume only one

�xed challenge because for the main target application,

i.e., anti-counterfeiting, we do not need a function but

just an output acting as the PUF identi�er. As men-

tioned previously, the PUF output (identi�er) together

with the helper data and the product information can

be digitally signed to form a signature which is further

validated for authentication of the product.

We also assume a �xed transversal and longitudinal

resolution of the Eval procedure such that the response

of the PUF y is a vector y ∈ RN1×N2 = RN of N =

4 O� course, the validity of this assumption should still be
asserted by the system designer when selecting a speci�c PUF
realization.

N1N2 samples (or pixels) each having a certain number

of grayscale values 5.

3.2 Image-based Extraction

The extraction procedure Extract of an Image-based PF

System (hereafter called Image-based Extraction) in-

cludes an image hashing procedure combined with a

fuzzy commitment scheme or code-o�set fuzzy extrac-

tion algorithm [36, 37]. However, the response of the

Image-based physical function is a real-valued image

with a high dimension and the fuzzy extraction needs

a binary string. So, we propose to integrate within the

extraction scheme an image hashing procedure. It aims

at reducing the dimension of the response and quan-

tizing it into a limited length binary string while pre-

serving the distinguishability of the Image-based PUFs

(further described in following). The code-o�set fuzzy

extraction algorithm is used to decrease the error rate

of PF responses by using Error Correcting Code (ECC)

and code-o�set construction.

3.2.1 Image Hashing

Image hashing aims at reducing the dimension of the

image y ∈ RN and quantizing it into a binary string of

�xed length M ≤ N . In essence, it encompasses com-

pression and quantization steps. Image hashing is thus

de�ned as:

H : RN → BM , y 7→ y = H(y) = signb(Θy), (10)

where y ∈ RN is the PF response (image), y is an M -

bit hash, Θ is a RM×N matrix which is called sensing

matrix and signb is a 1-bit quantization function (see

conventions). Hereafter, the hash y ∈ BM of the PF

response is called the �ngerprint of the Image-based

PUF because it represents the random pattern of the

PUF as of biometric �ngerprint.

It is required that the images from the observations

of the same PUF give similar hash values, while images

from di�erent PUFs give di�erent hash values with high

probability 6. This probability relates to both the dis-

tinguishability of PUF images and the employed image

hashing. For a set of images from a speci�c Image-based

PUF, the distinguishability of the images can be deter-

mined with the distance (e.g., Euclidean norm) between

images of di�erent PUFs (inter-distance) and distance

5 Images are represented as vectors, e.g., by concatenating their
rows.
6 This contributes together with the fuzzy extraction to provide

the same value for the same PUF and independent values for
di�erent PUFs.
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Fig. 3 An Image-based physical function system.

between di�erent observations of the same PUF (intra-

distance). The inter- and intra-distance characteristics

are often used for an objective assessment of PUF prop-

erties in the literature [19]. They are usually summa-

rized by providing histograms showing the occurrence of

both distances over a number of di�erent observations,

and a number of di�erent pairs of PUFs. The inter-

distance qualitatively illustrates uniqueness of di�er-

ent PUF responses while the intra-distance illustrates

the observation noise. For a set of Image-based PUFs

where inter-distance histogram of the images does not

signi�cantly overlap with the intra-distance histogram
7, image hashing just needs to reduce the dimension

while preserving the distances between the images .

Otherwise, image hashing also requires enhancing the

distances towards less overlap between intra and inter-

distances. For these two cases, we propose to use non-

adaptive and adaptive image hashing respectively.

Notice that based on the properties of the images

provided for a speci�c Image-based PUF, pre-processing

can be performed as a �rst step of image hashing to re-

duce the observation noise such as misalignment, disori-

entation and ambient light change in order to enhance

intra-distance distribution.

Here, using the theory of sparse signal representa-

tion [38], we brie�y introduce the concept of adaptive

and non-adaptive compressing of the image prior to the

quantization. Next in the section 4, we describe in detail

the implementation of instantiations of non-adaptive

and adaptive hashing methods, namely Random Binary

Hashing and Gabor Binary Hashing respectively.

In general, sparse representation of a signal means

representing the signal with a linear combination of a

7 The overlap between distributions can be inspected visually
or by means of more precise measures e.g., Kullback-Leibler di-
vergence between two distributions.

small number of elementary signals called atoms (basis

functions). The signal (image) y =
P
i αiψi = Ψα is

J-sparse in a certain basis (Fourier, Wavelet, Gabor,

Curvelet,...), if there exists a representation of y using

at most J signi�cant (non-zero) coe�cients [39].

Adaptive compressing of the signal accounts for a J-

term approximation. It consists of the terms of α with

the J largest magnitudes while setting all other terms

to zero [40].

Non-adaptive compressing (known as Compressed

Sensing) [41], [42] is based on the fact that a signal that

is sparse in one basis can be represented non-adaptively

from M ≥ O(J logN/J) linear projections onto a basis

Φ that is incoherent with the sparsity basis Ψ 8. Using

this approach, the signal is approximated by yM = Φy

where Φ = (Φij) ∈ RM×N is incoherent with the spar-

sity basis Ψ . For instance, random matrices that are

on average incoherent with most known basis functions

have been used to perform non-adaptive compressing.

The sparsity of the signal plays a signi�cant role in

how accurate it can be represented by both adaptive

and non-adaptive approaches. In this view, we argue

that both proposed methods are appropriate for Image-

based PUFs with so-called medium-entropy images. It

means that while images contains random structures,

they do not look completely random with each pixel

having an i.i.d value. This is important since, com-

pletely random images can not usually be sparsi�ed in

any known sparsity bases. In this case, both adaptive

and non-adaptive methods seem to fail. In practice, the

condition of having medium-entropy images holds for

most of existing image-based PUFs. Thus we believe

that adaptive and non-adaptive methods are e�cient

tools to hash the response of Image-based PUFs.

8 Roughly speaking, incoherence means that no element of one
basis has a sparse representation in terms of the other basis.
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In adaptive hashing the sensing matrix Θ is selected

adaptively based on the structure and content of the

input image (by selecting the largest magnitude coef-

�cients) while in the non-adaptive method the sens-

ing matrix Θ is selected independently (e.g., randomly)

from the image. The implementation of non-adaptive

hashing is thus faster than adaptive hashing as the sens-

ing matrix is selected without the need to �rst process

the image. In section 4.2 and 4.3, we describe the in-

stantiations of non-adaptive and adaptive image hash-

ing methods, namely Random Binary Hashing and Ga-

bor Binary Hashing respectively. In section 5 we com-

pare their results in terms of robustness and physical

unclonability. The exact assessment of their computa-

tional complexity is out of the scope of this paper.

3.2.2 Fuzzy Extraction

For extraction algorithm described in section 2, there

exist numerous methods. The general option is to use

a fuzzy extraction algorithm. In this paper, we have

used a fuzzy commitment scheme proposed by Juels

and Wattenberg [36] that is equivalent to the code-

o�set fuzzy extraction algorithm described by Dodis

et al. [37] 9. In code-o�set fuzzy extraction (or fuzzy

commitment scheme), the helper data is constructed as

a codeword from a selected error-correcting code, used

to encode a chosen output, masked with the PUF re-

sponse observed during setup phase. The helper data

together with the PUF response observed during re-

construction phase are mapped to a codeword which

is decoded to the same output chosen in setup phase,

if the error between PUF responses is less than er-

ror correction capability. The main motivation of us-

ing code-o�set fuzzy extraction scheme for Image-based

PUFs is to produce reproducible (error-free) outputs in

setup and reconstruction phases. This brings up the

opportunity to use Image-based PF system for more

advanced security constructions (i.e. anti-counterfeiting

systems). For instance, for an anti-counterfeiting sys-

tem based on digital signature scheme (described pre-

viously), the veri�cation works properly only if the out-

put obtained in reconstruction phase perfectly matches

the one produced in setup phase. We believe that code

o�set fuzzy extraction or fuzzy commitment scheme

is a good choice to extract reproducible outputs from

Image-based PUF. The main reason is that it is con-

venient and easy to implement using standard error-

correcting codes. It is also a popular technique for ex-

tracting identi�ers from biometrics [43].. By merging

9 Although, according to [37], more precise name for this
scheme would be code-o�set secure sketch, we prefer to be con-
sistent with more commonly used term in literature.

image hashing and above code-o�set fuzzy extraction,

the pipeline of Image-based Extraction in the set-up

and reconstruction steps is as follows:

In the set-up phase, PF response (image) ys is

sensed by a system modeled by a sensing matrix Θ,

i.e., Θys is measured and then quantized into the M

bit string �ngerprint ys ∈ BM . The sensing matrix Θ

is encoded to hΘ as the �rst part of helper data that

supports the recreation of the same hashed value in re-

construction phase. Note that Θ is a mathematical ob-

ject and hΘ is the minimal amount of information that

is enough to represent Θ. For example for a random

matrix Θ, the seed of its pseudorandom generation can

serve as hΘ. Directly correcting the noisy �ngerprint

is not possible since this is typically not a noisy ver-

sion of a code-word but an arbitrary noisy vector. A

relatively simple but powerful construction to decode

arbitrary words is the code-o�set method. Using code-

o�set method, we transform the �ngerprint ys ∈ BM
into a random code-word of a prede�ned error correct-

ing code czs ∈ BM . For that, a randomly chosen string

zs ∈ B` with ` < M is encoded to a random code-

word czs ∈ BM using a ECC(M, `, d) which transforms

zs ∈ B` to the code-words czs ∈ BM . The redundancy

added to the input by transforming it into a larger code-

word enables using a suitable decoding algorithm to de-

tect and correct up to t = b(d−1)/2c errors in the code-
word [44]. The o�set between ys and czs constitutes the

second part of helper data hz = ys ⊕ czs ∈ BM where

⊕ denotes the bitwise exclusive or. Randomly chosen

string zs ∈ B` is the output of the PF system that

can be considered as the identi�er of the Image-based

PUF. The second part of helper data supports the recre-

ation of the same output in reconstruction phase and

also allows binding the randomly chosen output (iden-

ti�er) zs ∈ B` to the PUF response. The helper data

h = {hΘ, hz} is stored to be further used in reconstruc-

tion phase.

In the reconstruction phase, the same hashing is

applied to the noisy version of the PF response (image)

yr using the sensing matrix speci�ed by the �rst part of

helper data hΘ to construct yr. Then the transforma-

tion maps the noisy version of the �ngerprint yr to a

noisy version of the code-word using the second part of

helper data hz such that czr = yr⊕hz. The noisy code-
word czr can be decoded to the correct code-word czs
if the Hamming distance between ys and yr is smaller

than the error correcting capability t. The output zs can

now be recovered by decoding the corrected code-word

czs. If dist (ys, yr) > t, then no guarantee is provided

about the output of reconstruction phase [37].
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In the next section, we instantiate Image-based Phys-

ical Function and Image hashing procedure described in

the above scheme.

4 Instantiations

4.1 Instantiation of Physical Function : Laser-Written

PUF and WLI Evaluation

We instantiate Image-based physical function by Laser-

Written PUF and White Light Interferometry evalu-

ation procedure proposed in [17]. Laser-Written PUF

(LPUF) is based on the 3D pro�le of laser mark(s) en-

graved on the surface or volume of a physical object.

The randomness of the laser mark mainly stems from

the laser beam instability and random characteristics of

the object material. LPUF is a good instance of Image-

based PUFs to be employed for anti-counterfeiting pur-

poses. Indeed, it can be engraved in several objects with

various materials, it can be very small and it cannot

be removed and copied into other objects without a

considerable damage to the quality of the object (e.g.,

consider laser marks in the gemstones). It is also very

robust against aging especially when embedded on the

bulk of the object.

The creation process Create of LPUF (See Fig. 1)

includes engraving laser mark(s) on the surface or vol-

ume of a physical object. The creation parameter αCR

includes, among others, the controllable speci�cations

of the laser engraving like laser beam frequency, di-

ameter ... The physical component p is the laser mark

containing random features. The randomness relates to

the creation parameter and the uncontrollable engrav-

ing variability due to both laser beam instability and

random density of the object material. Fig. 4(a) illus-

trates a typical creation process of LPUF from transver-

sal view. Assuming two dotted arrows as hypothetical

transversal axes, laser beam instability is illustrated

by a random-shape curve. Density randomness of the

object material is also shown as the second source of

randomness. The evaluation process Eval has been per-

formed by White Light Interferometry (WLI) imaging.

The challenge x is �xed to a simple white light used

in WLI method and the response signal ỹ is the phase

of re�ected beam from the object surface that is then

converted to the digital image y. The evaluation pa-

rameter αPF includes the nanometer depth resolution

and sub-micrometer traverse resolution which are �xed

by design. The typical response (digital image) y of the

WLI evaluation process for two di�erent laser marks

engraved on the glass substrate are shown in Fig. 4(b).
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Fig. 4 (a) Laser engraving principle. (b) Two laser depth pro�les
[17].

4.2 Instantiation of Non-adaptive Image Hashing:

Random Binary Hashing

Non-adaptive image hashing is instantiated by Ran-

dom Binary Hashing based on [35]. Non-adaptive com-

pressing (dimensionality reduction) in Random Binary

Hashing is achieved by sensing the image with a ran-

dom matrix Φ = (Φij) ∈ RM×N such as Gaussian

random matrix Φij ∼iid N (0, 1/M) or uniformly dis-

tributed random matrix Φij ∼iid ±1/
√
M , and many

other sub-Gaussian distributions [45] 10. As discussed

previously, the random matrix is incoherent with most

known basis functions and can be e�ciently applied for

non-adaptive compressing.

This random matrix is used as the sensing matrix

Θ (See Eq. 10) for the image hashing. Random Binary

Hashing HR is thus de�ned by:

HR : RN → BM , y 7→ yR = HR(y) = signb(ΘRy), (11)

where the sensing matrix ΘR is a random matrix Φ.

This non-linear mapping (after one-bit quantization)

satis�es a certain measure concentration with respect

to the normalized angle distance (see conventions) be-

tween two distinct images and the normalized Hamming

distance of their binary hashes. Indeed, for Gaussian

random matrix Φ and for any y, w ∈ RN and β > 0,

Pr
� �� 1

M distH(y, w)− dist∠(y, w)
�� ≥ β

�
≤ 2 e−2β

2M .

(12)

The proof is given in [35,46]. So, Random Binary Hash-

ing HR reduces the dimension while preserving the dis-

tances (as measured by angle) between the images. Re-

cently, it has been shown in [47] that 1
M distH(y, w)

is as close as desired to dist∠(y, w) with high prob-

ability for all y, w ∈ RN that are J-sparse or com-

pressible in a certain basis (Fourier, Wavelet,...) for

M = O(β−2J log(N/J)). They also investigate the re-

sistance of binary random hashing in the presence of

10 i.i.d stands for Independent and Identically Distributed ran-
dom variable.
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the observation noise. They show that for a Gaussian

observation noise no ∼iid N (0, σ2
o), the Hamming dis-

tance between the hash values of di�erent observations

of the same PUF is bounded by dist∠(ys, yr) ≤ Cσo
with a constant C. This property (resistance of hash-

ing against observation noise) is con�rmed in our ex-

periments.

Random Binary Hashing o�ers a fast and e�cient

hashing of the images and an e�ective constitution of

helper data that is independent of the images. Another

interesting advantage of Random Binary Hashing is that

it can be integrated in the imaging hardware [48]. It

makes the implementation of the algorithm quite fast

and easy.

4.3 Instantiation of Adaptive Image Hashing: Gabor

Binary Hashing

In Gabor Binary Hashing, adaptive compressing relies

on the use of 2-D Gabor basis functions as the sparsity

basis. Olshausen et al. [49] have shown that a learn-

ing algorithm that attempts to �nd sparse linear rep-

resentation for natural scenes will develop a complete

family of spatially localized, oriented, bandpass (selec-

tive to structures at di�erent spatial scales) basis func-

tions, similar to Gabor basis functions. So, Gabor-based

representation seems to be a close to optimal choice

for sparse representation of images in general and the

Image-based PUFs in particular.

Gabor Binary Hashing presented in following is very

similar to an existing Gabor-based hashing used to pro-

cess optical PUF speckle pattern [21, 26]. Our contri-

bution is to embed this method in the adaptive hash-

ing model described previously. This facilitates exten-

sion of adaptive hashing method for other sparsity basis

(Fourier, Wavelet, Curvelet,...) [39] when necessary.

Gabor basis functions gψ(b) ∈ R are de�ned as:

gψ(b) =
1

a
√
2π

sin(ν · (b− k)) exp(− 1
4a2 ‖b− k‖

2), (13)

where '·' denotes the scalar product between two vec-

tors (see conventions), b = (b1, b2) ∈ R2 and the basis

functions are parameterized by ψ = (a, ν, k) ∈ R+ ×
R2 × R2. The basis function gψ(b) is the product of

a plane wave with wave vector ν ∈ R2 and a Gaus-

sian signal with variance (or scale) a ∈ R+ centered

on k = (k1, k2) ∈ R2. For the PUF response y ∈ RN
(which is a discrete signal represented in one dimen-

sion), Gabor coe�cients can be obtained by projecting

y on the Gabor basis functions as follows:

〈gψ, y〉 =
NX

i=1

gψi
yi ∼= GTψy, (14)

where each column of GTψ is a basis function gψi
. In this

view, Gabor coe�cients are calculated by the matrix

multiplication of the Gabor atoms by y.

In our experiments, we restrict ψ to a �nite set of

values Ψ(a, ν0, ∆) ⊂ R+ × R2 × R2 de�ned as:

Ψ(a, ν0,∆) =
¦
(a, νf , bm) :

νf = ν0(sin θf , cos θf ), θf = 2πf/F, 0 ≤ f < F,

km = (m1∆,m2∆), 0 ≤ mi < bNi/∆c, i ∈ {1, 2}
©
.

(15)

The size of Ψ(a, ν0, ∆) is #Ψ(a, ν0, ∆) = F bN1/∆c
bN2/∆c, and it induces the coe�cient set Ga,ν0,∆ =

{GTψy : ψ ∈ Ψa, ν0, ∆} of the same size.

Let ψ(i) be the parameter vector pointing out the ith

strongest value 11 of Ga,ν0,∆ and let ΘG = [Gψ(1) , Gψ(2)

, ..., Gψ(M) ]T be the Gabor basis functions (atoms) pro-

viding the largest Gabor coe�cients when applied to

the image. These Gabor atoms are used as the sensing

matrix Θ (See Eq. 10) for the image hashing. Gabor

Binary Hashing HG is thus de�ned by:

HG : RN → BM , y 7→ yG = HG(y) = signb(ΘGy). (16)

The parameter vector ψM = {ψ(1), ..., ψ(M)} (the

positions of the most robust components) constitutes

the �rst part of the helper data.

As discussed earlier, for a set of PUFs where the

images inter-distance signi�cantly overlaps their intra-

distance, image hashing requires enhancing the distance

distributions. Gabor Binary hashing can achieve that

by reducing the e�ect of noise in the hashed value, by

adaptively selecting a sensing matrix of robust atoms.

5 Experimental Results and Analysis

We evaluate robustness and existential physical unclon-

ability of the example of Image-based physical func-

tion system described in the previous section. Hereafter,

Image-based Extraction using Random Binary Hashing

and Gabor Binary Hashing methods are called RbEX

(Random-based-Extraction) and GbEX (Gabor-based-

Extraction) respectively.

Experimental settings of Image-based Physical

Function

We analyze implementation settings of the Image-based

Physical Function described in section 4.1. For this pur-

pose, we �rst describe the creation process of the phys-

ical component. Laser marks are engraved by focusing

11 In absolute value sense
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the beam of an excimer laser on a glass substrate. The

laser wavelength is 193nm, its power is 130mW and its

frequency is 200Hz. Three laser shots are used to create

laser marks. The imprinted pattern is a 100xl00 matrix

of 60 micron-diameter laser marks. The mean ablation

depth is 350nm. The evaluation of the LPUF pro�le has

been carried out by means of a White Light Interfer-

ometry method implemented with a Mirau interferom-

eter [50, 51]. The light source is a 4mW LED 300 with

wavelength 638nm. The interference pattern is imaged

on a CCD camera which is then used to obtain the

topography of the laser pro�le. Using this method, we

achieve a sub micron traverse resolution and a nanome-

ter longitudinal resolution.

Preliminary Analysis of the Datasets

For experimental analysis, the datasets of images are

built using the evaluations of some randomly-selected

laser marks from 100xl00 matrix of marks described

above. Two datasets of Laser-Written PUFs named D1

andD2 are constructed to evaluate robustness and phys-

ical unclonability respectively. The �rst dataset D1 =

{yrq, 1 ≤ r ≤ R, 1 ≤ q ≤ Q} ⊂ RN contains R = 20

di�erent LPUFs of N = 115 600 pixels (N = N1N2 =

340×340) observed Q = 60 times. The second dataset

D2 = {yr, 1 ≤ r ≤ R} ⊂ RN contains R = 1000 di�er-

ent LPUFs of N = 115 600 pixels observed once. Each

image has been �rst pre-processed to reduce the ob-

servation noise due to misalignment and ambient light

change. In pre-processing, we �rst apply mean normal-

ization to compensate measurement noise due to ambi-

ent light change. Then, a morphological noise removal is

applied consisting of area opening to remove the light

structures with size smaller than a certain threshold

and area closing which has the same e�ect on dark

structures [52, 53]. Finally, the objects inside the im-

age are recognized and the one with the size similar to

that of laser mark is selected. In this way, we locate the

framed region of LPUF inside the image and use this

framed region as the pre-processed PF response (y in

the datasets).

We begin with evaluating the distinguishability of

LPUF images by exploring the Euclidean distance be-

tween images from di�erent observations of the same

PUF (intra-distance) and images of di�erent PUFs (inter-

distance) using datasets of D1 and D2 respectively. In-

tra and inter-class Euclidean distances between PUF
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Fig. 5 Histogram of intra-class (white) and inter-class (gray)
Euclidean distances between LPUF images.

images are calculated by:

Dintra =
¦
dist(yrq, yrq′) :

yrq, yrq′ ∈ D1, 1 ≤ r ≤ R, 1 ≤ q, q′ ≤ Q, q 6= q′
©
,

(17)

and,

Dinter =
¦
dist(yr, yr′) :

yr, yr′ ∈ D2, 1 ≤ r, r′ ≤ R, , r 6= r′}. (18)

Fig. 5 illustrates the normalized histograms of intra and

inter-class Euclidean distances using Eq. 17 and Eq. 18

respectively 12. The number of comparisons made to

estimate histograms is thus 20
�60
2

�
= 35400 for intra-

distance and
�1000

2

�
= 499500 for inter-distance.

The statistical mean and standard deviations of in-

tra and inter-class Euclidean distances are obtained as

(µintra, σintra) = (41.71, 16.02) and (µinter, σinter) =

(212.82, 52.11) respectively. This preliminary analysis

of the Euclidean distances between PUF images gives

the intuition about the observation noise and unique-

ness of original images of the datasets. We visually ob-

serve that inter-distance histogram of the images does

not signi�cantly overlap with the intra-distance his-

togram. Therefore, as described in section 3.2.1, we pre-

dict that both adaptive and non-adaptive image hash-

ing will provide reasonable results. So, we apply both

RbEX and GbEX and compare their results in terms of

robustness and physical unclonability.

Experimental settings of Image-based Extrac-

tion

We now describe the implementation settings of the

Image-based Extraction described in section 4.

Random Binary Hashing is realized with another

random matrix construction [54,55] than Gaussian ran-

dom matrix (described in section 4.2) in order to further

12 Whereby the counts are replaced by the normalized counts
such that the maximum frequency equals 1.
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accelerating the hashing process. Later on this section

we show that this method roughly behaves like applying

Gaussian random matrix. First, the images are delib-

erately spread in the frequency domain. This is carried

out by simply multiplying the image y by a random

matrix U = diag u where u ∈ {−1,+1}N is a Bernoulli

random vector of size N . Then the sensing matrix ΘR
of Eq. 11 corresponds to picking uniformly random M

�frequencies� in a Fourier transform of Uy ∈ RN i.e.,

ΘR = SFU where S is the selection matrix, F is the

discrete Fourier matrix and U is the random matrix

described above. The e�ect of the spread spectrum se-

quence U is to spread the frequency response of y ∈ RN
so that the Fourier Transform of Ux ∈ RN is �at on

average and picking random frequencies leads to a fair

random selection. In other words, all the measurements

per frequency are meaningful and they do not fall in a

possible gap (with no frequency content) of the spec-

trum of y ∈ RN . It has been shown in [55] that under

the condition M ≥ O(J logN/J), which holds in our

case, the described spread spectrum method behaves

like applying a full Gaussian random matrix (described

in section 4.2). We have also experimentally observed

that the histogram of ΘRy components follows a Gaus-

sian distribution. This method induces both a fast eval-

uation of y ∈ RM from y ∈ RN in O(N logN) computa-

tions (compared to O(MN) for hashing using Gaussian

random matrix) and a reproducibility of ΘR by record-

ing in hΘ the M selected frequencies or alternatively

the seed of their pseudorandom selection.

Gabor Binary Hashing has been achieved by re-

stricting the parameter vector ψ of the Gabor basis

functions to the �nite set of values as described in Eq. 15.

We set Gabor parameters to ν0 = π/3, F = 4 (four

orientations), m1 = m2, a = 10 (Gaussian scale) and

∆ = 30 (square grid size to apply the �lter) respectively.

These parameters are obtained experimentally provid-

ing sub-optimal yet su�ciently good results 13. The

size of Gabor coe�cients set is therefore #Ga,ν0,∆ =

F bN1/∆cbN2/∆c = 4b340/30c2 = 484. The sensing

matrix of M < 484 most robust Gabor atoms ΘG is

then constructed and applied to the images using Eq. 16.

Error correcting code of code-o�set Fuzzy Extrac-

tion algorithm is realized using BCH (M, `, d) code which

can correct up to t = b(d − 1)/2c errors in the code-

words (�ngerprints). The code-word size, M must have

the form 2k − 1 for some integer k.

13 As parsing all di�erent combinations of parameters is combi-
natorially complex, we adjust the parameters by experimentally
tuning them to get our results.

Robustness

Robustness of a physical function system (de�ned in

De�nition 5) expresses the probability that an output

generated in reconstruction stage matches the value

generated in set-up phase. We evaluate the robustness

of the example of Image-based physical function system

using dataset D1 of LPUFs by applying both extraction

methods RbEX and GbEX.

The robustness has been assessed using two approaches.

In the �rst approach, the robustness is evaluated

by the probability that the Hamming distance between

�ngerprints of the same PUF in set-up and reconstruc-

tion phases is less than the error correction capability,

hence enabling the ECC to map them to the same out-

put. Let ∆e = distH(ys, yr) be the Hamming distance

between the �ngerprints ys and yr of the same PUF in

set-up and reconstruction phase respectively. Knowing

that the helper data generated in set-up phase has been

used in reconstruction phase, the robustness of De�ni-

tion 5 is estimated by:

ρS = Pr[∆e ≤ t]. (19)

In the second approach, we estimate the robustness

directly on the output values z. For the same PUF,

knowing that the helper data generated in set-up phase

has been used in reconstruction phase, the robustness of

De�nition 5 is estimated from the probability of having

the same output in set-up and reconstruction phases as

follows:

ρS = Pr[zr = zs]. (20)

For both approaches, we obtain the robustness by

applying di�erent error correction capabilities. For this

purpose, we use a BCH (M, `, d) code, we �x the pa-

rameterM = 255 and �nd the robustness for a selection

of possible pairs of `, t where t = b(d − 1)/2c. The ro-
bustness is then plotted versus ` 14.

We provide a fair statistical estimation of robustness

for both approaches as follows. Given the dataset D1 of

Q observations of R PUFs, for each PUF, one observa-

tion of the PUF is used in set-up phase ys to produce

�ngerprint ys, helper data h and output zs. The re-

maining (Q−1) observations together with helper data

h are used in reconstruction phase that generates the

new �ngerprint yr and output zr for each observation.

This is repeated Q times until each observation is used

once in set-up phase.

For the �rst approach, the histogram of ∆e = distH
(ys, yr) is estimated from above iterations (between any

14 The reason to select M = 255 will be justi�ed later in in this
section.



Analysis and Experimental Evaluation of Image-based PUFs 13

pair of observations of the same PUF). The size of dis-

crete intervals (bins) to estimate the histogram is se-

lected according to the Scotts rule. It states that bin size

h = 3.5σ/n1/3 is optimal for random samples of nor-

mally distributed data where σ and n are the standard

deviation and size of the sample data respectively [56].

Then Pr[∆e ≤ t] is estimated from the cumulative dis-

tribution function using histogram of ∆e estimated as

stated above. For the second approach, the probabil-

ity of Pr[zr = zs] is directly estimated from the same

iterations as above.

The histograms of ∆e for both extraction methods

RbEX and GbEX are shown in Fig. 6(a) and Fig. 6(c)

respectively. Fig. 6(b) and Fig. 6(d) show the robust-

ness versus output length ` for both extraction methods

RbEX and GbEX respectively. The plain curve corre-

sponds to the robustness estimated with the �rst ap-

proach Pr[∆e ≤ t] and the dashed curve corresponds

to the robustness estimated with the second approach

Pr[zr = zs]. We see that increasing ` results in decreas-

ing robustness. The reason is that increasing ` means

decreasing error correction capability t and thus re-

duced robustness. We also observe that the probabil-

ity Pr[zr = zs] is higher than Pr[∆e ≤ t]. This holds

because there may exist some occurrence of zr = zs al-

though distH(ys, yr) > t, since ECC may provide the

same output in reconstruction phase even if there exist

more than t errors between the code-words as described

in section 3.2. The occurrence of dashed curve going be-

low plain curve is probably due to the distortion caused

by the histogram binning in the �rst approach.

Because of the low level of noise in PUF images

of our particular dataset (as depicted in intra-class dis-

tance in Fig. 5), we observe that both non-adaptive and

adaptive methods provide good robustness for some val-

ues of output length `. We even see that non-adaptive

RbEX outperforms adaptive GbEX because it provides

better robustness for larger range of output length (` <

150). However, it remains to evaluate the physical un-

clonability to fairly compare these two methods.

Physical Unclonability

As discussed previously, we con�ne the adversary tools

to those of honest manufacturer. In this view, we assess

the existential cloning-resistance of LPUFs by �nding

the probability that an honest manufacturer produced

two clones by accident. In order to calculate the prob-

ability of this event, we �rst evaluate the probability of

a particular creation event (where the �clones� are cre-

ated according to Eq. 9) and determine to what extent

this creation event produces a pair of clones according

to De�nition 6.
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Fig. 6 Histogram of intra-class Hamming distance between �n-
gerprints of the same PUF ∆e and Robustness versus output
length ` by (plain) Pr[∆e ≤ t] and (dashed) Pr[zr = zs] for
RbEX (a),(b) and GbEX (c),(d) respectively.

We also calculate the physical unclonability using

two approaches. In the �rst approach, we use the Ham-

ming distances between �ngerprints values in set-up

and reconstruction phases. Let ∆cl = distH(ys, y
′
r) be

the Hamming distance between �ngerprints ys and y
′
r of

two di�erent PUFs generated in set-up and reconstruc-

tion phases respectively, using the same helper data.

We start by considering the event ∆cl ≤ ∆max where

∆max is an arbitrary integer value 0 ≤ ∆max ≤ M .

Practically Pr[∆cl ≤ ∆max] can be computed using the

histogram of ∆cl. This provides therefore a minimum

value of γ according to Eq. 9 i.e.,

γmin = Pr[∆cl ≤ ∆max] ≤ γ. (21)

Given the dataset D2 of R PUFs, histogram of ∆cl

is computed as follows. First, one PUF is chosen as

a �target�, the image of which is used in set-up mode

to generate helper data h , �ngerprint ys and output

zs. The remaining (R − 1) images, together with the

initial helper data h, are then used in reconstruction

mode, generating �ngerprints yr and outputs zs. This

experiment is repeated R times, each PUF being se-

lected once as target. The distance ∆cl is estimated

from all these R(R − 1) iterations by comparing the

�ngerprint generated in setup phase and �ngerprints

produced in reconstruction phase. In this way, ∆cl is

computed from any possible pairs of PUFs. Fig. 7(a)

and Fig. 7(c) shows the histogram of ∆cl for both ex-

traction methods RbEX and GbEX respectively. The

probability Pr[∆cl ≤ ∆max] is then evaluated from

the cumulative histogram of ∆max as in the robustness
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Table 1 Di�erent levels of (γ, δ, q = 2)-cloning-resistance of
LPUF using GbEx for a �xed correction capability t = 26, ` = 87.

∆max γ δ

15 1.04 · 10−6 1.00
35 0.0076 0.06
55 0.16 0.003
75 0.77 6.82 · 10−4

95 0.99 5.29 · 10−4

115 1.00 5.26 · 10−4

235 1.00 5.26 · 10−4

255 1.00 5.26 · 10−4

case. It is yet to be evaluated to what extent the Laser

PF systems are considered as clones according to Def-

inition 6. The probability that both Laser PF systems

produce the same output is lower bounded the prob-

ability that both �ngerprints y′r, ys di�er by no more

than the error correcting capability t given that the ex-

pected di�erence is ∆max bits. The probability of this

event corresponds to the left-hand side of Eq. 8 which

provides a maximum value of δ i.e.,

δmax = Pr[∆cl ≤ t : ∆cl ≤ ∆max]

=

∆maxX

i=0

Pr[∆cl ≤ t : ∆cl = i] · Pr[∆cl = i : ∆cl ≤ ∆max]

=

∆maxX

i=0

pi ·
pdf(i)

cdf(∆max)
=

tX

i=0

pi ·
pdf(i)

cdf(∆max)
≥ δ,

(22)

where pi = 1 if i ≤ t and 0 else. Thus we can rewrite

the sum by simply summing from i = 0, .., t. The func-

tions pdf and cdf denote probability distribution func-

tion and cumulative distribution function of ∆cl respec-

tively. To estimate them, the histogram of ∆cl is di-

vided to i = 1, ..,M bins. Then pdf(i) is estimated from

the histogram value in ith bin and cdf(∆max) is esti-

mated from cumulative histogram of∆cl. It follows that

the considered PF infrastructure IαCR
is (γmin, δmax)-

cloning resistant against an honest manufacturer. For

each pair of (`, t), values of (γmin, δmax) are obtained

by considering di�erent values for ∆max. Smaller val-

ues for∆max will result in increasingly larger chances of

producing the same output, but at much smaller prob-

ability to create such a PUF. At the other end of the

spectrum are pairs of PF systems which are very likely

to be constructed but very unlikely to produce the same

output. Cloning resistance (γmin, δmax) of the Laser PF

system are shown for a selection of ∆max values in Ta-

ble 1 using GbEX with a �xed t.

In practice, this means that with probability γmin,

a manufacturer produces two PF systems that gener-

ate the same output with probability δmax. So, the

existential physical unclonability of a PF system can

be summarized by averaging probability of cloning of

Eq. 9 over all possible values of δ that is equivalent

to PCexS = E[γminδmax] = Pr[∆cl ≤ t] over all the

possible values of ∆max. PC denotes the probability of

cloning that gives us the probability that a random pair

of PUFs manufactured by an honest manufacturer pro-

duces the same correct (i.e. averaged over noise) out-

put. To evaluate the trend of existential physical un-

clonability using di�erent error correction capabilities

of the BCH (M, `, d) code, we �x again the parameter

M = 255 and �nd the probability of cloning for a selec-

tion of possible pairs of `, t where t = b(d − 1)/2c. For
each pair of (`, t), PCexS = E[γminδmax] is estimated

using the built histogram of ∆cl and depicted in plain

curve in Fig. 7(b) and Fig. 7(d), for both extraction

methods RbEX and GbEX respectively.

In the second approach, the existential physical un-

clonability of a PF system against an honest manufac-

turer is estimated directly from the probability of col-

lisions between output values of di�erent PUFs. Let zs
and z′r be the output values of di�erent PUFs in setup

and reconstruction phase respectively, using the same

helper data. The physical unclonability is again sum-

marized by the probability of cloning PCexS = Pr[z′r =

zs : p 6= p′] estimated from all iterations described pre-

viously. The obtained probability is depicted in dashed

curve in Fig. 7(b) and Fig. 7(d) for both extraction

methods RbEX and GbEX respectively.

Note that in the estimation of the above probabil-

ity, the e�ect of observation noise incidence in PUF

images has not been considered since we only had one

observation in the dataset D2. However, we experimen-

tally observe that adding simulated random observa-

tion noise decreases the above probability. This e�ect

stems from a global increase of Hamming distance be-

tween �ngerprints of di�erent PUFs ∆cl. Therefore, the

obtained probability (without considering observation

noise) gives us an upper-bound (worse-case) on the prob-

ability that two di�erently created LPUFs generate the

same output.

By decreasing `, the error correction capability t

increases meaning that more number of errors are cor-

rected. Correcting more number of errors results in map-

ping more di�erent �ngerprints to the same output and

thus higher probability of cloning. We observe that the

probability obtained from the second approach Pr[z′r =

zs : p 6= p′] is higher than the one obtained from the

�rst approach E[γminδmax]. This again stems from some

occurrence of z′r = zs although dist (ys, y
′
r) > t.

We �nally observe that adaptive GbEX outperforms

non-adaptive RbEX because it leads to a faster decay

of the probability of cloning. In the end of this section,
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Fig. 7 Histogram of inter-class Hamming distance between �n-
gerprints of di�erent LPUFs ∆cl and the probability of cloning
versus output length ` by (plain) E[γminδmax] and (dashed)
Pr[z′r = zs : p 6= p′] for RbEX (a),(b) and GbEX (c),(d) re-
spectively.

we describe how to compare the methods based on the

trade-o� between robustness and physical unclonability.

Binomial Modeling

As a complement to our experiments, we investigate

how accurately the robustness and physical unclonabil-

ity can be evaluated assuming that the Hamming dis-

tance between �ngerprints in set-up and reconstruction

phases has the binomial distribution. This is the as-

sumption usually made in prior works for evaluating

the robustness and distinguishability of PUFs [1,6]. The

Hamming distance between the �ngerprints of di�er-

ent observations of the same PUF ∆e relates to the

observation noise and the extraction algorithm. It can

be assumed to have binomial distribution if the noise

is randomly distributed through the bits of the �nger-

prints.

In order to give an overview of the accuracy of this

assumption, we compared the results based on this as-

sumption with the results previously obtained from ex-

perimental histograms only for GbEX method. We as-

sume that ∆e and ∆cl follow binomial distributions

B(M ; pe) and B(M ; py) respectively, where M is the

number of bits of the �ngerprints and pe and py are

the average number of bits that changed between two

�ngerprints of the same PUF (mean value of ∆e) and

two di�erent PUFs (mean value of∆cl) respectively. We

obtain pe = 0.04 and py = 0.26 from the mean values

of ∆e and ∆cl respectively from all the experimental

iterations described previously. We illustrate how the

experimental histogram of ∆e and ∆cl which are ob-

tained previously match the binomial distribution in

Fig. 8(a) and Fig. 8(b) respectively. We observe that

especially for the inter-class distance ∆cl, the real his-

togram is wider than the binomial distributions. It re-

�ects the existing correlation between �ngerprints bits.

It might be the consequence of common patterns be-

tween images of di�erent PUFs and/or the correlations

caused by applied Gabor Binary Hashing. In the next

step, we estimate robustness and physical unclonabil-

ity assuming the binomial distributions ∆e ∼ B(M ; pe)

and ∆cl ∼ B(M ; py) instead of using the experimen-

tal histograms. Let fbino(t;n; pi) and Fbino(t;n; pi) be

the probability distribution and cumulative distribution

function of the binomial distribution B(M ; pi). Then

the robustness is estimated from Fbino(t;n; pe) using

Eq. 19 and physical unclonability is estimated from the

probability of cloning PC = E[γδ] using binomial pdf

and cdf in Eq. 21 and Eq. 22. Fig. 8(c) and Fig. 8(d)

compare the robustness and the probability of cloning

obtained from histogram approach and binomial ap-

proach. We see that the binomial approach gives an

approximate robustness trend but drastically optimistic

results for the probability of cloning. Indeed, because of

the existing correlation between �ngerprints bits for dif-

ferent PUFs, the real distribution of inter-class distance

is wider than the binomial distribution that causes more

collisions between the outputs of di�erent PUFs. This

leads to higher probability of cloning. We conclude that

the binomial assumption for the Hamming distance be-

tween the �ngerprints of di�erent PUFs is far from

the reality for our particular implementation of Image-

based PUFs.

Robustness vs Physical Unclonability

Eventually, the main property of a PF Infrastructure is

the trade-o� between robustness and physical unclon-

ability that provides an asset to fairly compare di�er-

ent PF Infrastructures and select one system I with

all its parameters (described in De�nition 4) for a par-

ticular application. Here, we compare the trade-o� be-

tween robustness and physical unclonability (existen-

tial unclonability against an honest manufacturer) for

two PF systems using RbEX and GbEX as the Extract
procedure. Fig. 9(a) and Fig. 9(b) show this trade-o�

obtained from the output values, i.e., ρS = Pr[zr = zs]

and PCexS = Pr[z′r = zs : p 6= p′] for di�erent cor-

rection capabilities t for RbEX and GbEX respectively.

They show the trade-o� between robustness, probabil-

ity of cloning, and length of output. We observe that
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Fig. 8 Approximation of probability distribution function of in-
traclass (a) and interclass (b) Hamming distance between �n-
gerprints by (plain) histogram and (dashed) binomial distribu-
tion. Robustness (c) and probability of cloning (d) versus output
length ` using (plain) histogram approach and (dashed) binomial
approach for GbEX.

the trend of GbEX outperforms that of RbEX, im-

plying better performance of the adaptive extraction

method for the Laser PF system, because it still pro-

vides a good robustness for an acceptable value of prob-

ability of cloning. For example, the minimum of GbEX

trend provides a pair of (ρ, PCext) = (0.94, 10−6) corre-

sponding to (M, `, d) = (255,131,36). It means that by

correcting t = 18 errors, the system provides the same

output of length ` = 131 for the same PUF with a prob-

ability of 0.94 and provides the same output for di�er-

ent PUFs with a probability of 10−6 which is accept-

able for many applications. In other experiments (ex-

cluded in the paper), we �nd that increasing �ngerprint

length M leads to better trade-o� between robustness

and physical unclonability for both hashing methods.

That is the reason why we pick the maximum possible

M = 255 with the form of 2k − 1 which is smaller than

the size of Gabor coe�cients (#Ga,ν0,∆ = 484).

It is interesting to compare these results with the

typical results given by human biometrics. In biomet-

rics, e.g., for �ngerprints veri�cation systems, the per-

formance of the system is often evaluated by False Re-

jection Rate (FRR), False Acceptance Rate (FAR) and

Equal Error Rate (EER). FRR is the probability of in-

correctly rejected valid users and FAR is the probability

of imposters incorrectly matched to a valid user's bio-

metric. EER is the rate at which both FAR and FRR

are equal. For the Image-based physical function sys-

tems, FRR and FAR can be considered to be equivalent
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Fig. 9 Robustness ρS = Pr[zr = zs] versus existential physical
unclonability summarized by the probability of cloning PCexS =
Pr[z′r = zs : p 6= p′] for (a) RbEX (b) GbEX.

to 1 − ρ and PCext respectively. The equivalent ERR

is given when 1− ρ = PCext and for RbEX and GbEX

are obtained as EERg = 0.2% and ERRr = 0.8%

which recon�rms the better performance of adaptive

GbEX method. The typical EER for �ngerprints veri�-

cation systems is usually more than 2% and thus higher

(worse) than the obtained ERRs for both Image-based

physical function systems [57]. Note that despite funda-

mental di�erences in the security constraints associated

with systems based on human �ngerprints and Image-

based PUFs, EER can still serve as a good measure

for comparing the performance of di�erent Image-based

physical function systems.

Besides, it is important to remark that security prop-

erties of an Image-based physical function system are

scalable. Robustness can be increased by building the

response from averaging over more than one image in

setup phase. Moreover, assuming a locality principle,

i.e. that random variations will behave as independent

events when occurring at di�erent locations on the ob-

ject, physical unclonability can be improved by increas-

ing the size of the laser mark on a physical object.
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6 Conclusion and Future Work

In this paper, we analyzed Image-based physical func-

tion systems, which o�er the bene�t of being a low-cost

primitive to increase the resistance of anti-counterfeiting

systems against cloning. Our modular description of

Image-based physical function systems enables an ef-

�cient design for most Image-based PUFs and a con-

crete evaluation of their security properties. As a prac-

tical example, we instantiated an Image-based physi-

cal function system and experimentally characterized

its security properties, i.e., robustness and existential

physical unclonability and their trade-o�. The exper-

iments demonstrated the usefulness of the formaliza-

tions of the security properties made in [1] for assessing

the accurate trade-o� between robustness and physical

unclonability.

We also showed that for our particular implemen-

tation of physical function system, assuming binomial

distribution for the Hamming distances between �nger-

prints does not provide accurate results, especially for

the assessment of the physical unclonability. Therefore,

the binomial approach for estimating the physical un-

clonability of other kinds of PUFs should be performed

with particular caution.

Our experiments suggest that the image hashing

method and its parameters have a signi�cant impact

on the security properties achieved by an Image-based

physical function system. For example, adaptive GbEX

provides a better trade-o� between robustness and phys-

ical unclonability. It provides (ρ, PCext) = (0.94, 10−6)

by using BCH (255,131,36).

Finally, more extensive comparison between the pro-

posed image hashing methods performance, computa-

tional complexity, accuracy in the presence of high noise

incidence and applicability based on the size of helper

data is an interesting topic for future research. The

study on the application of Image-based PUF as a secu-

rity primitive in anti-counterfeiting schemes, and anal-

ysis of possible attack scenarios is also a subject for

future research.
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