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Abstract—The use of Soft Physical Hash (SPH) functions
has been recently introduced as a flexible and efficient way
to detect Intellectual Property (IP) cores in microelectronic
systems. Previous works have mainly investigated software IP
to validate this approach. In this paper, we extend it towards
the practically important case of FPGA designs. Based on
experiments, we put forward that SPH functions-based detec-
tion is a promising and low-cost solution for preventing anti-
counterfeiting, as it does not require any a-priori modification
of the design flow. In particular, we illustrate its performances
with stand-alone FPGA designs, re-synthetized FPGA designs,
and in the context of parasitic IPs running in parallel.

I. INTRODUCTION

Current electronic products are so complex that it is com-
mon for developers to purchase and use third party designs
known as Intellectual Property (IP) cores. A study from
Semico Research estimated that the IP core market reached
4 billion US$ in 2009, i.e. a 23.2% growth compared to
the 2005 figures [15]. The business model usually combines
access to technology fees with royalties per sold units. It
naturally raises important questions regarding the protection
of these designs against unauthorized exploitation. Various
solutions have been introduced to mitigate such risks. But as
usual in security-related issues, the protection mechanisms
have to deal with contradictory goals. On the one hand, IP
owners primarily aim to prevent the piracy of their designs.
On the other hand, users want to easily integrate these
designs in their development flows. The first goal suggests
integrating security mechanisms at low abstraction levels
(e.g. in circuit layouts). The second goal rather suggests
integrating these mechanisms at high abstraction levels (e.g.
in the description codes of the designs). In other words,
solutions to prevent the counterfeiting of electronic systems
can be seen as a trade-off between security and flexibility.

Examples of such solutions include permission-based and
watermarking-based techniques. In the first case, the system
performs some tests before running, in order to make sure
that it has the right permissions. Passwords can be used for
this purpose. Checking the presence of a cryptographically-
enhanced security chip, or exploiting Physically Unclonable
Functions (PUFs), are harder to bypass alternatives [3], [7],
[13], [16]. In the second case, a piece of information (called
the watermark) is embedded in the IP, in order to verify its
authenticity or the identity of its owners. Watermarks have

to be both robust (i.e. detectable even if the IP is slightly
modified) and imperceptible (i.e. the protected design should
have the same functional behavior and similar performances
as the original one) [2], [8], [9], [12]. In this context, a
recent proposal has been to exploit physical features of
the IPs (such as their power consumption) to detect the
watermarks [4], [18]. In contrast with permission checks
which prevent the run of illegal designs, watermarks are used
a posteriori, in order to detect fraudulent copies. One limita-
tion of these approaches is that they require the inclusion of a
security mecanism within the IP to protect, hence to modify
the original layout. This implies performance overheads and
can hardly prevent counterfeiting by adversaries who can
manipulate the source code (if they can remove the security
part of the designs). Also in terms of flexibility, permissions
checks and watermarks are not optimal since they require to
include the IP-protection early during the design process.

More recently, an alternative proposal has been intro-
duced, taking advantage of Soft Physical Hash (SPH) func-
tions [5]. Similarly to [4], [18], it exploits physical features
of the IP to protect. But contrary to these watermarking-
based approaches, it aims to detect counterfeited designs
without any addition to the original layout. The central
idea of SPH functions (that is also borrowed from the
field of image processing [6], [11], [14], [17]), is that the
designs themselves should be specific enough for being their
own “signature", and that this specificity can be detected
from physical measurements. The main features required for
SPH functions-based anti-counterfeiting to be effective are
the content sensitivity and the perceptual robustness of the
hashes. That is, SPH should in the same time be robust
against an (owner-defined) set of IP-preserving transforma-
tions (such as changing the variables names or compiler
options in a software implementation), and sensitive to more
significant variations of the IP (e.g. significantly modifying
its architecture or functionality). In [5], the idea of SPH
function-based anti-counterfeiting has been validated with a
software case-study. Namely, the authors showed that the IP
of 10 different block cipher implementations in an Atmel
microcontroller could be detected from their power con-
sumption, with sufficient content sensitivity and perceptual
robustness (e.g. against simple code transformations such as
changes of registers, instruction swapping or dummy oper-
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Figure 1. Generic framework for IP detection.

ations). Quite naturally, the extension towards a hardware
context was one of the main open challenges, since the IPs
generally have higher value in this case, because of longer
development times and more complex optimizations.

In this paper, we consequently extend the evaluation
of SPH function-based anti-counterfeiting to the meaning-
ful case of FPGA implementations. For this purpose, we
considered five lightweight block ciphers (namely HIGHT,
ICEBERG, KATAN, NOEKEON and PRESENT) together
with the standard AES Rijndael, of which the ASIC designs
were presented at CHES 2012 [10]. All these algorithms
were implemented according to a similar architecture aiming
at energy efficiency, implementing one to a couple of rounds
per clock cycle depending on the ciphers. This case-study
was mainly motivated by the goal of analyzing a chal-
lenging set of potentially similar IP cores. We additionally
considered different realistic scenarios such as stand-alone
designs, re-synthetized designs and designs with parasitic
IPs running in parallel. Experimental results suggest that
the SPH approach for IP detection remains a promising
and flexible solution for FPGA implementations. Depending
on the cases, we successfully detected the IPs without any
knowledge of their inputs, or taking advantage of the data
dependencies in the power traces generated by the running
algorithms, with limited number of measurements.

II. BACKGROUND

The framework for SPH function-based IP detection is
represented in Figure 1. Its specification starts by choosing
an object to protect that can be any type of IP (e.g. a
source code, a netlist, a layout, . . . ). This object to protect

is then embedded into an implementation (the next sections
will consider an FPGA case-study) and the combination
of this implementation with an evaluation process (i.e. a
measurement setup) constitutes what we denote as a physical
function (PF). The physical function outputs a feature vector
which is any physical emanation of the target device running
the IP. From this feature vector, we use an extraction
procedure, i.e. a signal processing tool of which the goal is to
produce an output that best represents the IP. The output of
the extraction procedure is called the SPH (hash for short).

As suggested by the figure, the detection of counterfeited
IPs essentially works by comparing different hash values.
That is, we assume that the IP owner has characterized the
SPH function of its design. Note that this characterization
does not have to be done during development time, as the
decision to use SPH can be taken even after a product has
been released. Then, given any suspicious IP, a detection
procedure will be used to output a level of similarity between
the two hash values. As indicated by the dotted parts of
the figure, the suspicious IPs may directly correspond to
the counterfeited designs, or to slightly transformed ones.
Eventually, the performances of the detection framework are
measured with the previously mentioned content sensitivity
and perceputal robustness, for which definitions are given
in [5]. Informally, the central element of these definitions is
the need to specify a set of IP-preserving transformations.
Typically, some trivial modifications of the code should not
be considered as leading to a new IP. In the following, we
will consider the re-synthesis of a design under a different
set of constraints, and the addition of a parasitic IP running
in parallel, as IP-preserving transformations. By contrast,



a change of block cipher is naturally considered as non-
IP-preserving. Given this choice, the perceptual robustness
is the probability that two designs that only differ by IP-
preserving transformations lead to a similarity score larger
than a certain threshold τ , and the content sensitivity is the
probability that two designs that differ by non-IP-preserving
transformations lead to a similarity score lower than a certain
threshold τ ′. These thresholds do not have to be identical,
but the perceptual robustness one has to be higher than the
content sensitivity one for the detection to succeed.

Such a generic detection framework can be run in dif-
ferent contexts, more or less favorable to the IP owner. For
example, the inputs of the design to protect and its source
code can be known or unknown during detection, and the
framework can be applied to identical or different technolo-
gies, using identical or different measurement setups.

III. FPGA CASE-STUDIES

In this section, we analyze the application of our SPH
function-based IP detection framework to FPGA designs. As
previously mentioned, we considered three main scenarios
for this purpose. First, we focused on the simple(st) case
where the suspicious IPs are stand-alone FPGA designs
corresponding to the object to protect. Second, we studied
the case where the counterfeiter has re-synthetised the object
to protect under a different set of constraints. Finally, we
evaluated a more challenging (and realistic) context where
the illegal IP is integrated in a larger system, with a parasitic
design running in parallel. In the three scenarios, we first
specify the components of the IP detection infrastructure we
used, and then present experiments confirming its interest.

A. Stand-alone FPGA designs

1. Specification of the IP detection infrastructure. We
used the bitstreams of five lightweight ciphers (HIGHT,
ICEBERG, KATAN, NOEKEON and PRESENT) and the
AES Rijndael as objects to protect. These bitstreams were
obtained from the unrolled architectures described in [10],
using the number of rounds per cycles that leads to max-
imum energy efficiency for each cipher, and synthetized
for a Xilinx Virtex-II Pro FPGA. In this subsection, we
used a default set of place-and-route options, leading to the
performance results indicated in the left column of Table I.
We additionally used the FPGA power consumption as
physical feature vector. Measurement traces were obtained
by measuring the voltage variations around a shunt resistor
provided on the Sasebo-G board [1]. The device was running
at a frequency of 24 MHz, and the oscilloscope sampling
frequency was set at 2,5 GHz. In the following, we will
characterize the SPH of each reference IP core with a feature
vector made of the power consumption corresponding to one
complete encryption. As for the suspicious IPs, the traces
were simply obtained by measuring repeated encryptions. In
this first case of stand-alone FPGA designs, the extraction

Table I
IMPLEMENTATION RESULTS FOR THE SIX CONSIDERED IPS WITH TWO

SETS OF SYNTHESIS OPTIONS (DEFAULT AND AREA CONSTRAINED).

Default Constrained
slices T [ns] slices T [ns]

AES 1843 10.48 1687 9.28
HIGHT 573 7.76 596 8.13
ICEBERG 1123 9.04 1022 7.95
KATAN 725 7.02 650 6.87
NOEKEON 1125 5.94 1255 6.7
PRESENT 561 5.09 541 4.5

phase directly outputs the complete traces (without perform-
ing any signal processing), and the detection process uses
Pearson’s correlation coefficient. That is, let x and y be two
measurement vectors of length n with mean values x̄ and ȳ,
this coefficient is defined as:

ρ(x, y) =

∑n
i=1(xi − x̄) · (yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
.

As reference traces and suspicious ones do not always have
the same length, we further cropped the suspicious traces
whenever longer than the reference ones1. The context in
which the IP detection infrastructure is used is the following:
the inputs provided to the IPs are unknown, we do not
have access to the source code and the same device and
measurements setup were used for all the tests.

2. Experimental Results. Our first results are illustrated
by Figure 2, where each column is linked to one particular
suspisious IP compared to the six possible reference IPs.
Each point in the figure corresponds to one experiment, i.e.

Figure 2. Similarity score scatter plot for stand-alone designs. Single
reference traces / single suspicious traces / unknown inputs.

one similarity score obtained from the comparison between
one reference trace and one suspicious trace. For each
suspicious-reference IP pair, 400 experiments have been
performed, represented by black dots whenever considering
identical IPs, and grey dots otherwise. We additionally

1This assumes the traces to be synchronized, which can be achieved by
different means, e.g. computing the correlation over a sliding window.



plotted the content sensitivity threshold (i.e. the maximum
score for different IPs) with a grey line, and the perceptual
robustness threshold (i.e. the minimum score for similar IPs)
with a black line. As can be observed, the performances in
this context are already reasonably good. Yet, some non-
detections and false alarms occur for “close IPs", assumably
because of measurement noise in our traces. The closeness
between different IPs is further emphasized in Figure 3,
where each square in the matrix corresponds to the mean
similarity score between the IPs, and the higher similarity
scores are indicated with a darker color code. Eventually,

Figure 3. Similarity score correlation matrix for stand-alone designs.
Single reference traces / single suspicious traces / unknown inputs.

in order to improve our performances and get rid of the
noise, a natural solution is to exploit averaged traces rather
than single traces, both for the reference and suspicious IPs.
The result of this additional experiment (with a 10 times
averaging) is given in Figure 4. In this latter case, we clearly
see that no false alarm nor non-detections happens anymore,
and the threshold for perceptual robustness is now higher
than the one for content sensitivity in all cases.

Figure 4. Similarity score scatter plot for stand-alone designs. 10 times
averaged reference traces and suspicious traces / unknown inputs.

B. Re-synthetized FPGA designs

1. Specification of the IP detection infrastructure. The
results in the previous subsection were considering similar
algorithms for which the IP cores could be detected even
in a simple context (unknown inputs and source code).
Quite naturally, an important question is whether such
an observation is still valid in the more challenging sce-
nario where a potential counterfeiter would apply some IP-
preserving transformations. This is the quesion we tackle
in this subsection, considering the placement and routing
of our designs with a different set of constraints as an
IP-preserving transformation. Note that in this case, the
object to protect is not the bitstream anymore, but rather
the source code or netlist. For this purpose, we used both
sets of constraints in Table I. Since the previous IP detection
infrastructure turned out to be insufficient in this case, we
additionally considered two tweaks to improve detection.
First, we moved to a known input context, allowing us to
take advantage of data dependencies in the traces. Next,
we used a more sophisticated extraction procedure, based
on a selection of Points Of Interest (POIs). Namely, we
split the traces into consecutive clock cycles, using the
Fast Fourier Transform to recover the rising edges of the
clock signal. This was achieved by filtering the frequency
spectrum around the clock frequency and its harmonics, then
applying the inverse transform on the filtered signal. This
preprocessing provides a sequence of peaks indicating where
the rising edges of the clock signal are. Following, we were
able to work on a sequence of clock cycles instead of raw
side-channel traces. From this sequence, we finally extracted
POIs having maximum Signal-to-Noise Ratio (SNR) for
each cycle (with the SNR defined as the variance over mean
traces for different plaintexts divided by the noise variance).

2. Experimental Results. For illustration, we first provide
the similarity score correlation matrix of our re-synthetized
designs obtained from the IP detection infrastructure of the
previous subsection in Figure 5. Each line/column is now
divided in two, for the two sets of synthesis options. As
expected, the re-synthesis is not perfectly IP-preserving in
this case. For example, the re-synthetized PRESENT design
appears as a new IP. Interestingly, this issue is not really
caused by differences in performances, but rather by the
placement-and-routing illustrated in Figure 6. By contrast,
taking advantage of the known input context with the se-
lection of POIs proposed in the previous paragraph directly
allows getting rid of this limitation. This is illustrated in
Figure 7 in which we only analysed the IPs giving low
similarity scores in the first detection scenario. A natural
explanation for the obtained results is that the operation
dependencies in the power consumption, that were exploited
in the previous section, are significantly affected by re-
synthesis. By contrast, data dependencies that are addi-
tionally considered in the known input scenario are more



Figure 5. Similarity score correlation matrix for re-synthetized designs.
10 times averaged reference traces and suspicious traces / unknown inputs.

Figure 6. Floorplan of the PRESENT designs.

robust against such transforms (since the same data has to
be manipulated). In this respect, an even more challenging
type of transforms would try to affect the intermediate data
during the computations of an IP, without affecting its final
result. We leave their investigation for further research.
Note that the exploitation of data dependencies crucially
depends on a good selection of POIs. For illustration we
additionally provided the weaker detection results obtained
with an uninformed selection in Appendix, Figure 9.

Figure 7. Similarity score scatter plot for re-synthetized designs. Single
reference traces / single suspicious traces / known inputs.

C. Parasitic IP running in parallel

1. Specification of the IP detection infrastructure. Before
concluding this work, we finally considered the practically
important case study, where not only our suspicious IP
would run on an FPGA, but also some parasitic one. As
a preliminary investigation in this direction, we investigated
the case of a Linear Feedback Shift Register (LFSR) running
in parallel to PRESENT (we limited our evaluations to this
IP because it was the most challenging one in the previous
subsection). The performances of the different suspicious
IPs with such an additional LFSR are given in Table II for
three different LFSR sizes. For the rest, we used the same IP

Table II
IMPLEMENTATION RESULTS FOR PRESENT WITH PARALLEL LFSR.

Default
slices T [ns]

PRESENT + 64-bit LFSR 608 4.87
PRESENT + 512-bit LFSR 797 4.93
PRESENT + 1024-bit LFSR 1053 4.76

detection infrastructure as in the previous subsection. The
only difference is that we will need to work with (5 times)
averaged traces in order to get rid of the “algorithmic noise"
coming from the parallel execution of the LFSRs.

2. Experimental Results. The scatter plot of this final
experiment is given in Figure 8, where we used the same
subset of reference IPs as in Figure 7. In all three cases
and despite the presence of a parasitic LFSR, we were
able to detect the suspicious PRESENT. Interestingly, we
can also observe the impact of larger algorithmic noise, as
the distance between the content sensitivity and perceptual
robustness thresholds decreases with the LFSR size. As a
counterfeited IP will be integrated in even larger designs,
we can expect that the detection will still succeed given that
larger amounts of traces are averaged during extraction.

Figure 8. Similarity score scatter plot for designs with parasitic IP. 5 times
averaged reference traces and suspicious traces / known inputs.



IV. CONCLUSIONS

We believe that the main interest of the IP detection
mechanism discussed in this work is its flexibility. First, it
does not require to modify any piece of the original designs.
Second, the decision to test a suspicious IP can be taken a
posteriori (without beging considered at development time).
Eventually, it is potentially useful against adversaries that
can operate on high-level IP (e.g. source codes or netlists).
By contrast, permission-based solutions and watermarks are
hardly effective in this case. Quite naturally, this flexibility
comes at the cost of sometimes difficult detection. While
preliminary experiments in this work are promising, consid-
ering more challenging scenarios (e.g. different technologies,
other parasitic IPs, other measurement setups) is certainly
important. It is likely that advanced extraction and detection
tools will be needed in these cases. Yet, we hope that SPH
functions-based IP detection can be a useful element to solve
the challenge of counterfeited electronic designs, combined
with other ideas with different strenghts and weaknesses.
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