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ABSTRACT
Physically Unclonable Functions are more and more impor-
tant in the design of secure hardware, as they can ensure
properties that conventional cryptography can not. In this
paper we clarify the relations between strong PUFs and their
unpredictability. For this purpose we first introduce an al-
ternative definition for physical unpredictability, where the
adversary can probe the physical responses of the Physi-
cal Function. We then illustrate physical unpredictability
with a new instance of a PUF, based on the variability of
the power consumption of a 65-nanometer chip. For this
new PUF, we also evaluate the relation between robustness,
unclonability and physical unpredictability. Our new defi-
nitions highlights the importance for designers to take into
account if physical probing is possible or not (since the power
of modeling attacks highly depends on this assumption). It
also suggests that physical unpredictability is a generally
useful tool for evaluating the unclonability of PUFs (since
it can generate warning signals regarding the independence
assumption that is frequently exploited for this purpose).

1. INTRODUCTION
Physical(ly) Unclonable Functions (PUFs) are important
primitives in secure hardware design. One of their main in-
terest is that they can ensure properties that cannot be guar-
anteed by mathematical means only. As a result, PUFs can
(ideally) be used as an interesting complement to traditional
cryptographic objects. But quite naturally, a central ques-
tion for this interest to materialize is to quantify these phys-
ical properties. It can be related to the long standing prob-
lem whether PUFs can be“strong”, i.e. whether they remain
secure after the observation of a large number of challenges
by the adversary [1]. The evaluation framework introduced

by Armknecht et al. and summarized in Figure 1 is a sound
foundation for answering such questions [2]. Its main goal
is to provide a set of minimum security definitions (namely
robustness, unclonability and unpredictability) that can be
evaluated by hardware engineers, and exploited in crypto-
graphic protocols. Whenever considering weak PUFs with
a limited challenge set (e.g. the image-based case in [3]),
the resulting trade-off is quite well understood. Namely, the
physical function will generate noisy responses for which the
hope is to observe large inter-class and low intra-class vari-
ance. High robustness is then obtained at the output, by
embedding an Error Correction Code (ECC) in the extrac-
tion step, which comes at the cost of a reduced unclonability
(i.e. by lifting the noise, some small details of the response
are also removed). By contrast, as soon as strong PUFs
are considered (i.e. for larger challenge sets), the problem
of the unpredictability of the corresponding outputs comes
into play, leading to a more intricate situation.

Figure 1: Physical Function System (simplified).

Our contribution. In this paper, we aim to clarify the
relations between strong PUFs and their unpredictability.
For this purpose, we first observe that in the definition of
unpredictability by Armknecht et al., the adversary is only
able to observe the output of the target Physical Function
System (PFS). As a result, we first provide an alternative
definition of physical unpredictability, where the adversary
is additionally able to probe the Physical Function’s (PF)
noisy responses. We then illustrate this definition with a
new instance of PUF, exploiting the variability of the power
consumption traces of a chip (next denoted as Power PUF).
Our main motivation for studying this instance is that it can
directly take advantage of the vast literature on side-channel
analysis in the evaluation of modeling attacks. Based on
practical experiments with 65-nanometer chips, we finally
evaluate the trade-off between robustness, unclonability and
physical unpredictability for an exemplary Power PUF. It



allows us to put forward a first complete application of the
evaluation framework in [2], leading to a realistic view of
the security levels achieved. These physical unpredictability
experiments also suggest two important messages for the
security evaluation of PUF-based applications.

The first message relates to the practical relevance of the un-
predictability provided by physical functions, and its connec-
tion with adversarial means. In this respect two situations
can occur. On the one hand, it can be considered that the
adversaries directly probe the PUF responses, in which case
strong predicting attacks are usually possible (since these
adversaries can directly model the physical signal on which
the PUF is based). Physical unpredictability aims at cap-
turing this (worst-case) situation. On the other hand, it
can be assumed that adversaries can only probe the PUF
outputs, in which case predicting the PUF behavior may
be much more difficult (in particular in situations where its
outputs are processed with a cryptographic hash function,
e.g. as in [4]). The unpredictability defined in [2] captures
this alternative scenario. Depending on the implementation
choices of system designers and on the hardware assump-
tions made about where the probing of the PUFs can rea-
sonably occur, one or the other definition will be preferred.

The second message relates to the relation between physical
unpredictability and the evaluation of unclonability. Namely,
it is a usual goal of PUF designers to extract the best pos-
sible unclonability with high robustness, and at the lowest
hardware cost. In general, there are two main solutions to
improve the physical unclonability of a (strong) PUF in-
stance: either by increasing the challenge set and concate-
nating the corresponding outputs (which is the cheapest so-
lution), or by using multiple - physically distinct - func-
tions and concatenating the corresponding outputs (which
is more expensive). In practice, the best option naturally is
to exploit the first solution as much as possible. But this
option usually faces the problem that estimating the un-
clonability of a PUF is a difficult and expensive task, as it
requires many samples and depends on a probability dis-
tribution that is a priori unknown (since physical). As a
result, a convenient solution is to rely on an independence
assumption in the evaluation of unclonability. But this so-
lution then faces the other problem that the PUF responses
corresponding to multiple challenges may not be indepen-
dent. Interestingly, we show in this work that the (easier
to evaluate) physical unpredictability that we introduce can
be used to generate warning signals in this respect. Namely,
the concatenation of strong PUF outputs to increase unclon-
ability should anyway be limited to the number of challenges
for which physical unpredictability can be guaranteed. As
a result, we believe it is a safe practice to always evaluate
the physical unpredictability of a strong PUF, in order to
properly assess the security level it provides.

The following of the paper is structured as follows: Section 2
briefly describes previous works. In Section 3, we bring the
definitions of a Physical Function System and its important
properties. Next, we present our new instance of Power
PUF in Section 4 and experimentally evaluate its properties,
namely robustness, physical unpredictability, and physical
unclonability in Sections 5,6 and 7 respectively.

2. PREVIOUS WORK
PUFs were introduced by Pappu [5, 6]. Since then, many
different physical objects have been proposed as PUF candi-
dates, including Optical PUF [5,6], Coating PUF [7], Silicon
PUF [8–10], SRAM PUF [11], Paper PUF [12–15], Laser-
Written PUF [16,17], etc. Several application fields have also
been proposed. Weak PUFs with a few number of challenge
response pairs are mostly targeted for anti-counterfeiting
[18–20] and key generation [21]. Strong PUFs with a po-
tentially very large number of challenge response pairs have
been mostly aimed for authentication [1, 8] or in the design
of block ciphers [22]. For strong PUFs, unpredictability of
their responses have been questioned through various mod-
eling attacks [1,23]. The modeling attacks try to build a nu-
merical model which correctly predicts the PUF responses
to arbitrary challenges with a high probability. Some ma-
chine learning techniques used as tools for modeling attacks
on strong PUFs include Logistic Regression [1,24], Artificial
Neural Networks [23,25], Support Vector Machines [25], etc.

3. DEFINITIONS
In this section, we define a Physical Function System (PFS)
and its properties namely robustness, physical unclonability
and unpredictability, based on the framework of Armknecht
et al. [2]. We also provide an alternative definition of physi-
cal unpredictability that captures unpredictability of a PFS
when the adversary can probe the PUF responses.

A Physical Function System PFS is a probabilistic proce-
dure which takes as input a challenge x ∈ X and generates
an output z ∈ Z (See Figure 1). A PFS is executed in two
different modes of operation. In setup mode where the PUF
is evaluated for the first time, in addition to the output z,
PFS also generates as output some helper data h. In re-
construction mode, where the PUF is evaluated again, the
helper data generated in setup mode is used as an input to
produce the output. In this mode, the input helper data
is returned unchanged to the output. The Physical Func-
tion System is thus defined as PFS(x, h)→ (z, h′) such that
helper data is an empty string h = ε in setup mode, and
the input helper data is returned unchanged h = h′ in re-
construction mode. The important properties of the above
Physical Function System are formally defined as follows:

1. Robustness. Robustness of a PFS is represented by
the probability that for a given PUF, the output gen-
erated by reconstruction phase matches the value gen-
erated in setup phase using its corresponding helper
data h. Formally, a PFS is ρPFS -robust if:

Pr [PFS(x, h)→ (z, h) : PFS(x, ε)→ (z, h)] ≥ ρPFS ,
(1)

where ‘:’ denotes the conditional probability.

2. Physical Unclonability. Physical Unclonability re-
lates to the probability that an adversary can build (or
find) a PFS′ which shows the same behavior as another
PFS. By the same behavior we mean that PFS′ gener-
ates the same output as PFS providing that PFS′ uses
the helper data generated by PFS in setup mode. In
general, this probability can be assessed for different



scenarios. For example, one can imagine a scenario
where the adversary is confined to use facilities of the
honest manufacturer to create the PUFs. Or, he can
use more accurate creation tools than that of honest
manufacturer. As the evaluation of unclonability in
the second scenario is related to detail and cost of the
manufacturing process, in practice the probability of
cloning is usually evaluated for the first scenario by
finding the probability that an honest manufacturer
creates a clone by coincidence. In this case, physical
unclonability β for the adversary who is limited to the
facilities of an honest manufacturer can be defined as:

Pr
[
PFS′(x, h)→ (z, h) : PFS(x, ε)→ (z, h)

]
≤ β.ρPFS ,

(2)

where PFS and PFS′ have two different PUFs which
are created by the honest manufacturer. The notion
of robustness ρPFS is integrated into the definition of
physical unclonability because it is a natural upper
bound for the probability of generating a clone.

3. Unpredictability. Unpredictability is another prop-
erty of a Physical Function System which is impor-
tant specially for strong PUFs. Roughly speaking,
unpredictability is related to the probability that an
adversary wins a predicting experiment such that he
predicts the output corresponding to a new challenge
from previously observed challenge-output pairs. The
predicting experiment to a Physical Function System
is formally defined as follows. It is executed in learn-
ing and test phases. In learning phase, an adversary
A learns the evaluations of PFS on a set of challenges
{x1, x2, . . . , xq} ∈ X . The adversary trains a model
Model from the set of observed evaluations. Then in
the test phase, he predicts z = PFS(x) for a new chal-
lenge x ∈ X : x /∈ {x1, x2, . . . , xq} using Model.

As mentioned in the introduction, either the adversary
is only able to observe the output z and helper data
h, or he can additionally observe the physical response
y of the PUF. In the first scenario, the predicting ex-
periment Expunp

A (q) is illustrated inside the plain box
in Figure 2. In the second scenario, the “physical”
predicting experiment Expphy−unp

A (q) also includes ob-
serving the PUF responses to the challenges and is il-
lustrated inside the dashed box in Figure 2. The unpre-
dictability η and physical unpredictability κ can thus be
defined as the probability of success of the predicting
experiments Expunp

A (q) and physical predicting exper-

iment Expphy−unp
A (q), respectively:

Pr
[
Expunp

A (q)→ z : PFS(x, ε)→ (z, h)
]
≤ η.ρPFS ,

P r
[
Expphy−unp

A (q)→ z : PFS(x, ε)→ (z, h)
]
≤ κ.ρPFS .

Again, the robustness of PFS marks an upper bound
on the predictability of its outputs. In following sec-
tions, we first introduce our instance of PFS, i.e. a
Power PUF system, and then we evaluate its impor-
tant properties, i.e. robustness, physical unpredictabil-
ity and physical unclonability (and their relation).

Adversary A

For 1 ≤ i ≤ q

Model

?
z′ for x′ /∈ {x1, x2, . . . , xq}

� zi, hi

-xi

Oracle Ounpred

If xi ∈ X then
PFS(xi, ε)→ (zi, hi)

PF(xi)→ yi6
yi

Figure 2: Description of the predicting experiment
Expunp

A (q) in the solid box and physical predicting

experiment Expphy−unp
A (q) in the dashed box.

4. POWER PUF INSTANCE
In this section we first describe the concept of power PUF
and then introduce our instantiation. Power PUF is based
on the variations of power traces between chips due to the
inherent process variability in nanoscale technologies. It was
shown in [26] that process variations imply increased inter-
chip variability such that building a leakage model for one
chip is not optimal anymore for being exploited against an-
other chip. Considering the input transition as the challenge
of the Power PUF, the response is the power trace of the
chip. In Figure 3, the power traces of our PUF instance,
described later in this section, are plotted for a single chal-
lenge and multiple chips. These traces can be divided into
a dynamic part and a static part. By visual inspection, the
dynamic power corresponds to the varying part of the trace
which can further be divided into a nearly invariant part
(part A) and a highly varying part (part B), while the static
power corresponds to the constant part of the traces which
is considered noise (part C). As can be seen from this figure,
the most useful part of the traces for power PUF is part B.
As discussed in [27], the impact of process variability on the
dynamic power can be explained by the presence of random
glitches generated by variability-induced unbalanced logic
paths that are magnified when the computation delays in-
crease at low voltage. Moreover, due to the accumulation
effect of the random glitches along the logic paths, variations
between chips are more significant in the late samples of the
dynamic power trace, i.e. in part B. Glitch PUFs proposed
in [28, 29] also use the same phenomenon and exploit the
impact of process variations on glitches. The difference is
that Glitch PUFs directly count the glitches to build the
response, while Power PUFs use the indirect reflection of
varying glitches on the power traces. In following, we de-
scribe the components of our instance of power PUF system
according to the evaluation framework of [2] (See Figure 1).

Creation process: Creating Power PUF involves some key
parameters relating to the circuit design, technology and the
supply voltage. In following, we describe these parameters
for our instance of Power PUF. We choose the circuit type
to be the AES S-box and its implementation to be com-
posite field arithmetic [30] using static CMOS logic style as
described in [31]. We select the 65 nm CMOS technology
as it features high process variations [32, 33]. Finally, the
supply voltage is chosen to be 0.6 V in order to have a dis-
tinguishable signal from the noise (which benefits from a



Figure 3: Power traces of the power PUF instance
showing 5 different chips using a single challenge.

high supply) and at the same time to increase the impact of
process variations by operating at low supply voltage. These
creation choices allow the power PUF to take advantage of
the randomness provided by the manufacturing technology
through the magnified presence of random glitches.

Evaluation process: We performed measurements using a
high sampling rate oscilloscope (1 Gsample/second), while
running the chips at 2 MHz (motivated by interface con-
straints of our prototype board). We monitored the voltage
drop on a resistor introduced in the supply circuit of the
chips, then transformed it into power consumption (or cur-
rent) in a post-processing step. Our dataset D = {ypq, 1 ≤
p ≤ P, 1 ≤ q ≤ Q} ⊂ RN contains P = 18 different PUFs
evaluated Q = 200 times of N = 1050 time samples.

Extraction process: The goal of extraction process is
mainly to gain robustness. The power trace has a large
number of points (1050 in our instance). If we want to keep
all points, in order to achieve a sufficiently high robustness,
we have to use a very large ECC and also a very large helper
data which is not efficient for the implementation. As a re-
sult, the main goal of the extraction process is to compress
the power trace by selecting its Points of Interests (POIs).
For that purpose, for each challenge, we first average over
all traces from different measurements to remove the noise.
Then, the POIs are selected such that the variance between
(mean) traces of different PUFs are maximum. The detailed
description of our selection of POIs based on maximum vari-
ance criteria is further described in Appendix-A.

Let us now define the extraction parameters. Let P ∈ NNP

be the vector pointing out the selected POIs for each chal-
lenge based on the method of Appendix-A and Nb be the
number of bits that is kept for each point after quantization.
The size of the binarized response y is thus M = Np ×Nb.
Also, let ECC(M, `, t) be the Error Correction Code applied
in the extraction process where ` is the size of output, M
is the size of binarized response and t is the number of cor-
rected errors. Then, the extraction process (in setup mode)
is given in Figure 4. The binarized response is first built
from POIs as y = QNb(y(P)) ∈ BM where QNb is a func-
tion that quantize the values and keep Nb most significant
bits of each. The vector P is compressed in hP and stored
as the first part of helper data. The rest of the extraction

Selection of
POIs, P

y = QNb
(y(P))

y ∈ BM

cz

hz

hP

z

h

y

ECC[M, `, d]

` bit
RNG

z

Figure 4: The extraction process in setup mode.

process is essentially the code-offset secure sketch scheme
used in [3, 13, 21]. In summary, the output z is randomly
generated and then encoded to codeword cz ∈ BM using the
ECC(M, `, t). In next step, the offset between y and cz con-
stitutes the second part of helper data hz = y ⊕ cz ∈ BM

and is stored in the database. The reconstruction mode of
the above extraction algorithm (excluded in the figure) has
the same procedure, except that it takes as input the first
and second part of helper data to generate the output. The
parameters of the extraction process are experimentally set
to achieve the best possible results as follows: Np = 5 points
of interest are chosen and each are quantized to Nb = 6 bits.
Error correcting code of code-offset secure sketch is realized
using BCH (M, `, t) code. The codeword size M must have
the form 2k − 1 for some integer k, so we append 1 zero to
Np×Nb = 30 bits to have a M = 31 bit binarized response y.

Note that this instance of PFS is not claimed to be practi-
cally relevant as such (in view of its expensive and external
measurements). As already mentioned in introduction, we
consider it as a useful case study to illustrate our new defini-
tion of physical unpredictability, since we can take advantage
of efficient side-channel attacks to build models in this con-
text. As a result, the general conclusions we extract from
our case study are more important than the instance we pro-
pose. Nevertheless, we also note that improvements could
be obtained by embedding a measurement circuitry on chip
(which would also reduce the noise in our measurements, and
hence improve the robustness of this PUF - see next). In the
next section, we show how to evaluate the important prop-
erties of a (power) PUF, namely robustness, physical un-
predictability and physical unclonability. We first evaluate
them individually, and then investigate their interrelations
by particularly studying the trade-off between robustness
and physical unclonability, and also the impact of physical
unpredictability on the evaluation of unclonability.

5. ROBUSTNESS
In this section, we evaluate the first important property of
our power PUF system i.e., robustness. We evaluate robust-
ness of Eq. 1 after extracting outputs from dataset D using
the extraction process described in Section 4.

Given the dataset D containing P different PUFs observed
Q times each, the robustness is statistically estimated as fol-
lows. For each PUF, one observation of the PUF is used in
set-up mode to produce output zs and helper h. The remain-
ing (Q−1) observations, together with the initial helper data
h, are then used in reconstruction mode, and the generated
outputs are compared with zs. This is repeated Q times,
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Figure 5: Robustness vs. output size ` using dataset
D (solid) and after 10 times averaging (dashed).

with each observation being once in the set-up phase. The
robustness is then estimated from Pr[zr = zs] that is equiv-
alent to Eq. 1. Fixing code-word size to M = 31, robustness
is evaluated for different error correction capabilities t, that
lead to different output sizes `. Note that by fixing the ECC
code-word size, t and ` are inversely related, i.e. the increase
of t leads to the decrease of ` and vice versa. The robustness
versus output size ` is shown as a plain curve in Figure 5.

We observe that by increasing the number of corrected er-
rors t (decreasing `) robustness improves. In Section 7, we
study how the number of corrected errors also affects the
physical unclonability and thus makes a trade-off between
robustness and physical unclonability. We also observe that
we can achieve an acceptable robustness ρPFS = 0.98 for
the output size ` = 7. It is similar to the output size of
Glitch PUFs [28, 29]. In their scheme, for each 8 outputs
of the S-box, glitches are counted and their parity acts as
the one-bit output of the corresponding S-box output. So,
for every challenge, the system generates in total an 8-bit
output. As robustness depends on the measurement noise,
by averaging traces or improving the measurement setup we
can reach higher robustness. For example, the dashed curve
of Figure 5, corresponds to a 10 times averaging process1.

6. PHYSICAL UNPREDICTABILITY
In this section we discuss the notion of physical unpredictabil-
ity. We propose a methodology for evaluating physical un-
predictability, using the power PUF instance as illustration.
We start by discussing the difference between modeling and
predicting the physical response, and focus on the fact that

1Besides averaging, another way to improve the noise level
would be to embed the measurement circuitry on chip (which
would naturally increase the practical relevance of the PUF
instance as well). This solution would demand a fast enough
current sensing scheme to capture the dynamic (changing)
transient current. So, we have to use a high speed analog-
to-digital converter [34,35] with 8-bit resolution (as the cur-
rently used oscilloscope). At the operating supply voltage,
which is 0.6 V, the sampling rate of the required sampling
scheme is expected to be in the 100’s of MHz. Also to embed
the measurements of the current traces on-chip, the selection
of the POIs needs to be predefined. Therefore, if our exten-
sive measurements off-chip / post-layout simulations led to
fixed points in the trace, then the position of these points
can be chosen as a helper data for the on-chip samplers.
Finally, we could embed the ECC on-chip as well [36,37].

a genuine model is required for prediction. We then finish
with an interpretation of experimental results obtained from
performing modeling and predicting experiments on power
PUF instance. We also derive some results regarding phys-
ical unpredictability and the true randomness of the PFS.

6.1 Modeling versus Predicting
As mentioned in section 3, physical unpredictability is the
probability of predicting PUF outputs z by an adversary
who has access to the physical responses y. We argue that
for the predicting experiment to be efficient, it requires the
use of a precise physical model which is a true description of
the underlying physics. To evaluate physical unpredictabil-
ity, we proceed using the predicting experiment described in
Figure 2. As a result we obtain a predicting success rate,
percentage of PUF outputs z correctly predicted for chal-
lenges x not yet encountered, which is an estimator for the
physical unpredictability. We contrast this with modeling
success rate which is the percentage of PUF outputs z pre-
dicted over all challenges (i.e. x′ in {x1, ...xq} is allowed).
The modeling success rate assesses the quality of the model
we work with, whilst the predicting success rates estimates
the physical unpredictability empirically. To illustrate the
differences between modeling and predicting we focus on the
power PUF instance. The vast literature on side-channel at-
tacks provides insights about how to model the power con-
sumption of a cryptographic device. As we are working in a
1st-order side-channel type scenario (i.e. we exploit informa-
tion lying in the means of the power traces), the stochastic
model introduced by Schindler et al. in [38] is a natural
candidate for evaluating the unpredictability of our power
PUF. It provides a method to build a physical model from
a restricted set of measurements. According to Schindler et
al. the power consumption at any time can be written as:

pt(x) =
∑
i

ωigi(st(x)), (3)

where st(x) represents the internal state of the chip at time
t for challenge x, gi is a polynomial in the bits of s(x) and
ωi is a weight characterizing the power consumption. The
physical model is obtained from linear regression analysis.
More precisely, given a set of (x, p) pairs we get a system of
linear equations where the unknowns are the values ωi. This
system is solved using least squares and the solution gives
us a model for all challenges. During modeling we have the
choice of the basis {gi}i. We say the basis is linear when we
consider all polynomials of degree one at most, we say the
basis is quadratic when we consider all polynomials of degree
two at most, . . . . Using the above method, we evaluate the
predicting success rates and modeling success rates in two
scenarios. In the first scenario the power PUF uses only one
time point chosen in part B of the traces (See Figure 3) to
produce the physical response (i.e. NP = 1). In the second
scenario we use the PUF setup described in Section 4.

In both scenarios we use the S-Box output bits as state func-
tion st(x) as it yields better results than using S-Box input
bits. We show the results for 8 chips only for visibility rea-
sons. The results for each chip is shown in various colors,
and we always show in a black dotted line the robustness
rate of the PUF. In the first scenario, where NP = 1, we
only perform the modeling and predicting using a linear ba-
sis, and the results are shown in Figure 6. The figure shows
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Figure 6: Modeling and unpredictability for a single
point extraction process in the PUF setup.

modeling and prediction success rate for various sizes of the
training sets. As we can see modeling and prediction suc-
cess rates are similar in this scenario. Also, the figures val-
idate the soundness of using stochastic model as a tool for
prediction. For the second scenario, since the PUF setup
described in Section 4 uses many time points, we adapt the
attack procedure by creating a model for every time point
used. This time we perform the experiment for various basis:
linear, quadratic, cubic and quartic to show the variation in
modeling and prediction success rates as the basis size in-
creases. The results are shown in Figure 7. We see that
as the size of basis increases the accuracy of the model im-
proves, but we do not see the same effect for prediction due
to over-fitting reasons. The experiments show that although
an accurate model is necessary for accurate prediction, it is
not sufficient. Thus an adversary performing the predicting
experiments requires two conditions from the model to pro-
duce an effective physical attack. Namely, the model created
has to fit well the observations (i.e. have a high modeling
success rate), but it also has to be a genuine description of
the physics so the predicting success rates is high.

6.2 Interpretation
In the previous subsection we presented two scenarios where
we evaluated the modeling and predicting success rate for
two different setups of a power PUF. In the first setup we
only use one time point to produce the physical response.
In the second setup we use 5 distinct point for each chal-
lenge (resulting in a hundred time points being used overall
to produce the physical response). In the first scenario we
achieved a prediction rate close to the robustness rate. In
the second we achieved a prediction rate of 40 percent.

The main difference between the two scenarios is the number
of explanatory variables. In the first scenario there is only
one POI that is easily explained by a linear combination of
the S-box output bits. It roughly indicates that there are as
many unknowns to be evaluated in the system as elements in
the basis |{gi}|. In the second scenario the number of POIs
is |{gi}| × NP , and they assumably correspond to a more
complex function of the system state, hence corresponding
to a larger number of unknowns. This explains why the pre-
dicting experiment is less successful in this case. However a
40 percent success rate for the second scenario shows that
the power PUF cannot be considered as a very strong PUF
when it comes to physical unpredictability. In fact, even
the observation of 9 challenges (corresponding to the size of
a linear basis) already leads to a non-negligible predictabil-
ity. Therefore, already after 9 challenges, the power PUF
outputs cannot be considered as independent anymore.

7. UNCLONABILITY
We now study physical unclonability and how it relates to
the robustness and physical unpredictability evaluated in
previous sections. Let us begin by evaluating physical un-
clonability as a function of the output size. It is computed
from Eq. 2 (averaged over all challenges) after extracting
outputs from dataset D using the extraction process de-
scribed in section 4. Following the method of [3], the prob-
ability of Eq. 2 is statistically estimated as follows. First,
one PUF is chosen as a “target”, the response of which is
used in set-up mode to generate helper data h and output
zs. The remaining (P − 1) PUFs, together with the initial
helper data h, are then used in reconstruction mode, and
the generated outputs are compared with zs. This exper-
iment is repeated P times, each PUF being selected once
as target. The probability of Eq. 2 is thus estimated from
Pr
[
zr = zs : p 6= p′

]
≤ β. Again with M = 31, physical

unclonability is evaluated for different error correction capa-
bilities t, that lead to different output sizes `. The obtained
physical unclonability represented by probability of cloning
is plotted versus output size ` in Figure 8.
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Figure 8: Physical unclonability versus output size.

By increasing the number of corrected errors t (hence by de-
creasing `) physical unclonability gets worse (the probability
of cloning increases). The reason is that correcting more er-
rors results in removing more details (randomness) from the
response. This fact causes the trade-off between robustness
and physical unclonability illustrated in Figure 9.
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Figure 7: Modeling and unpredictability for PCA based PUF setup for various basis.
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Figure 9: Robustness versus Physical unclonability.

Figure 9 shows that (as usual for PUFs) the physical un-
clonability with a single output is not enough for practi-
cal applications (∼ 10−1). As mentioned in the introduc-
tion, there exist two solutions to improve the physical un-
clonability: either by increasing the challenge set and con-
catenating the corresponding outputs, or by using multiple
physically distinct functions and concatenating the corre-
sponding outputs. A typical example of the first approach
is concatenating the outputs of multiple challenges for Ar-
biter PUFs [9,10]. For the second approach the solution can
be using multiple S-boxes for the Power PUF or different
memory cells for SRAM PUF [11]. As the second approach
is more expensive, the goal in the design procedure is usu-
ally using the first approach as much as possible and rely on
the second approach afterwards. Therefore, we now study
how much this first approach can be used in our context,
i.e. how much we can improve the physical unclonability
of a power PUF by concatenating outputs of multiple chal-
lenges. In this case, the outputs of size ` = 6 (with highest
robustness in Figure 9) are concatenated to produce a larger
output. The solid curve of Figure 10 srepresents the physical
unclonability of the new output in function of its size.
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Figure 10: Physical unclonability vs. output size
after concatenating outputs of different challenges
by experiments (solid) and by assuming indepen-
dent outputs (dashed). The dot-dashed vertical line
shows the limit posed by physical unpredictability.

A first observation is that the estimation of the unclonability
for large output sizes (i.e., bigger than 48 bits shown in the
dotted line) is no longer accurate. The problem is that the

number of samples available for evaluation is not sufficient
to evaluate the probability of collisions (i.e. physical unclon-
ability) for such large outputs. That is why in the literature,
the physical unclonability is usually estimated assuming that
the outputs are independent (as shown in the dashed line in
Figure 10). However, the unpredictability experiments in
the previous section showed that after 9 challenges, a model
can be built for predicting the power PUF outputs. This
implies that independence cannot be assumed anymore from
that point on. As a result, taking some security margins, we
could assume that the independence assumption is respected
up to 7 challenges. The output size on this limit (vertical
dashed-dot line in Figure 10) is 7 outputs × 6 bits per out-
put = 42 bits. Interestingly, this threshold corresponds to
the point where our empirical evaluation of the probability
of cloning starts to deviate from the dashed curve.

These results suggest that the concatenation of PUF out-
puts should be limited to the number of challenges for which
physical unpredictability can be guaranteed. This is an in-
teresting observation for evaluators since the evaluation of
physical unpredictability is in general easier than the one
of physical unclonability. Indeed, the analysis of physi-
cal unclonability requires that many PUFs are available to
the evaluator. By contrast, evaluating the physical unpre-
dictability can be done from a few chips (in fact, even a
single one may be sufficient). As a result, we believe our
results give incentive to always evaluate the physical un-
predictability of strong PUFs, together with their physical
unclonability. Although not finding any model (and having
high unpredictability) is naturally not a sufficient condition
to guarantee the independence of PUF outputs, obtaining
a good model can at least be considered as a warning sig-
nal that these outputs are not independent. Hence, and in
view of the difficulty to evaluate PUFs, we believe this sanity
check is a safe practice to avoid overestimating their security.

8. CONCLUSION
The physical unpredictability that we introduce serves in
two different aspects in evaluating security of PUF-based
systems. First, it captures the unpredictability of strong
PUFs in the worst-case scenario where the adversary can
probe the PUF responses. Second, it determines the safe
region where we can rely on an independence assumption
for the evaluation of physical unclonability. While only ap-
plied to a single PUF instance, we hope that these tools can
be useful for a wide variety of PUFs, for which generalizing
and applying our evaluation of robustness, physical unpre-
dictability and physical unclonability is an interesting open
problem. Eventually, the exploitation of physical parame-
ters (such as the power supply) to increase the challenge set
of strong PUFs is another scope for further research.
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10. APPENDIX A
As stated in Section 4, POIs for each challenge are chosen
such that they maximize the variance between the (mean)
traces for different PUFs. To achieve that, we use a method
adapted from Principal Component Analysis (PCA) as fol-
lows. In summary, the POIs are selected as the points
which maximize the eigenvector of the covariance of the
mean traces matrix. In particular, for each challenge, given
a matrix of P × N mean traces, the eigenvectors ξi of the
covariance of this matrix are sorted based on the value of
their corresponding eigenvalues as {ξ(1), ξ(2), ..., ξ(N)}. We
select the POIs as the points that maximizes these eigen-
vectors. These points would have the main contribution on
the principal components (which in PCA are obtained by
projecting the trace to the eigenvectors). The POIs can
either be selected as the NP maximal points of the first
eigenvector or the set of first maximal points of first NP
eigenvectors. In our experiments, we selected the latter ap-
proach as it leads to enough distance between POIs and
resulting more randomness in the binarized response. The
vector of our selected points of interest is thus given by
P = {argmaxn(ξ(1)), argmaxn(ξ(2)), ..., argmaxn(ξ(Np))}. It
is worth noting that the above heuristic method to select
the POIs is motivated but not optimal and can further be
improved by other dimensionality reduction techniques.


