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Abstract. Side-channel analysis is a powerful tool to extract secret in-
formation from microelectronic devices. Its most frequently considered
application is destructive, i.e. key recovery attacks against cryptographic
implementations. More recently, it has also been considered construc-
tively, in the context of intellectual property protection/detection, e.g.
through the use of side-channel based watermarks or soft physical hash
functions. The latter solution is interesting from the application point-
of-view, because it does not require any modification of the designs to
protect (hence it implies no performance losses). Previous works in this
direction have exploited simple (correlation-based) statistical tools in dif-
ferent (more or less challenging) scenarios. In this paper, we investigate
the use of support vector machines for this purpose. We first argue that
their single-class extension is naturally suited to the problem of intellec-
tual property detection. We then show experimentally that they allow
dealing with more complex scenarios than previously published, hence
extending the relevance and applicability of soft physical hash functions.

1 Introduction

Protecting Intellectual Properties (IP) from illegal use is an important issue
for the development of markets based on third party designs (next refered to
as IP cores). Different solutions have been proposed to mitigate this problem,
among which permission-based and watermarking-based techniques are usual
candidates. The first one consists in checking whether the system has the right
permission before performing any operation (i.e. works a priori). Most common
solutions are implemented with an enhanced security chip or a Physically Un-
clonable Function (PUF) that contain some secret [5, 17, 28, 38]. If the IP gets
the right answer to a defined challenge, it means that it is used properly and can
start processing. The second family (i.e. watermarking-based protections) con-
sists in hiding a piece a information for authentication or identification in the IP,
that is recovered by its owner(s) if needed [3, 22, 23, 27]. The inserted information
must be robust to noise and to slight transformations that may occur in the IP
manipulation. It must also be invisible to the adversary. Recently, it has been
proposed to place the mark in physical features such as the temperature, power
consumption, ... of the device on which the IP is executed [7, 42]. In opposition
to the permission-based mechanism that prevents illegal use of IP from running,
watermarks can only detect this illegal use (i.e. they work a posteriori).



As an alternative to these proposals, Soft Physical Hash (SPH) functions are
an a posteriori solution that also exploits information extracted from the physical
features of a target circuit. The difference with the watermarking-based solution
lies in the fact that the information extracted comes from the very characteris-
tics of the implementation, and is not inserted by the IP owner. Therefore, and
in contrast with both previous families, this solution does not need any piece of
hardware to be added, and it cannot be removed or altered as it depends on the
IP itself. SPH functions have been formalized together with IP detection infras-
tructures in [15], where the requirements for this solution to be effective (namely
perceptual robustness and content sensitivity) have also been defined. They have
first been applied in a simple case study of 8-bit software implementations, and
next in the more challenging context of FPGA implementations [24].

While these previous works can be seen as encouraging proofs-of-concept, and
validate the idea that SPH can be useful components in the detection of IP theft,
the main question naturally remains to know how robust it is against challenging
adversarial conditions. For example, can it be effective without knowing the
inputs/outputs of the IP to detect?, how does it resist against re-compiled/re-
synthetized IPs?, and (in the most interesting case of hardware IP) how does
it react to other parasitic IP running in parallel (i.e. when included in a larger
system combining several proprietary designs)? In particular, the work in [24]
suggested that simple instances of SPH (where the detection procedure is based
on Pearson’s correlation-based statistics) start to encounter some failures in the
context of re-synthetised FPGA designs with parasitics IP running in parallel.
In this work, we aim to complement these first results, and consider Support
Vector Machines (SVM) to enhance IP detection in such complex scenarios. For
comparison purposes, we consider the same case study as [24] (i.e. six FPGA
implementations of block ciphers) and show experimentally that SVM lead to
significant (perceptual robustness and content sensitivity) improvements.

Why SVM? As IP detection infrastructures based on SPH functions exploit
standard techniques from side-channel analysis, one can wonder why SVM are
prefered to other more standard tools that usually improve over correlation-based
statistics (e.g. templates [12] or stochastic approaches [35]). Before entering the
core of the paper, we provide a brief argument in this respect. First, one can
notice that SVM have been shown to provide an interesting alternative to such
tools (see, e.g. [6, 18, 20, 26]). So while it is unclear that they generally pro-
vide significant advantages over other distinguishers (especially in the context of
“standard” first-order side-channel attacks where many statistics are equivalent
to some extent [30]), they are at least expected to work reasonably in this con-
text too. Second and more importantly, the problem of IP detection differs from
the one of key recovery in one important aspect. Namely, the number of classes
in key recovery is usually well identified (e.g. 256 when targeting the AES S-box
output), while is is not enumerable in IP detection. Indeed, the IP owner can
only characterize his own design, and the number and shape of suspicious IP
is a priori unknown. As a result, the single-class extension of SVM appears to
be naturally suited to this context (since it only requires the knowledge of the



reference IP during its characterization). Eventually, SVM are particularly inter-
esting for dealing with large dimensionalities (e.g. large measurement traces in
side-channel attacks), which contrasts with templates and stochastic approaches
that work best if a good points-of-interest are identified. But the selection of such
points-of-interest usually relies on criteria such as the signal-to-noise ratio, that
(ideally) requires the knowledge of the different classes to discriminate (since
they define the signal). So the fact that we do not need to find points-of-interest
in SVM is appealing in our context. Summarizing, while we certainly do not rule
out the possibility that other standard side-channel distinguishers provide fur-
ther improvements to our results under certain heuristic assumptions, we believe
SVM are natural candidates to investigate for enhanced IP detection.

The rest of the paper is structured as follows. Section 2 introduces the nec-
essary background regarding the IP detection infrastructure, its underlying def-
initions, and the SVM classification tool. Section 3 instantiates our IP detection
infrastructure. Experimental results in different contexts are presented and dis-
cussed in Section 4 and a conclusion is eventually given in Section 5.

2 Background

2.1 IP detection infrastructure

We take advantage of the IP detection infrastructure introduced in [15] and
represented in Figure 1. It essentially makes use of soft hash functions [25]. By
contrast to cryptographic hash functions, for which the output string is highly
sensitive to small perturbations of the input, soft hash functions are such that
similar objects should return highly correlated digests (i.e. be perceptually ro-
bust), while different objects should produce uncorrelated ones (i.e. be content-
sensitive). The SPH used in this paper are a variation of soft hash function,
where we additionally extract a physical feature from the objects to protect.
The resulting IP detection infrastructure embeds the following elements:

– Object to protect: this can be any type of IP (source code, netlist, layout).

– Physical feature vector evaluation: this process outputs an intermediate re-
sponse that is expected to represent the object to characterize in the most ac-
curate manner. In other words, this intermediate string must be very content-
sensitive. It can correspond to any physical emanation of the device running
the IP (e.g. power consumption, electromagnetic radiation, ...).

– Extraction: this (optional) process essentially applies some signal process-
ing and summarizes the feature vector into a (usually smaller) output hash
value, that best trades content sensitivity for perceptual robustness (e.g. by
selecting the “points of interest” in a side-channel measurement).

– Detection: this can be any statistical tool that allows determining the level
of similarity between two hash values. Most side-channel distinguishers can
be used for this purpose (e.g. Pearson’s correlation coefficient in [15, 24]).
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Fig. 1. Generic framework for IP detection.

As the detection of counterfeited IP essentially works by comparing hash
values, it is assumed that the IP owner has characterized the SPH function of
his design. Note that this characterization process does not have to be done
during development time, but may also be done after the product has been
released. As indicated by the dotted part on Figure 1, the suspicious IP may
directly correspond to counterfeited designs, or slightly transformed ones. In the
following, we will consider the re-synthesis of a design under a different set of
constraints and the addition of a parasitic IP running in parallel as IP-preserving
transformations. By contrast, a change of block cipher is naturally considered
as non IP-preserving. In this context, the detection performances are measured
with the content sensitivity and perceptual robustness properties defined as:

– Perceptual robustness: probability that two implementations that only differ
by IP-preserving transformations lead to a similarity score higher than τr.

– Content sensitivity : probability that two implementations that differ by non-
IP-preserving transformations lead to a similarity score lower than τs.

For the detection process to be successful, the condition τr ≥ τs must always
be satisfied. Otherwise, a legitimate IP could be mistaken for a fraudulent one
(or conversely). Eventually, such a generic framework can be run in different
scenarios that make the detection more or less easy to perform. For example,
the inputs/outputs of the design to protect and its source code can be known or
unknown, and the framework can be applied to identical or different technolo-
gies, using identical or different measurement setups. These scenarios affect the
physical features that are measured during the evaluation process.



2.2 Support Vector Machines

SVM are a class of statistical models used for data classification, popular in
machine learning and artificial intelligence [9, 41]. Their goal is to learn target
properties from a finite set of data points, possibly living in a high-dimensional
space, in order to classify unseen samples. For this purpose, they essentially
estimate a classification function, taking a vector of attributes as argument and
returning a discrete decision. In our context, the data samples are the hashed
vectors of the power consumption (next denoted as x and living in Rn), and the
estimated function is the belonging of those vectors to a class of IP to protect.

Binary SVM. The standard SVM model is binary and targets the estimation
of Boolean functions. It requires a supervised (i.e. profiled) learning with labels
{−1,+1}, annotating each sample of the training dataset. Its goal it to output a
correct label for the samples of an independent test set. Let us assume that the
training set is composed of m samples xi ∈ Rn, with i = 1, ..,m. For each sample
xi, let yi ∈ {−1,+1} be the associated label. The binary SVM will estimate a
decision function g whose sign defines the binary outcome of the classifier. This
function g is based on the construction of an hyperplane, separating the two
classes with the largest possible margin, in the geometrical space of the vec-
tors. The margin represents the distance between the hyperplane and the closest
member(s) of both distributions, identical for both sides. Maximizing this quan-
tity leads to a better discrimination ability on unseen samples. These concepts
are illustrated in Figure 2, handling a simple 2D classification task (diamonds
vs. circles) where dashed lines are margin borders around the hyperplane.

Fig. 2. Binary SVM with a 2D classification problem (the analytical distances from the
hyperplane H to the origin and a datapoint xi are given by d0 and dxi , respectively).



Let b ∈ R and w ∈ Rn be the parameters of the hyperplane, and x a data vector
such that we have the following decision function:

g(x) = wtφ(x) + b = w · φ(x) + b. (1)

Here φ denotes a projection function that maps the data vectors into a higher
(sometimes infinite) dimensional space. If φ is not defined as the trivial iden-
tity function (as in the figure), the hyperplane will be built in the projected
space, usually called feature space (as opposed to the original data space). This
allows to find non-linear boundaries in the data space, fitting to more complex
observations. Equation (1) returns a quantity proportional with the analytical
distance of a sample from the frontier (dxi

in Figure 2): the further the point,
the more robust the classification. When further referring to the distance from
the hyperplane, we will always mean an evaluation of the g function. Parameters
b and w are obtained by solving the following constrained quadratic program:

min
w,b

1

2
wtw

subject to yi ∗ g(xi) ≥ 1 ∀i = 1, ...,m.

(2)

When the problem is feasible with respect to the constraints, the data is said
to be linearly separable in the feature space. As the problem is convex, there
is a guarantee to find a unique global minimum. Usually, solvers compute the
solution of the associated dual problem, with dual variables αi, i = 1, ..,m. This
leads to an alternative formulation of the decision function g, whose sign provides
the outcome of the classification of a new data vector x:

fclassify(x) = sign

( ∑
xi∈SV

αiyi K(xi, x) + b

)
. (3)

Here, SV denotes a subset of the original training set called the support vec-
tors. They are solely needed to define the hyperplane associated with non-
zero dual variables (αi 6= 0), and represent the closest points to the hyper-
plane living on the margin (circled in Figure 2). The symmetric kernel func-
tion K implicitely takes into account the projection φ in the dual problem:
K(xi, xj) ≡ φ(xi)

Tφ(xj). It substitutes the dot product appearing in Equa-
tion (1). This kernel trick allows the usage of complex projections without ex-
plicitly computing φ, which can be computational intensive (or even impossible)
in high dimensions (e.g. using a Gaussian Kernel as we did in our experiments -
see next - is equivalent to using an infinite-dimensional feature space).

The single class extension. Binary SVM require both positive and negative
samples in the training set. In the context of IP detection, this is not directly
applicable since the negative distribution is unknown (i.e. we cannot expect to
obtain samples for all the IP that have been developed by third parties). For this
reason, we will use a slightly more complex version of SVM called “unsupervised



One-class SVM” (OSVM). It allows getting rid of any hypothesis made about the
distribution of the negative class, by working with unlabeled data. This extension
was derived from the binary case thanks to the work of B. Schölkopf et al. in
the early 2000’s [36, 37]. The main underlying idea is to estimate the geometrical
region concentrating most points of the distribution, by building a separating
hyperplane having a maximum margin from the origin. For this purpose, OSVM
rely on the assumption that the dataset contains a small fraction of outliers that
will be considered as rejected samples. They associate these rejected samples
with a penality cost, that depends on their distance from the hyperplane (cfr.
Figure 3), and is added to the original SVM objective function (adjusted with
a new parameter ν ∈ ]0, 1]). Let ρ ∈ R and w ∈ Rn be the parameters of the
hyperplane and ξi ∈ R+ a penality cost associated with xi (i = 1, ..,m), it leads
to the following quadratic problem:

min
w,ρ,ξi

1

2
wTw +

1

νm

m∑
i=1

ξi − ρ

subject to w · φ(xi) ≥ ρ− ξi ξi ≥ 0,∀i = 1, ...,m,

(4)

with the classification function according to dual variables αi given by:

fclassify(x) = sign

( ∑
xi∈SV

αi K(xi,x)− ρ

)
. (5)

Fig. 3. OSVM with a 2-dimensional classification problem in which we distinguish four
classes of points: (1) outliers with their penalty cost ξi, (2) support vectors, (3) other

points, (4) the origin (the analytical half margin size is given by |ρ|
‖w‖ ).



Instantiation. In this work, we use a Gaussian Radial Basis Function (RBF)
kernel within the OSVM model:

K(xi,xj) = exp

(
−||xi − xj||

2σ2

)
= exp(−γ||xi − xj||), γ, σ > 0. (6)

Such a kernel has been proven to work well for a wide range of application
data. Moreover, it can be shown that this RBF-OSVM model guarantees to find a
solution (i.e. any dataset x1,x2, ...,xm is separable under a Gaussian kernel [36]).
We also observed that the computational overhead of using that kernel instead
of the linear one was negligible in our case. Eventually, building a model requires
the setting of the parameters γ and ν. We selected them thanks to a grid-search,
by optimizing the true positive rate TPR, defined as:

TPR =
#TP

#TP + #FN
, (7)

where #TP represents the frequency of vectors from the validation set correctly
detected, while #FN is the frequency of vectors wrongly rejected by the model.
This function has been evaluated on a dataset independent of the training set
(the validation set) to avoid overfiting the parameters with the data used to
train the model itself. Our choice of objective function is admittedly heuristic.
As will be clear next, it was sufficient to obtain good experimental results (and
in particular, we verified that it improved over randomly selected parameters).

3 Specification of the IP detection infrastructure

Given the tools presented in Section 2, we now need to incorporate SVM in the
generic IP detection infrastructure of Figure 1. In this work we use the same
datasets as in the earlier studies exposed in [24], leading to an identical evalua-
tion phase. This section will briefly recall our measurement setup, valid for both
reference and suspicious traces, then describes what the construction of the OSVM
model implies in the extraction and detection phases. The LibSVM library suite
was used to process the data, train and evaluate models, as it supports OSVM and
many more features related to SVM classification tasks (see [11] for the details).

Object to protect. We investigated an FPGA case-study and took the netlists
of five lightweight ciphers (HIGHT [19], ICEBERG [39], KATAN [10], NOEKEON [14]
and PRESENT [8]), together with the one of the AES Rijndael, as objects to pro-
tect. These netlists were synthetized for a Xilinx Virtex-II Pro FPGA. We built
only one reference model per protected IP, from its measurement obtained in
a standalone context (i.e. with no parasitic IP in parallel), loaded and synthe-
sized under standard options. Conversely, suspicious traces were measured in
three different contexts corresponding to increasingly difficult detection chal-
lenges, namely identical standalone IP, re-synthetized (still standalone) designs,
and re-synthetized designs with parasitic IP running in parallel.



Evaluation phase. We used the FPGA power consumption as physical feature
vector. Measurement traces were obtained by measuring the voltage variations
around a shunt resistor on the Sasebo-G board [1]. The device was running at
24 MHz, and the oscilloscope sampling frequency was set to 2,5 GHz.

Extraction phase. This step slightly differs from the one in previous papers,
since we consider profiled side-channel distinguishers. Hence, while the extraction
procedure applied to the reference IP (at the top of Figure 1) and the suspicious
IP (at the bottom of the figure) was the same when using Pearson’s correlation
as detection tool, it has to differ in the case of SVM. Namely, the reference IP ex-
traction outputs the parameters of the hyperplane that define the IP to protect,
and the physical feature vectors of the suspicious IP will be compared to this
model (rather than to other feature vectors). Besides and as usual, the extraction
could include additional signal processing and selection of points-of-interest (e.g.
some dimensionality reduction can be used to speed up computations) . In our
experiments, these optional steps were usually ignored and we manipulated the
full measurement traces directly. As mentioned in introduction, it is an interest-
ing feature of SVM to allow dealing with such large dimensionalities efficiently.
The only exception is our last case-study, where averaging was performed on the
traces, to reduce the noise and improve detection capabilities.

As a technical remark, note that the OSVM require to work with vectors having
identical dimension, both for the training and the evaluation of the model. Since
different IP were processed, a common length had to be fixed. We choose to work
with the shortest iteration length among our 6 IP (i.e. n = 1251 dimensions
for the AES). This implicitly assumes that the traces can be synchronized, i.e.
starting all their encryption cycle at t0. This can be achieved by different means,
e.g. computing the correlation over a sliding window. In our experiments, we
observed that these cropped physical feature vectors were sufficiently specific to
their generating IP for making effective detections. Both reference and suspicious
extraction processes include this cropping operation as a preliminary step.

Detection phase. Each suspicious hash value is evaluated in the reference
model. For this purpose, the OSVM simply outputs the a value that is proportional
to the distance of this hash from the decision boundary (i.e. the SVM hyper-
plane), whose sign indicates the classification outcome. As previously mentioned,
we will call it a “distance” for simplicity, and it can be interpreted as a similarity
score lying on an open scale, whose expression is given by Equation (5).

4 Case studies

In this section, we analyze our RBF-OSVM model applied in four detection scenar-
ios of increasing complexity. First we tackled the basic case of suspicious traces
emitted by a standalone design for each of the 6 IPs. Secondly, we evaluated the
case where each design was re-synthetized under a different set of constraints. We



then moved to a more challenging context, by including a parasitic IP running
in parallel of the tested design (which is aimed to emulate a complex system).
Eventually, we considered a combination of all these cases (which turned out
to be more challenging, as we will explain). In practice, we made use of 2000
measurements per IP in each context. Two thirds were used for building the ref-
erence model (i.e. 1333 traces) and the remaining third was used as suspicious IP
traces for validating the detection (i.e. 667 traces). We only present results for
the case where PRESENT is the IP to protect since it was shown previously (and
confirmed in our experiments) that it is the one leading to the most ambiguities
(hence the most challenging to detect). Unless specified otherwise, the context
in which the IP-detection is performed in the next subsections is the following:
the inputs provided to the IP are unknown, we do not have access to the source
code, and the same device and measurement setup was used for all the tests.

Before describing our experimental results in details, it is important to note
a difference between (i) the classification outcome provided by the OSVM and
(ii) the detection outcomes resulting from the use of the OSVM distance as a
similarity score. In the first case, classification returns whether a sample has
been properly labeled (belonging or not to the reference set) according to its
relative position to the hyperplane. In the second case, detection is successful if
the perceptual robustness threshold is higher than the content sensitivity one (we
further call the difference the disambiguation gap). In theory (and, as it turns
out, in practice too), it may of course happen that the classification fails while
still giving rise to a sufficient disambiguation gap. This possibility essentially
follows from the fact that the IP detection infrastructure can rely on carefully
chosen thresholds for the content sensitivity and perceptual robustness.

4.1 Standalone FPGA designs

The results of the IP detection infrastructure applied to the standalone case are
presented in Figure 4. Each column contains the similarity scores corresponding
to one particular suspicious IP. The black dashed line corresponds to the deci-
sion threshold used for classification. The solid green line and red dashed line
respectively correspond to the perceptual robustness threshold (i.e. the PRESENT

trace having the lowest similarity score), and the content sensitivity threshold
(i.e. the highest similarity score among all the non-PRESENT traces). Having pos-
itive similarity scores for the PRESENT IP implies that the classification outcome
is correct. Having the perceptual robustness threshold higher than the content
sensitivity one implies that the detection is successful. Note that the figure is in
fact a zoom of the region of interest of Figure 8 available in appendix. In this
zoomed version, we omitted the AES IP which is (as expected) quite different
from other IP, and is therefore strongly rejected by the OSVM model. More pre-
cisely, we measured a voltage swing about 5 times larger in intensity, explaining
this distance. This observation remains valid for the other detection scenarios
and the AES was therefore left out of all the figures, for readability reasons. We
observe from Figure 4 that all non-PRESENT IPs are correctly rejected by the OSVM



Fig. 4. Similarity scores for single suspicious standalone traces with unknown inputs.

classification since their scores lie below the decision threshold. PRESENT traces
expose mostly positive scores, which was expected. A few outliers have however
been rejected by the classification (< 2.1%). This is mainly a consequence of
the construction properties of the OSVM model. Still, the detection is succesfull
in all our standalone experiments, as a disambiguation gap separates PRESENT

traces from non-PRESENT ones. In [24], this case required to work with 10 times
averaged traces (both for suspicious and reference traces) to get a similar result.

4.2 Re-synthetized FPGA designs

In this second (more challenging) scenario, we consider the application of a first
IP-preserving transformation by a potential counterfeiter. Namely, we evaluate
the impact of a placement and routing of our different block cipher implemen-
tations under a different set of constraints (i.e. with parameters to optimize the
area of the layout instead of its timing). This reconfiguration does not modify
the IP, which lies one abstraction layer above (source code or netlist).

Our experiments are summarized in Figure 5. We notice a slight increase
of suspicious PRESENT wrongly rejected by the classification, as the model was
originally trained to recognize traces corresponding to another set of synthesis
parameters. Yet, the re-synthesis does not significantly affect the mean similarity
scores of the other IP, which still guarantees a safe disambiguation gap. This
result is interesting since in the previous work [24], such a detection was not
possible in an unknown-plaintext scenario and the authors further had to average
their traces to reach good IP detection probabilities. So it already suggests a
useful improvement of our OSVM-based approach. Note that the set of synthesis
options that we used in this section could equally stand as reference. We observed
that the results are roughly identical independent of this a priori choice.



Fig. 5. Similarity scores for single suspicious re-synthesised traces, unknown inputs.

4.3 Parasitic IP running in parallel

We now study a practically-important case-study, where not only the suspicious
IP would run on the target platform but also a parasitic one. As previously
mentioned, the goal is to emulate a more realistic system where the IP is inserted
in a neighborhood made of other running IP, hence altering the measured signal.
As a first step in this direction, we investigated the case of a Linear Feedback
Shift Register (LFSR) generating an “algorithmic noise” essentially proportional
to its size (and studied sizes of up to 2018 bits). Figure 6 illustrates the results
of our IP detection infrastructure in the most challenging (2048-bit) context.
This time, we observe that the OSVM classification clearly fails at detecting the
IP-preserving transformation applied on PRESENT, as their traces lie below the
decision threshold. However, there still exists a disambiguation gap that ensures
a perfect detection. So at this stage, the interest of the OSVM-based detection
is clearly exhibited. Indeed, [24] provided an efficient detection until a 1024-bit
LFSR, while our method allows us to detect IP with a 2048-bit LFSR. Moreover,
this previous work had to harness data dependencies (i.e. known inputs) and
averaging on selected points-of-interest for lowering the noise in the extraction
phase, conversely to our work that considers unknown inputs and raw traces.

4.4 Advanced detection scenario

We finally investigated an advanced scenario where we combined the suspicious
traces from all the previous contexts in a single experiment. This choice was
mainly motivated by the observation of Figures 5 and 6, where we can see that
the content sensitivity threshold in the parasitic IP scenario is higher than the
perceptual robustness threshold in the re-synthesized one. It means that when



Fig. 6. Similarity scores for single suspicious traces with parasitic IP, unknown inputs.

these scenarios are mixed together, false detection or false non-detection may
occur whatever detection threshold is chosen. Such pathological cases typically
happen with the most challenging detection of PRESENT with parasitic IP from
a re-synthesized KATAN, and required two modifications/improvements.

First, we had to move to a known input context (i.e. we kept the key and
plaintext constant during the experiments), allowing us to take advantage of
data dependencies in the traces. Intuitively, this is because the information ex-
ploited in the feature vectors captured in an unknown input scenario essentially
corresponds to a correlation between the operations performed by the IP and
its measured power consumption. The known input context adds a correlation
between the data being manipulated and the measurements. Hence, a new (data-
dependent) reference model was built for PRESENT. Secondly, and in order to get
rid of a part of the algorithmic noise, we worked with averaged suspicious traces
rather than single ones. This implies a slight change in the definition of the
extraction phase, which now includes this 10 times averaging step.

The corresponding results are reported in Figure 7. This time, only PRESENT

and KATAN are considered as suspicious IP, since they are the most challenging
ones. Combining averaging with a characterization of the data dependencies nat-
urally gave rise to more detailed profiles for the reference IP, as can be observed
in this zoomed figure. First, we can now distinguish the different PRESENT IP,
even after IP-preserving transformations. For example the similarity scores of
standalone (1) and re-synthetized (2) designs are nicely separated (even though
the latter ones have the right classification label, as expected). Next, we ob-
serve that the classification outcome for PRESENT with parasitic IP is even worse
than before (moving from −0.01 to −0.04, roughly). However, this new model
strongly rejects the different variants of KATAN (4,5,6). So the tweaked IP detec-
tion returns a positive disambiguation gap that makes these two implementa-



Fig. 7. Similarity scores for 10 times averaged suspicious traces in a combined setting
with known inputs: (1) standalone PRESENT, (2) re-synthesized PRESENT, (3) PRESENT

with paras. IP, (4) standalone KATAN, (5) re-synthesized KATAN, (6) KATAN with paras. IP.

tions distinguishable. It is interesting to note that in this last combined context,
we required both an improvement of the signal (i.e. data dependencies) and a
reduction of the noise (i.e. averaging) to obtain successful detections.

5 Conclusion

Our results further validate SPH functions as a useful ingredient in the detection
of IP theft. They also suggest a context in which SVM (and their single-class
extension) seem an appealing side-channel distinguisher. Of course, IP protec-
tion is an extremely challenging (and sometimes hard to define) problem. So the
tools in this work should only be seen as one part of the solution. In partic-
ular, determined adversaries could envision more complex IP-preserving trans-
formations than the ones we analyzed, and evaluating a change of technology
between the reference and suspicious IP is an interesting scope for further re-
search. Hopefully, there also remains tracks from improving the detection results,
either by advanced statistical tools, or by improved (e.g. localised electromag-
netic) measurements. In other words, there is a wide range of tradeoffs, between
the complete reverse engineering of a chip and the characterization of its power
consumption, that can be used by designers to protect their IP. As the cheapest
and most flexible solution for this purpose, we believe SPH functions can at least
be used as a first step in this direction, prior to more expensive approaches.
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