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Abstract. LS-designs are a family of bitslice ciphers aiming at efficient
masked implementations against side-channel analysis. This paper dis-
cusses their security against invariant subspace attacks, and describes
an alternative family of eXtended LS-designs (XLS-designs), that en-
ables additional options to prevent such attacks. LS- and XLS-designs
provide a large family of ciphers from which efficient implementations
can be obtained, possibly enhanced with countermeasures against phys-
ical attacks. We argue that they are interesting primitives in order to
discuss the general question of “how simple can block ciphers be?”.

1 Introduction

LS-designs are a family of block ciphers proposed at FSE 2014, aimed for ef-
ficient bitslice implementations [19]. They essentially combine linear diffusion
L-boxes with non-linear bitslice S-boxes. The instances proposed so far (namely
the involutive cipher Robin and the non-involutive cipher Fantomas) have addi-
tionally been selected to minimize the total number of AND gates, in order to
allow efficient masked implementations against side-channel attacks [8], which is
also beneficial to multiparty computation and fully homomorphic encryption [2].
In a more recent work by Leander et al., it has been shown that the involutive
instance Robin was susceptible to an invariant subspace attack, leading to a weak
keys set of density 2−32 [26]. This raised questions regarding the origin of the
attack and the possibility to prevent it for involutive LS-designs.

In this paper, we complement these works with two main contributions.

First, we analyze the invariant subspace attack against Robin and show that
it can be prevented with simple heuristics, e.g. a better choice of round constants.
For this purpose, we exploit the fact that these constants should have all their
bits varying (in bitslice representation), in order to avoid invariant subspaces for
the S-boxes or L-boxes to be trivially propagated through the rounds.

Second we question the possibility to improve the efficiency of LS-designs
with a better choice (and different sizes) of components. In particular, Robin
and Fantomas are based on 8-bit S-boxes and 16-bit L-boxes. While it is very
convenient from an implementation point-of-view, the selection of these compo-
nents was partially heuristic (since, e.g. an exhaustive analysis of 8-bit S-boxes
is computationally out of reach). As a result, we investigate an alternative ap-
proach in two steps. First, we design 32-bit “Super S-Boxes” taking advantage of



optimal components, i.e. 4-bit S-boxes and 32-bit L-boxes based on a Maximum
Distance Separable (MDS) code. Second, we combine these Super S-boxes with
an additional ShiftColumns operation. Both the use of Super S-boxes and their
combination with a ShiftColumns operation are naturally reminiscent from an
AES-like cipher [14, 18], but with a bitslice rather than block-oriented structure.
Interestingly, we show that the resulting eXtended LS-designs (XLS-designs) can
also be implemented very efficiently on various platforms, e.g. based only on ta-
ble lookups and word-oriented operations, yet leading to slightly more complex
tradeoffs than LS-designs, due to their slightly more involved structure. For con-
creteness and further investigations, we additionally specify an instance of such
XLS-design, denoted as Mysterion, with 128-bit or 256-bit block size.

2 The invariant subspace attacks against Robin

2.1 LS-design, Robin and Fantomas

LS-designs are a family of block ciphers that are composed of a combination
of lookup table-based L-boxes and bitslice S-boxes. The definition of s-bit S-
boxes and l-bit L-boxes directly gives rise to an instance of n = s · l-bit cipher.
One advantage of LS-designs is their inherent simplicity, as illustrated with the
short specifications given in Algorithm 1. The cipher takes n-bit plaintext and
key blocks as input, and follows Substitution Permutation Network (SPN) ap-
proach. Namely, the inputs and state are represented as s · l arrays of bits, with s
the number of rows and l is the number of columns. In each round, the S-box op-
eration acts on the columns, and the L-box operation acts on the rows. These two
components combined with constant and key addition define the round function
of LS-designs, that is iterated Nr times in order to obtain the ciphertext.

Algorithm 1 LS-design with l-bit L-boxes and s-bit S-boxes

x← P ⊕K; . x is an s · l-bit matrix
for 0 ≤ r < Nr do

for 0 ≤ i < l do . S-box Layer
x[?, i] = S[x[?, i]];

for 0 ≤ j < s do . L-box Layer
x[j, ?] = L[x[j, ?]];

x← x⊕K ⊕ C(r); . Key addition and round constant

return x

Concretely, both Robin and Fantomas were based on 8-bit S-boxes and 16-bit L-
boxes. For the former one, these components are involutive, in order to improve
the performances of the cipher when decryption has to be implemented.



2.2 Invariant subspace attacks and results on Robin

The invariant subspace attack was first introduced at CRYPTO 2011 [24] and
applied to the lightweight “PRINTcipher” [22]. We can summarize the attack
as follows. Let us consider an n-bit iterative block cipher, with round function
Rk : Fn

2 ×Fn
2 → Fn

2 , such that Rk(x) = E(x+ k), with E an n-bit permutation. If
there exists a subspace S ⊆ Fn

2 and two constants a, b ∈ Fn
2 such that E(S+a) =

S + b, then for a round key k = s+ a+ b with s ∈ S, the following holds:

Rk(S + b) = E((S + b) + (s+ a+ b)) = E(S + a) = S + b.

That is, the round function maps the affine subspace S + a onto S + b. Further-
more, if all round keys are in S + (a+ b), then this property is iterative. This is
the case for some key-alternating ciphers [5], where the same master key is used
as subkey through the whole cipher, e.g. LED [20], Zorro [17], Noekeon [12], Fan-
tomas and Robin [19], which are therefore natural targets for invariant subspace
attacks. The Eurocrypt 2015 paper [26] that exhibits a weak keys set of density
2−32 for Robin is based on this property, and takes advantage of the involutive
nature of its components together with weak round constants.

More precisely, the involutive building blocks of Robin help finding self-
similarities within the cipher – a new type of such self-similarities (for the L-
boxes) is actually given in the Eurocrypt paper. Besides, and as mentioned above,
LS-designs are such that S-boxes act through columns and the linear layer acts
through rows. Hence, if there exists an invariant subspace (e.g.) for the S-box
layer and all inputs to the S-boxes are chosen from it, then the linear layer will
not change this subspace.1 That is, if we call the bits which form the invariant
subspace active and other bits passive (as in differential cryptanalysis), then the
linear layer does not mix active and passive bits. Combined with the fact that
the round constants of Robin are sparse, and only apply to one state row, this
allowed the propagation of invariant subspaces through the cipher. An illustra-
tion of the attack based on an invariant subspace for the S-box layer is given in
Figure 1, where black boxes represent bits that form an invariant subspace.

S-boxes L-boxes

applied to rows

Constant addition Key addition

weak keys onlyfirst row only

Fig. 1. An example of invariant subspace attack against one round of Robin.

1 As just mentioned, this attack can be applied by finding an invariant subspace for
the linear layer as well, in which case the S-box layer will not change the subspace.



3 A simple tweak: modifying the round constants

Based on the previous description, a couple of ways to fix the invariant subpace
attack could be considered for Robin, e.g. changing its components (linear layer
& S-box), applying a key scheduling, or changing the round constants. Among
those, changing the round constants is the easiest one, since it implies minimum
changes on the design. Concretely, one suggestion is to use a dense set of round
constants, applied to all the rows rather than a single one. For example, a Linear
Feedback Shift Register (LFSR) with 16-bit state size (and e.g. primitive poly-
nomial P (X) = X16 +X5 +X3 +X2 + 1) could be used for this purpose. Eight
consecutive states can then be combined together to form each round constant.
We verified with the same generic algorithm as described in [25] that this choice
was sufficient to remove the invariant subspace from the Robin rounds (up to
the computational limits of the algorithm). We also checked exhaustively that
no invariant subspaces can propagate through the rounds of reduced (32-bit)
LS-designs using such dense constants. Note that despite no invariant subspace
attack has been exhibited against the non-involutive cipher Fantomas, it has a
similar structure as Robin, and its round constants are sparse as well. Therefore,
tweaking this cipher (e.g. with stronger round constants) could be advisable.

3.1 Concrete proposal for Robin?

While conceptually simple, the tweak in the previous section is still quite ex-
pensive, since it requires generating 8 × 16 pseudorandom bits per round. Yet,
adding a full round constant seems to be the only simple way to avoid the in-
variant subspaces in Robin. In the following, we suggest a simple intermediate
path and a concrete proposal for Robin?. Namely, instead of generating (and
keeping in memory) 8× 16 bits at each round with an LFSR, we generate 16-bit
constants that we then rotate before addition to the state. Concretely, the 16-bit
round constants in Robin? are defined as:

T (ρ) = 2199 · ρ mod 216.

We consider constants of the form T (ρ) = T ·ρ mod 216 because they can imple-
mented by incrementing a counter by steps of T . However, we would rather avoid
the trivial choice T = 1 because this implies simple linear relations between the
constants, such as T (2ρ + 1) = T (2ρ)⊕ 1. Following, we built 16× 16 matrices
with the binary representation of T (1), T (2), . . . , T (16), and computed the rank
of these matrices. There are a few values that give a full rank matrix, and we
decided to use the smallest value with this property: 2199. Next, Algorithm 2
describes how the 16-bit round constants will be extended to 128 bits, where
RotL(x, y) stands for the left rotation of x by y bits, and Ti is the 16-bit con-
stant of round i. The heuristic tool of [26] did not exhibit any difference between
this solution and the more (memory) expensive one in the previous paragraph.
Eventually, Robin? mostly follows the specifications in Algorithm 1, with only
modification that the 8-bit constants C are replaced by 128-bit constants C∗.



Algorithm 2 n-bit constants C?(Ti, s) from l-bit constants Ti
C? ← 0; . C? is an s · l-bit matrix
for 0 ≤ j < s do

C?[j, ?] = RotL(Ti, j)

return x

4 eXtended LS-Designs and Mysterion

The previous sections highlighted that invariant subspace attacks against (invo-
lutive) LS-designs exploit the structural simplicity of these ciphers. While this
simplicity is highly beneficial to implementation efficiency, it also leads to the
question whether a slightly more involved structure could provide better security
margins. In this section, we investigate this option and, motivated by the efficient
masking goal of LS-designs, combine it with a further improvement of the bal-
ance between linear and non-linear operations within the cipher. The rationale
behind this tweaked approach is twofold. First, for the linear part, we observe
that from the security point-of-view it would be interesting to take advantage of
a (non-binary) MDS code to build the diffusion layer. Second, for the non-linear
part, S-boxes with smaller bit sizes are chosen since it is known how to construct
optimal ones. For example, Ullrich et al. found an optimal (from the linear and
differential cryptanalysis points-of-view) 4-bit S-box requiring only 4 AND gates
(later denoted as Class 13) [33]. Based on these observations, we propose new
instances of ciphers where an optimal 4-bit S-box with an MDS diffusion matrix
are combined, which results in 32-bit Super S-boxes, and then combine these
Super S-boxes with a ShiftColumns operation to obtain 128- and 256-bit ciphers.
Admittedly, this approach does not strictly follow the LS-design specifications,
since (i) its diffusion layer is not based on binary matrices anymore, and (ii) it
requires an additional ShiftColumns operations. So it primarily aims to improve
the security margins of LS-designs, e.g. against linear and differential cryptanal-
ysis and invariant subspace attacks (see Section 4.2). Yet, and quite interestingly,
we will show in Section 4.3 that the resulting XLS-designs can still be imple-
mented efficiently, taking advantage of the linearity of the MDS diffusion and
ShiftColumns operations. So intuitively, the main price to pay for the latter ap-
proach is slightly more complex specifications (although they can be viewed as
a bitslice counterpart to AES-like ciphers and have a concise description), which
are interesting to compare with the extreme simplicity of LS-designs, both from
the implementation efficiency and the physical security points-of-view.

4.1 Specifications

XLS-designs can be described as combination of b LS-designs of s · l bits, where
s is the size of the S-box (in bits, as in LS-designs), and l is the size of the
underlying MDS matrix of the L-box (and no longer the bit size of the L-box as
in LS-designs), resulting in a n = b · s · l-bit cipher. Note that the change on l
notation is necessary to keep notations consistent with LS-designs, since a binary



matrix cannot be MDS. Concretely, the internal state of an XLS-design can be
written as X[?, ?, ?], such that X[i, ?, ?] is an s · l-bit block (with 1 ≤ i ≤ b),
X[i, j, ?] is block i’s jth l-bit row (with 1 ≤ j ≤ s) and X[i, ?, j] is block i’s
jth s-bit column (with 1 ≤ j ≤ l). As illustrated in Figure 2, the S-box layer
of XLS-designs is strictly the same as in Algorithm 1. Their L-box layer slightly
changes compared to LS-designs, since it is applied to all the rows of each block
at once (rather than to row by row in LS-designs). And the main difference is
the additional ShiftColumns layer, that can be viewed as the bitslice dual to the
ShiftRows operation in the AES Rijndael, and will be defined next.

S-boxes S-boxes

L-boxes
L-box

ShiftColumns

LS-designs XLS-designs

Fig. 2. 128-bit LS-design vs. 128-bit XLS-design.

XLS-designs are succinctly described in Algorithm 3. We now describe the dif-
ferent components that give rise to the Mysterion-128 (4 × 32-bit blocks), and
the Mysterion-256 (8× 32-bit blocks), that both exploit 4-bit S-boxes.

The S-box. Mysterion uses the Class13 S-box [33], that has a bitslice represen-
tation with four AND2 and four XOR gates (see Appendix A), algebraic degree
three, differential probability of 2−2, and linear probability of 2−1.

The L-box. Mysterion uses a linear transformation derived from the recent pa-
per by Augot and Finiasz [3], in which an algorithm that allows to find recursive
MDS diffusion layers using shortened BCH codes is described. (Recursive MDS
matrices can be expressed as a power of the companion matrix of a polyno-
mial.) This algorithm uses the degree of the polynomial k (hence the size of
the companion matrices), and the field size q = 2s as parameters, and pro-
vides all the polynomials of degree k over F2s such as their companion matrices
raised to the power k gives MDS diffusion layers. We ran it with parameters

2 More precisely, three ANDs and one OR, which can be masked at the same cost.



Algorithm 3 XLS-design with l · s-bit L-boxes, s-bit S-boxes and b blocks

1: x← P ⊕K . x is a s · (l.b) bits matrix
2: for 0 ≤ r < Nr do
3: for 0 ≤ j < b do
4: for 0 ≤ i < l do
5: x[j, ?, i] = S[x[j, ?, i]]; . S-box layer

6: for 0 ≤ j < b do
7: x[j, ?, ?] = L[x[j, ?, ?]]; . L-box layer

8: for 0 ≤ k < s do
9: x[?, k, ?] = ShiftColumns[x[?, k, ?]]; . ShiftColumns layer

10: x← x⊕K ⊕ C(r) . Key and round constant addition
return x

k = 8 and s = 4 using Magma, in order to obtain an 8×8 MDS matrix over F24 .
The selected degree-8 polynomial with coefficients in F24

∼= F2[α]/(α4 + α+ 1), is
P(X) = X8 + α3 · X7 + α4 · X6 + α12 · X5 + α8 · X4 + α12 · X3 + α4 · X2 + α3 · X + 1.
The resulting diffusion layer is coming from an MDS code [16, 8, 9]F24

and there-
fore has both its differential and linear branch number equal to 9.

ShiftColumns. For Mysterion-128, ShiftColumns acts on columns two by two.
The first two columns of each block are not moved, the second two columns
are moved by one block, the third two columns are moved by two blocks,
and the fourth two columns are moved by three blocks. This operation can
also be described as a bit permutation of a 32-bit word, with logic operations:
X = (X & 0xC0C0C0C0) ∨ ROL(X & 0x03030303, 8) ∨ ROL(X & 0x0C0C0C0C, 16) ∨
ROL(X & 0x30303030, 24), where ∨ and & stand for logic OR and AND, and
ROL(X, n) stands for the left rotation of X by n bits. For Mysterion-256, ShiftColumns
acts on columns one by one. The first columns of each block are not moved, the
second columns are moved by one block, . . ., and the eighth columns are moved
by seven blocks. See Appendix A for the alternative description.

These components directly define our two instances Mysterion-128, with param-
eters b = 4, s = 4, l = 8, and Mysterion-256, with parameters b = 8, s = 4, l = 8.
As for round constants, we suggest to use simpler ones as in the original Robin
and Fantomas ciphers. This will be further justified in the next section.

4.2 Security analysis

We now exhibit the good cryptanalytic properties of Mysterion with two main
goals. On the one hand, we show that simple 4-round bounds against linear and
differential cryptanalyses can be obtained for XLS-designs, inheriting from their
AES-like structure. On the other hand, we argue why its more complex structure
also improves resistance against invariant subspace attacks. We also (briefly dis-
cuss) a couple of additional standard cryptanalyses against block ciphers. Note
that as for LS-designs, no related-key security is claimed for Mysterion.



Security against linear and differential cryptanalyses. A straightforward appli-
cation of the wide-trail strategy [13] leads to the following theorems.

Theorem 1. Four rounds of Mysterion-128 has at least 45 active S-boxes.

Theorem 2. Four rounds of Mysterion-256 has at least 81 active S-boxes.

A sketch of the proofs is given in Appendix B. As a result, we have the next
bounds for the probabilities Prlin(4R) (resp. Prdiff (4R)) of linear (resp. differ-
ential) characteristics over 4 rounds of Mysterion-128, where Prmax

lin (S-box) (resp.
Prmax

diff (S-box)) stands for the linear (resp. differential) probability of the S-box:

Prlin(4R) ≤ Prmax
lin (S-box)45 = 2−45, Prdiff (4R) ≤ Prmax

diff (S-box)45 = 2−90.

And similarly, for the Mysterion-256, we have:

Prlin(4R) ≤ Prmax
lin (S-box)81 = 2−81, Prdiff (4R) ≤ Prmax

diff (S-box)81 = 2−162.

Table 1 compares the upper bounds for the maximum probabilities of differen-
tial characteristics for Robin, Fantomas and Mysterion. Setting the number of
rounds to 12 for Mysterion-128 and 16 for Mysterion-256 leads to very comfort-
able security margins, and better bounds than for Robin and Fantomas. Linear
characteristics behaves in the same way, leading to similar recommendations.

Number of rounds 8 12 16

Prob. diff char. for Robin 2−128 2−192 2−256

Prob. diff char. for Fantomas 2−160 2−256 2−344

Prob. diff char. for Mysterion-128 2−180 2−270 2−360

Prob. diff char. for Mysterion-256 2−324 2−486 2−648

Table 1. Maximum probability of differential characteristics for LS- and XLS-designs.

Security against invariant subspace attacks. As discussed in Section 2.2, invari-
ant subspace attacks can be of two types. A (simpler) one taking advantage
of invariant subspaces in the S-box and (a more intricate) one using equality
spaces in the L-box (that is highly structured in the case of Robin). The first
one is easy to bypass with a good choice of S-box, e.g. the Class13 S-box has no
trivial invariant subspaces.3 The second one is more difficult to analyze. So far,
results of [26] only describe a heuristic tool allowing to look for such invariant
subspaces. Hence, running this tool (with the available computational resources)
on full cipher instances, and exhaustively searching on reduced cipher instances,
is the best that one can currently do. For example, invariant subspaces against
Fantomas (and Robin?) could not be spotted by using this approach. In the case
of Mysterion, we first note that the use of a 32-bit L-box is not sufficient to
prevent the existence of invariant subspaces within the rounds (as revealed by

3 Any S-box has (small dimensional) subspaces that gets mapped to subspaces.



an exhaustive analysis performed on a 32-bit block). However, the addition of a
ShiftColumns operation will break the propagation of any subspace found for the
L-box with high probability. This was confirmed by a computationally-bounded
analysis performed on Mysterion-128. We therefore conclude that XLS-designs
can withstand invariant subspace attacks even with sparse round constants (as
usually used in block cipher designs, to limit their memory requirements).

Algebraic attacks. Algebraic attacks on block ciphers were introduced by Cour-
tois and Pieprzyk [10]. They essentially represent a block cipher as a system of
non-linear equations and look for solution using some specialized solver. Since
block ciphers are defined as iterations of a complex round function, the num-
ber of equations and variables grows rapidly and solving them is expected to
be a hard problem. Exactly determining the security level against such attacks
is difficult. Yet, one usually evaluates the number of variables and quadratic
equations of the cipher for this purpose [4]. In Mysterion, we used 4-bit S-boxes
with algebraic degree d = 3 and every 4-bit S-box has at least e = 21 quadratic
equations for the v = 8 input/output variables. This means (d2 ·Nr ·e) quadratic
equations in (d2 ·Nr ·v) variables for Nr rounds. In the case of Mysterion-128, we
end up with 4032 equations in 1536 variables. These numbers are increased to
5376 equations in 2048 variables for Mysterion-256. In comparison, the AES has
6296 equations in 3296 variables [4]. We expect these numbers to be sufficient
for both instances of Mysterion to be secure against algebraic attacks.

Higher-Order differential attacks/Cube attacks. Higher-order differential crypt-
analysis [21] and Cube attacks [15] are powerful cryptanalytic tools based on
differential derivatives of high orders. One recent extension of these attacks is
the zero-sum distinguisher described in [6]. The usual strategy to prevent such
cryptanalyses is to guarantee a high algebraic degree after some cipher rounds.
We used the tools from [7] to compute this number of rounds. As reported in
Table 2, the algebraic degree reaches its maximum after 7 and 9 rounds, respec-
tively for Mysterion-128 and Mysterion-256. In these cases, a partition of size 2127

and 2255 would be required to construct zero-sum distinguishers.

# of rounds 1 2 3 4 5 6 7 8 9 Reference

Mysterion-128 3 9 27 81 112 123 127 - - [7]
- - 12 28 84 113 124 - - [32]

Mysterion-256 3 9 27 81 198 237 250 254 255 [7]
- - 12 28 84 199 237 250 254 [32]

Table 2. Estimated algebraic degree for Mysterion in function of the number of rounds.

Integral attacks / Division Property. Integral cryptanalysis was proposed in [11,
23]. The attack considers a collection of m-bytes of plaintexts and their corre-
sponding ciphertext values and aims at extracting key information by observing
the sum of ciphertext values for this collection of chosen plaintexts. It can be



efficiently applied to block ciphers based on SPNs like the AES or LED. Since
the Mysterion design also fits into this category, we briefly discuss its suscepti-
bility to such attacks. For AES, the best integral property can be found up to
four rounds, and then this property can be used to mount an attack from seven
rounds to nine rounds depending on key sizes [16, 28]. For Mysterion, a simi-
lar result can be obtained for four rounds, but that leaves comfortable security
margin for the full cipher since we have 12 and 16 rounds for Mysterion-128 and
Mysterion-256. We further mention a new type of integral property, namely the
division property, introduced recently at EUROCRYPT 2015 [32]. It allows to
construct more efficient integral distinguishers exploiting the limited algebraic
degree of reduced ciphers. We complement the results of [7] with new bounds
from this reference in Table 2 (which suggest sufficient security margins).

Boomerang attacks. The boomerang attack [34] is a special type of differential
cryptanalysis, where the main idea is to divide a cipher E into two sub-ciphers
E0 and E1 such that E = E0 ◦ E1. The attacker then constructs two relatively
short differentials for E0 and E1 instead of finding a long differential for the
cipher E. This may improve the results since shorter differentials usually have
better probabilities. We know from Theorem 1 that four rounds of Mysterion-
128 has at least 45 active S-boxes. If we use two four-round characteristics for
E0 and E1, then the best differential probability of a boomerang distinguisher
becomes 2−45·2 · 2−45·2 = 2−180, which is smaller than 2−n = 2−128. Therefore,
we can deduce that any boomerang distinguisher with eight rounds or more
will not work against Mysterion-128 (a similar conclusion can be reached for
Mysterion-256, for which an eight-round boomerang distinguisher will have the
best differential probability equal to 2−81·2 · 2−81·2 = 2−324 � 2−256).

4.3 Performances

One of the goals of LS-designs (hence, by extension, XLS-designs) is to allow
efficient masked implementations. In this respect, a natural problem is to find
out whether the slightly more complex structure of XLS-designs, using (non-
binary) MDS matrices and an additional ShiftColumns transformation, leads to
a loss of efficiency. In this section, we briefly discuss this issue and detail how
efficient table lookup-based implementations of Mysterion-128 can be obtained.

In general, the implementation of a 32-bit Super S-box can be directly im-
plemented with logic operations (which is more time consuming), or with table
lookups as in the case of the AES Rijndael (which is faster, but requires 16 ta-
bles of 256 bytes, rather than 4 such tables for a 128-bit LS-design). Next, the
ShiftColumns operation mixes bits of different blocks, which can exploit the logic
representation given in Section 4.1, or be implemented with table lookups. This
leads to interesting tradeoffs from the physical security point-of-view. On the
one hand, the logic representation of ShiftColumns requires less memory than its
table-based execution, and acts at the row level. On the other hand, performing
ANDs with constants including some bits set to zero can be viewed as a bit
manipulation that may be harder to prevent leakages (as argued in [19]).



We implemented Mysterion-128 on a 8-bit microcontroller (Atmel AVR, At-
Mega644p), based on a mixed approach, namely table lookups for the L-boxes
and logic operations for ShiftColumns. We also implemented Robin? for which we
use a look-up table for the 16 round constants.4 Our reference code is written in
C and used the avr-libc library with headers #include <avr/pgmspace.h> and
#include <avr/io.h>. The PROGMEM attribute is used to save RAM. Results
were obtained with the avr-gcc compiler and optimization option -O2. The exe-
cution time of the implementations are simulated using the Atmel AVR Studio
6 software. Performances are reported for an unrolled version of the code.

Figure 3 summarizes our results in terms of number of cycles for Mysterion-
128, together with natural competitors, i.e. Robin and Fantomas [19], Zorro [17],
Noekeon [12], PICARO [30] and the AES [31]. Security order 0 means unprotected
implementation i.e. no mask, security order 1 means two shares or one mask, and
so on. The main conclusion of these evaluations is that such an XLS-design has
excellent performances, except for unprotected implementations (for which Mys-
terion-128 is slightly less efficient than its competitors, Robin being the best one).
More precisely, the reduced amount of non-linear operations in Mysterion-128 al-
lows its implementations to compare favourably with its competitors already for
first-order security. As previously mentioned, the price to pay for these excellent
performances are potentially more leaky operations, which can be avoided using
table lookups, but would then lead to larger memory requirements. Eventually
we observe that Robin? has a only limited cycles’ overhead compared to Robin,
due to its XORs on the full state and rotations for the constants.
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Fig. 3. Encryption times for different 128-bit block ciphers in an Atmel AtMega644p.

5 Conclusions

This work extends the block cipher design space from LS-designs to XLS-designs.
We believe this is an interesting step forward, since it is in line with the general
question of “how simple can block ciphers be?”, in a context – i.e. considering

4 For more constrained space, they could be computed as suggested in Section 3.1.



the risk of side-channel analysis – where simplicity is usually correlated with
security. Indeed, simple and very structured ciphers are generally easier to pro-
tect against physical attacks. In this respect, our first contribution is to show
that LS-designs are not inherently susceptible to invariant subspace attacks, but
that their instantiation should be carefully considered . And our second contri-
bution is to show that XLS-designs can indeed be implemented efficiently (and
lead to better security bounds against linear and differential cryptanalysis), but
that their best implementation requires informed decisions (e.g. on whether the
use of bit manipulations can be critical). These questions lead to many open
problems regarding the best cipher instances for different block/key sizes. For
example, instances with 3-bit S-boxes could be considered to minimize the AND
depth as in [2]; instances with 5-bit S-boxes could lead to even reduced round
requirements (for linear and differential attacks); even for the 4-bit instances, it
could be interesting to investigate the use of L-boxes based circulant matrices
such as advertised in [1], which would allow alternative implementations to pre-
vent cache-based timing attacks (although SSSE3 instructions can also be used
for this), . . . And should we use LS- or XLS-designs for any of those instances?
Whether a key scheduling has to be included and how, especially for cipher in-
stances claiming some related key security (contrary to this work), but also to
prevent invariant subspace attacks, is another interesting question.
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A Specifications of Mysterion’s components

A.1 Mysterion S-box

Algorithm 4 Class13 S-box, bitslice representation

Require: 4 input bits (A,B,C,D)
Ensure: 4 output bits such as (a, b, c, d) = S(A,B,C,D)
1: a = A&B;
2: a = a⊕ C;
3: c = B | C;
4: c = c⊕D;
5: d = a&D;
6: d = d⊕A;
7: b = c&A;
8: b = b⊕B;
9: return (a, b, c, d)

A.2 Mysterion L-box

C =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 α3 α4 α12 α8 α12 α4 α3


, C8 =



1 α3 α4 α12 α8 α12 α4 α3

α3 α13 α4 α 1 α2 α2 α12

α12 α14 α12 α14 α2 α7 α5 α8

α8 1 α5 α14 α7 α α2 α3

α3 α14 α9 α10 α10 α9 α14 α3

α3 α2 α α7 α14 α5 1 α8

α8 α5 α7 α2 α14 α12 α14 α12

α12 α2 α2 1 α α4 α13 α3


.

C is the companion matrix of the polynomial defined in Section 4.1.
C8 is the underlying matrix of the Mysterion L-box.



A.3 ShiftColumns of Mysterion-256

Fig. 4. ShiftColumns of Mysterion-256.

B Proofs for the bound of the number of active S-boxes

Proof of Theorem 2. The internal state of Mysterion-256 can be seen as a square,
since the number of blocks is equal to the number of columns in a block in this
case. Therefore, the proof directly results from the Four-Round Propagation
Theorem of the AES Rijndael given in [13]. That is, the number of active S-
boxes over four rounds of Mysterion-256 is lower bounded by the square of the
branch number of the L-box, which corresponds to 92 = 81 active S-boxes.

Proof of Theorem 1. Contrary to Mysterion-256, we cannot directly use the Four-
Round Propagation Theorem of the AES to lower bound the number of active
S-boxes in Mysterion-128, since its number of columns is larger than its number
of blocks (i.e. the state is no longer a square). However, similar bounds can be
deduced from a modified version of the theorem proven in [13]. We show in the
following how Mysterion-128 can fulfill the hypotheses of this theorem with a
simple rearrangement of its operations. For this purpose, we first need to set
some definitions and notations. First, a bundle is a 4-bit word and corresponds
to a column in the representation of the internal state of Mysterion-128. We
denote by L the application of the L-box on each block of the state, which are
divided into four independent parts of eight bundles each. We call this partition
of the bundles Ξ. Mysterion-128 is a key-alternating block cipher and iteratively
applies the same round function, composed of an S-box layer, an L-box layer,
a ShiftColumns layer, and key and round constant additions. As the latter do
not influence the number of active S-boxes, we will omit them in the following.
Based on this, four rounds of Mysterion-128 can then be written as:

ShiftColumns◦L◦S◦ShiftColumns◦L◦S◦ShiftColumns◦L◦S◦ShiftColumns◦L◦S.

We next reorganise these operations in order to highlight a particular structure
of the linear transformation for 4 rounds, which allows a simpler analysis. More
precisely, since ShiftColumns commutes with S, we have the following equivalent
definition of four rounds of Mysterion-128:

ShiftColumns◦L◦ShiftColumns◦S◦L◦S◦ShiftColumns◦L◦ShiftColumns◦S◦L◦S.



Thanks to this representation, we easily identify two different transformations
τa = L ◦ S and τ b = L ◦ S, where L = ShiftColumns ◦ L ◦ ShiftColumns. Then
four rounds of Mysterion− 128 are the alternation of τa and τ b:

τa ◦ τ b ◦ τa ◦ τ b.

Figure 5 summarizes our notations and modified representation of Mysterion-128.
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Fig. 5. Two equivalent representations of four rounds of Mysterion− 128.

We finally exploit the following theorem from [13]:

Theorem 3. For a key alternating block cipher with round tranformations τa

and τ b, the number of active S-boxes of any trail over

τ b ◦ τa ◦ τ b ◦ τa

is lower bounded by B(L) × B(L, Ξ), where B(L) is the branch number of the
linear transformation L and B(L, Ξ) is the branch number of the linear trans-
formation L with respect to the partition of the bundles Ξ.

The branch number of L is 9 (the L-box of Mysterion is an MDS code [16, 8, 9]F24
).

The partition Ξ divide the state into the 4 blocks. We say a block is active when
it has at least one active (.i.e non zero) bundle. As the ShiftColumns operation
spreads two bundles of each block into other blocks, and as L is MDS, we have
that the minimum number of input/output active blocks, therefore the branch
number of L with respect to the partition Ξ, is 5. As a result, the number of
active S-boxes over four rounds is lower bounded by 9× 5 = 45.


