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Abstract. One of the main challenges in leakage-resilient cryptography is to ob-
tain proofs of security against side-channel attacks, under realistic assumptions and
for efficient constructions. In a recent work from CHES 2012, Faust et al. proposed
new designs of stream ciphers and pseudorandom functions for this purpose. Yet,
a remaining limitation of these constructions is that they require large amounts
of public randomness to be proven leakage-resilient. In this paper, we show that
tweaked designs with minimum randomness requirements can be proven leakage-
resilient in minicrypt. That is, either these constructions are secure, or we are able to
construct public-key cryptographic primitives from symmetric-key building blocks
and their leakage functions (which is very unlikely). Hence, our results improve
the practical relevance of two important leakage-resilient pseudorandom objects.

1 Introduction

Side-channel attacks are an important threat to the security of embedded devices like
smart cards and RFID tags. Following the first publications on Differential Power Anal-
ysis [19] (DPA) and Electro-Magnetic Analysis [12,29] (EMA), a large body of work has
investigated techniques to improve the security of cryptographic implementations. Dur-
ing the first ten years after the publication of these attacks, the solutions proposed were
mainly taking advantage of hardware/software modifications. For example, it as been
proposed to exploit new circuit technologies or to randomize the time and data in the
implementations (see [3,4,36] for early proposals of these ideas, and many improvements
and analyzes published at CHES). In general, these countermeasures are successful in the
sense that they indeed reduce the amount of information leakage. Yet, security evalua-
tions considering worst-case (profiled) side-channel attacks such as [33] usually reveal that
reaching high security levels is expensive and highly dependent of physical assumptions.
Taking the example of secret sharing (aka masking), multiple shares are required for this
purpose (i.e. so-called higher-order security [34]). However, the implementation cost of
higher-order masking schemes is significant [31], and the risk of physical effects leading
to exploitable weaknesses (such as glitches [21]) leads to additional design constraints.

Motivated by the great challenges in physical security, recent works have also consid-
ered the possibility to analyze the effectiveness of countermeasures against side-channel
attacks in a more formal way, and to design new primitives (aimed to be) inherently more
secure against such attacks. Taking the case of symmetric cryptography building blocks
(that are important primitives to design as they are usual targets of DPA attacks [20]),
a variety of models have been introduced for this purpose, ranging from specialized to



general. For example, a PRNG secure against side-channel key recovery attacks was pro-
posed at ASIACCS 2008 by Petit et al. [25], and analyzed in front of a class of (realistic
yet specific) leakage functions. Following, a construction of leakage-resilient stream cipher
has been presented by Dziembowski and Pietrzak at FOCS 2008, together with a proof
of security in the standard model [9]. Quite naturally, such “physical security proofs”
raise a number of concerns regarding their relevance to practice, a topic that has been
intensively discussed over the last couple of years. In particular, one of the fundamental
issues raised by leakage-resilient cryptography is to determine reasonable restrictions of
the leakage function, e.g. in terms of informativeness and computational power. As far
as computational power is concerned (which will be our main concern in this paper), an
appealing solution is to consider the leakage function to be polynomial time computable,
as initially proposed by Micali and Reyzin [24], and leading to contrasted observations.
On the one hand, polynomial time functions are significantly more powerful than actual
leakage functions. For example, they allow so called “precomputation attacks” (aka future
computation attacks) that are arguably unrealistic in practice [35]. On the other hand,
meaningful alternatives seem quite challenging to specify. Furthermore, given that one
obtains proofs of security under such strong leakages without paying too large implemen-
tation overheads, polynomial time functions remain a useful abstraction.

Fig. 1. The Eurocrypt 2009 stream cipher.

In this context, one of the design tweaks used by Dziembowsky and Pietrzak is the
so-called “alternating structure”. Figure 1 depicts such an alternating structure for a sim-
plified stream cipher proposed by Pietrzak at Eurocrypt 2009 [27], that can be instantiated
only from (AES-based) weak Pseudo-Random Functions (wPRFs)1. If one assumes that
the two branches of such an alternating structure leak independently, no leakage occuring

1 Besides their possible implementation costs, additional components in leakage-resilient con-
structions can also become a better target for a side-channel adversary, e.g. as discussed with
the case of randomness extractors in the FOCS 2008 stream cipher [22,32]. In this respect,
relying only on AES-based primitives (for which the security against side-channel attacks has
been carefully analyzed) is an interesting feature of the Eurocrypt 2009 proposal in Figure 1.



in one of the branches can be used to compute bits that will be manipulated in future
computations of the other branch, hence ruling out the possibility of precomputation at-
tacks. The main drawback of this proposal is that a key bit-size of 2n can only guarantee
a security of at most 2n. Hence, as it appears unrealistic that a circuit actually leaks
about something it will only compute during its future iterations, a following work by
Yu et al. investigated the possibility to mitigate the need of an alternating structure [37].
In a paper from CCS 2010, they first proposed to design a “natural” (i.e. conform to
engineering intuition) leakage-resilient stream cipher, which could only be proven secure
under a (non-standard) random oracle based assumption. Next, they proposed a variant
of the FOCS 2008 (and Eurocrypt 2009) designs, replacing the alternating structure by
alternating public randomness, and under the additional (necessary) assumption that the
leakage function is non adaptive. Eventually, in a recent work of CHES 2012, Faust et
al. showed that large amounts of public randomness (i.e. linear in the number of stream
cipher iterations) were actually required for the proof of Yu et al. to hold [10]. While it
remains an open question to determine whether the exact construction proposed in [37]
(using only two alternating public values) can be proven secure or attacked in a practical
setting, this last result reveals a tension between the proof requirements and how the best
known side-channel attacks actually proceed against leakage-resilient constructions [23].

Considering the previous observations, this paper tackles the fundamental question of
how much public randomness is actually needed to obtain proofs of leakage-resilience in
symmetric cryptography. For this purpose, we investigate (yet another) variant of stream
cipher, where only a single public random value is picked up prior to (independent of)
the selection of the leakage functions, and then expanded thanks to a PRNG. Quite
naturally, a strong requirement for this approach to be interesting is that the seed of
the PRNG should not be secret (or we would need a leakage-resilient PRNG to process
it, i.e. essentially the problem we are trying to solve). Surprisingly, we show that this
approach can be proven secure in minicrypt [17] (i.e. the hypothetical world introduced by
Impagliazzo, where one-way functions exist, but public-key cryptography does not). More
precisely, using the technique of [1] (see also similar ones in earlier literature [7,8,26,28]),
we show that either the proposed solution is leakage-resilient, or we are able to construct
black-box constructions of public-key encryption schemes from symmetric primitives and
their leakage functions. When using block ciphers such as the AES to instantiate the
stream cipher, the latter is very unlikely due to known separation results between one-way
functions and PKE [18]. We then conclude this work by illustrating that this observation
also applies to PRFs for which various designs were already proposed [5,10,23,35].

Summarizing, proofs of leakage-resilience require to restrict the leakage function both
in terms of informativeness and computing power. As finding useful and realistic restric-
tions is hard with state-of-the-art techniques, we consider an alternative approach, trying
to limit the implementation overheads due to unrealistic models. Admittedly, our analy-
sis is based on the same assumptions as the previously mentioned works (i.e. polynomial
time, bounded and non-adaptive leakage functions). The quest for more realistic models
remains a very important research direction. Meanwhile, we believe that our intermediate
conclusion is important, as it highlights that leakage-resilient (symmetric) cryptography
can be obtained with minimum public randomness (i.e. the public seed of a PRNG).



2 Background

2.1 The CCS 2010 stream cipher

Fig. 2. The CCS 2010 stream cipher.

The CCS 2010 construction, depicted in Figure 2, is based on the observation from the
practice of side-channel attacks that leakage functions are more a property of the target
device and measurement equipment than something that is adaptively chosen by the
adversary. It therefore considers a weaker security model, in which the polynomial time
(and bounded) leakage functions are fixed before the stream cipher execution starts. By
considering those non-adaptively chosen leakage functions, the construction can be made
more efficient and easier to implement in a secure way. This stream cipher is initialized
with a secret key k0 and two values p0 and p1 that can be public. Those two values are
then used in an alternating way: at round i, one computes ki and xi by applying the
wPRF to inputs ki−1 and pi−1 mod 2. Thanks to the removal of the alternating structure,
the complexity of a brute-force attack on this construction becomes directly related to
the full length of the key material, which is now exploited in each round.

2.2 The CHES 2012 stream cipher

In a paper from CHES 2012, Faust et al. observed that the technical tools used to prove
the CCS 2010 construction actually require to use independent public values in all the
stream cipher rounds (rather than only two alternating ones). Therefore, only the slightly
modified the construction suggested in Figure 3, assuming a common random string
p0, p1, p2, . . ., can be proven secure with these tools. The practical advantages of this
construction compared to the FOCS 2008 / Eurocrypt 2009 ones naturally become more
contrasted. On the positive side, the fact that the values p0, p1, p2, . . . are public can still
make it easier to ensure that rounds leak independently of each other (which is implicitly
required by the arguments of the leakage function): for example, a number of public pi’s
can be stored in non-volatile memories for this purpose. On the other hand, this amount
of public randomness required is linear in the number of stream cipher rounds, which is
hardly realistic (hence leading the authors of [10] to pay more attention to leakage-resilient
PRFs for which this penalty is less damaging - see Section 4 for a brief discussion).



Fig. 3. The CHES 2012 stream cipher.

3 Natural PRNG with minimum public randomness

3.1 A new proposal

As mentioned in introduction, it in unclear whether the need of large public randomness in
leakage-resilient stream ciphers is due to proof artifacts or if the lack of such randomness
can be exploited in realistic side-channel attacks. This question is important as such
attacks would most likely reveal an issue in the most natural construction of [37], where
no public randomness is used at all and the proof is based on a random oracle assumption.
In order to answer it, we propose an alternative stream cipher depicted in Figure 4.

Fig. 4. Leakage-resilient stream cipher with minimum randomness.

The Proposed Stream Cipher. We denote our stream cipher with SC, let n be
the security parameter, and (k0,s) be the initial state of SC, where k0 ∈ {0, 1}n is a
secret key and s ∈ {0, 1}n a public seed, both randomly chosen. SC expands s into



p0, p1, p2, . . . on-the-fly by running a PRF G : {0, 1}n×{0, 1}n → {0, 1}n in counter
mode2, i.e., pi := G(s, i). Then, SC uses the generated public strings p0, p1, p2, . . . to
randomize another PRF F : {0, 1}n×{0, 1}n → {0, 1}2n, which updates the secret state
ki and produces the output xi, i.e. (ki, xi) := F(ki−1, pi−1). That is, the stream cipher SC
in Figure 4 is essentially similar to the previous ones, excepted that any public string pi
is obtained by running a PRF on a counter value, using the public seed s.

Instantiation and Efficiency. Following [27], we instantiate F and G with a block
cipher BC : {0, 1}n×{0, 1}n → {0, 1}n, e.g. the AES. As will be shown in Lemma 4, it is
sufficient to produce log(1/ε) bits of fresh pseudo-randomness for every pi (and pad the
rest with zero’s), with ε a security parameter of the PRF F (see Definition 1). This further
improves efficiency, as we only need to run G once every bn/ log(1/ε)c iterations of F.

Leakage Models of the CCS 2010/CHES 2012 stream ciphers. For every ith

iteration, let Li : {0, 1}n×{0, 1}n → {0, 1}λ be a function (on ki−1 and pi−1) that outputs
the leakage incurred during the computation of F on (ki−1,pi−1). The CCS 2010/CHES
2012 constructions model the leakages as follows [10,37]:

1. (Efficient computability). Li can be computed by polynomial-size circuits.

2. (Bounded leakage per iteration). The leakage function has bounded range given by
λ ∈ O(log (1/ε)), where ε is a security parameter of the PRF F (see Definition 1).

3. (Non-adaptivity). The selection of the leakage functions Li is made prior to (or inde-
pendent of) s, and thus only depends on ki−1 and pi−1.

Note that strictly speaking, the leakage models needed to prove the security of the CCS
2012 and CHES 2012 stream ciphers are not exactly equivalent. Namely, the CHES 2012
stream cipher can further tolerate that each Li not only depends on the current state

(ki−1,pi−1), but also on the past transcript Ti−1
def
=(x1, · · · , xi−1, p0,· · · , pi−2, L1(k0, p0),

· · · , Li−1(ki−2, pi−2)). This is naturally impossible if only two pi’s are used.

Leakage models of FOCS 2008/Eurocrypt 2009 stream ciphers. The FOCS
2008/Eurocrypt 2009 constructions consider a model similar to the above one, but they
do not require condition #3 and allow the adaptive selection of the leakage functions.
That is, at the beginning of each round, the adversary adaptively chooses a function Li
based on his current view. As previously mentioned, this leads to unrealistic attacks as
the adversary can simply recover a future secret state, say k100, by letting each Li leak
some different λ bits about it. The authors of [9,27] deal with this issue by tweaking their
stream cipher design with an alternating structure (as in Figure 1).

In the next sections, we will prove the leakage-resilient security of our stream cipher
in the (non-adaptive) model from CCS 2010/CHES 2012. More precisely, we will also
consider its less restrictive version where the leakage functions can depend on the past
transcript. Yet, for brevity, we will not explicitly put Ti−1 as an input of each Li, as an
adversary can hardwire them into Li. Note also that we do not need to model leakages
on G since the seed s (from which all p0, · · · , pi can be efficiently computed) is public.

2 Alternatively, we can also expand s by iterating a length-doubling PRNG in a forward-secure
way, but this would lead to less efficient designs and is not needed (since s is public).



3.2 Security analysis

Notations and Definitions. For security parameter n, a function negl : N → [0, 1]
is negligible if for any c > 0 there is a n0 such that negl(n) ≤ 1/nc for all n ≥ n0. We
use uppercase letters (e.g. X) to denote a random variable and lowercase letters (e.g.
x) to denote a specific value, with exceptions being n, t and q which are reserved for
security parameter, circuit-size (or running time) and query complexity, respectively. We
write x ← X to denote the sampling of a random x according to X. We use Un to
denote the uniform distribution over {0, 1}n. For function f , we denote its circuit-size
complexity by size(f) or tf . We denote with ∆D(X,Y ) the advantage of a circuit D in

distinguishing the random variables X,Y : ∆D(X,Y )
def
= | Pr[D(X) = 1] − Pr[D(Y ) =

1] |. The computational distance between two random variables X,Y is defined with

CDt(X,Y )
def
= maxsize(D)≤t ∆D(X,Y ), which takes the maximum over all distinguishers

D of size t. For convenience, we use CDt(X,Y |Z) as shorthand for CDt((X,Z), (Y, Z)).

The min-entropy of X is defined as H∞(X)
def
= − log(maxx Pr[X = x]). We finally define

average (aka conditional) min-entropy of a random variable X conditioned on Z as:

H̃∞(X|Z)
def
= − log ( Ez←Z [ maxx Pr[X = x|Z = z] ] ) ,

where Ez←Z denotes the expected value computed over all z ← Z.

Standard Security Notions. Indistinguishability requires that no efficient adversary
is able to distinguish a real distribution from an idealized one (e.g. uniform randomness)
with non-negligible advantage. In this paper, we will work in the concrete non-uniform
setting3. Yet, we note that the proof can be made uniform by adapting the technique
from [2,38] (see [9] for a discussion). Given this precision, a standard PRF is defined as:

Definition 1 (PRF). F : {0, 1}n×{0, 1}n → {0, 1}m is a pseudorandom function (PRF)
if for all polynomial-size distinguisher D making up to any polynomial number of queries,
we have:

|Pr[DF(k,·) = 1 | k ← Un]− Pr[DR(·) = 1] | ≤ negl(n),

where R is a random function uniformly drawn from function family {{0, 1}n → {0, 1}m}.
Furthermore, we say that F is a (t,q,ε)-secure PRF if for all distinguishers D of size t
making q queries, the above advantage is bounded by ε.

Security without Leakages. Without considering side-channel adversaries, the se-
curity of SC is easily proven using a standard hybrid argument, by considering F (on any
fixed input) as a PRG, and without any security requirement about G (which could just
output any constant). This is formalized by the following theorem:

Theorem 1 (Security without Leakages). If F is a (t, 1, ε)-secure PRF, then SC is
(t′, `, ε′)-secure, i.e. CDt′((X1, X2, · · · , X`), Un`|S) ≤ ε′, with t′ ≈ t− `·tF and ε′ ≤ ` · ε.

3 An efficient uniform adversary can be considered as a Turing-machine which on input 1n

(security parameter in unary) terminates in time polynomial in n, whereas its non-uniform
counterpart will, for each n, additionally get some polynomial-length advice.



Leakage-Resilient Security. We first observe that as soon as some leakage is given
to the adversary, he can easily exploit it to distinguish xi from uniform randomness (e.g.
Li(ki−1, pi−1) leaking the first bit of xi is enough for this purpose). Thus, all previous
approaches in leakage-resilient cryptography require that any (computationally bounded)
adversary observing the leakages for as many rounds as he wishes should not be able to
distinguish the next x` without seeing L`(k`−1, p`−1) [9,10,27,37]. Formally, let:

view`(A,SC,K0, S)
def
= (S,X1, · · · , X`−1, L1(K0, P0), · · · , L`−1(K`−2, P`−2)) (1)

denote the view of adversary A after attacking SC (initialized with K0 and S) for ` rounds,
for which we use shorthand view` in the rest of the paper. Given a distinguisher D, we
then define its indistinguishability advantage (on uniform K0 and S) as:

AdvInd(SC,A,D, `)
def
= | Pr

K0,S
[D(view`, X`) = 1]− Pr

K0,S
[D(view`, Un) = 1] |.

We will use size(A)
def
= `(tG + tF) +

∑`−1
i=1 tLi to denote the circuit-size complexity of the

physical implementation of SC and size(D) to denote the circuit-size complexity of D.

Using these notations, our main result can be stated as follows.

Theorem 2 (Leakage-Resilient Security). If F is (t,2,ε)-secure PRF, and G is a
(t,q,ε)-secure PRF, then for any ` ≤ q, adversary A, distinguisher D with (size(A) +
size(D)) ∈ Ω(23λε · t/n) and for any leakage size (per round) λ, we have that either:

AdvInd(SC,A,D, `) ∈ O(`
√

23λ · ε),

or otherwise there exist efficient black-box constructions of public key encryption (PKE)
from the PRFs F and G and the leakage functions L1,· · · ,L`−1.

How to Interpret the Result? The above theorem is a typical “win-win” situation,
similar to those given in [1,7,8,26,28], where a contradiction to one task gives rise to an
efficient protocol for another seemingly unrelated (and sometimes more useful) task. As
mentioned in introduction, we know from [18] that black box constructions of PKE from
PRFs are very unlikely to exist. Thus, if the building primitives F and G are one-way
function equivalents (i.e. they are not PKE primitives), for example using practical block
ciphers such as the AES, and the leakage functions are intrinsic to hardware implemen-
tation (i.e. not artificially chosen) then the stream cipher SC will be leakage-resilient as
stated above. Before giving the proof, we recall the notion of HILL pseudo-entropy:

Definition 2 (HILL Pseudo-entropy [14,16]). X has at least k bits of HILL pseudo-
entropy, denoted by HHILL

ε,t (X)≥k, if there exists Y so that H∞(Y )≥k and CDt(X,Y ) ≤ ε.
X has at least k bits of HILL pseudo-entropy conditioned on Z , denoted by HHILL

ε,t (X|Z)≥k,

if there exists (Y,Z ′) such that H̃∞(Y |Z ′) ≥ k and CDt((X,Z), (Y,Z ′)) ≤ ε.

Outline of the Proof. We will present the proof in two main steps. First, we will
show the security of our stream cipher when the seed is kept secret. This part of the proof
essentially borrows techniques from previously published papers. Next, we will show our
main result, i.e. that either leakage-resilience is maintained when S is public, or we have
efficient black box constructions of PKE from PRFs as stated in Theorem 2.



Lemma 1 (Security of SC with Secret S). Let P[0···`−1]
def
= (P0, · · · , P`−1). For the

same F, G, `, A, D as given in Theorem 2, we have that:

| Pr
K0,S

[D(view` \ S, P[0···`−1], X`) = 1]− D(view` \ S, P[0···`−1], Un) = 1] | ∈ O(`
√

23λ · ε).

Proof sketch. Since G is a secure PRF and S is leak-free, it suffices to prove the security by
replacing every Pi by true randomness P ′i . The conclusion follows from Lemma 2 below,
by letting i = ` and applying computational extractor4 F on K`−1 and P ′`−1. It essentially
holds because P ′`−1 is independent of all preceding random variables. �

Lemma 2 (The ith round HILL Pseudo-entropy). Assume that we use uniform
randomness P ′0, · · · , P ′`−1 and define the view accordingly as below:

view′`
def
= (P ′0, · · · , P ′`−1, X1, · · · , X`−1, L1(K0, P

′
0), · · · , L`−1(K`−2, P

′
`−2)). (2)

Then we have:
HHILL
εi,ti(Ki−1|view′i \ Pi−1) ≥ n− λ, (3)

where εi = 2(i− 1)
√

23λ · ε and (ti + (i− 1)tF +
∑i−1
j=1 tLi) ∈ Ω(23λε · t/n).

A proof of this Lemma can be found in [10] (and implicitly in [9,27,37]). We will provide
an alternative proof with improved bounds in Section 3.3, by utilizing recent technical
lemmata from [11] (slightly improving the dense model theorem [9,30]) and Lemma 4 from
[6], which explicitly states that a PRF used as computational exactor only needs log(1/ε)
bits of randomness (which, as mentioned in Section 3.1, is desirable for efficiency).

The only difference between Lemma 1 and our final goal (i.e. Theorem 2) is that
the security guarantee of the former one forbids adversary to see S (it only makes P0,
· · · , P`−1 public). We now argue why this security guarantee remains when additionally
conditioned on S. Beforehand, we introduce preliminaries about key-agreement and PKE.

Key-Agreement and PKE. PKE is equivalent to a 2-pass key-agreement protocol [18],
which in turn can be obtained from a 2-pass bit-agreement protocol with noticeable
correlation and overwhelming security [15]. Bit-agreement refers to a protocol in which
two efficient parties Alice and Bob (without any pre-shared secrets) communicate over
an authenticated channel. At the end of the protocol, Alice and Bob output a bit bA
and bB, respectively. The protocol has correlation ε, if it holds that Pr[bA = bB] ≥ 1+ε

2 .
Furthermore, the protocol has security δ, if for every efficient adversary Eve, which can
observe the whole communication C, it holds that Pr[Eve(1k, C) = bB] ≤ 1− δ

2 .

The following Lemma completes the proof of Theorem 2.

Lemma 3 (Secret vs. Public S). For the same F, G, `, A, D as given in Theorem 2
such that by keeping S secret, the stream cipher SC is secure as stated in Lemma 1, i.e.

| Pr
K0,S

[D(view` \ S, P[0···`−1], X`) = 1]− D(view` \ S, P[0···`−1], Un) = 1] | = negl(n), (4)

4 As shown in Lemma 4, PRFs are computational extractors in the sense that when applied
to min-entropy sources (or their computational analogue HILL pseudo-entropy sources), one
obtains pseudo-random outputs provided that independent P ′i s are used.



we have that either the above is still negligible when additionally conditioned on S, or
otherwise there exists efficient black-box constructions of public key encryption from the
PRFs F and G and the leakage functions L1,· · · ,L`−1.

Proof. By contradiction, let us assume that for some c > 0 and for infinitely many n’s,
there exists efficient D̃ such that: PrK0,S [D̃(view`, X`) = 1]− PrK0,S [D̃(view`, Un) = 1] ≥
1
nc . We construct a 2-pass bit-agreement protocol as in Figure 5.

Alice

s← Un

p0, · · · , p`−1 ← G(s, 0), · · · ,G(s, `− 1)

bA ← D̃(r, view`)

Bob

k0←Un

Evaluate SC on k0, p0, · · · , p`−1

to get view` \ s and x`

bB←U1

if bB = 0 then r := x`

else if bB = 1 then r ← Un

p0, · · · , p`−1

r, view` \ s

Fig. 5. A bit agreement protocol from any PRFs F,G and leakage functions L1, · · · , L`−1.

It follows from Equation (4) that no efficient passive adversary Eve (observing the com-
munication) will be able to guess bB (i.e. whether r is x` or uniform randomness) with
more than negligible advantage. Furthermore, the bit-agreement also achieves correlation:

Pr[bA = bB] = Pr[bB = 1]︸ ︷︷ ︸
=1/2

Pr[bA = 1|bB = 1] + Pr[bB = 0]︸ ︷︷ ︸
=1/2

Pr[bA = 0|bB = 0]︸ ︷︷ ︸
=1−Pr[bA=1|bB=0]

=
1

2
(Pr[bA = 1|bB = 1] + 1− Pr[bA = 1|bB = 0])

=
1

2

(
1 + Pr

K0,S
[D̃(view`, X`) = 1]− Pr

K0,S
[D̃(view`, Un) = 1]

)
≥

1 + 1
nc

2
,

which implies 2-pass key agreement and PKE (by privacy amplification and parallel rep-
etition [15]). Intuitively, the protocol can be seen as a bit-PKE. That is, Alice generates
secret and public key pair sk = s and pk = (p0, · · · , p`−1) respectively, and sends her
public key to Bob for him to encrypt his message bB such that only Alice (with secret key
sk) can decrypt (with non-negligible correlation). This completes the proof. ut

As observed in [1], we can further extend this type of bit-PKE to a 1-out-of-2 Oblivious
Transfer (OT) against curious-but-honest adversaries5 as follows. For choice bit b, Alice
first samples pkb := (p0, · · · , p`−1) and pk1−b ← Un` and then sends pk0, pk1 to Bob.
Bob, who holds two bits σ0 and σ1, uses the bit-PKE to encrypt σ0 and σ1 under pk0 and
pk1, respectively. Finally, Alice recover σb and learns no information about σ1−b (since it
is computationally hidden by uniform randomness pk1−b).

5 A 1-out-of-2 oblivious transfer refers to a protocol, where Alice has a bit b and Bob has two
messages m0 and m1 such that Alice wishes to receive mb without Bob learning b, while Bob
wants to be assured that the Alice receives only one of the two messages.



Additional remark about the protocol in Figure 5. In the non-uniform setting,
any insecurity already implies efficient protocols for PKE and OT (using the hypothetical
non-uniform D̃), whereas in the uniform setting we will get practical and useful protocols,
uniformly generated given the security parameter. See more discussion in [1].

3.3 Alternative proof of Lemma 2

We will need the two following technical lemmata for the proof.

Theorem 3 (Dense Model Theorem [9,11]). Let (X,Z) ∈ {0, 1}n×{0, 1}λ be random
variables such that CDt(X,Un) < ε and let εHILL > 0. Then we have:

HHILL
2λε+εHILL,tHILL

(X|Z) ≥ n− λ, where tHILL ∈ Ω(ε2HILL · t/n).

Lemma 4 (PRFs on Weak Keys and Inputs [6,27]). If F : {0, 1}n × {0, 1}n →
{0, 1}m is a (2t, 2, ε)-secure PRF, then for (K,Z) with H̃∞(K|Z) ≥ n− λ, and indepen-

dent P with H∞(P ) ≥ log (1/ε), we have CDt(F(K,P ), Um | P,Z) ≤
√

2λ · ε.

Proof sketch. Similar to [9,27], we show the above by induction on εi and ti. For i = 1,
Equation (3) is trivially satisfied (t1 = ∞ and ε1 = 0). It remains to show that if
Equation (3) holds for case i with parameter εi and ti, then it must hold for case i + 1

with εi+1 ≤ εi + 2
√

23λ · ε and ti+1= min{ti − (tF + tLi), Θ(23λε · t/n)}. By Definition 2,
Equation (3) with (εi,ti) refers to the fact that conditioned on view′i \ P ′i−1, there exists

K̃i−1 with n− λ bits of average min-entropy such that Ki−1 is (ti, εi)-close to K̃i−1. By
our leakage assumptions, P ′i−1 is independent of (Ki−1,view′i \ P ′i−1), so if we apply F to

K̃i−1 and P ′i−1, Lemma 4 directly implies that:

CDt/2( (K̃i, X̃i) := F(K̃i−1, P
′
i−1) , U2n | view′i ) ≤

√
2λ · ε.

Taking into account Li(K̃i−1, P
′
i−1), we know by Theorem 3 that:

HHILL
2
√
23λ·ε,Θ(23λε·t/n)( K̃i, X̃i | view′i, Li(K̃i−1, P

′
i−1) ) ≥ 2n− λ,

which implies (using the chain rule for min-entropy) that K̃i has n − λ bits of HILL
pseudo-entropy (for the same parameters) conditioned on X̃i. Note that this is almost
what we want except that F is applied to K̃i−1 rather than Ki−1. Hence, we need to pay

2
√

23λ · ε for εi+1 − εi, and lose tF+tLi in complexity (to simulate the experiment). �

4 Leakage-resilient PRFs

By minimizing their randomness requirements, the previous results improve the relevance
of leakage-resilient stream ciphers. Besides, they also increases our confidence that simple
constructions such as the first proposal in [37] are indeed secure against side-channel at-
tacks. Hence, a natural question is to investigate whether a similar situation is observed
for PRFs. In this context, three proposals have been analyzed in the literature. Standaert
et al. first observed in [35] that a tree-based construction such as the one of Goldreich,
Goldwasser and Micali [13] inherently brings improved resistance against side-channel



attacks. They proved its leakage-resilience under a (non-standard) random oracle based
assumption. Next, Dodis and Pietrzak proposed a similar tree-based design using an alter-
nating structure, and proved its leakage-resilience in the standard model. Finally, Faust et
al. replaced the alternating structure by public randomness (following the approach they
used for the stream cipher in Figure 3) [10]. This last solution is illustrated in Appendix,
Figure 6. One can notice that a fresh pi is required in each step of the PRF tree. The
techniques described in the previous section can be directly applied to mitigate this re-
quirement, as illustrated in Figure 7. That is, one can run a PRF on a counter and public
seed to generate the pi’s. As in Lemma 3, either this construction is secure, or we can
build a bit agreement protocol using the PRFs and leakage functions of the figure. While
the randomness saving may be not substantial for a regular PRF (with input size linear
in n), it will be desirable for variants that handle long (polynomial-size) inputs, e.g. for
Message Authentication Codes (MACs). Finally, we note that as in [10], the constructed
leakage-resilient PRF is only secure against non-adaptive inputs.
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A Figures Omitted in the Main Body

Fig. 6. The CHES 2012 PRF.

Fig. 7. Leakage-resilient PRF with minimum randomness.
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