
Contents

I Compact and Efficient Encryption/Decryption Module for FPGA
Implementation of AES 1
I.1 Introduction . 2
I.2 The Spartan-3 CLB description . 3
I.3 The AES algorithm . 4
I.4 Our sequential AES implementation 6

I.4.1 Implementation of ShiftRow/InvShiftRow 7
I.4.2 Implementation of SubByte/MixColumn and

InvSubbyte/InvMixColumn 7
I.4.3 Encryption/Decryption design choices 8
I.4.4 Implementation of the key schedule 9
I.4.5 Implementation and results of our complete AES 10

I.5 Conclusion . 12
Bibliography . 13

Index 16

Author Index 17

i

List of Figures

I.1 The Spartan-3 CLB . 3
I.2 The Spartan-3 slice . 3
I.3 Memory accesses involved in the AES round 7
I.4 Our AES data path round . 9
I.5 Our AES key schedule . 10
I.6 Our complete AES design . 11

iii

List of Tables

I.1 FPGA Resources . 4
I.2 Final results of our complete sequential AES 11
I.3 Comparisons with other sequential block cipher implementations . . 12

v

Chapter I

Compact and Efficient
Encryption/Decryption

Module for FPGA
Implementation of AES

Gaël Rouvroy, François-Xavier Standaert,
Jean-Jacques Quisquater, and Jean-Didier Legat I.1

Hardware implementations of the Advanced Encryption Standard (AES) Rijndael
algorithm have recently been the object of an intensive evaluation. Several papers
describe efficient architectures for ASICs (Application Specific Integrated Circuits)
and FPGAs (Field Programmable Gate Array). In this context, the highest effort
was devoted to high throughput (up to 20 Gbps) encryption-only designs, fewer
works studied low area encryption-only architectures and only a few papers have
investigated low area encryption/decryption structures. However, in practice, only
a few applications need throughput up to 20 Gbps while flexible and low cost en-
cryption/decryption solutions are needed to protect sensible data, especially for
embedded hardware applications. This contribution proposes an efficient solution
to combine Rijndael encryption and decryption in one FPGA design, with a strong
focus on low area constraints. The proposed design fits into the smallest Xilinx FP-
GAs, deals with data streams of 208 Mbps, uses 163 slices and 3 RAM blocks and
improves by 68% the best-known similar designs in terms of ratio Throughput/Area.
We also propose implementations in other FPGA Families (Xilinx Virtex-II) and
comparisons with similar DES, triple-DES and AES implementations.

I.1UCL Crypto Group, Laboratoire de Microélectronique, Université catholique de Lou-

vain, Place du Levant, 3, Belgium, rouvroy,standaert,quisquater,legat@dice.ucl.ac.be,

www.dice.ucl.ac.be\crypto.

1

I. ENCRYPTION/DECRYPTION MODULE FOR FPGA
IMPLEMENTATION OF AES

I.1 Introduction

In October 2000, NIST (National Institute of Standards and Technology) selected
Rijndael [4] as the new Advanced Encryption Standard (AES), in order to replace
the old Data Encryption Standard (DES). The selection process included perfor-
mance evaluation on both software and hardware platforms and many hardware ar-
chitectures were proposed. However, most of these architectures simply transcribe
the algorithm into hardware designs, without relevant optimizations and tradeoffs.
Moreover, the throughput and area constraints considered are often unrealistic as
shown by the recently published results.

First, many very high-speed (≥ 10 Gbps) cipher hardware implementations have
been published in the literature. These designs consists of FPGA implementations
of a complete unrolled and pipelined cipher. The best such DES implementation
is an encryptor/decryptor based on a new mathematical description. It can achieve
data rates of 21.3 Gbps in Virtex-II FPGAs [18]. The encryption/decryption mode
can be changed on a cycle-by-cycle basis with no dead cycles. For the AES, the
best similar RAM-based solution unrolls the 10 cipher rounds and pipelines them
in an encryption-only process. This implementation in a Virtex-E FPGA produces
a throughput of 11.8 Gbps [20, 21] and allows the key to be changed at every cycle.
This DES implementation reaches higher throughput than the corresponding AES
implementation.

However, these speed efficient designs are not always relevant solutions. Many
applications require smaller throughput (wireless communication, digital cinema,
pay TV, ...). Sequential designs based on a 1-round loop may be judicious and
attractive in terms of hardware cost for many embedded applications. Several such
implementations have been published in the literature. For DES and triple-DES
designs, the most efficient solution [19] encrypts/decrypts in 18 cycles with a fresh
key. For AES, the best design based on 1-round loop [20, 21] produces a data rate of
1450 Mbps (Virtex-E) using 542 slices and 10 RAM blocks, but it does not support
the decryption mode. Another efficient circuit [23] proposes a compact architecture
that combines encryption and decryption. It executes 1 round in four cycles and
produces a throughput of 166 Mbps (Spartan-II) using 222 slices and 3 RAM blocks.

The proposed design is also based on a quarter of round loop implementation
and improves by 68% (in term of ratio Throughput/Area) the design detailed in
[23]. We investigate a good combination of encryption/decryption and place a strong
focus on a very low area constraints. The resulting design fits in the smallest Xilinx
devices (e.g. the Spartan-3 XC3S50 and Virtex-II XC2V40), achieves a data stream
of 208 Mbps (using 163 slices, 3 RAM blocks) and 358 Mbps (using 146 slices, 3
RAM blocks), respectively in Spartan-3 and Virtex-II devices. It attempts to create
a bridge between throughput and cost requirements for embedded applications.

The structure of this chapter is organized as follows: section I.2 introduces the
FPGAs architecture; the mathematical description of Rijndael is referred in section
I.3; section I.4 describes our sequential AES encryptor/decryptor; finally, section I.5
concludes this chapter.

2

I.2. THE SPARTAN-3 CLB DESCRIPTION

I.2 The Spartan-3 CLB description

The Spartan-3 configurable logic blocks (CLBs) are organized in an array and are
used to build combinatorial and synchronous logic designs. Each CLB element is
tied to a switch matrix to access the general routing matrix, as shown in Figure I.1.
A CLB element includes 4 similar slices, with fast local feedback within the CLB.
The four slices are split into two columns of two slices with two independent carry
logic chains and one common shift chain.

Figure I.1. The Spartan-3 CLB

Each slice includes two 4-input function generators, carry logic, arithmetic logic
gates, multiplexers and two storage elements. As shown in Figure I.2, each 4-
input function generator is programmable as a 4-input LUT, 16 bits of distributed
SelectRAM memory, or a 16-bit variable-tap shift register element. The output from
the function generator in each slice drives both the slice output and the D input of
the storage element.

Figure I.2. The Spartan-3 slice

A specific feature of the slice is the 16-bit shift register configuration. The write
operation is synchronous with a clock input and an optional clock enable. A dynamic
read access is performed through the 4-bit address bus.

3

I. ENCRYPTION/DECRYPTION MODULE FOR FPGA
IMPLEMENTATION OF AES

Table I.1. FPGA Resources

Component XC3S50 XC2V40

CLB array: row × col. 16 × 12 8 × 8
Number of slices 768 256
Number of flip-flops 1, 536 512
Number of LUTs 1, 536 512
Max dist. selectRAM
or shift reg. (bits) 24, 576 8, 192
Number of RAM blocks 4 4

Spartan-3 devices also incorporate 18-Kbit RAM blocks. These ones complement
the distributed SelectRAM resources provided by the CLBs. Each RAM block is
an 18-Kbit true dual-port RAM with two independently clocked and independently
controlled synchronous ports that access a common storage area. Both ports are
functionally identical.

Virtex-II devices exploit the same architecture as Spartan-3.
The XC3S50 and XC2V40 components are, respectively, the smallest Spartan-3

and Virtex-II components. Table I.1 illustrates the logic resources available in both
components.

I.3 The AES algorithm

The Advanced Encryption Standard (AES, Rijndael) algorithm is a symmetric block
cipher that processes data block of 128, 192 and 256 bits using, respectively, keys
of the same length. In this paper, only the 128 bit encryption version is consid-
ered (AES-128). The 128-bit data block and key are considered as a byte array,
respectively called State and RoundKey, with four rows and four columns.

Let a 128-bit data block in the ith round be defined as:

data blocki = di

15|d
i

14|d
i

13|d
i

12|d
i

11|d
i

10|d
i

9|d
i

8|d
i

7|d6|d
i

5|d
i

4|d
i

3|d
i

2|d
i

1|d
i

0

where di
15 represents the most significant byte of the data block of the round i. The

corresponding Statei is:

Statei =

di
15 di

11 di
7 di

3

di
14 di

10 di
6 di

2

di
13 di

9 di
5 di

1

di
12 di

8 di
4 di

0

AES-128 consists of ten rounds. One AES encryption round includes four trans-
formations: SubByte, ShiftRow, MixColumn and AddRoundKey. The first and
last rounds differ from the other ones. Indeed there is an additional AddRoundKey
transformation at the beginning of the first round and no MixColumn transfor-
mation is performed in the last round. This is done to facilitate the decryption
process.

4

I.3. THE AES ALGORITHM

• SubByte (SB) is a non-linear byte substitution. It operates with every byte of
the State separately. The substitution box (S-box) is invertible and consists
of two transformations:

1. Multiplicative inverse in GF (28). The zero element is mapped to itself.

2. An affine transform over GF (2).

The SubByte transformation applied to the State can be represented as fol-
lows:

SB(Statei) =

SB(di
15) SB(di

11) SB(di
7) SB(di

3)
SB(di

14) SB(di
10) SB(di

6) SB(di
2)

SB(di
13) SB(di

9) SB(di
5) SB(di

1)
SB(di

12) SB(di
8) SB(di

4) SB(di
0)

The inverse transformation is defined InvSubByte (ISB).

• ShiftRow (SR) performs a cyclical left shift on the last three rows of the
State. The second row is shifted of one byte, the third row is shifted of
two bytes and the fourth row is shifted of three bytes. Thus, the ShiftRow
transformation proceeds as follows:

SR(SB(Statei)) =

SB(di
15) SB(di

11) SB(di
7) SB(di

3)
SB(di

10) SB(di
6) SB(di

2) SB(di
14)

SB(di
5) SB(di

1) SB(di
13) SB(di

9)
SB(di

0) SB(di
12) SB(di

8) SB(di
4)

The inverse ShiftRow operation (InvShiftRow (ISR)) is trivial.

• MixColumn (MC) operates separately on every column of the State. A
column is considered as a polynomial over GF (28) and multiplied modulo
x4 + 1 with the fixed polynomial c(x):

c(x) =′ 03′x3 +′ 01′x2 +′ 01′x +′ 02′ (I.1)

In the polynomial representation, multiplications in GF (28) corresponds with
multiplications of polynomials modulo an irreducible binary polynomial of
degree 8. A polynomial is irreducible if it has no divisors other than 1 and
itself. For Rijndael, this polynomial is called m(x) and given by m(x) =
x8 +x4 +x3 +x+1. It follows that multiplication by ′02′ can be implemented
at byte level as a left shift and a subsequent conditional bitwise EXOR with
′1B′ (hexadecimal).

This can be represented as a matrix multiplication:

Ri = MC(SR(SB(Statei))) =

′02′ ′03′ ′01′ ′01′
′01′ ′02′ ′03′ ′01′
′01′ ′01′ ′02′ ′03′
′03′ ′01′ ′01′ ′02′

⊗

SB(di
15) SB(di

11) SB(di
7) SB(di

3)
SB(di

10) SB(di
6) SB(di

2) SB(di
14)

SB(di
5) SB(di

1) SB(di
13) SB(di

9)
SB(di

0) SB(di
12) SB(di

8) SB(di
4)

5

I. ENCRYPTION/DECRYPTION MODULE FOR FPGA
IMPLEMENTATION OF AES

To achieve the inverse operation (InvMixColumn (IMC)), every column is
transformed by multiplying it with a specific multiplication polynomial d(x),
defined by

c(x) ⊗ d(x) =′ 01′, d(x) =′ 0B′x3 +′ 0D′x2 +′ 09′x +′ 0E′ (I.2)

• AddRoundKey (AK) performs an addition (bitwise XOR) of the Statei with
the RoundKeyi:

AK(Ri) =

Ri
15 Ri

11 Ri
7 Ri

3

Ri
14 Ri

10 Ri
6 Ri

2

Ri
13 Ri

9 Ri
5 Ri

1

Ri
12 Ri

8 Ri
4 Ri

0

⊕

rki
15 rki

11 rki
7 rki

3

rki
14 rki

10 rki
6 rki

2

rki
13 rki

9 rki
5 rki

1

rki
12 rki

8 rki
4 rki

0

The inverse operation (InvAddRoundKey (IAK)) is trivial.

RoundKeys are calculated with the key schedule for every AddRoundKey trans-
formation. In AES-128, the original cipher key is the first RoundKey0 (rk0) used
in the additional AddRoundKey at the beginning of the first round. RoundKeyi,
where 0 < i ≤ 10, is calculated from the previous RoundKeyi−1. Let p(j) (0 ≤
j ≤ 3) be the column j of the RoundKeyi−1 and let w(j) be the column j of the
RoundKeyi. Then the new RoundKeyi is calculated as follows:

w(0) = p(0) ⊕ (Rot(Sub(p(3))) ⊕ rconi

w(1) = p(1) ⊕ w(0)

w(2) = p(2) ⊕ w(1)

w(3) = p(3) ⊕ w(2)

Rot is a function that takes a four byte input [a0; a1; a2; a3] and rotates them as
[a1; a2; a3; a0]. The function Sub applies the substitution box (S-box) to four bytes.
The round constant rconi contains values [(′02′)i−1;′ 00′;′ 00′;′ 00′].

I.4 Our sequential AES implementation

Some designs propose an implementation based on one complete round, and iter-
atively loop data through this round until the entire encryption or decryption is
achieved. Only one Statei is processed in one cycle. These designs are suited for
feedback and non-feedback modes of operation.

As mentioned in [23], the AES round offers various opportunities of parallelism.
The round is composed of 16 S-boxes and four 32-bit MixColumn operations, work-
ing on independent data. Only ShiftRow needs to deal with the entire 128-bit
State.

Based on this observation, we propose an implementation using four S-boxes
and one MixColumn in order to compact the design. This decreases the area by a
factor of four but increases the time of one round to four cycles. In practice, only
the time-space tradeoff is modified. A similar approach was proposed in [23].

6

I.4. OUR SEQUENTIAL AES IMPLEMENTATION

I.4.1 Implementation of ShiftRow/InvShiftRow

In our design, the way to access the Statei, for the first quarter of the round, is
described in Figure I.3. We read di

15,d
i
10,d

i
5,d

i
0 in parallel from the memory, and

apply SubByte, MixColumn and AddRoundKey operations. Then we write re-
sults di+1

15 ,di+1
14 ,di+1

13 , di+1
12 to a different location in this memory. The second, third,

and fourth quarters of the round are managed in a similar manner, depending on
ShiftRow.

The best FPGA solution to implement such simultaneous read and write memory
accesses is proposed in [23]. The solution is based on a shift register design. As
described above, all calculations from the AddRoundKey are written into adjacent
locations of the output memory in consecutive cycles. We store first di+1

15 ,di+1
14 ,di+1

13 ,
di+1

12 in parallel, then di+1
11 ,di+1

10 ,di+1
9 , di+1

8 in parallel, and so on. Therefore we can
store the consecutive round results into shift registers (one shift register per row of
the State, four shift registers for four rows). Xilinx FPGAs propose a very space
efficient solution to achieve a 16-bit shift register with a dynamic variable access.
Four slices can implement an 8-bit wide, 16-bit long shift register. The four dynamic
variable accesses are used to read the input memory content at correct positions into
the rows. Four 8-bit wide shift register are needed, which corresponds to 16 slices.

di
15 di

11 di
7 di

3

di
14 di

10 di
6 di

2

di
13 di

9 di
5 di

1

di
12 di

8 di
4 di

0

⇒ SB + MC + AK ⇒

di+1

15
di+1

11 di+1
7 di+1

3

di+1

14
di+1

10 di+1
6 di+1

2

di+1

13
di+1

9 di+1
5 di+1

1

di+1

12
di+1

8 di+1
4 di+1

0

Figure I.3. Memory accesses involved in the AES round

The InvShiftRow operation can be done using the same shift registers modify-
ing the way to access the read port of the memory.

I.4.2 Implementation of SubByte/MixColumn and
InvSubbyte/InvMixColumn

Compared to the paper [23], we propose a more efficient combination of SubByte
and MixColumn operations, i.e. we use less resources than separated block im-
plementations. Our solution takes advantage of specific features of the new Xilinx
devices and perfectly fits into the Spartan-3 or Virtex-II technologiesI.2.

The Spartan-3 and Virtex-II FPGAs have both dedicated 18-Kbit dual-port
RAM blocksI.3, that can be used to store tables for the combination of SubByte
and MixColumn.

As also mentioned in [4], the consecutive SubByte and MixColumn operations
on the first quarter of the round can be expressed as ei

15..12:

I.2It is not the case with Spartan-II.
I.3The Spartan-II has dedicated 4-Kbit dual-port RAM blocks.

7

I. ENCRYPTION/DECRYPTION MODULE FOR FPGA
IMPLEMENTATION OF AES

ei
15

ei
14

ei
13

ei
12

=

′02′ ′03′ ′01′ ′01′
′01′ ′02′ ′03′ ′01′
′01′ ′01′ ′02′ ′03′
′03′ ′01′ ′01′ ′02′

⊗

SB(di
15)

SB(di
10)

SB(di
5)

SB(di
0)

that is also equivalent to:

′02′

′01′

′01′

′03′

⊗ SB(di
15) ⊕

′03′

′02′

′01′

′01′

⊗ SB(di
10) ⊕

′01′

′03′

′02′

′01′

⊗ SB(di
5) ⊕

′01′

′01′

′03′

′02′

⊗ SB(di
0)

If we define four tables (T0 to T3) with 256 4-byte data as:

T0(a) =

′02′ • SB(a)
SB(a)
SB(a)

′03′ • SB(a)

T1(a) =

′03′ • SB(a)
′02′ • SB(a)

SB(a)
SB(a)

T2(a) =

SB(a)
′03′ • SB(a)
′02′ • SB(a)

SB(a)

T3(a) =

SB(a)
SB(a)

′03′ • SB(a)
′02′ • SB(a)

The combination of SubByte followed by MixColumn can be expressed as:

ei
15

ei
14

ei
13

ei
12

= T0(d
i
15) ⊕ T1(d

i
10) ⊕ T2(d

i
5) ⊕ T3(d

i
0)

The size of one Ti table is 8 Kbits for encryption. The corresponding similar table
for decryption also takes 8 Kbits (IT0 to IT3). It is therefore possible to achieve the
complete SubByte/MixColumn and InvSubByte/InvMicolumn operations using
two dual-port 18-Kbit RAM blocks.

The proposed solution significantly reduces the resources used in [23].

I.4.3 Encryption/Decryption design choices

One of the inconveniences of AES comes from the fact that the AddRoundKey is
executed after MixColumn in the case of encryption and before InvMixColumn in
the case of decryption. Such encryption/decryption implementation will therefore
require additional switching logic to select appropriate data paths, which can also
affects the time performance. The paper [23] mentions this problem but chooses to
design like that anyway.

AES decryption nevertheless allows InvMixColumn and AddRoundKey to be
reordered if we perform an additional InvMixColumn operation on most of the
RoundKeys (except the first and the last RoundKeys). More details about such
scheduling of operations can be found in [4, 5]. At first sight, InvMixColumn could
seem to require much more area than the switching logic. This is especially true

8

I.4. OUR SEQUENTIAL AES IMPLEMENTATION

4 X 8
SRL16

15

0

4 X 4

.......

.......

4 X 8

Rd_ROW1
Rd_ROW2
Rd_ROW3
Rd_ROW4

2 RAM blocks
T0...T3

or
IT0...IT3

RoundKeyi

PLAINTEXT_IN

Reset_IN

MODE_DECR

32

32

32

32

CIPHER
ENABLE_OUT

Figure I.4. Our AES data path round

if the InvMixColumn of the round is narrowly combined with the InvSubByte
in RAM blocks. Nevertheless, the subsection I.4.4 proposes a solution using very
few additional resources but some extra cycles to generate all inverse Roundkeys
(InvRoundKeys). Figure I.4 summarizes our design choices concerning the data
path round.

I.4.4 Implementation of the key schedule

The implementation of our AES key schedule is based on precomputing RoundKeys
and InvRoundKey in advance and storing them in one RAM block. The difficult
computation of the InvRoundkeys on-the-flyI.4 completely justifies this approach.

Our implementation of the key schedule is shown in Figure I.5. First, it computes
32-bits of all the RoundKeyi per clock cycle. The results are stored in one dual-port
block RAM, thanks to the first port. This step takes 44 clock cycles. In the same
time, we also store SB(RoundKeys) data in the same RAM using the other port.
It corresponds to the first step of the calculation process of InvRoundKeys. As
mentioned in the subsection I.4.3, InvRoundKeyi equals to IMC(RoundKey10−i),
except for the first InvRoundKey0 and last InvRoundKey10, that equal to respec-
tively RoundKey10 and RoundKey0.

If we need decryption, a second step has to be applied to SB(RoundKeys). We
start to calculate ISB(SB(RoundKey10)) and store it as InvRoundKey0. Then,
we evaluate IMC(ISB(SB(RoundKey10−i))) that equals to IMC(RoundKey10−i)

I.4It is a real weak aspect of AES algorithm.

9

I. ENCRYPTION/DECRYPTION MODULE FOR FPGA
IMPLEMENTATION OF AES

and we store it as InvRoundKeyi. InvRoundKey10 is generated as InvRoundKey0.
This optional decryption process takes 48 cycles to generate all InvRoundKeys.

Due to InvRoundKey0 and InvRoundKey10, tables (T0 to T3) need to be
changed. InvSubByte has to replace the duplicated SubByte. We define new 16-
Kbit tables (CT0 to CT3) combined with (IT0 to IT3). CT0 is illustrated below as
an example:

CT0(a) =

′02′ • SB(a) ′0E′ • SB(a)
SB(a) ′09′ • SB(a)
ISB(a) ′0D′ • SB(a)

′03′ • SB(a) ′0B′ • SB(a)

32

2 RAM blocks

CT0...CT3

MODE_DECR

32

32

F5
ISB+IMC

SBISB

KEY_IN

rconi

SRL3

RoundKeyi
SB(RoundKeyi)

ISB(SB(RoundKeyi))
IMC(ISB(SB(RoundKeyi)))

DIA DIB
1 RAM block
RoundKeys or
InvRoundKeys

K_RAM32

Reset_K_RAM

ADDRA

ADDRB

Rot

Figure I.5. Our AES key schedule

I.4.5 Implementation and results of our complete AES

Our final AES design combines the data path part and the key schedule part. Since
the key schedule is done with precomputation, this part does not work simulta-
neously with the encryption/decryption process. It is therefore possible to share
resources between both circuits. Both parts of the circuit were thought to perfectly
fuse together without additional slicesI.5 and tri-state buffers. This allows reaching
higher frequency than in [23]. The global design is shown in Figure I.6. We fused the
key and plaintext inputs to one register. The input and output registers are packed
into IOBs to improve the resources used and the global frequency of the design.

I.5Only new F5 multiplexers are required.

10

I.4. OUR SEQUENTIAL AES IMPLEMENTATION

32

2 RAM blocks

CT0...CT3

K_RAM

F5

INPUTS
PLAINT/KEY

Reset_IN

MODE_DECR

32

32

32

32

F5
ISB+IMC

SBISB

SRL16

15
4 X 4

.......

.......

Rd_ROW1
Rd_ROW2
Rd_ROW3
Rd_ROW4

ROT

rconi

SRL3

32

32

DIA DIB
1 RAM block
RoundKeyi or
InvRoundKeyi

K_RAM32

Reset_K_RAM

ADDRA

ADDRB

CIPHER
ENABLE_OUT

Figure I.6. Our complete AES design

The synthesis of our complete design was done using Synpllify Pro 7.2 from
Synplicity. The placing and routing were done using Xilinx ISE 6.1.02i software.
The final results are given in Table I.2 for Spartan-3 and Virtex-II.

As a comparison, we also set up a comparison table with the previous AES [23],
DES and 3-DES [19] results. Table I.3 shows the results of these compact encryp-
tion/decryption circuits. Like others papers, we also define a ratio Throughput/Area
to facilitate comparisons. We finally achieve an implementation of AES which is 68%
better in terms of Throughput/Area assuming that Spartan-II and Spartan-3 are
equivalent.

In comparison with the most efficient compact 3-DES circuits in XC2V40-6, we

Table I.2. Final results of our complete sequential AES

Device XC3S50-4 XC2V40-6

LUTs used 293 288
Registers used 126 113
Slices used 163 146
RAM blocks 3 3
Latency (cycles) 46 46
Out. every (cycles) 1/44 1/44
Frequency 71.5 MHz 123 MHz

11

I. ENCRYPTION/DECRYPTION MODULE FOR FPGA
IMPLEMENTATION OF AES

Table I.3. Comparisons with other sequential block cipher implementations

Algorithm Gaj’s Our Our Our Our

AES AES AES DES 3-DES

Device XC2S30-6 XC3S50-4 XC2V40-6 XC2V40-6 XC2V40-6
Slices 222 163 146 189 227
Throughput (Mbps) 166 208 358 974 326
RAM blocks 3 3 3 0 0
Throughput/Area
(Mbps/slices) 0.75 1.26 2.45 5.15 1.44

can conclude that AES is more effective if we do not care about the use of three
internal RAM blocks. However, 3-DES remains interesting for applications that need
to regularly change the key for encryption or decryption. Indeed, our AES design
takes 92 cycles, in the worst case, to calculate a new complete InvRoundKeys.

I.5 Conclusion

In this paper, we propose solutions for a very compact and effective FPGA im-
plementation of AES. We combine narrowly the non-linear S-boxes and the linear
diffusion layer thanks to specific features of recent Xilinx devices. We also propose
a low-cost solution to deal with the subkeys computed during the decryption step.
In addition, we merge efficiently the key schedule and the data path parts.

The resulting implementations fits in a very inexpensive Xilinx Spartan-3 XC3S50
FPGA, for which the cost starts below $10 per unit. This implementation can en-
crypt and decrypt a throughput up to 208 Mbps, using 163 slices. The design also
fits in Xilinx Virtex-II XC2V40 and produces data streams up to 358 Mbps, using
146 slices. In comparison with 3-DES, AES is more efficient if we do not care about
the use of three internal FPGA RAM blocks.

The throughput, low-cost and flexibility of our solution make it perfectly prac-
tical for cryptographic embedded applications.

12

Bibliography

[1] J.M. Rabaey, Digital Integrated Circuits, Prentice Hall, 1996

[2] Xilinx, The Spartan-3 and Virtex-II field programmable gate arrays data sheets,
available from http://www.xilinx.com

[3] National Bureau of Standards, FIPS PUB 46, The Data Encryption Standard.
U.S. Departement of Commerce, Jan 1977

[4] J. Daemen and V. Rijmen, The Block Cipher RIJNDAEL, NIST’s AES home
page, available from http://www.nist.gov/aes

[5] P.Baretto, V.Rijmen, The KHAZAD Legacy-Level Block Cipher, Submission to
NESSIE project, available from http://www.cosic.esat.kuleuven.ac.be/nessie/

[6] M. Davio, Y. Desmedt, M. Fossprez, R. Govaerts, J. Hulsbosch, P. Neutjens,P.
Piret, J.J. Quisquater, J. Vandewalle and P. Wouters, Analytical Characteris-
tics of the DES, in David Chaum, editor, Advances in Cryptology - Crypto ’83,
pages 171–202, Berlin, 1983. Springer-Verlag

[7] FreeIP, available from http://www.free-ip.com/DES/index.html

[8] C. Patterson, High performance DES encryption in Virtex FPGAs using Jbits,
in the proceedings of FCCM’01, IEEE Computer Society, 2000

[9] S. Trimberger, R. Pang and A. Singh, A 12 Gbps DES encryptor/decryptor core
in an FPGA, in the proceedings of CHES’00, LNCS, pages 156–163. Springer,
2000

[10] Xilinx, V. Pasham and S. Trimberger, High-Speed DES and Triple DES En-
cryptor/Decryptor, available from http://www.xilinx.com/xapp/xapp270.pdf,
Aug 2001

[11] Helion Technology, High Performance DES and Triple-DES Core for XILINX
FPGA, available from http://www.heliontech.com

[12] CAST, Inc., Triple DES Encryption Core, available from http://www.cast-
inc.com

[13] CAST, Inc., DES Encryption Core, available from http://www.cast-inc.com

13

BIBLIOGRAPHY

[14] inSilicon, X 3 DES Triple DES Cryptoprocessor, available from
http://www.insilicon.com

[15] inSilicon, X DES Cryptoprocessor, available from http://www.insilicon.com

[16] P. Chodowiec, K. Gaj, P. Bellows and B. Schott, Experimental Testing of the
Gigabit IPSec-Compliant Implementations of RIJNDAEL and Triple DES Us-
ing SLAAC-1V FPGA Accelerator Board, in the proceedings of ISC 2001: In-
formation Security Workshop, LNCS 2200, pp.220-234, Springer-Verlag

[17] J.P. Kaps and C. Paar, Fast DES Implementations for FPGAs and Its Applica-
tion to a Universal Key-Search Machine, in the proceedings of SAC’98: Selected
Areas in Cryptography, LNCS 1556, pp. 234-247, Springer-Verlag

[18] G. Rouvroy, FX. Standaert, JJ. Quisquater, JD. Legat. Efficient Uses of
FPGA’s for Implementations of DES and its Experimental Linear Cryptanal-
ysis, in IEEE Transactions on Computers, Special CHES Edition, pp. 473-482,
April 2003

[19] G. Rouvroy, FX. Standaert, JJ. Quisquater, JD. Legat. Design Strategies and
Modified Descriptions to Optimize Cipher FPGA Implementations: Fast and
Compact Results for DES and TripleDES. In the proceedings of FPL 2003,
Lecture Notes in Computer Science, vol 2778, pp. 181-193, Springer-Verlag

[20] FX. Standaert, G. Rouvoy, JJ. Quisquater, JD. Legat, A Methodology to Im-
plement Block Ciphers in Reconfigurable Hardware and its Application to Fast
and Compact AES Rijndael, in the proceedings of FPGA 2003, pp. 216-224,
ACM

[21] FX. Standaert, G. Rouvoy, JJ. Quisquater, JD. Legat, Efficient Implemen-
tation of Rijndael Encryption in Reconfigurable Hardware: Improvements and
Design Tradeoffs, in the proceedings of CHES 2003, Lecture Notes in Computer
Science, vol 2779, pp. 334-350, Springer-Verlag

[22] P. Chodowiec and K. Gaj., Comparison of the Hardware Performance of the
AES Candidates using Reconfigurable Hardware, The Third Advanced Encryp-
tion Standard (AES3) Candidate Conference, April 13-14 2000, New York, USA

[23] K. Gaj and P. Chodowiec, Very Compact FPGA Implementation of the AES
Algorithm, in the proceedings of CHES 2003, Lecture Notes in Computer Sci-
ence, vol 2779, pp. 319-333, Springer-Verlag

[24] V. Fischer and M. Drutarovsky, Two Methods of RIJNDAEL Implementation
in Reconfigurable Hardware, in the proceedings of CHES 2001: The Third In-
ternational CHES Workshop, Lecture Notes In Computer Science, LNCS2162,
pp 65-76, Springer-Verlag

14

BIBLIOGRAPHY

[25] A. Rudra et al., Efficient RIJNDAEL Encryption Implementation with Com-
posite Field Arithmetic, in the proceedings of CHES 2001: The Third Inter-
national CHES Workshop, Lecture Notes In Computer Science, LNCS2162, pp
65-76, Springer-Verlag

[26] M. McLoone and J.V. McCanny, High Performance Single Ship FPGA RIJN-
DAEL Algorithm Implementations, in the proceedings of CHES 2001: The
Third International CHES Workshop, Lecture Notes In Computer Science,
LNCS2162, pp 65-76, Springer-Verlag

[27] M. McLoone and J.V. McCanny, Single-Chip FPGA Implementation of the
Advanced Encryption Standard Algorithm, in the proceedings of FPL 2002:
The Field Programmable Logic Conference, Lecture Notes in Computer Science,
LNCS 2147, pp. 152

[28] K.U. Jarvinen, M.T. Tommiska and J.O. Skytta, A fully Pipelined Memoryless
17.8 Gbps AES-128 Encryptor, in the proceedings of FPGA 2003: Symposium
on Field-Programmable Gate Arrays, pp. 207-215, ACM

[29] N. Weaver and J. Wawrzynek, High Performance Com-
pact AES Implementations in Xilinx FPGAs, available from
http://www.cs.berkeley.edu/ nweaver/Rijndael.

15

Index

AES, 4

block cipher, 4

DES, 2
design, 2, 6

FPGA, 3

implementation, 2, 6

16

Author Index

François-Xavier Standaert, 1

Gaël Rouvroy, 1

Jean-Didier Legat, 1
Jean-Jacques Quisquater, 1

17

