
Noname manuscript No.
(will be inserted by the editor)

Masking vs. Multiparty Computation:
How Large is the Gap for AES?

Vincent Grosso1, François-Xavier Standaert1, Sebastian Faust2

the date of receipt and acceptance should be inserted later

Abstract In this paper, we evaluate the performances

of state-of-the-art higher-order masking schemes for the

AES. Doing so, we pay a particular attention to the

comparison between specialized solutions introduced ex-

clusively as countermeasures against side-channel anal-

ysis, and a recent proposal by Roche and Prouff ex-

ploiting MultiParty Computation (MPC) techniques.

We show that the additional security features this lat-

ter scheme provides (e.g. its glitch-freeness) comes at

the cost of large performance overheads. We then study

how exploiting standard optimization techniques from

the MPC literature can be used to reduce this gap. In

particular, we show that “packed secret sharing” based

on a modified multiplication algorithm can speed up

MPC-based masking when the order of the masking

scheme increases. Eventually, we discuss the random-

ness requirements of masked implementations. For this

purpose, we first show with information theoretic ar-

guments that the security guarantees of masking are

only preserved if this randomness is uniform, and ana-

lyze the consequences of a deviation from this require-

ment. We then conclude the paper by including the

cost of randomness generation in our performance eval-

uations. These results should help actual designers to

choose a masking scheme based on security and perfor-

mance constraints.

Keywords Side-channel analysis, countermeasures,

performance evaluations, packed secrets sharing,

randomness.

1 ICTEAM/ELEN/Crypto Group, Université catholique de
Louvain, Belgium.
2 Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne,
Switzerland.

1 Introduction

Masking is one of the most investigated countermea-

sures against side-channel attacks. Its underlying prin-

ciple is to randomize any sensitive data in a crypto-

graphic implementation, by splitting it into d shares.

Intuitively, such a process is expected to “force” the ad-

versary to combine several leakage samples correspond-

ing to these shares, in order to recover secret informa-

tion from her measurement traces. This is an arguably

more difficult task than targeting single samples sepa-

rately because (1) more “points of interests” (i.e. more

dimensions in the leakage distribution) may have to be

identified and exploited concurrently (e.g. if the shares

are processed sequentially), hence increasing the time

complexity of the attacks accordingly; (2) if the mask-

ing scheme is carefully implemented (e.g. avoiding the

glitch issue described in [20]), higher-order moments of

this leakage distribution will have to be estimated. It

implies an increase of the attacks data complexity that

is exponential in the number of shares (with the mea-

surement noise variance as basis), as first hinted to-

wards by Chari et al. in the specialized case of single-

bit DPA attacks [3], then experimented by Standaert

et al. in more general contexts [31], and recently shown

formally by Prouff and Rivain [25], using the mutual

information put forward in [30] as evaluation metric.

From a theoretical point of view, the problem of

masking a cryptographic implementation has strong con-

nections with the problem of secure MultiParty Com-

putation (MPC). This observation was already made in

2004 by Ishai et al. [16], and intuitively corresponds to

the fact that both masking and MPC aim to perform

computations on shared data. Their objectives are dif-

ferent though, as MPC protocols usually fulfill stronger



2 Vincent Grosso1, François-Xavier Standaert1, Sebastian Faust2

security requirements (they typically remain secure af-

ter the corruption of a number of participants, in an

passive or active manner). By contrast, masking only

aims at ensuring the so-called d-th order security prop-

erty, i.e. that every d-tuple of intermediate values in the

target implementation is independent of any sensitive

variable. Since the performance overheads of masking

and MPC are generally important, a natural problem is

to determine the physical security advantages of MPC

over masking, as well as its cost penalty. From the secu-

rity point of view, an answer to this question has been

put forward by Roche and Prouff in [27]. Namely, imple-

menting MPC can lead to glitch-free implementations

(in a similar sense as first described in [23]), and allows

fault-tolerance if active adversaries are considered. By

contrast, their performance evaluations were limited to

asymptotic complexities so far.

Our contribution. In this paper, we investigate this

performance gap between masking and MPC in the

practically relevant case of AES implementations in an

8-bit microcontroller. We considered three different di-

rections for this purpose.

First, we compared a number of existing schemes.

Our selection was motivated by the two following crite-

ria: (i) exclude “broken” proposals (i.e. with low-order

weaknesses), such as the multiplicative masking in [14],

the higher-order masking in [28] (broken in [4]), or

Goubin and Martinelli’s proposal in [15] (broken in [5]);

(ii) exclude schemes that do not systematically gener-

alize to higher-orders, such as the affine masking in [11,

33], the threshold implementations in [22], and several

ideas from the “early” DPA literature (see [19] for a

survey)1. This essentially leaves us with Rivain and
Prouff’s higher-order Boolean masking scheme from

CHES 2010 [26] (next denoted as RivP), its optimiza-

tion by Kim et al. using extension fields for the AES

S-box implementation in [17] (next denoted as KHL),

Genelle et al.’s solution based on the switching between

additive and multiplicative masking [13] (next denoted

as GPQ), and the MPC-inspired proposal by Roche

and Prouff from CHES 2011 [27] (next denoted as

RocP). We implemented these different schemes up to

the 10th security order, with results illustrating a large

gap between the MPC-inspired RocP (for which we

additionally propose a slight optimization) and other

masking schemes.

Motivated by the large performance gap, we then

investigated a standard solution used in the MPC liter-

ature to improve performances, namely “packed secret

1 We also excluded the recently proposed “inner product”
masking scheme from [1], although it is certainly an interest-
ing scope for further investigation.

sharing” [10]. In particular, we evaluate the extent to

which the techniques proposed by Damg̊ard et al. in [6]

can be used to enhance the performances of shared AES

implementations, and how this performance gain de-

pends on the order d. Intuitively, the idea of packed se-

cret sharing is to “hide” several secrets (e.g. key bytes)

in a high-degree polynomial, which leads to more effi-

cient computations if operations on these secrets can be

performed in parallel. We show that such a technique

is indeed useful for protecting the AES S-boxes, and

exhibit the linear amortized complexity that it allows.

Yet, we also show that this amortized complexity only

becomes beneficial for quite large orders.

Eventually, we tackled a usually neglected problem

in the literature on masking, namely the randomness re-

quirements. First, we briefly discuss the impact of slight

defaults in the Random Number Generator (RNG) used

to produce fresh shares. In particular, we provide an

information theoretic evaluation of the cases where (i)

the RNG has a small bias, and (ii) a counter was used

to generate equally likely but predictable outputs. This

evaluation naturally suggests that uniform randomness

is a strong requirement for the security of masking (and

MPC). Then, we evaluated the performances of our

different masking schemes again, including the cost of

(strong-enough) randomness generation.

Overall, these result allow an implementer to decide

which state-of-the-art masking scheme to use and why,

in function of his security goals (in terms of order of

the scheme and glitch-freeness), and performance con-

straints.

Methodology. As clear from the previous introduc-

tion, our goal is to compare the performances of a large

number of masked implementations, up to high secu-

rity orders. Relying exclusively on optimized assembly

language was out of reach in this context. As a re-

sult, we systematically took advantage of C language

descriptions, and paid a particular attention in opti-

mizing them in such a way that their compilation on an

8-bit device was close enough to the one of published

implementations. In particular, we used the AVR-GCC

compiler (with option -o2) to obtain codes for an At-

mel AtMega644p 8-bit microcontroller. And for each

implementation published by independent authors (e.g.

in [13,17,26]), we made sure that our performances were

comparable up to a factor two in clock cycles. For this

purpose, we relied on the optimization of certain rou-

tines (e.g. for the masking of S-boxes) whenever needed.

Furthermore, we systematically wrote our codes in two

fashions: one unrolled version optimized for speed and

one compact version without loop unrolling. As for op-

timization criteria, we first focused on the cycle count,



Masking vs. Multiparty Computation: How Large is the Gap for AES? 3

and considered the 64Kb of our target device as a mem-

ory constraint to reach. In view of the larger perfor-

mance differences that will be put forward between the

investigated masking schemes and security orders, we

believe this methodology was sufficient to support our

conclusions.

2 Comparison & improvement of existing

schemes

2.1 Description of selected schemes

In this first section, we aim to compare AES implemen-

tations protected with various masking schemes. For

this purpose, a preliminary observation is that the AES

is composed of operations MixColumns, ShiftRows, Ad-
dRoundKey and SubBytes. Since the Boolean and poly-

nomial masking schemes on which we will focus are

bytewise XOR-linear, the operations MixColumns, Ad-
dRoundKey and ShiftRows can be executed indepen-

dently on each share. As a result, we now focus on the

description of SubBytes for efficient masking. This op-

eration executes 16 nonlinear S-boxes in parallel, for

which several representations exist.

For Boolean masked implementations and for the

switching method GPQ we used the standard repre-

sentation, combining an inversion in GF (256) and an

affine transform. This is naturally motivated by the

fact that the Boolean masking is GF (2)-linear. In this

case, the most difficult operation is the inversion, which

is best achieved by exploiting secure multiplications

for RivP, as described in [26], Algorithm 1. KHL is

based on similar ideas, but exploits subfields to re-

duce the cost of field multiplications and the amount

of randomness. By contrast, in the case of GPQ the

switch allows moving from a Boolean masking scheme

to a multiplicative-linear one, which makes the inver-

sion easy and defers most the complexity to the switch

operation. Algorithms 1 and 2 in [13] describe how to

perform this change securely. The main challenge of this

solution is to pay attention to the masking of the zero

value in the multiplicative masking. In order to solve

this issue, the authors compute the Dirac value of the

secret (which can be done efficiently by computing 8

such values concurrently, as described in [12], Algo-

rithm 4). Since these techniques are now standard in

the CHES community, we refer to the original papers

for the technical details.

For the polynomial masking RocP, we note that

no implementation results have been provided so far2.

2 At CHES 2013 Moradi and Mischke provide a hardware
implementation of polynomial masking [21].

This solution essentially exploits core ideas from the

MPC literature. In particular, it shares the sensitive

values in an implementation using Shamir’s trick [29],

and computes on these shares securely using the results

of Ben-Or, Goldwasser and Widgerson [2]. A brief sum-

mary of these techniques is provided in Appendix A for

the unfamiliar reader. In this context, an important ob-

servation is that the scheme is not GF (2)-linear. As a

result, the best S-box representation is in polynomial

form, namely 0x63 + 0x5 x−1 + 0x9 x−2 + 0xf9 x−4 +

0x25 x−8 + 0xf4 x−16 + x−32 + 0xb5 x−64 + 0x8f x−128.

Again, the most difficult part of this S-box is the in-

version, which can be implemented using 4 multiplica-

tions and some squarings. Roche and Prouff describe

a polynomial multiplication in [27], Algorithm 1. Since

the focus of their work was on glitch-freeness, they pro-

posed to use a (2d + 1, d)-sharing for all operations,

including linear ones (which allows separating the im-

plementation in several independent sub-circuits). How-

ever, the (2d + 1, d)-sharing is only required to pro-

cess multiplications. Hence, for linear part (addition) a

(d+ 1, d)-sharing is sufficient to perform operations. In

the following, we suggest a slight modification of this

proposal which essentially extends a (d + 1, d)-sharing

to a (2d + 1, d)-sharing in a glitch-free manner (as de-

scribed in Algorithm 1). This tweak will be denoted as

RocP?. It allows us to perform the linear operations

with a lower degree sharing, and to divide by 2 the cost

of these operations in our masked implementations.

Algorithm 1 Expanding of a sharing

Require: A (d+ 1, d)-sharing (xi, yi)
d+1
i=1 .

Ensure: A (2d+ 1, d)-sharing (xi, ti)
2d+1
i=1 .

1: for j from 1 to d+ 1 do

2: tj = yj
3: end for
4: for j from d+ 2 to 2d+ 1 do

5: for i from 1 to d+ 1 do

6: mj
i ∈R GF (256)

7: tmpji = yi ⊗ λji
8: tmpji = tmpji ⊕m

j
i

9: end for

10: tj = 0
11: for i from 1 to d+ 1 do

12: tj = tj ⊕ tmpji
13: end for
14: for i from 1 to d+ 1 do

15: tj = tj ⊕mj
i

16: end for
17: end for

18: return (xi, ti)
2d+1
i=1

In this algorithm, we use m ∈R GF (256) to mean that

m is uniformly randomly chosen in GF (256). The co-



4 Vincent Grosso1, François-Xavier Standaert1, Sebastian Faust2

efficients λji =
∏

0≤k≤d

xj ⊕ xk
xi ⊕ xk

(with k 6= i) are the

evaluations in xj of the Lagrangian of the (d + 1, d)-

sharing. Since the points xi’s are chosen before the ex-

ecution of the masked implementation, these λji can be

precomputed. Interestingly, the different shares are al-

ways used one at a time in Algorithm 1. Hence, just

as in RocP, no glitches can leak information on sev-

eral shares and the implementation of this algorithm

can be based on separate sub-circuits. Namely, a first

class of sub-circuits calculates the masked values and

sends the information at the right time; a second class

of sub-circuits combines the information to obtain new

shares. Note finally that our implementation did not

take advantage of the DFT technique proposed in [5]

since for the security degrees we considered, it did not

lead to significant performance gains3.

2.2 Implementation result

We now compare the performances of the selected sche-

mes, considering both unrolled and compact implemen-

tations. As previously mentioned, the use of unrolled

codes allows reducing the execution time at the cost of

increased code size. Hence, it is limited to lower secu-

rity orders in our target devices. Figure 1 contains the

execution times of the masked AES implementation in

unrolled version (up to security order 7, for larger order

the code size is lager than the 64KB program memory

of the targeted device). Figure 2 exhibits similar results

in the compact implementation case (up to security or-

der 10). As can be observed, this programming style

has a significant influence on the cycle counts.

These first figures clearly illustrate the significant

performance gap between “standard” masking schemes

and the MPC-based solution RocP. We also observe

that our tweak for RocP leads to interesting gains, in

particular in the case of unrolled codes (indeed, step 4 in

Algorithm 1 can be performed with a single table access

in this case). Eventually, the switching method GPQ

3 For example, to evaluate a polynomial of degree 16 in 16
points, our basic method requires 256 multiplications and 256
XOR’s. For the same evaluation with the DFT solution, we
have to reduce a 16-degree polynomial by a 16-degree poly-
nomial, which requires 17 multiplications, 16 XOR’s, and 1
inversion. Then two reductions of a 15-degree polynomial by
an 8-degree polynomial have to be performed, each of them
requiring 72 multiplications, 64 XOR’s and 1 inversion. Even-
tually, the DFT technique corresponds to 321 multiplications,
256 XOR’s and 15 inversions in this case. Since the maximum
degree we will consider in our experiments is 12, and DFT-
based evaluations work best with powers of 2, we believe it
will not lead to significant improvements and focus on other
possible optimizations in the next section.

2 3 4 5 6 7

2

4

6

8

10
·106

security order

n
u

m
b

er
o
f

cy
cl

es
Fig. 1: Cycle counts for masked AES implementations: un-
rolled codes. The curves are for KHL, the curves
are for RocP, the curves are for RivP, the curves
are for RocP?, and the curves are for GPQ.

2 4 6 8 10

2

4

6

8

10
·106

security order

n
u

m
b

er
o
f

cy
cl

es

Fig. 2: Cycle counts for masked AES implementations: com-
pact codes. The curves are for KHL, the curves are
for RocP, the curves are for RivP, the curves are
for RocP?, and the curves are for GPQ.

provides the most efficient implementations, which con-

nects with previously published results and the intu-

ition that the AES is particularly well suited to this

solution, since it alternates XOR-linear parts and mul-

tiplications. As for Boolean masking, the advantage of

the subfield representation in KHL is also observed.



Masking vs. Multiparty Computation: How Large is the Gap for AES? 5

3 More efficient MPC with packed secret

sharing

The previous section suggests that the polynomial mask-

ing scheme RocP suffers from significant performance

overheads compared to GPQ or RivP-KHL. Hence,

despite its interesting security features (e.g. in terms of

glitch-freeness, or ability to prevent fault attacks), the

gap between the security orders that can be reached

with one or the other type of masking clearly benefits to

the simplest solutions. Yet, the proposal by Roche and

Prouff was mainly based on early results in the MPC

literature. As a result, this section investigates whether

some more recent optimizations could be exploited to

improve the performances of MPC-based masking. In

particular, we evaluate the opportunities to take ad-

vantage of packed secret sharing. The main idea of this

technique is to hide several secrets in a higher-degree

polynomial, by using several initial conditions (see Ap-

pendix A). The opening is then performed by evaluat-

ing the polynomials in the locations used by the dealer.

In general, such a solution is useful when there is ex-

ploitable parallelism in the algorithm to execute. In the

following, we will focus on the parallelism available in

the execution of the SubBytes transform.

3.1 Description of the packed secret sharing techniques

3.1.1 Intuition.

The packed secret sharing technique essentially consists

in hiding several secrets in the same polynomial, in or-

der to amortize the cost of computing a function over

several masked secrets in parallel. Let t be the num-

ber of secrets (e.g. corresponding to the number of S-

boxes to execute in our AES case), and d the threshold

number (i.e. the security order of the masking scheme).

Suppose that a single masked S-box has cost of O(d2)

basic field operations (and assuming that all constants

hidden by the O notation are small). A naive way to

execute the t S-Boxes in parallel would require cost of

O(td2). By exploiting the properties of the packed se-

cret sharing, this can be reduced to O(t + d)2. As a

result, for a fixed d and in a setting where t ' d op-

erations are executed in parallel, the complexity of the

protected evaluation is increased asymptotically by a

linear factor compared to an unprotected evaluation.

Notice however that this improvement in complexity is

only achieved for circuits of sufficient size.

We illustrate the relationship between d and t, by

paying attention to cases where we fix one of the two

parameters, and plot the (simplified) cost in function

of the other parameter. For fixed d, we have a linear

complexity in the number of secrets for the single se-

cret sharing, while this complexity is quadratic when

packing is used (see Figure 3). Hence, for each security

level there exists an interval of number of secrets where

the packing technique brings an advantage.

1 3 5 7 9 11 13 15

number of secrets

co
st

Fig. 3: Cost for fixed d (here d = 4) in function of the number
of secrets. For single and packed secret sharing.

For fixed t, both the single and packed secret shar-

ing have a quadratic complexity in the masking order.

Yet, the quadratic complexity is multiplied by a factor

t in the first case. As a result, the packing technique

is gaining interest when the security order is large (see

Figure 4).

1 3 5 7 9 11 13 15

security order

co
st

Fig. 4: Cost for fixed t (here t = 4) in function of the masking
order. For single and packed secret sharing.



6 Vincent Grosso1, François-Xavier Standaert1, Sebastian Faust2

3.1.2 How to multiply.

Using packed sharing prevents to use secure multiplica-

tions based on Ben-Or et al. [2]. Indeed, to reduce the

degree of the polynomial their solution is to erase all

the large monomials. This can be done if the secret is

located in 0 (since the elimination of large monomials

does not change the secret in this case). But packed

secret sharing needs several locations for the secrets,

which implies that the truncation of polynomials be-

comes difficult to realize, as best illustrated with the

following example. Let s1 (resp. s2) be a secret shared

by a polynomial P1(X) (resp. P2(X)). sl = Pl(0) =∑
i

t
(l)
i

∏
j 6=i

xi
xj − xi

, for l =1 or 2 . Remark that we can

write Pl(X) =
∑

0≤i≤d
a
(l)
i Xi. Ben-Or et al. et al. calculate

s1s2 by performing the product Q(X) = P1(X)P2(X).

The polynomial Q(X) has a degree 2d, but since the se-

cret is located in 0, it can be truncated by securely eras-

ing all monomials larger than d. Note that this secure

erasure process requires to combine different shares.

Hence the information exchanged in this step needs to

be masked in order to maintain the security order. Let

this truncated polynomial be denoted as Q|d(X). Then

we have Q(0) = Q|d(0). All other evaluations can be

affected by the erasure of the largest monomials.

A natural solution to avoid this problem is to rely

on a different multiplication algorithm. For example, we

can use the proposal by Damg̊ard et al. [6], described

in Algorithm 2. In brief, this multiplication masks the

result with a random polynomial, opens the result and

finally removes the random polynomial, for a complex-

ity in O(d2). More precisely, let n = d + t and Open

Algorithm 2 Polynomial opening multiplication

Require: A (n, d)-sharing of y and z : (xi, yi)ni=1 and
(xi, zi)ni=1.

Ensure: A (n, d)-sharing of y × z : (xi, ti)ni=1 .
1: for i from 1 to n do

2: ri ∈R GF (256)
3: end for

4: Use Alg. 1 on (xi, ri)ni=1,(xi, yi)ni=1 and (xi, zi)ni=1
5: for i from 1 to 2n− 1 do
6: pi = yi ⊗ zi ⊕ ri
7: end for

8: (s1, . . . , st) = Open((x1, p1), . . . , (x2n−1, p2n−1))
9: (t1, . . . , tn) = Share(s1, . . . , st)

10: for i from 1 to n do
11: ti = ti ⊕ ri
12: end for

13: return (xi, yi)ni=1

/ Share refer to the operations that allow recovering

several shared secrets and to distribute them among

participants (as explained in Appendix A). The first

step in Algorithm 2 is the same as in Ben-or et al,

i.e. we simply calculate Q(X) = P1(X)P2(X). Then

the reduction step is different. The polynomial Q(X) is

masked by a random polynomial R(X), which is done

by adding the shares ri’s in step 6. Afterwards, the poly-

nomial Q + R(X) is evaluated in the positions where

the secrets are located, in order to recover the masked

product of the secrets (step 8). Let {vk}nk=1 be the set

of the locations for the different secrets. Remark that to

determine R(vk), one has to estimate n points of R(X),

which allows maintaining the d-th order security. Even-

tually, the k secrets are shared in a new polynomial

Q′(X) (in step 9), that is of degree n and corresponds

to a sharing of Q+R(vk). Hence, it just remains to re-

move the random polynomial R to obtain a sharing of

Q(vk) of degree at most n (i.e. a sharing for the prod-

ucts of the secrets), which is done in step 11 of the

algorithm.

3.1.3 Squaring issues.

The problem of moving the position of shares between

participants when squaring (described in Appendix A)

also becomes more critical when exploiting packed se-

cret sharing. That is, we now have to face the fact that

multiple secrets are hidden in several positions, which

can also move. Since the secrets need to be located at

the same position to be combined, we cannot use a sta-

ble set of secrets like proposed for sharing in [27]. As a

result, we avoid the squaring problem directly by imple-

menting them with secure multiplications. One conse-

quence of this choice is that it is also interesting to use

a modified addition chain for the inversion, in order to

minimize both the number of multiplications and squar-

ings. We used the one described in [7] for this purpose,

which requires 11 secure multiplications (including the

squarings).

3.1.4 Full AES.

We face one more problem when extending the pack-

ing towards the full AES. Namely the operations Mix-
Columns and ShiftRows need to move secrets that are

hidden in the same polynomial. Hence, and in order to

benefit both from the performance gains of packed se-

cret sharing during the execution of the S-boxes and

from the linear parts, we decided to switch to single

secret polynomials after each execution of SubBytes.

To switch from t polynomials of degree d+ 1 (with se-

crets located in position 0) to a single polynomial of

degree d + t (with secrets located at positions vk), we

first move the positions of all the secrets from 0 to vk



Masking vs. Multiparty Computation: How Large is the Gap for AES? 7

(secret per secret). Next, we multiply the resulting poly-

nomial by another polynomial, that cancels at positions

vj 6=k and equals 1 in vk. Eventually, we add all polyno-

mials together to obtain a single polynomial of degree

d+ t and containing t secrets. For the inverse operation

(i.e. moving from one polynomial to t polynomials), we

first move each secret from position vk to position 0.

Then we erase all monomials of high degree in order

to keep a polynomial of degree d. Eventually, we re-

fresh the masking by adding a polynomial sharing of

zero. These two operations are detailed in Appendix B,

Algorithms 3 and 4.

3.2 Implementation result

We now compare RocP?, with a MPC-inspired mask-

ing exploiting Algorithm 2, for various amounts of se-

crets hidden per polynomial. In order to evaluate the

extent to which the packed secret sharing is exclusively

useful for the execution of the AES S-boxes or if the

switching between single-secret polynomials and packed

secret polynomials is an efficient solution, we provide

performance results both for 16 inversions and for the

full AES. Besides, and in order to reflect the impact of

high security orders, we focused on the compact ver-

sions of our codes (the impact of unrolling is very sim-

ilar to the one in the previous section).

2 4 6 8 10

0.5

1

1.5

2

2.5

·106

security order

n
u

m
b

er
o
f

cy
cl

es

Fig. 5: Cycle counts for MPC-based masking (compact
codes): 16 inversions. The curves are for RocP?,
the packed secret sharing curves are represented by

, , and for respectively 2, 4, 8 and 16 secrets.
The curves are for the multiplication of Algorithm 2 with
a single secret per polynomial.

2 4 6 8 10 12
0

10

20

30

40

·106

security order

n
u

m
b

er
o
f

cy
cl

es
Fig. 6: Cycle counts for MPC-based masking (compact
codes): full AES (b). The curves are for RocP?,
the packed secret sharing curves are represented by

, , and for respectively 2, 4, 8 and 16 secrets.
The curves are for the multiplication of Algorithm 2 with
a single secret per polynomial.

The results in Figure 5 and Figure 6 first exhibit

that a change of multiplication algorithm is anyway

beneficial to performances in our implementation con-

text. In particular, it is interesting to notice that the

different asymptotic complexities for the multiplication

in RocP? (cubic in the security order) and the one of

Algorithm 2 (quadratic in the security order) are nicely

reflected in the plots. The impact of packed secret shar-

ing is also put forward, it can be seen by the gap for

small order between single secret sharing and packed

secret sharing. This is due to the addition chain that

has been changed. In particular, we can observe the (ex-

pected) quasi-linear complexity of these schemes. Inter-

estingly, the results for the 16 inversions and for the full

AES do not strongly deviate, hence suggesting that the

iterated execution of Algorithms 3 and 4 does not harm

performances to the point where it would become use-

less. Eventually, the security orders for which the quasi-

linear complexity of packed secret sharing materializes

remain quite high (d = 10 for the full AES), hence

suggesting that hiding a single secret per polynomial

remains the best approach in most practical settings.

4 Randomness requirements and impact on

performances

Before to conclude, we would like to briefly investigate

the issue of random number generation that is usually



8 Vincent Grosso1, François-Xavier Standaert1, Sebastian Faust2

neglected in the evaluation of masking schemes. This

is an important issue since the amount of randomness

required to mask each non-linear operation within the

AES while maintaining a security of order d is again

quadratic in d. For this purpose, we will start by pro-

viding some information theoretic intuition regarding

why strong randomness is indeed needed. In particular,

we will show that this randomness has to be uniform,

and that different deviations from this requirement im-

ply weaknesses appearing for low and high measure-

ment noise levels, respectively. Then, we will re-evaluate

the performances of the best masking schemes we ana-

lyzed in this paper, considering a realistic performance

penalty for the generation of each random byte.

4.1 How good must the randomness be?

In order to answer this question, we first repeated ex-

actly the information theoretic analysis described in [30]

and applied to the masking countermeasure in [31]. It

leads to the information theoretic curves for the unpro-

tected S-box and the 1st-order masked one in Figure 7.

As detailed in these previous works, such information

theoretic curves provide an evaluation of the worst-case

security level of a countermeasure (i.e. the security level

in front of an adversary with a perfect knowledge of the

leakage distribution). In the case of masking, the order

of the countermeasure is reflected in the slope of the

curve (i.e. one for the unprotected S-box, 2 for the 1st-

order masked one). We then considered two additional

scenarios where the randomness was not as perfect as

expected.

In the first place, we considered the random number

to be predictable, with an easy relation from pseudo-

random value. In particular, we took the simple case

where the 16 S-boxes were masked with a counter, that

can take all the values of the secret. In this context, an

observation already made in [32] in the context of the

shuffling countermeasure is that an adversary will be

able to target the 16 masks jointly. That is, since there

are only 256 possible start values, she can evaluate the

likelihood of the 256 sequences of 16 mask leakages, and

use them in her template attack. Just as for the case

of shuffling, the impact of such an imperfection of the

randomness is that for low noise levels, all the masks

will be recovered with probability one, as illustrated in

Figure 7. As a complement, we also considered the case

where the randomness was slightly biased in the same

figure. Interestingly, it is well known that such biases di-

rectly create a lower-order weakness (e.g. like the “zero

problem” in multiplicative masking [14]). But in fact,

depending on the strength of the bias, this first-order

Fig. 7: Information theoretic evaluation of masking schemes.

weakness may or not be the best way to attack. That is,

as illustrated in the figure, a small first-order weakness

will only dominate at the noise level for which its bias is

significant in front of the second-order information that

is anyway available. The lower green curve excludes 1
32

mask values, the higher 1
16 mask values. The combina-

tion of these observations naturally suggests that both

for low and high noise levels, exploiting biased or pre-

dictable randomness is not an option for masking.

4.2 Implementation result

Since strong randomness is anyway required for mask-

ing to lead to its expected security improvements, we fi-

nally repeated our performance evaluations assuming a

reasonable cost for producing each random byte. Namely,
we considered 10 cycles for each of these generations

(excluding the memory accesses), which corresponds

both to the typical quantity that we found for security

chips of the same manufacturer as our target device,

and to the execution of two AES rounds for produc-

ing 16 bytes of pseudorandomness. Besides, and in or-

der to optimize the randomness requirements, we also

modified the addition chain for the inversion in or-

der to minimize this additional criteria, as proposed

in [7]. We then compared the schemes of Section 2

again, namely RivP, KHL, GPQ and RocP?, as well

as the MPC-based scheme using the multiplication of

Algorithm 2 using a single secret per polynomial, and

the best packed sharing scheme from the previous sec-

tion (i.e. the most efficient solution for each security de-

gree), considering compact codes. As illustrated in Fig-

ure 8, the cost of the random generation shifts the per-

formance curves. But since all algorithms have a cost in

randomness that is quadratic in the order of the mask-

ing scheme, this shift does not contradict the previous



Masking vs. Multiparty Computation: How Large is the Gap for AES? 9

observations. One can just observe that the order for

which packed secret sharing becomes a useful alterna-

tive is delayed by one. For the rest, the gap between

RivP, KHL, GPQ and MPC-based masking remains

large, but has been significantly reduced thanks to our

optimizations.

2 4 6 8 10 12

0

10

20

30

40

50

·106

security order

n
u

m
b

er
o
f

cy
cl

es

Fig. 8: Cycle counts for masked AES implementations with
time to generate random. The curve is for KHL, the
curve is for RocP?, the curve is for RivP, the curve

is for GPQ, the curve is for the multiplication of
Algorithm 2 with a single secret per polynomial and the curve

is for the best packed secret sharing.

5 Conclusions

The choice of a masking scheme to protect AES im-

plementations is a delicate tradeoff between security

and performances. In this paper, we provided a care-

ful comparison of different state-of-the-art proposals for

this purpose, together with a cautionary note regar-

ing the importance of relying on strong randomness in

this context. We hope that it will help actual design-

ers in choosing the solution that best fits their secu-

rity and performance constraints. Interestingly, and de-

spite the intuitive connection between these problems,

our results show that specialized masking schemes that

only guarantee higher-order side-channel security have

significantly better performances than general MPC-

inspired solutions. Yet, the latter ones provide inter-

esting security features, e.g. the glitch-freeness previ-

ously discussed by Roche and Prouff, or the ability to

prevent fault attacks (i.e. to resist active adversaries).

Quite naturally, MPC also benefits from a huge litera-

ture, and more optimization efforts could certainly be

considered to further reduce the gap between these two

problems. The use of somewhat homomorphic encryp-

tion taking advantage of a preprocessing phase to re-

duce asymptotic complexities can be mentioned as an

example [9], in particular since it has been shown to

provide efficient implementations of the AES [8]. Also,

the parallelism we exploit in this work was internal to

the AES (i.e. based on its 16 S-boxes). This is natu-

ral since embedded applications usually encrypt only

a small amount of plaintexts. But in other scenarios

where many plaintexts have to be encrypted concur-

rently, it would be possible to take advantage of this

additional (extrernal) parallelism.

Acknowledgements. Work funded in parts by the Eu-

ropean Commission through the ERC project 280141

(acronym CRASH) and the European ISEC action grant

HOME/2010/ISEC/AG/INT-011 B-CCENTRE project.

F.-X. Standaert is an associate researcher of the Belgian

Fund for Scientific Research (FNRS-F.R.S.).

References

1. Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and
Ingrid Verbauwhede. Theory and practice of a leakage
resilient masking scheme. In Wang and Sako [34], pages
758–775.

2. Michael Ben-Or, Shafi Goldwasser, and Avi Wigder-
son. Completeness theorems for non-cryptographic fault-
tolerant distributed computation (extended abstract). In
Janos Simon, editor, STOC, pages 1–10. ACM, 1988.

3. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and
Pankaj Rohatgi. Towards sound approaches to counter-
act power-analysis attacks. In Michael J. Wiener, editor,
CRYPTO, volume 1666 of Lecture Notes in Computer Sci-

ence, pages 398–412. Springer, 1999.
4. Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu

Rivain. Side channel cryptanalysis of a higher order
masking scheme. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, CHES, volume 4727 of Lecture Notes

in Computer Science, pages 28–44. Springer, 2007.
5. Jean-Sébastien Coron, Emmanuel Prouff, and Thomas

Roche. On the use of shamir’s secret sharing against side-
channel analysis. In Stefan Mangard, editor, CARDIS,
volume 7771 of Lecture Notes in Computer Science, pages
77–90. Springer, 2012.

6. Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Per-
fectly secure multiparty computation and the computa-
tional overhead of cryptography. In Henri Gilbert, editor,
EUROCRYPT, volume 6110 of Lecture Notes in Computer

Science, pages 445–465. Springer, 2010.
7. Ivan Damg̊ard and Marcel Keller. Secure multiparty AES

(full paper). IACR Cryptology ePrint Archive, 2009:614,
2009.

8. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Christian
Miles, and Nigel P. Smart. Implementing AES via an ac-
tively/covertly secure dishonest-majority MPC protocol.
In Ivan Visconti and Roberto De Prisco, editors, SCN,



10 Vincent Grosso1, François-Xavier Standaert1, Sebastian Faust2

volume 7485 of Lecture Notes in Computer Science, pages
241–263. Springer, 2012.

9. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah
Zakarias. Multiparty computation from somewhat homo-
morphic encryption. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO, volume 7417 of Lecture Notes
in Computer Science, pages 643–662. Springer, 2012.

10. Matthew K. Franklin and Moti Yung. Communication
complexity of secure computation (extended abstract).
In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and
John A. Ellis, editors, STOC, pages 699–710. ACM, 1992.

11. Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff,
and Matthieu Rivain. Affine masking against higher-
order side channel analysis. In Alex Biryukov, Guang
Gong, and Douglas R. Stinson, editors, Selected Areas in

Cryptography, volume 6544 of Lecture Notes in Computer
Science, pages 262–280. Springer, 2010.

12. Laurie Genelle, Emmanuel Prouff, and Michaël
Quisquater. Montgomery’s trick and fast imple-
mentation of masked AES. In Abderrahmane Nitaj and
David Pointcheval, editors, AFRICACRYPT, volume
6737 of Lecture Notes in Computer Science, pages 153–169.
Springer, 2011.

13. Laurie Genelle, Emmanuel Prouff, and Michaël
Quisquater. Thwarting higher-order side channel
analysis with additive and multiplicative maskings. In
Preneel and Takagi [24], pages 240–255.

14. Jovan Dj. Golic and Christophe Tymen. Multiplicative
masking and power analysis of AES. In Burton S. Kaliski
Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES,
volume 2523 of Lecture Notes in Computer Science, pages
198–212. Springer, 2002.

15. Louis Goubin and Ange Martinelli. Protecting AES with
Shamir’s secret sharing scheme. In Preneel and Takagi
[24], pages 79–94.

16. Yuval Ishai, Amit Sahai, and David Wagner. Private cir-
cuits: Securing hardware against probing attacks. In Dan
Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in

Computer Science, pages 463–481. Springer, 2003.
17. HeeSeok Kim, Seokhie Hong, and Jongin Lim. A fast and

provably secure higher-order masking of AES S-box. In
Preneel and Takagi [24], pages 95–107.

18. Chung Laung Liu. Introduction to combinatorial math-
ematics, 1968.

19. Stefan Mangard, Elisabeth Oswald, and Thomas Popp.
Power analysis attacks - revealing the secrets of smart cards.
Springer, 2007.

20. Stefan Mangard, Thomas Popp, and Berndt M. Gammel.
Side-channel leakage of masked CMOS gates. In Alfred
Menezes, editor, CT-RSA, volume 3376 of Lecture Notes
in Computer Science, pages 351–365. Springer, 2005.

21. Amir Moradi and Oliver Mischke. On the simplicity
of converting leakages from multivariate to univariate
- (case study of a glitch-resistant masking scheme). In
Guido Bertoni and Jean-Sébastien Coron, editors, CHES,
volume 8086 of Lecture Notes in Computer Science, pages
1–20. Springer, 2013.

22. Svetla Nikova, Christian Rechberger, and Vincent Rij-
men. Threshold implementations against side-channel
attacks and glitches. In Peng Ning, Sihan Qing, and
Ninghui Li, editors, ICICS, volume 4307 of Lecture Notes
in Computer Science, pages 529–545. Springer, 2006.

23. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Se-
cure hardware implementation of nonlinear functions in
the presence of glitches. J. Cryptology, 24(2):292–321,
2011.

24. Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic

Hardware and Embedded Systems - CHES 2011 - 13th Inter-
national Workshop, Nara, Japan, September 28 - October 1,

2011. Proceedings, volume 6917 of Lecture Notes in Com-
puter Science. Springer, 2011.

25. Emmanuel Prouff and Matthieu Rivain. Masking against
side-channel attacks: A formal security proof. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT,
volume 7881 of Lecture Notes in Computer Science, pages
142–159. Springer, 2013.

26. Matthieu Rivain and Emmanuel Prouff. Provably se-
cure higher-order masking of AES. In Stefan Mangard
and François-Xavier Standaert, editors, CHES, volume
6225 of Lecture Notes in Computer Science, pages 413–427.
Springer, 2010.

27. Thomas Roche and Emmanuel Prouff. Higher-order
glitches free implementation of the AES using secure
multi-party computation protocols - extended version. J.

Cryptographic Engineering, 2(2):111–127, 2012.
28. Kai Schramm and Christof Paar. Higher order masking of

the AES. In David Pointcheval, editor, CT-RSA, volume
3860 of Lecture Notes in Computer Science, pages 208–225.
Springer, 2006.

29. Adi Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

30. François-Xavier Standaert, Tal Malkin, and Moti Yung.
A unified framework for the analysis of side-channel key
recovery attacks. In Antoine Joux, editor, EUROCRYPT,
volume 5479 of Lecture Notes in Computer Science, pages
443–461. Springer, 2009.

31. François-Xavier Standaert, Nicolas Veyrat-Charvillon,
Elisabeth Oswald, Benedikt Gierlichs, Marcel Medwed,
Markus Kasper, and Stefan Mangard. The world is not
enough: Another look on second-order DPA. In Masayuki
Abe, editor, ASIACRYPT, volume 6477 of Lecture Notes

in Computer Science, pages 112–129. Springer, 2010.
32. Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie

Kerckhof, and François-Xavier Standaert. Shuffling
against side-channel attacks: A comprehensive study with
cautionary note. In Wang and Sako [34], pages 740–757.

33. Manfred von Willich. A technique with an information-
theoretic basis for protecting secret data from differential
power attacks. In Bahram Honary, editor, IMA Int. Conf.,
volume 2260 of Lecture Notes in Computer Science, pages
44–62. Springer, 2001.

34. Xiaoyun Wang and Kazue Sako, editors. Advances in

Cryptology - ASIACRYPT 2012 - 18th International Con-

ference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012.

Proceedings, volume 7658 of Lecture Notes in Computer

Science. Springer, 2012.

A Shamir’s secret sharing & BGW

The idea of sharing a secret between several persons is a prob-
lem proposed by Liu in 1968 [18]. 11 years after, Shamir de-
scribed a way to solve it [29]. His solution essentially exploits
the fact that Lagrangian interpolation allows to recover the
polynomial of lowest degree passing through several points.
As a result, to share a secret s the person who knows the
secret (usually referred to as the dealer) chooses a random
polynomial P , such that P (0) = s (usually referred to as the
initial condition). Let d be the degree of P . Then the dealer
distributes the evaluations of P at different points (called the
shares) to the e participants, and labels the i-th evaluation



Masking vs. Multiparty Computation: How Large is the Gap for AES? 11

in xi 6= 0 with yi. This step is usually called the sharing.
In this paper we will denote this operation by (y1, . . . , ye) =
Share(s). Now if f > d participants want to discover the se-
cret, they use the interpolation method to find P , and then
evaluate P in 0: this step is called the opening. In this paper
we will denote this operation by s = Open(y1, . . . , yf ). By con-
trast if f ≤ d, then P cannot be recovered since not enough
information is available. In practice, the interpolation can be
done using the Lagrangian method. In that case, the partici-

pants build Q(X) =
∑

0≤i≤f

yi
∏
j 6=i

X − xj
xi − xj

. Since this polynomial

has degree at most f and verifies Q(xi) = yi ∀i ∈ {0, . . . , f},
we directly have that if f > d, then Q = P according to the
fundamental theorem of algebra.

The original MPC techniques in [2] essentially aim at
computing on secrets shared according to Shamir’s trick. In
this context, it is easy to see that the addition of two se-
crets can be done directly, by simply performing the addition
on each pair of shares. By contrast, multiplying two shared
secrets is more difficult, since the multiplication of two poly-
nomials of degree d in a field gives rise to a polynomial of
degree 2d. As a result, and in order for the degrees of the
polynomials to remain low enough so that MPC remains effi-
cient, it is necessary to reduce this polynomial securely. The
solution proposed by Ben-Or, Goldwasser and Wigderson is
to use sharings with t > 2d, perform the multiplications lo-
cally, and then securely delete in all the monomials of degree
higher than d [2].

Note that when using polynomial masking (e.g. based on
Shamir’s secret sharing), the square function is also a bit
more difficult to implement than in the Boolean case. Indeed,

let s = P (0) =
∑
ti
∏
j 6=i

xj

xj − xi
. To calculate the square of s,

the participants have to compute s2 =
∑
y2i

∏
j 6=i

x2j

x2j − x2i
. But

without special care, this operation moves the position of the
shares between participants (while the execution of linear op-
erations can only be performed if the shares are located at the
same place). In [27], the authors propose to use a set S of loca-
tion points that are stable by Frobenius application to avoid
this problem. That is, for our case we select points such that
x2 = y and then let the participants exchange shares (which
is possible in the context of masking where all participants
are on the same chip and assumed to be honest - but not in
the general MPC case).

B Switch packed secret single secret

We describe how to switch from a single polynomial masking
to a packed secret sharing (and vice versa) in Algorithms 3
and 4. Note that step 5 in Algorithm 1 allows to obtain a
(n, d)-sharing from a (d+1, d)-sharing. Ak

i is the evaluation on

xi of the polynomial Ak(X) =
∏
i 6=k

X−vi
vk−vi

. It easy to check that

this polynomial verifies the condition of annihilation in vi for
i 6= k. Eventually, mk

i =
∏
j 6=i

xj

vk−xj
allows to move the location

of a secret from 0 to vk, since mk
i =

∏
j 6=i

xj

xi−xj
(
∏
j 6=i

vk−xj

xi−xj
)−1.

As a result, the reconstruction with
∏
j 6=i

vk−xj

xi−xj
will give the

same secret as the evaluation in zero of the original polyno-

mial. Similarly, dki =
∏
j 6=i

vk−xj

xj
allows to move the location of

the secret for vk to zero.

Algorithm 3 Switch from t single-secret polys to 1

packed secret poly

Require: t (d+ 1, d)-sharings of sk : (xi, yki )d+1
i=1 .

Ensure: A (n, d)-sharing of {sk}tk=1 : (xi, ti)ni=1.
1: for k from 1 to t do
2: for i from 1 to d do

3: yki = yki ⊗mk
i

4: end for
5: Use a modified Alg. 1 on (xi, yki )d+1

i=1
6: for i from 1 to d do

7: yki = yki ⊗Ak
i

8: end for

9: end for

10: for k from 1 to t do
11: for i from 1 to t+ d do

12: ti = ti ⊕ yki
13: end for

14: end for

15: return (xi, ti)ni=1

Algorithm 4 Switch from 1 packed secret poly to t

single-secret polys

Require: A (n, d)-sharing of {sk}tk=1 : (xi, ti)ni=1.

Ensure: t (d+ 1, d)-sharings of sk : {(xi, yki )d+1
i=1 }

t
k=1.

1: for i from 1 to t do
2: for k from 1 to d+ t do

3: yki = ti ⊗ dki
4: end for

5: for i from 1 to d do

6: ri ∈R GF (256)
7: end for

8: Use Alg. 1 on (xi, ri)
d+1
i=1

9: for i from 1 to d+ t do
10: yki = yki ⊕ ri
11: end for
12: res = Open((x0, yk0), . . . , (xt+d, y

k
t+d)

13: (t1, . . . , td+1) = Share(0)
14: for k from 1 to d+ 1 do

15: yki = ri ⊕ res⊕ ti
16: end for

17: end for

18: return {(xi, yki )d+1
i=1 }

t
k=1


