
TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 1

Automatic Application of Power Analysis
Countermeasures

Ali Galip Bayrak, Francesco Regazzoni, David Novo, Philip Brisk,
François-Xavier Standaert, and Paolo Ienne

Abstract —We introduce a compiler that automatically inserts software countermeasures to protect cryptographic algorithms against
power-based side-channel attacks. The compiler first estimates which instruction instances leak the most information through side-
channels. This information is obtained either by dynamic analysis, evaluating an information theoretic metric over the power traces
acquired during the execution of the input program, or by static analysis. As information leakage implies a loss of security, the compiler
then identifies (groups of) instruction instances to protect with a software countermeasure such as random precharging or Boolean
masking. As software protection incurs significant overhead in terms of cryptosystem runtime and memory usage, the compiler protects
the minimum number of instruction instances to achieve a desired level of security. The compiler is evaluated on two block ciphers,
AES and Clefia; our experiments demonstrate that the compiler can automatically identify and protect the most important instruction
instances. To date, these software countermeasures have been inserted manually by security experts, who are not necessarily the
main cryptosystem developers. Our compiler offers significant productivity gains for cryptosystem developers who wish to protect their
implementations from side-channel attacks.

Index Terms —Side-channel attacks, power analysis attacks, software countermeasures, compiler.

✦

1 INTRODUCTION

S ECURITY is a fundamentally important issue in many
of today’s computing platforms and applications.

On average, a typical consumer used 230 embedded
computing devices per day in 2008 [34], more often than
not, without actually realizing it; this number is expected
to exceed 1000 devices per day in the near-future [43].
Many of these devices store private data that the user
does not wish to divulge, and could be exploited for
malicious purposes by attackers.

Hardware and software systems must be designed
with security as a high priority in order to prevent
attackers from accessing confidential information. At
present, hardware and software design automation tools
do not treat security as a first-class design objective,
despite its critical importance. In particular, side-channel
attacks are a fundamental area of concern. Side-channel
attacks target the physical implementation of a cryp-
tosystem, rather than the underlying mathematical struc-
ture of the cryptosystem itself. Examples of publicly-

• A. G. Bayrak, D. Novo, P. Ienne are with the School of Computer
and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland.
E-mail: {aligalip.bayrak, david.novobruna, paolo.ienne}@epfl.ch

• F. Regazzoni is with ALaRI - University of Lugano, CH-6900 Lugano,
Switzerland.
E-mail: regazzoni@alari.ch

• P. Brisk is with University of California, Riverside, 339 Winston Chung
Hall, CA 92521 Riverside, USA.
E-mail: philip@cs.ucr.edu

• F.-X. Standaert is with UCL Crypto Group, Université Catholique de
Louvain, B-1348 Louvain-la-Neuve, Belgium.
E-mail: fstandae@uclouvain.be

known side-channels include power consumption [20],
electromagnetic radiation [13], sound emission [32] and
timing [19], among others. To perform these attacks,
an adversary gains access to the device, and encrypts
a statistically significant number of plaintexts, without
knowledge of the value of the secret key stored within
the device. The attacker measures the side-channel in-
formation as the program executes, and uses statistical
methods to associate it with a subset of the bits of the
key. Provided sufficient time and plaintext, an attacker
can uncover the value of each and every bit of the key
using this approach.

Many countermeasures have been proposed to protect
against side-channel attacks; typically, a countermeasure
is proposed for a specific attack (e.g., power analysis),
and it seems unlikely that a universal countermeasure
will be found for silicon devices. To date, these coun-
termeasures are inserted manually by experts in side-
channel protection; often, these experts are not those
who implemented the cryptosystem that is being pro-
tected.

To address these concerns, we introduce a compiler
that automatically applies known software countermea-
sures to cryptographic software to protect against side-
channel attacks. The user selects which countermeasure
to apply and the compiler inserts it automatically. The
application of these countermeasures can significantly
impact performance and code size; as a consequence,
it is impractical to protect every instruction instance
(shortly instruction hereafter) in a cryptographic imple-
mentation. Therefore, the objective of the compiler is to
automatically identify a subset of the implementation
for protection, while meeting a user-specified level of

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 2

sbci r26,0xfd

ld r25,X

movw r18,r26

subi r18,0x4f

Input Software
Implementation

sbci r26,0xfd

ld r25,X *

movw r18,r26 *

subi r18,0x4f

Sensitive Parts
Case (I)

Step I:
Information

Leakage

Analysis

sbci r26,0xfd

ld r25,X

movw r18,r26

subi r18,0x4f

Targets for Protection
Case (I)

Targets for Protection
Case (II)

sbci r26,0xfd

lds r23,705

mov r25,r23

ld r25,X

lds r23,705

mov r18,r23

mov r19,r23

movw r18,r26

subi r18,0x4f

Protected Implementation
Case (I)

Step II:
Transformation

Target

Identification

Step III:
Code

Transformation

Protected Implementation
Case (II)

Sensitive Parts
Case (II)

Fig. 1. The three stages of the compiler. First, the compiler identifies the sensitive instructions that leak the most
information. Second, the compiler identifies groups of instructions that must be protected to suppress information
leakage. Lastly, the countermeasure is applied to the instructions that have been identified, and the transformed
program is generated. Steps taken by the compiler depend on which countermeasure is to be applied; they can be
performed locally for each sensitive instruction as in Case I (e.g., random precharging) or globally for dependent
groups of instructions as in Case II (e.g., masking).

security.

The compilation flow for side-channel protection is a
fully-automated three-step process, as shown in Fig. 1:

1) Information Leakage Analysis identifies the instruc-
tions that are sensitive to side-channel attacks. The
compiler can analyze the traces of real side-channel
measurements (power traces, in our case) if the user
provides traces; alternatively, it can perform static
analysis.

2) Transformation Target Identification looks at data de-
pendencies involving the sensitive instructions to
determine larger groups of instructions that require
protection to ensure security.

3) Code Transformation applies the protection mecha-
nism on instructions identified by the preceding
step.

We evaluate the compiler on two algorithms, AES
and Clefia, using two software countermeasures: random
precharging and Boolean masking for protection. Random
precharging is selected as an example of countermeasures
which need local analysis and code transformations (case
(I) in Fig. 1); whereas Boolean masking is a more advanced
countermeasure requiring global treatment (case (II) in
Fig. 1). Our results demonstrate that the compiler can
automatically detect and protect all instructions that
leak critical information; the resulting program ensures
the same level of protection with modest run time and
code-size overheads, compared to manually protected
counterparts.

Although the overall flow is based on the previous

work of Bayrak et al. [4], the application of global coun-
termeasures (case (II) in Fig. 1), which was left as an
open problem, is solved in this paper; Boolean masking
is selected as a case study. The experimental analysis is
enriched with the new countermeasure and additional
benchmark ciphers to protect.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the related work. Sections 3, 4, and
5 respectively describe the three key steps of our com-
piler: Information Leakage Analysis, Transformation Target
Identification, and Code Transformation. Section 6 describes
our experimental procedure and presents our results
applying random precharging and Boolean masking to the
AES and Clefia block ciphers. The paper is concluded in
Section 7.

2 BACKGROUND INFORMATION

Historically, attacks on cryptosystems have attempted
to exploit the weaknesses of cryptographic algorithms
in terms of their mathematical structure. Side-channel
attacks take a different approach: instead of attempting
to associate binary inputs with binary outputs, side-
channel attackers measure physical quantities, such as
power consumption, and exploit relations between this
information and the inputs to uncover the secret key.
These attacks require no specific knowledge about the
inner workings of the device under attack, nor the
underlying implementation of the cryptographic cipher.
The attacker only needs to know which algorithm is
being executed on the device under attack, which is

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 3

usually publicly known. The compiler developed here
focuses on power-based side-channel attacks; however,
similar approach could easily be applied to other attacks,
particularly EM- and acoustic-based ones, as well.

2.1 Power Analysis Attacks and Countermeasures

Power analysis attacks [20] rely on the fact that the in-
stantaneous power consumption of most modern CMOS
devices is strongly correlated with the data that is being
processed at the same instant. The attacker provides dif-
ferent inputs (plaintexts) to the cryptosystem running on
the device, and measures the real-time power consump-
tion of each input. After the measurements are com-
pleted, the attacker statistically analyzes the relationship
between the inputs and collected power traces, which
depend on both the plaintext and secret key. Different
methods are proposed in the literature to analyze this re-
lationship [7], [8], [14], [20], e.g., CPA (correlation-based
power analysis attack) [7] uses Pearson’s correlation
coefficient. The statistical analysis allows the attacker to
obtain some or all bits of the secret key.

Short after the power analysis attacks shown to be
efficient and effective, many countermeasures have been
introduced to protect against them. Software counter-
measures include random insertion of dummy instruc-
tions, shuffling [18], [22], [38], random precharging [37],
and Boolean and arithmetic masking [1], [6], [12], [28].

Historically, it has been the responsibility of hardware
designers or software engineers to determine the weak-
nesses of a given cryptosystem and to figure out how
to best apply a given countermeasure. These tasks are
challenging, and requires a detailed understanding of the
cryptographic algorithm at the core of the cryptosystem,
the hardware platform on which the system runs, and
the countermeasure mechanism. The primary objective
of this work is to automate this process, so that a
compiler, rather than an expert user, can apply these
countermeasures; it is important to note that we do not
propose any new countermeasures in this paper, nor
do we attempt to compare and quantify the quality
of one countermeasure versus another. The compiler
introduced here will increase user productivity, and
reduce potential human error that occurs during the
introduction of countermeasures.

2.2 Automation in Side-Channel Related Works

Most of the automation introduced for side-channel
analysis and protection focus on hardware countermea-
sures, rather than software countermeasures. For exam-
ple, Tiwari et al. [41] introduced a method for gate-
level information-flow tracking, by composing complex
logical structures which propagates the trustworthiness
of each bit along with the value of it. Others, such as Tiri
et al. [40], Guilley et al. [15] and Regazzoni et al. [31]
proposed methodologies to automate the application or
analysis of some hardware countermeasures.

A handful of projects have looked at power analysis
attacks from perspectives other than hardware design,
including the Computer Aided Cryptography Engineer-
ing (CACE) [11] project. Barbosa et al. [3] have analyzed
the effects of a compiler on elliptic curve cryptography.
Bayrak et al. [4] proposed a framework to automate the
application of power analysis countermeasures, which
forms the basis of this work. Cleemput et al. [10] pro-
posed compiler techniques to defend against timing
attacks on x86 processors.

During the review process of this paper, Moss et
al. [26] proposed a method to automatically apply
Boolean masking. One of the main problems left open
in the paper is that their method does not have control
over the order of instructions in the output, leading to
potentially vulnerable codes in most of today’s devices;
because, the effect of masking is invalidated if two con-
secutive instructions use the same mask. This problem
does not exist in our compiler; because, our compiler
performs the transformations on assembly language pro-
grams and carefully avoids vulnerable orderings. Sec-
ondly, Moss et al. impose formatting restrictions on the
high-level source code that is input to their compiler.
In contrast, our compiler takes assembly language pro-
grams as input, thereby making it easier to integrate into
existing compilers.

3 INFORMATION LEAKAGE ANALYSIS

Information Leakage Analysis is the first step of our au-
tomatic protection framework. It determines which in-
structions leak information that is useful for a specific
side-channel attack. The input to this step is an assembly
language implementation of a cryptographic algorithm
that requires protection, and the output is a set of anno-
tations that indicate the sensitivity of each instruction.

The reason that we choose to operate on assembly
instructions, rather than a higher level representation,
is due to the fact that the countermeasures that we
apply do not alter the output behavior of the pro-
gram; a strong optimizing compiler, which is unaware
of this behavior, could recognize these countermeasures
as redundant code, and eliminate them in an effort to
improve performance and reduce code size. For example,
if we apply the countermeasure at a higher-level, extra
instructions added as an outcome of random precharging
countermeasure to randomize the values in the data path
could be removed in later stages because they have no
impact on the output of the program.

Most crytographic algorithms exhibit deterministic
control flow; a common case is loops with constant
iteration counts. For example, the Advanced Encryption
Standard (AES) performs a fixed number of rounds (e.g.,
10 for AES-128), each of which performs the same de-
terministic set of steps. In this work, we assumed a
deterministic control and data flow in the input software.

Information leakage analysis can be performed stat-
ically or dynamically. Static analysis decompiles the

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 4

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Control Flow Graph Generator

Data Flow Graph Generator

Input assembly program

Intermediate representation

Fig. 2. Phases of the decompiler to produce an interme-
diate representation from a given assembly program [9].

assembly code into a traditional compiler intermediate
representation and uses program slicing techniques [39]
to identify instructions that operate on critical data (e.g.,
the key), and their dependencies. Static analysis requires
no manual intervention from the user, however, it does
not allow for platform-specific considerations, and, as
a result, could be overly protective. Dynamic analy-
sis, in contrast, exploits power traces provided by the
user. Dynamic analysis exploits highly accurate device-
specific leakage information, but requires the user to
acquire power traces off-line. Either of these methods can
provide an estimate of the sensitivity of each instruction
in the program, and the user selects which option to use.

3.1 Static Analysis

Static analysis automatically analyzes a given crypto-
graphic software implementation (in assembly language)
and reports the sensitivity of each instruction; it can be
enabled by --static-analysis command flag.

In the first step, the compiler automatically decom-
piles the input into a Control Flow Graph (CFG), with a
Data Flow Graph (DFG) to represent dependencies. The
decompilation method is based on the Ph.D. thesis of
Cifuentes [9], which is shown in Fig. 2. Unlike Cifuentes,
the decompilation method produces an intermediate
representation comprised of CFG and DFG, rather than
a high-level language representation of the application.
This makes the high level code optimizations and Ci-
fuentes’ code generation phase unnecessary. The decom-
piler is implemented in C++ using Lex and Yacc [21].

An idiom is a group of instructions that defines a single
operation. For example, an 8-bit processor requires mul-
tiple instructions to perform a 16-bit operation, which
would be grouped as an idiom (see Section 4.2 of Ci-
fuentes’ thesis [9] for details); the use of idioms simplifies
the analysis steps. The compiler constructs basic blocks
so that each of them contains a single idiom. The CFG
preserves the control structure of the application, and

the DFG facilitates propagation of relevant information,
such as sensitivity and protection requirements, through
the idioms.

Next, the compiler analyzes the DFG to determine
which idioms are sensitive and require protection. Since
we assumed a deterministic control/data flow, a simple
dependence analysis suffices in lieu of more complicated
static program analysis algorithms. Let G represent the
DFG, and let v denote a node of G. If v accesses
critical data, then v is marked sensitive; moreover, any
descendent of v in the DFG is also marked as sen-
sitive. A straightforward breadth-first search through
the DFG is initiated from each node that accesses criti-
cal data. The user provides the names of critical vari-
ables as a command-line parameter to the compiler:
--critical=“name1”,...,“nameN” (e.g., --critical=“Key”); if
the user does not supply the names of specific critical
variables, then the compiler conservatively assumes that
all variables in the program are critical.

As a motivating example, consider a load operation
that copies a byte of the secret key from memory to
a register; this load operation directly accesses critical
data and is sensitive as a result. A subsequent instruction
that xors the loaded byte with partially encrypted plain-
text (called the state), is marked sensitive as well. For
example, in AES, all instructions that access or modify
the state are annotated as being sensitive, whereas, loop
iterations and most address calculations are insensitive.

Fig. 3 provides a detailed example of how the static
analysis proceeds. First, the compiler identifies the id-
ioms and constructs the CFG and DFG; afterwards, the
DFG is analyzed to determine the sensitive operations.

3.2 Dynamic Analysis

Dynamic analysis uses empirical measurements to de-
termine the sensitivity of each instruction. The user
provides an assembly language implementation of the
cryptographic algorithm and power traces acquired by
executing different (plaintext,key) pairs on the target
platform. The user specifies a command line parameter
--dynamic-analysis tracesFile to instruct the compiler to
perform dynamic analysis using the power traces in the
file named tracesFile. The compiler produces a set of an-
notations that indicate the sensitivity of each instruction.

Before running the compiler, power traces can be
obtained via measurement with an oscilloscope, as ex-
plained in Section 6.1, or simulation using electronic
design automation tools. The measurements are sug-
gested to be taken at a high frequency (e.g., 4GHz in
our setup), and then compressed to obtain a single
power measurement for each clock cycle. High frequency
sampling is to get better accuracy, whereas compression
is to obtain a single sensitivity value for each instruction
and for efficiency of the analysis. We used maximum
extraction [23] to compress the power traces in our exper-
iments, however, other methods such as integration [23]
or principal component analysis [2] could also be used.

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 5

; In AVR asm , Z i s a pointer to the value
; s tored in address r31 : r30 , Y to r29 : r28

l d i r18 , 1 6 ; r18 = 16
l d i r19 , 0 ; r19 = 0

loop :
; r25 = key [r19]

mov r30 , r19
l d i r31 , 0
subi r30 , low(−key)
sbci r31 , high(−key)
ld r25 , Z

; r24 = s t a t e [r19]
mov r30 , r19
l d i r31 , 0
subi r30 , low(− s t a t e)
sbci r31 , high(− s t a t e)
ld r24 , Z

; r24 = r24 xor r25
eor r24 , r25

; r24 = sbox [r24]
mov r28 , r24
l d i r29 , 0
subi r28 , low(−sbox)
sbci r29 , high(−sbox)
ld r24 , Y

; s t a t e [r19] = r24
s t Z , r24

; r19++
subi r19 ,−1

; i f ! (r19 == r18) goto loop
cp r19 , r18
brne loop
r e t

(a)

r18 = 16
r19 = 0

r25 = key[r19]
r24 = state[r19]
r24 = r24 ^ r25

r24 = sbox[r24]
state[r19] = r24

r19++
(r19 == r18)?

return

(1)
(2)

(3)
(4)

(5)
(6)

(7)
(8)
(9)

(10)

(b)

(3) r25 = key[r19] (4) r24 = state[r19]

(5) r24 = r24 ^ r25

(6) r24 = sbox[r24]

(7) state[r19] = r24

(c)

Fig. 3. Static analysis applied to the first two operations of AES. (a) A sample 8-bit AVR assembly code. The first two
operations of the AES algorithm, AddRoundKey (xor between key and state) and SubBytes (a non-linear bijective
operation generally implemented as lookup table), are shown. (b) The corresponding CFG for the first two AES
operations; a sensitive idiom is shown in red (lines 3 to 7). (c) DFG representation of the sensitive operations that
are dependent on critical data (state and key), which were shown in red in subfigure (b).

The compiler automatically performs the following
steps for dynamic analysis:

i) The power traces are analyzed, and the sensitivity
of each clock cycle is determined using an informa-
tion theoretic metric, which estimates the amount
of information that the system leaks. Clock cycles
whose sensitivity exceeds a user-provided thresh-
old are marked as sensitive. The user provides the
threshold value to the compiler using the command
line parameter --threshold=val , where val is a value
between 0 (full protection) and 1 (no protection).

ii) The compiler associates each clock cycle from the
traces with an assembly instruction. The most sen-
sitive clock cycle associated with each instruction
defines the sensitivity of that instruction.

The compiler can be used to protect the minimum
number of operations that can provide security equal
to a fully-protected implementation of the algorithm;
thus, security is not sacrificed, but performance is im-
proved and code size is reduced. The compiler is run
once to obtain a fully protected implementation of the
algorithm, and its sensitivity is determined; sensitivity
of the fully-protected implementation determines the
minimum sensitivity (maximum protection) achievable
from the given implementation using the given coun-

termeasure. It is important to note that the sensitivity
of the entire system is dictated by its weakest element,
namely the most sensitive clock cycle. The compiler is
then run a second time with the sensitivity of the fully-
protected implementation provided as a threshold; the
compiler determines a subset of operations to protect,
thereby reducing performance overhead and code size,
yet not effecting the protection.

Fig. 4 provides an example: a sensitivity value is ob-
tained for each cycle, and instructions whose sensitivity
exceeds the threshold (0.4 in this example) are marked
as sensitive.

Metric for sensitivity evaluation:

Our metric for sensitivity evaluation is based on
an information theoretic metric originally proposed by
Standaert et al. [35], which evaluates the resistance of
a cryptographic implementation against the strongest
possible power analysis attack. The metric establishes
a relationship—i.e., mutual information—between the
secret key that is used for encryption and the power
traces. We limit the number of dimensions considered by
the metric to 1, which makes it possible to simplify the
formula. Since we are interested in observing the effects
of single instructions, a 1-dimensional application of the
metric is appropriate; higher dimensionality would be

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 6

��� ��� ��� ��� ��� ��� ��	 ��
 ���
�

���

��	

��

���

���

���

���

���

���

�

�
�
�
�
��
�
�	

��

�
��
�
��

�
�
�
�
��
�
��
�
�

�
�
�
�
��
�
�	

�
�

�
�
�
�
��
�
�	

��

�
�
�
�
��
�
��
�
�

�
��
	
��

�
�
�
�
��
��
��
�

�
�
��
!
�
"
�
�
#$
�
��
!
#
%�
��
��
!
��
�
�
&

'��(#����

%����������) ���� �!**��+ �� ��*�������� ��*�����!����

Fig. 4. A sensitivity value, which estimates information
leakage, is determined for each clock cycle, and is then
associated with the assembly instruction corresponding
to that clock cycle. Countermeasures will be applied to
sensitive instructions (or their idioms) in the subsequent
stages of compilation.

required in order to analyze higher-order effects.
Let K , X , and L respectively be random variables

representing the secret key, plaintext, and information
leakage from the physical device which is obtained via
power trace analysis; and k, x and l be realizations of K ,
X , and L from an execution of the algorithm. Leakage
L is normally distributed with mean µ and standard
deviation σ—i.e., N (µk,x, σ2). The probability density
function of L is

Nl(µk,x, σ2) =
1√

2πσ2
· e−

(l−µk,x)2

2σ2 , (1)

where µk,x represents the noiseless leakage value when
(k, x) pair is executed and σ represents the constant
noise standard deviation caused by the measurement.
The conditional entropy of K given L is

H [K|L] = −
∑

k

p(k) ·
∑

x

p(x) ·
∫

p(l|k, x) · log2p(k|l, x)dl,

(2)
which can be rewritten as

H [K|L] = −
∑

k

{

p(k) ·
∑

x

{

p(x)·

∫

∞

−∞

{

Nl(µk,x, σ2) · log2

Nl(µk,x, σ2)
∑

k∗ Nl(µk∗,x, σ2)

}

dl

}

}

. (3)

The mutual information, which quantifies the sensitivity,
is I[K; L] = H [K] − H [K|L]. Normalizing the mutual
information, (H [K] − H [K|L])/H [K], makes the value
independent from the number of (X, K) pairs used.
In the rest of the text, when we use the term mutual
information, we mean normalized mutual information.

If the length of the plaintext and key are short, then
it is possible to exhaustively enumerate all possible

(X, K) pairs to compute the metric exactly; however,
this is not generally the case: for example, AES-128 has
128-bit keys and plaintexts, which would require 2256

executions. To reduce the number of traces, we can
exploit some properties of large deviation theory [42]:
the result obtained from a randomly chosen subset of
keys and plaintexts will be close to the result obtained
from exhaustive enumeration with high probability, as
long as the cardinality of the subset is sufficiently large.
Our experiments demonstrate that the result converges
for AES-128 when we consider 16 plaintexts in conjunc-
tion with 16 keys. We tried with different numbers of
pairs and we observed that the instructions that can be
classified as sensitive do not change after 8× 8 pairs; so
we used 16×16 pairs to ensure the fidelity of the results.

4 TRANSFORMATION TARGET IDENTIFICA-
TION

Once sensitive instructions have been identified, the
compiler automatically selects which instructions to pro-
tect. For relatively simple countermeasures, such as ran-
dom precharging and random delay insertion, a peephole
optimization suffices, meaning that each sensitive instruc-
tion can be protected atomically, independent from other
instructions in the program. In this case, transformation
targets are the instructions that are determined as sensi-
tive in the previous step.

Other countermeasures, such as masking and instruc-
tion shuffling protect idioms that depend on critical data;
the transformations that are applied to each idiom de-
pend on its data and control dependencies. For example,
when applying the masking countermeasure, masks are
propagated between dependent sensitive idioms (i.e., the
output mask of an idiom is used as an input mask of
another idiom). The compiler uses a simplistic program
slicing [39] technique to group the sensitive idioms that
have dependencies. A forward slice contains all idioms
in a program that may be affected by a given set of
variables at some point in the program. For example, we
can construct a slice that includes all idioms that directly
or indirectly use the value of a byte of the key (the
idioms that directly access this byte initiate slices). As a
result, transformation targets of countermeasures that use
dependencies of idioms are forward slices constructed
for all of the critical data in the program.

5 CODE TRANSFORMATION

Lastly, the compiler applies the appropriate code trans-
formation to the transformation targets identified by
the previous step; the protected assembly language
program is returned as output. The user specifies the
protection mechanism using a command-line param-
eter --method=countermeasure, where countermeasure
is either randomPrecharging (Section 5.1) or masking
(Section 5.2) in the current version of the compiler.

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 7

5.1 Local Code Transformations

Some countermeasures can be applied locally to each
sensitive instruction using a peephole optimization. Ran-
dom precharging [37] is an example: the data path is
randomly charged before and after a critical instruction
using randomly generated operands. This approach is
effective on devices that have high dynamic power
consumption proportional to the Hamming distance be-
tween two consecutive cycles’ data flowing through a
wire, gate, or functional unit; most modern embedded
devices exhibit this behavior, since switching activity
determines dynamic power consumption. The key idea
is to randomize the bits on the critical components, such
as a register or data bus; this randomizes the power
consumption, since the Hamming distance between a
uniformly distributed random variable and a fixed value
is also uniformly random.

As an example, consider an instruction that stores the
value of a variable xc to a memory location, overwriting
the value of a variable xp, which was stored there ini-
tially. The dynamic power consumption of this process is
proportional to HD(xc, xp) = HW (xc⊕xp). If both xc and
xp have deterministic behaviors, then an attacker can
exploit the dependency between the power consumption
and these variables. To overcome this issue, we can store
the value of a uniformly distributed random variable r
before storing xc; in this case, both xp ⊕ r and r ⊕ xc,
which determines the dynamic power consumption of
two store operations (of r and xc), will be uniformly
random. The same argument can be applied to loading
a sensitive data value into a register as well.

The protection offered by random precharging and
the specific operations required to perform random
precharging of critical operations differ for each device,
depending on its power consumption characteristics. For
example, random precharging would not offer protection
for devices that employ precharged busses. The selection
of the appropriate countermeasure is the responsibility
of the user; the compiler will deterministically apply the
countermeasure, regardless of whether or not it will be
effective for a given target device.

Our target device was an 8-bit AVR microcontroller.
We ran some initial experiments to discern an appro-
priate mechanism to perform random precharging. This
needs to be done once for each device to find an appro-
priate sequence of instructions to protect each instruction
type (e.g., load, add, xor, etc.). As an example, the
compiler would replace a sensitive AVR load instruction
lds Rd, ADDR with the following sequence of three
instructions:

lds Rr , RND ; assume t h a t RND holds a random value
mov Rd , Rr ; and Rr i s unused at the moment
lds Rd , ADDR

Precise implementation details for each potential coun-
termeasure and each target device are beyond the scope
of this paper; the key point here is that some empirical
measurements are necessary in order to support new

countermeasures in the compiler, and to retarget the
compiler to new devices.

5.2 Global Code Transformations

Some countermeasures require propagating information
between dependent idioms. In this case, the compiler
applies global code transformations to the slices that are
constructed as explained in Section 4. Boolean masking [1],
[6], [12], [28] is one of the most popular and com-
prehensively analyzed countermeasures against power
analysis attacks that requires global code transforma-
tions and is known to provide strong protection against
first-order attacks. Boolean masking xors the intermediate
results of a computation with some uniformly random
values (masks) so that none of the intermediate values
are revealed. The masks are propagated throughout the
slices, and are then removed at the end. In the discussion
that follows, we use the term binary addition to refer to
bitwise-xor operation.

Recall that each slice identified for protection includes
a set of idioms that directly access critical data (sources),
followed by their ancestors that depend on the critical
data; each source has no predecessors in the slice. The
compiler first applies the masks at the sources; then
traverses the slice forward, propagating the masks along
to intermediate nodes; it then removes the masks at the
sinks at the end of slice.

Fig. 5 provides an example of mask application and
propagation. Let us show how the compiler protects an
intermediate node, vc, of the input program slice which
performs the operation <y = f(x1, x2)>; we use <·>
notation to represent a piece of program (i.e., a node of
the graph). In the protected program slice, let v′

1
and

v′
2

denote the already masked versions of v1 and v2

respectively, where x′

1
= x1 ⊕ m1, x′

2
= x2 ⊕ m2, and m1

and m2 are the propagated masks. The compiler replaces
the node vc with a masked variant v′c that implements
<y′ = f ′(x′

1
, x′

2
, m1, m2, m3)> and propagates the mask

m3 to the ancestors, where y′ = y ⊕ m3. The function
f ′ depends on the distribution of f over the binary
addition (⊕) operation. If f is a linear function, then it
is straightforward to compute f ′, since f is distributive
over binary addition. If f is non-linear, then specific
care needs to be taken to ensure correctness. The trans-
formations applied by the compiler for both cases are
discussed below. The entire idea of masking relies on
the fact that y′ is statistically independent from y, and
that m3 is a uniformly distributed random variable.

Unmasking is performed on the output of sinks, with
respect to the program slice that is being masked. The
propagated mask is added to the value computed by the
sink, which generates the original result.

Masking linear operations (i.e., xor): Binary addition
(i.e., xor) is the simplest case of masking. Consider node
<y = x1⊕x2> in the unprotected graph (i.e., f is binary
addition in Fig. 5). The compiler starts masking at the
sources of the slice; when it reaches the binary addition

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 8

�

�� ��

��

� � � �� � �

� � 	
������

(a) Before protection.

�

��� ���

���

�� � 	 ��� � 	

� � ����������������

�� ��

��

(b) With protection.

Fig. 5. The sensitive operations are masked with uni-
formly random values. All the intermediate operations
should be masked, so that no intermediate result is re-
vealed. In the protected (masked) version of the graph,
masks are shown on the edges. In this example, x′

1
=

x1 ⊕ m1, x′

2
= x2 ⊕ m2 and y′ = y ⊕ m3.

operation, the inputs, x1 and x2 are already masked, i.e.,
x′

1
= x1⊕m1 and x′

2
= x2⊕m2. The output mask is m3, so

to recover the output, the compiler generates the output
y′ = y ⊕ m3 and propagates the mask m3. The compiler
uses Transformation 1 to generate the protected output
node.

Transformation 1 Linear operations

Protects node <y = x1 ⊕ x2>
Output:

v′
c

: masked node
Inputs: (m1, x′

1
, m2, x′

2
, m3)

m1 : mask propagated from first ancestor of v′
c

x′

1
: output of first ancestor of v′

c
(i.e., x′

1
= x1 ⊕ m1)

m2 : mask propagated from second ancestor of v′
c

x′

2
: output of second ancestor of v′

c
(i.e., x′

2
= x2 ⊕ m2)

m3 : mask to be propagated from v′
c

return <y′ = x′

1
⊕ x′

2
⊕ m3 ⊕ m2 ⊕ m1>

The protected node (v′c) consists of 4 xor operations
and optional load/store operations depending on the
availability of the data in registers. The order of these op-
erations in the protected output code is very important.
For maximum security, our compiler never reveals the
intermediate values (x1, x2, or y). Secondly, it does not
generate an assembly language program that performs
two consecutive operations whose Hamming distance is
equal to an intermediate value. An example of a bad
ordering is <y′ = (((x′

1
⊕m1)⊕(x′

2
⊕m2))⊕m3)>, which

reveals all three intermediates results.
The preceding example assumed that both operands

of the binary addition instruction are masked; however,
only one operand may be masked in some cases. In this
case, it suffices to omit the non-existing masks in the
formula for y′.

Masking a single operation in isolation is a peephole
substitution; however, the information (masks) must
propagate through the slice, and the masks must be
removed at the end; consequently, the transformation is
global, rather than local.

Masking requires available registers to store the
masks; this information is obtained through register
liveness analysis. If insufficient registers are available,
then some values residing in registers are spilled (stored
to memory) and reloaded after the masks are no longer
needed.

Masking non-linear operations: Cryptographic algo-
rithms use non-linear operations to ensure Shannon’s
property of confusion [33], i.e., to obscure the relation-
ship between plaintext and ciphertext; a substitution box,
(S-box), is generally used for this purpose. Non-linear
operations are typically implemented as lookup tables in
software, where the index into the table depends on the
input (e.g., plaintext and key). For example, in Fig. 3.c,
the operation 6 (r24 = sbox[r24]) is a table lookup,
since the index of the array sbox is input-dependent.
The other memory access operations, 3, 4 and 7, are
not table lookups because the addresses that they access
can be determined statically. The compiler masks a load
operation as a table lookup if and only if the accessed ad-
dress is input dependent. The compiler decides whether
an address is input dependent by automatically applying
a standard static analysis pass (constant propagation): if
the queried address is a constant, it is not a table lookup;
otherwise it is treated as a table lookup.

Masking non-linear operations is challenging and so-
lutions generally require replicating the tables, one for
each mask value. Our compiler uses a similar approach
to Herbst et al.’s [16] for masking the non-linear oper-
ations. The node representing a sensitive table lookup
operation <y = S[x]> has one parent: the node corre-
sponding to the operation that computes x; after mask-
ing, x is replaced with x′ = x⊕m1. The problem here is
that we can not express the masked output y′ = y⊕m3 =
S[x]⊕m3 using S[x′] and linear operations; thus, we use
a different masked table S′

m for each possible value of m.
To make this approach feasible for memory-constrained
embedded systems, we limit the number of masked
tables, while still ensuring a good level of protection [16],
[29]. Our compiler automatically detects the minimal
number of masks using the mask optimization algorithm
described below.

In order to generate masked output y′ = y ⊕ m3

from the input x′ = x ⊕ m1, we use the formula y′ =
S[x]⊕m3 = S[x′ ⊕m1]⊕m3 = S′[m3][x

′ ⊕m3 ⊕m1]. The
compiler uses Transformation 2 to generate the protected
output node. Masked tables are generated using the
formula S′

m(i ⊕ m) = S(i) ⊕ m, where 0 ≤ i < t and
t represents the size of the table S. As stated by Oswald
and Schramm [29], either these tables are precomputed
and stored in memory for different values of masks or
a code segment that generates these tables at run time
is inserted at the beginning of the implementation; our
compiler supports both options. The compiler recognizes
the size of a table (t) using static analysis of array
index bound. Since we assumed deterministic control
and data flow in the input software, a simple application
of constant propagation suffice.

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 9

Transformation 2 Table lookups

Protects node <y = S[x]>
Output:

v′
c

: masked node
Inputs: (m1, x′, m3)

m1 : mask propagated from the only ancestor of v′
c

x′ : output of the only ancestor of v′
c

(i.e., x′ = x ⊕ m1)
m3 : mask to be propagated from v′

c

return <y′ = S′[m3][x′ ⊕ m3 ⊕ m1]>

The vast majority of cryptographic algorithms are built
on top of linear operations or table lookups. In principle,
any other operation can be implemented as a table
lookup and protected as a non-linear operation. Also, in
order to avoid the cost of masked tables, some operation-
specific optimizations are possible. For example, we can
mask a shift operation <y = x ≪ c>, by replacing
it with <y′ = (x′ ≪ c) ⊕ m3 ⊕ (m1 ≪ c)>. The
same technique could also be applied to immediate type
Boolean operations, such as <y = x&5> and <y = x|3>.

Optimization of number of masks: Our compiler
protects all operations that propagate sensitive informa-
tion; however, using a separate mask for each operation
adds a significant run-time and code-size overhead. In
order to limit the overhead, our compiler automatically
minimizes the total number of masks, without sacrificing
protection. Different masks are assigned for all inputs
(m1 and m2) and output (m3) of a slice node, in order
to avoid the removal of masks during an intermediate
operation; however, two independent nodes might share
a mask without any risk.

We formalize the mask minimization problem as the
edge coloring of the program slice; each input/output
of a node should have different color (i.e., mask). For
example, in Fig. 5(b) m1, m2 and m3 should be differ-
ent. According to Vizing’s theorem [44], the edges of an
undirected graph can be colored using at least ∆ or ∆+1
colors depending on the graph, where ∆ is the maximum
degree of graph. Since the number of edges per node
(degree of the graph) is at most 3 (i.e., 2 for incoming
edges and 1 for outgoing edge), the optimal number of
colors (i.e., masks) is at most 4 for any implementation.
Our compiler implements the algorithm of Misra and
Gries [25] to color the edges.

Unmasking: The final step is to remove the mask from
the sinks of each slice, which will generate the correct
(unmasked) value at the end of execution. Suppose that
the sink computes y in the original source code, and
calculates y′ with propagated mask m3 in the protected
source code, i.e., y′ = y ⊕ m3. Then the compiler adds
the operation <y = y′ ⊕ m3> to the end of the program
to perform unmasking.

Output code generation: The final step is to convert
the transformed program representation into assembly
code. This step is straightforward since each node is
an instruction or an idiom, which is easily revertible.
The output routine reserves enough space to store the
masked lookup tables and the masks used during the

computations. Random numbers are generated using
the hardware random number generator of the micro-
controller if it exists; otherwise a code segment that
generates them by standard library calls is inserted by
the compiler. Lastly, the intermediate representation is
traversed to generate the protected program.

6 EXPERIMENTAL RESULTS

We use random precharging as an example of a counter-
measure for which peephole optimization suffices, and
Boolean masking as an example of a countermeasure that
requires global code transformation for proper insertion.
We selected two block ciphers to use as benchmarks:
AES and Clefia. For AES, we used a hand optimized
assembly [5], and a naive-C implementation. For Clefia,
we used only a naive-C implementation; to the best of
our knowledge, no hand-optimized assembly language
implementations of Clefia are presently available. Both
naive-C implementations are compiled with AVR-gcc
cross-compiler using three optimization levels (i.e., -O0,
-O1 and -Os). The experimental results demonstrate that
the compiler can successfully automate the insertion of
the protection mechanisms into otherwise unprotected
code. Our target platform is an 8-bit Atmel AVR ATmega
microcontroller.

6.1 Experimental Setup

Fig. 6 illustrates the experimental setup that we used to
measure the power consumption. It includes a PC, the
microcontroller board, a digital sampling oscilloscope,
and a differential probe. The board was designed inter-
nally and we calibrated all equipment, to the best of our
ability, to reduce electronic noise as much as possible.
Each experiment was repeated 25 times and averaged
results are reported to further eliminate random effects
caused by measurement.

Power is measured across a 10Ω resistor connected
in series to the Vcc pin of the microcontroller using
the differential probe connected to a digital sampling
oscilloscope. The microcontroller and oscilloscope com-
municate to start and stop measurements. The power
traces collected by the oscilloscope are sent to the PC for
off-line analysis (attacks). The PC loads software onto the
microcontroller board, and verifies the results computed
by the microcontroller.

6.2 Random Precharging Experiments

We used our compiler to automatically apply random
precharging method to the given implementations.
Our experiments use the following command-
line parameters, which are passed to the
compiler: --dynamic-analysis traces.txt --threshold=0
--method=randomPrecharging. We generated a file
containing power traces, “traces.txt”, by running
the microcontroller using randomly-generated
(plaintext, key) pairs, and collecting real-time power

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 10

Computer
Microcontroller

Board

Digital Sampling
Oscilloscope

loading &
verification

measurement
start/stop

power traces

D
iffe

re
n

tia
l

P
ro

b
e

Fig. 6. Experimental setup. A differential probe connected
to a digital sampling oscilloscope measures power con-
sumption. A PC processes the power traces and commu-
nicates with the board to load software and verify correct
encryption.

measurements. The compiler automatically determined
sensitive instructions using dynamic analysis (Section 3.2).

First, we set the threshold value to zero to generate
a fully-protected implementation. From there, we de-
termined the best achievable sensitivity, which was 0.4.
We re-ran the compiler using a threshold value of 0.4
to generate the partially protected implementation. Our
experimental results show that the partially protected
implementation is smaller and faster than the fully pro-
tected implementation, while providing similar security.

6.2.1 Security evaluation

This section reports how the protection improves se-
curity. First, we show how the compiler determines
sensitive instructions by dynamic analysis. Fig. 7 re-
ports the sensitivity of each clock cycle during the first
round of the unprotected AES implementation running
on the microcontroller. The regular structure of the AES
algorithm leads to regular patterns corresponding to the
four main AES operations: AddRoundKey (ARK), SubBytes
(SB), Shift Rows (SR), and MixColumns (MC). The internal
state of the AES algorithm is represented as a 4×4 array,
and each operation acts on individual bytes of the state,
leading to further regularity.

Non-linear operations, such as S-boxes, are generally
the target of side channel attacks, because they highlight
the difference between incorrect and correct key guesses;
this increases the probability of a successful attack [30].
For microcontrollers, data transfer instructions, i.e., loads
and stores, are known to leak more information relative
to other instructions [23]. Fig. 7 validates these past ob-
servations. The SR operation permutes the S-box outputs
via load and store instructions, and thus has the highest
sensitivity peaks. MC also re-loads the S-box outputs, and
has high sensitivity values as well.

Figs. 8 and 9 show the results of our partially
protected implementation. Fig. 8 shows that all sensi-
tivity values for the partially-protected implementation
are below the threshold value of 0.4 during every clock
cycle; Fig. 9 shows the sensitivity values for the protected
code snippet from Fig. 4.

To determine the noise standard deviation, σ, used

��� ��� ��� ��� ��� ��� ��� 	��
�� ���� ����
�

���

���

���

���

���

���

���

��	

��

�

�
�
�
�
��
��
��
�

	

�
�

�
��
�
�
�
��
�
�
�
�
��
��
�
�
�

�
�
��
�
�

����� �����

��� �� �� ��

����������� ������ ��� ����������� ������������

Fig. 7. Sensitivity values for each clock cycle during the
execution of one round of the unprotected AES implemen-
tation. Higher sensitivity values means higher vulnerability
to side-channel attacks. Fig. 4 associates these clock
cycles with specific instructions, and the compiler will
determine which of these instructions to protect.

��� ���� ���� ���� ����
�

���

���

���

���

���

���

��	

��

���

�

�
�
�
�
��
��
��
�

	

�
�

�
��
�
�
�
��
�
�
�
�
��
��
�
�
�

�
�
��
�
�

����� �����

��� �� �� ��

����������� ������ ��� ��������� ������������

Fig. 8. Sensitivity values of each clock cycle during the
execution of one round of the AES implementation pro-
tected by random precharging. As in Fig. 7, higher sen-
sitivity means higher vulnerability against side-channel
attacks. All sensitivity values are below the threshold, 0.4,
as a result of the protection scheme.

by the normalized mutual information theoretic metric
(Section 3.2), we ran a small code segment that is in-
dependent of the key and plaintext. We then computed
the standard deviation of the signal for each clock cycle;
the maximum value among all cycles was chosen as the
noise standard deviation.

To further evaluate the security of the protection mech-
anism, we mounted a correlation-based power analysis
attack (i.e., CPA, see Section 2.1) to the naive and pro-
tected (by random precharging) implementations of AES.
We used 20,000 different power traces and calculated
the correlation coefficient, ρ, for both implementations.
We used Hamming Weight as the power model and
the output of the S-Box operation as attack point. As a
result of the attack, we observed a 8.79 times decrease in
correlation (see Appendix) from the unprotected imple-

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 11

TABLE 1
The number of clock cycles required to execute different executions of AES and Clefia (including key scheduling)

running on the AVR microcontroller. Random precharging is automatically applied on each implementation, using two
different threshold values: the pareto-optimal threshold determined as explained in Section 3.2, and zero (for full

protection). Both protections have same level of security.

Implementation Original Random Precharging (Partially-protected) Random Precharging (Fully-protected)
Total Overhead Total Overhead

AES Optimized-assembly 3495 [5] 11131 7636 (218%) 11620 8125 (232%)
AES Naive-C with -O0 25302 48092 22790 (90%) 88768 63466 (251%)
AES Naive-C with -O1 11290 26212 14922 (132%) 40034 28744 (255%)
AES Naive-C with -Os 9978 25269 15291 (153%) 34899 24921 (250%)

Clefia Naive-C with -O0 148149 225572 77423 (52%) 470039 321890 (217%)
Clefia Naive-C with -O1 51149 97117 45968 (90%) 200492 149343 (292%)
Clefia Naive-C with -Os 36565 78469 41904 (115%) 138684 102119 (279%)

TABLE 2
The code-size (in bytes) of different implementations of AES and Clefia on the AVR microcontroller for the random

precharging experiments (the size of data, e.g., S-Boxes, is not included).

Implementation Original Random Precharging (Partially-protected) Random Precharging (Fully-protected)
Total Overhead Total Overhead

AES Optimized-assembly 802 [5] 2098 1296 (162%) 2160 1358 (169%)
AES Naive-C with -O0 1354 2378 1024 (76%) 4010 2656 (196%)
AES Naive-C with -O1 864 1698 834 (97%) 2770 1906 (221%)
AES Naive-C with -Os 912 1752 840 (92%) 2598 1686 (185%)

Clefia Naive-C with -O0 3108 5912 2804 (90%) 10802 7694 (248%)
Clefia Naive-C with -O1 1870 3406 1536 (82%) 6502 4632 (248%)
Clefia Naive-C with -Os 2350 4222 1872 (80%) 8194 5844 (249%)

���� ���� ���� ���� ���� ���� ���� ���� ���� ����
�

���

���

���

���

��	

���

��

���

���

�

�
�
�
�
��

�
�	

��

�
�

��
�
��

	
�

�
�
�

��
�
��
�
�

�
��

�
��

�
�

��
�
��

	
�

�
�
�

��
�
��
�
�

�
�
�

��
�
��
�
�

�
�
�
�

��
�
��
�
�

�
�
�
�
��

�
�	

�
�

�
�
�
�
��

�
�	

��

�
�
�
�

��
�
��
�
�

�
�

��
�
��

	
�

�
�
�

��
	
��
�
�

�
��

	
��

�
�
�
�
��
��

��
�

 !
�
��

"
�
#
�
�
$%

�
��

"
$
&�

��
��

"
��
�
�
'

(��)$����

&���������� * ���� �"++��, �� +�������� ��+�����"����

Fig. 9. The protected code segment from Fig. 4; the
sensitivity of all instructions is now below the threshold.

mentation (ρ = 0.422) to the protected implementation
(ρ = 0.048). As noted by Mangard et al. [23], the number
of power traces required to mount a successful attack
increases by a factor of k2 if the correlation coeffi-
cient decreases by a factor of k; thus, we estimate that
8.792 ≈ 76 times more traces are required to successfully
attack the protected implementation. Once again, we
wish to emphasize that this factor of 76 is germane
to the random precharging scheme and the correlation-
based power analysis attack, not the specific compiler
algorithms that are used to introduce it.

6.2.2 Performance and code-size evaluation
Table 1 reports the number of clock cycles during the
execution of three different versions of each implementa-
tion: the baseline (unprotected) version and the partially
and fully protected implementations. Table 2 reports the
code-size in bytes. The size of data, e.g., S-Boxes, is not
included in the results, since they are the same for all
three versions of each implementation.

Protecting an instruction entails the insertion of addi-
tional instructions, so the fully-protected version is an
upper bound on the runtime and code-size overhead
that could result from an overzealous application of
the countermeasure used in this study. The partially-
protected version of each implementation achieves the
same level of security as the fully-protected version with
up to 52% runtime and 48% code-size improvement.
Figure 10 shows how the threshold effects the run time
for one of the naive-C AES implementations.

The relative performance overhead due to random
precharging is nearly constant across all fully-protected
implementations of a specific algorithm. This is mainly
due to local application of countermeasure, as each
instruction is replaced with one or more instructions.

6.3 Boolean Masking Experiments

Next, we used our compiler to automatically apply
Boolean masking to AES and Clefia. We executed the com-
piler using command-line parameters --static-analysis
--critical=Key,Plaintext --method=masking. The parame-
ters inform the compiler to use static analysis (Section 3.1)

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 12

TABLE 3
Experiments in Table 1 and 2 are repeated for the automatic application of the Boolean masking countermeasure.

We used precomputed masked tables in our performance results.

Implementation Performance Code Size
(clock cycles) (bytes)

Original Masking Original Masking
Total Overhead Total Overhead

AES Optimized-assembly 3495 [5] 5795 2300 (66%) 802 [5] 1334 532 (66%)
AES Naive-C with -O0 25302 27666 2364 (9%) 1354 1614 260 (19%)
AES Naive-C with -O1 11290 13582 2292 (20%) 864 1120 256 (30%)
AES Naive-C with -Os 9978 12270 2292 (23%) 912 1180 268 (29%)
AES Manually Masked (Herbst et al. [16])

w/ generation of masked tables - 8420 - - - -
w/o generation of masked tables - 5620 - - - -

AES Manually Masked (Oswald and Schramm [29])
masking only table lookups - - 12800 - - -

Clefia Naive-C with -O0 148149 154991 6842 (4%) 3108 3882 774 (25%)
Clefia Naive-C with -O1 51149 57555 6406 (13%) 1870 2508 638 (34%)
Clefia Naive-C with -Os 36565 43055 6490 (18%) 2350 3018 668 (28%)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
x 10

4

Threshold

C
lo

c
k
 c

y
c
le

s

Threshold vs Run Time

Minimum Maximum

Sensitivity Sensitivity

(Maximum (Minimum

Protection) Protection)

Fig. 10. Increasing the threshold reduces run-time (in-
creases performance), but reduces the protection. Pro-
tection is equal to the threshold in the interval between
two perpendicular sensitivity lines; however stays stable
before min sensitivity and after max sensitivity lines.

to estimate the sensitivity, to treat the key and plaintext
as critical data, and to use Boolean masking as the protec-
tion mechanism. The compiler automatically generated
protected outputs.

6.3.1 Security evaluation
The security of masking, both in theory and practice,
has been studied in detail, and has been shown to be
resistant against first-order differential power analysis
attacks [17], [24], [27], [36], [45]. Our application of
masking is based on common strategies that have been
suggested in the literature. Once again, our contribution
is the development of a compiler that can introduce
this countermeasure automatically; our results are in-line
with prior work.

We first applied a sensitivity analysis on the protected

implementation and observed that sensitivities of all in-
structions are close to 0 for the masked implementation;
they are not zero because of the experimental noise.

Then, we mounted a correlation-based power analysis
attack (CPA) on all implementations of AES and Clefia
using 5000 power traces, and calculated the correlation
coefficients. Once again, we used Hamming weight as a
power model and attacked the output of the S-box opera-
tion. The correlation for the correct key never exhibited a
peak neither for AES nor for Clefia algorithms, regardless
of the number of traces used. Plot of the correlation for
the correct key and incorrect keys as a function of the
number of traces for AES implementation is shown in
Appendix.

6.3.2 Performance and code-size evaluation

Table 3 reports the results of our Boolean masking ex-
periments. Our compiler took less than one second to
automatically mask each of these implementations. The
performance overhead incurred by masking appears to
be independent of the optimization parameter of gcc;
the number of sensitive instructions is a property of
the algorithm, and the optimization level cannot re-
move sensitive operations (as they are a required part
of the algorithm) or transform them into less sensitive
operations. The sensitive operations process critical data,
either directly or indirectly. Non-sensitive operations
include loop counter iterations, and do not benefit from
masking.

There are two manually masked AES implementations
for the AVR, provided by Oswald and Schramm [29]
(masks only the table lookups) and Herbst et al. [16]; our
compiler produces implementations with comparable
results (see Table 3). Note that the given results highly
depend on the factors such as the used base implemen-
tation, whether the masked tables are precomputed or
generated at run time and how many masked tables are
generated. A detailed analysis that explains how these
parameters effect the performance is given in the paper

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 13

of Oswald and Schramm [29] and is beyond the scope
of this paper. In the given results, our compiler and Os-
wald and Schramm [29]’s manual implementation uses
precomputed masked tables approach, whereas Herbst
et al. uses run time generated tables. Our compiler also
supports generating the masked tables at run time (see
Section 5.2) and an additional 11 × t clock cycles are
needed for each masked table generation, where t is the
size of table to masked. In the AES implementations, we
use 2 tables: one for S-Box and one for xtime. Generating
a masked table for each of them for a single mask
takes 2816 clock cycles, resulting in additional 5632 clock
cycles. In Clefia, we use 4 tables: 2 for S-Boxes, one
for multiplication over GF (28), and one for constant
values used in key scheduling algorithm. Similar ap-
proach results in additional 11264 clock cycles for Clefia
implementations. We are unaware of any prior masked
Clefia implementations, so we were unable to perform a
direct comparison with prior work.

Code size also depends on same parameters as the
performance. Each masked table takes additional t bytes
and the code that generates a masked table at run time
takes additional 14 bytes. For example, the overhead of 2
masked tables is 512 bytes for the AES implementation;
if the user selects the compiler option to generate the
masked tables at run-time, additional 28 bytes will be
used, resulting in 512+28 = 540 bytes overhead in total.
Table 3 does not include these overheads.

6.4 Discussion

The proposed compiler does not introduce new coun-
termeasures; instead it automatically applies known
countermeasures to given software implementations of
cryptographic algorithms. Hence, the improvement in
security is limited by the ability of the countermeasure
that has been applied, not the ability of the compiler to
apply the countermeasure. None of the known counter-
measures guarantee perfect security; they increase the
effort required to mount a successful attack.

Our results demonstrate that the compiler is capable
of identifying the most important operations to protect
to limit the performance and code-size overhead. The
performance analysis given here is for 8-bit AVR mi-
crocontroller; the overhead is likely to vary for different
platforms. It is beyond the scope of this paper to com-
pare the quality of different countermeasures, and it is
the responsibility of the user to select the appropriate
countermeasure to use.

Large parts of the methodology generalize immedi-
ately to other countermeasures; other parts, which are
specific to the chosen countermeasure, do not general-
ize. The first two steps (information leakage analysis and
transformation target identification) of our methodology are
generic and can be used for the application of any coun-
termeasure. However, the last step (code transformations)
is countermeasure specific and has to be extended to
support different countermeasures (e.g., shuffling).

We tested our compiler on block ciphers because of
their popularity in prior work on side channel protec-
tion, availability of source code, and the applicability
of countermeasures to these applications. For example,
the block ciphers we chose do not employ traditional
fixed- or floating-point arithmetic operations for encryp-
tion/decryption; Boolean masking alone cannot protect
these operations. That being said, our methodology is
not specific to block ciphers; they have simply been cho-
sen as representative examples of the types of algorithms
that our compiler could protect.

7 CONCLUSION

In this work, we propose a compiler which automati-
cally applies software countermeasures to protect against
power analysis attacks. The compiler can be used by
software engineers who do not have any background
in cryptography. As an experimental study, we have
shown that our compiler was able to protect different
implementations of two block ciphers, AES and Clefia.
The compiler automatically determines and protects the
most sensitive instructions, while obtaining comparable
security to fully-protected implementations, with much
less overhead. In principle, our algorithms could be
implemented in any compiler that exists today.

REFERENCES

[1] M.-L. Akkar and C. Giraud. An implementation of DES and AES,
secure against some attacks. In CHES, pages 309–318, 2001.

[2] C. Archambeau, E. Peeters, F.-X. Standaert, and J.-J. Quisquater.
Template attacks in principal subspaces. In CHES, pages 1–14,
2006.

[3] M. Barbosa, A. Moss, and D. Page. Constructive and destructive
use of compilers in elliptic curve cryptography. Journal of Cryp-
tology, 22(2):259–281, April 2009.

[4] A. G. Bayrak, F. Regazzoni, P. Brisk, F.-X. Standaert, and P. Ienne.
A first step towards automatic application of power analysis
countermeasures. In DAC, pages 230–235, June 2011.

[5] Bertram Poettering. http://point-at-infinity.org/avraes/.
[6] J. Blömer, J. Guajardo, and V. Krummel. Provably secure masking

of AES. In SAC, pages 69–83, 2004.
[7] E. Brier, C. Clavier, and F. Olivier. Correlation power analysis

with a leakage model. In CHES, pages 16–29, 2004.
[8] S. Chari, J. R. Rao, and P. Rogathi. Template attacks. In CHES,

pages 13–28, 2002.
[9] C. Cifuentes. Reverse Compilation Techniques. PhD thesis, Queens-

land University of Technology, Australia, 1994.
[10] J. V. Cleemput, B. Coppens, and B. de Sutter. Compiler mitigations

for time attacks on modern x86 processors. ACM Transactions on
Architecture and Code Optimization, 8(4):23:1–20, 2012.

[11] Computer Aided Cryptography Engineering (CACE European
Project). http://www.cace-project.eu.

[12] J.-S. Coron and L. Goubin. On Boolean and arithmetic masking
against differential power analysis. In CHES, pages 231–237, 2000.

[13] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis:
Concrete results. In CHES, pages 251–261, May 2001.

[14] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual Infor-
mation analysis: A generic side-channel distinguisher. In CHES,
pages 426–442, 2008.

[15] S. Guilley, P. Hoogvorst, Y. Mathieu, and R. Pacalet. The “backend
duplication” method. In CHES, volume 3659, pages 383–397,
August 2005.

[16] C. Herbst, E. Oswald, and S. Mangard. An AES smart card
implementation resistant to power analysis attacks. In ACNS,
pages 239–252, 2006.

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2012 14

[17] M. Joye, P. Paillier, and B. Schoenmakers. On second-order
differential power analysis. In CHES, pages 293–308, 2005.

[18] A. A. Kamal and A. M. Youssef. An area-optimized implementa-
tion for AES with hybrid countermeasures against power analysis.
In ISSCS, pages 1–4, 2009.

[19] P. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS and other systems. In CRYPTO, pages 104–113, 1996.

[20] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In
CRYPTO, pages 398–412, 1999.

[21] Lex & Yacc. The Lex (A Lexical Analyzer Generator) &
Yacc (Yet Another Compiler-Compiler) page. http://dinosaur.
compilertools.net, 2011.

[22] F. Madlener, M. Stoettinger, and S. A. Huss. Novel hardening
techniques against differential power analysis for multiplication
in GF (2n). In ICFPT, pages 328–334, 2009.

[23] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks -
Revealing the Secrets of Smart Cards. Springer, 2007.

[24] T. S. Messerges. Using second-order power analysis to attack DPA
resistant software. In CHES, pages 238–251, 2000.

[25] J. Misra and D. Gries. A constructive proof of vizing’s theorem.
Information Processing Letters, 41(3):131–133, 1992.

[26] A. Moss, E. Oswald, D. Page, and M. Tunstall. Compiler assisted
masking. In CHES, pages 58–75, 2012.

[27] E. Oswald, S. Mangard, C. Herbst, and S. Tillich. Practical second-
order DPA attacks for masked smart card implementations of
block ciphers. In CT-RSA, pages 192–207, 2006.

[28] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A side-
channel analysis resistant description of the AES S-box. In FSE,
pages 413–423, 2005.

[29] E. Oswald and K. Schramm. An efficient masking scheme for
AES software implementations. In WISA, pages 292–305, 2005.

[30] E. Prouff. DPA attacks and S-Boxes. In FSE, pages 424–441, 2005.
[31] F. Regazzoni, A. Cevrero, F.-X. Standaert, S. Badel, T. Kluter,

P. Brisk, Y. Leblebici, and P. Ienne. A design flow and evaluation
framework for DPA-resistant instruction set extensions. In CHES,
pages 205–219, 2009.

[32] A. Shamir and E. Tromer. Acoustic cryptanalysis: On nosy people
and noisy machines. http://www.cs.tau.ac.il/∼tromer/acoustic/,
2004.

[33] C. Shannon. Communication theory of secrecy systems. Bell
System Technical Journal, 28(4):656–715, 1949.

[34] J. Sifakis. A vision for computer science — the system perspective.
Central European Journal of Computer Science, 1(1):108–116, 2011.

[35] F.-X. Standaert, T. G. Malkin, and M. Yung. A unified framework
for the analysis of side-channel key recovery attacks. In EURO-
CRYPT, pages 443–461, 2009.

[36] F.-X. Standaert, E. Peeters, and J.-J. Quisquater. On the masking
countermeasure and higher-order power analysis attacks. In
ITCC, pages 562–567, 2005.

[37] S. Tillich and J. Großschädl. Power analysis resistant AES imple-
mentation with instruction set extensions. In CHES, pages 303–
319, 2007.

[38] S. Tillich, C. Herbst, and S. Mangard. Protecting AES software
implementations on 32-bit processors against power analysis. In
ACNS, pages 141–157, 2007.

[39] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, 1995.

[40] K. Tiri and I. Verbauwhede. A digital design flow for secure
integrated circuits. IEEE Transactions on CAD of Integrated Circuits
and Systems, 25(7):1197–1208, 2006.

[41] M. Tiwari, X. Li, H. M. G. Wassel, B. Mazloom, S. Mysore, F. T.
Chong, and T. Sherwood. Gate-level information-flow tracking
for secure architectures. Micro, IEEE, 30(1):92–100, 2010.

[42] S. S. R. Varadhan. Large deviations. Annals of Probability,
36(2):397–419, 2008.

[43] A. L. S. Vincentelli. 1,000 electronic devices per living person:
Dream or nightmare? In IWASI, pages 2–2, 2011.

[44] V. G. Vizing. On an estimate of the chromatic class of a p-graph.
Diskret Analiz, 3:25–30, 1964.

[45] J. Waddle and D. Wagner. Towards efficient second-order power
analysis. In CHES, pages 1–15, 2004.

Ali Galip Bayrak is a Ph.D. candidate at the
Processor Architecture Laboratory (LAP), Ecole
Polytechnique Fédérale de Lausanne (EPFL),
Switzerland. He received the B.S. and M.S.
degrees from Middle East Technical University
(METU), Turkey. His current research interests
include cryptographic engineering, design and
automation of secure systems, compilers, and
verification.

Francesco Regazzoni is a postdoctoral re-
searcher at the ALaRI Institute of University of
Lugano, where he also completed his Ph.D.
degree. He received his M.S. degree from Po-
litecnico di Milano. Previously, he has been an
assistant researcher at the Crypto Group of the
Universit Catholique de Louvain (UCL) and at
TU Delft. His research interests include embed-
ded systems security, in particular side channel
attacks, cryptographic hardware, electronic de-
sign automation for security, and random num-

ber generators.

David Novo received the M.S. degree from
the Universitat Autonoma de Barcelona (UAB),
Spain, in 2005, and the Ph.D. in Engineering
from the Katholieke Universiteit Leuven (KUL),
Belgium, in 2010. Since November 2010, he has
been a Postdoctoral scholar with the Processor
Architecture Laboratory (LAP), EPFL, Switzer-
land. His current research interests include hard-
ware and software techniques for increasing
computation efficiency in next-generation com-
puters.

Philip Brisk received the B.S., M.S., and Ph.D.
degrees, all in Computer Science, from UCLA
in 2002, 2003, and 2006 respectively. From
2006–2009 he was a postdoctoral scholar in
the Processor Architecture Laboratory at EPFL,
Switzerland. He is now an assistant professor in
the Department of Computer Science and Engi-
neering at the University of California, Riverside.
His research interests include programmable mi-
crofluidics, FPGAs and reconfigurable comput-
ing, and semiconductor design automation.

François-Xavier Standaert received the Elec-
trical Engineering degree and Ph.D. degree from
the Universite Catholique de Louvain (UCL),
respectively in 2001 and 2004. From 2005 to
2008, he was a post-doctoral researcher of the
UCL Crypto Group. Since 2008, he is a profes-
sor at the UCL ICTEAM. His research interests
include digital electronics, FPGAs and crypto-
graphic hardware, low power implementations,
the design and cryptanalysis of symmetric cryp-
tographic primitives, physical security in general

and side-channel analysis in particular.

Paolo Ienne received the Dottore degree in
electronic engineering from the Politecnico di
Milano, Italy, in 1991, and the Ph.D. degree in
computer science from the Ecole Polytechnique
Fédérale de Lausanne (EPFL), Switzerland, in
1996. He has been a Professor at the EPFL
since 2000 and heads the Processor Architec-
ture Laboratory (LAP). His research interests
include various aspects of computer and proces-
sor architecture, electronic design automation,
computer arithmetic, FPGAs and reconfigurable

computing, and multiprocessor systems-on-chip.

