
Blind Source Separation from Single
Measurements using Singular Spectrum Analysis

Santos Merino Del Pozo and François-Xavier Standaert.

ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.

Abstract. Singular Spectrum Analysis (SSA) is a powerful data decom-
position/recompostion technique that can be used to reduce the noise in
time series. Compared to existing solutions aiming at similar purposes,
such as frequency-based filtering, it benefits from easier-to-exploit intu-
itions, applicability in contexts where low sampling rates make standard
frequency analyses challenging, and the (theoretical) possibility to sepa-
rate a signal source from a noisy source even if both run at the same fre-
quency. In this paper, we first describe how to apply SSA in the context of
side-channel analysis, and then validate its interest in three different sce-
narios. Namely, we consider unprotected software, masked software, and
unprotected hardware block cipher implementations. Our experiments
confirm significant noise reductions in all three cases, leading to success
rates improved accordingly. They also put forward the stronger impact
of SSA in more challenging scenarios, e.g. masked implementations (be-
cause the impact of noise increases exponentially with the number of
shares in this case), or noisy hardware implementations (because of the
established connection between the amount of noise and the attacks’ suc-
cess rate in this case). Since noise is a fundamental ingredient for most
countermeasures against side-channel attacks, we conclude SSA can be
an important element in the toolbox of evaluation laboratories, in order
to efficiently preprocess their measurements in a black box manner.

1 Introduction

Successful side-channel attacks against embedded cryptographic implementa-
tions generally require a multidisciplinary combination of informal steps. First,
good measurements of, e.g., the power consumption or electromagnetic radiation
of the target devices must be obtained. Second, these measurements are usually
sent to a preprocessing phase, in order to facilitate their cryptographic treat-
ment. Third, some modeling is required to extract information from the leakages.
Eventually, the information extracted is exploited and turned into, e.g., a key
recovery. A look at the literature suggests a wide variety of tools for the last two
(modeling and exploitation) steps. They typically include a plethora of (profiled
and non-profiled) distinguishers, including but not limited to [4, 9, 17, 39], ex-
ploited via simple divide-and-conquer approaches [24], or more elaborate strate-
gies, e.g., collision-based [27] or algebraic [37]. By contrast, the measurement
and preprocessing steps are in general less discussed, despite their importance
from an engineering point-of-view. Indeed, while quite formal solutions now ex-
ist to guarantee that the modeling and exploitation of side-channel leakages are
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close to optimal [14], the evaluation of measurement setups and preprocessing
methods is left with a comparative approach. Namely, we can tell whether one
is better than another, but not guarantee that it is good. This situation creates
strong incentive to study state-of-the-art methods in this respect, which this
paper aims to do in the (limited but relevant) context of preprocessing methods.

State-of-the-art. An informal classification of some popular preprocessing tools
is given in Table 1, based on whether these tools aim at decreasing the noise,
increasing the signal, include some feature selection or compress the output.

Table 1: Informal classification of some existing preprocessing methods.

noise signal feature compressed
reduction increase selection output

averaging 3 7 implicit 7

POI detection 7 7 3 3

filtering 3 7 3 7

PCA 7 3 3 3

LDA 3 3 3 3

For example, averaging only aims at reducing the noise, and does some im-
plicit feature selection by assuming that the useful part of the measurements is
in their means (which is only relevant in the context of unprotected implementa-
tions, and would be useless in the context of masked implementations for which
the information lies in higher-order moments of the leakage distribution [8]).
Detecting Points-of-Interest (POIs) can be viewed as a kind of feature selection
that compresses the measurements. Dimensionality reductions such as Principal
Component Analysis (PCA) and Linear Discriminant Analysis (LDA), intro-
duced to side-channel attacks in [1, 40], and recently revisited in [2, 7, 10, 11],
project samples into subspaces that optimize the side-channel signal and Signal-
to-Noise Ratio (SNR), respectively. Other “compressive” linear transforms (using
other optimization criteria) include [15, 30]. Eventually, filtering typically aims
at selecting the frequency band in which side-channel attacks perform best.

Concretely, this latter solution (filtering) is especially interesting since it can
be applied to single measurements (contrary to averaging), which makes it rele-
vant to countermeasures such as masking or shuffling [20], and it does not com-
press the leakage traces, hence nothing prevents to combine it with dimension-
ality reduction afterwards. As a result, a variety of works have investigated the
opportunities offered by filtering methods, or even tried to perform side-channel
analysis directly in the frequency domain, including but not limited to [12, 16,
22, 25, 26, 43, 44]. Very summarized, the common outcome of these works is that
(i) filtering works best in contexts where the adversary/evaluator has some in-
tuitions regarding the interesting frequency bands and (ii) frequency analysis
generally benefits from acquisition devices with higher sampling rates.

Our contribution. Starting from this state-of-the-art, our main contribution
is to introduce Singular Spectrum Analysis (SSA) [19, 45] to the field of side-
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channel analysis, as an efficient alternative to filtering. SSA is an emerging
method in the field of time series analysis, that aims at decomposing the original
series into the sum of a small number of independent and interpretable compo-
nents, which has proved to be relevant to a wide range of applications (in physics
and economics, typically), e.g. by allowing significant noise reductions. In this
respect, we first note that despite some connection with frequency analysis (see,
e.g. [3]), SSA is based on totally a different mathematical background, and is
in fact closer to dimensionality reductions such as PCA and LDA. Indeed, it is
based on a decomposition in independent components. Intuitively, it can there-
fore be viewed as a (heuristic) tool enabling blind source separation, such as
Independent Component Analysis (ICA) [21], yet with the significant difference
that it works based on single observations (whereas ICA requires at least N
independent observations to recover the original series made of N sources). Con-
cretely though, and when used for noise reduction purposes as we will consider
next, SSA shares the goals of filtering, with two significant advantages. First, it
allows easier intuitions in the selection of the components to be integrated in
the signal reconstruction, because these components can be “rated” according
to their eigenvalues, just as in PCA and LDA. Second, the signal decomposition
and reconstruction can be successful even in situations where the sampling rate is
low. So it provides actual solutions for the two previously mentioned limitations
of the filtering preprocessing. Besides, it can theoretically succeed in contexts
where filtering is unapplicable, e.g. when two independent sources (correspond-
ing to some signal and noise) are observed at exactly the same frequency.

In order to confirm the relevance of this new tool, we apply it in three dif-
ferent scenarios: first an unprotected implementation of the AES in a microcon-
troller, second a masked implementation of the AES in the same microcontroller,
third an unprotected FPGA implementation of PRESENT. In all three cases, we
show that SSA allows very significant improvements of the traces SNR, which
translates into concrete gains in the success rates of attacks exploiting this pre-
processing. Our experiments further exhibit the increased interest of SSA in
the context of masking (since the impact of noise on the success rate increases
exponentially in the number of shares used when masking), and more noisy im-
plementations such as our hardware one (for which the SNR is small enough
for its impact on the attacks success rate to follow theoretical predictions such
as [13]). Since noise is a fundamental ingredient in the analysis of most coun-
termeasures against side-channel attacks, and in particular for masking [42] and
shuffling [46], we conclude SSA can be an important tool in the analysis of the
concrete security level of implementations protected by these means.

2 Background

Notations. In the rest of the paper, capital letters are used for random variables
and small caps for their realizations. Vectors and matrices are denoted with bold
notations, functions with sans serif fonts and sets with calligraphic ones.
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2.1 Attacks

Preprocessing leakage traces aims to improve the efficiency of side-channel at-
tacks, allowing for a reduction in their acquisition and computation time. In
order to evaluate the efficiency of SSA in this context, raw and preprocessed
power traces are compared using state-of-the-art attacks that are briefly sum-
marized next. For this purpose, a cryptographic device performing the key ad-
dition ⊕ between an input x and the secret key k followed by a b-bit S-box S,
i.e., z = S(x ⊕ k), is considered. The leakage trace generated by the target de-
vice when performing this S-box computation with the attacker-supplied input
{xi}ni=1, where n is the number of queries performed by the adversary, is denoted

as lix,k. Whenever accessing the tth time sample of this trace, the notation li,tx,k
will be used. Subscripts/superscripts will be omitted when not necessary.

Template Attack (TA). Introduced by Chari et al. [9] at CHES 2002 as a pow-
erful attack against cryptographic implementations, TA essentially extracts se-
cret information based on probabilistic leakage models (next denoted as P̂rmodel).
For this purpose, the authors of [9] assume that leakages can be interpreted as
the realizations of a random variable which generates samples according to a
Gaussian distribution. In the context of this work, where the target intermedi-
ate value is a key addition, it holds that P̂rmodel[lx,k|x, k] ≈ P̂rmodel[lx,k|x⊕k] ∼
N (µ̂x,k, Σ̂

2
x,k), with µ̂x,k and Σ̂2

x,k the mean vector and covariance matrices cor-
responding to the target intermediate value x⊕ k. In case of univariate attacks
(that are typically successful against unprotected implementations), the Gaus-
sian templates are further simplified to the corresponding means and covariances,
and can be exploited to compute key probabilities as follows:

P̂rmodel[k
∗|xi, li,tx,k] =

N (li,tx,k|µ̂x,k, σ̂2
x,k)∑

k∗∈KN (li,tx,k|µ̂x,k∗ , σ̂2
x,k∗)

,

where k∗ is a key candidate. By contrast, cryptographic software implementa-
tions protected with a 1st-order masking scheme, where the masked intermediate
value and the corresponding output mask are processed sequentially at t1 and
t2, are vulnerable to bivariate attacks. In such a scenario, adversaries can launch
a TA exploiting the two leaking samples by means of Gaussian mixtures:

P̂rmodel[k
∗|xi, li,t1x,k , l

i,t2
x,k ] =

∑
q∗∈QN (li,t1x,k , l

i,t2
x,k |µ̂x,k,q∗ , Σ̂2

x,k,q∗)∑
k∗∈K

∑
q∗∈QN (li,t1x,k , l

i,t2
x,k |µ̂x,k∗,q∗ , Σ̂2

x,k∗,q∗)
,

where q∗ is the guessed output mask. In order to recover the key, TA then
estimates probabilities for each candidate k∗, e.g., in the unprotected case:

pk∗ =

n∏
i=1

P̂rmodel[k
∗|xi, li,tx,k].
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Correlation Power Analysis (CPA). In order to distinguish the correct key
guess among the others, CPA [4] classifies univariate leakages li,tx,k using Pearson’s

correlation coefficient and an a-priori chosen leakage model mi
k∗ = M(S(xi⊕k∗)):

ρ̂tk∗ =
Êi[l

i,t
x,k ·mi

k∗ ]− Êi[l
i,t
x,k] · Êi[mi

k∗ ]√
V̂ari(l

i,t
x,k) · V̂ari(mi

k∗)
,

where Ê and V̂ar denote the sample versions of the mean and variance, respec-
tively. Usually in practice, M(·) corresponds to the Hamming weight (HW) or
distance (HD) model when targeting software or hardware implementations, re-
spectively. Finally, the best key candidate k̃ is taken such that:

k̃ = arg max
k∗

ρ̂tk∗ .

Moments-Correlating DPA (MC-DPA). In [28], Moradi and Standaert
proposed a so-called Moments-Correlating Collision DPA (MCC-DPA) as a tweak
of Correlation-Enhanced Power Analysis Collision Attack (CEPACA) [27], where
the correlation of “moments with moments” is replaced by the correlation of
“moments with samples”, hence preserving the metric feature of Pearson’s cor-
relation coefficient. In order to perform a MCC-DPA attack, the dth-order (raw,
central, standardized) moments are estimated “on-the-fly” from a vector of leak-
age traces ltx0,k0

= {li,t1x0,k0
}ni=1 corresponding to the target S-box computation

at time t1, i.e., z0 = S(x0 ⊕ k0). The leakage traces ltx1,k1
= {li,t2x1,k1

}ni=1 for the

second S-box at time t2, i.e., z1 = S(x1 ⊕ k1), are aligned with the 2b moments

M̂d
x0,k0

and then correlated by permuting ltx1,k1
according to ∆ = k0⊕k1 . Lastly,

the best value of ∆ is chosen such that (e.g., for the dth-order raw moments) :

∆̃ = arg max
∆

ρ̂(M̂d
x0,k0 , (l

t
x1,k1⊕∆)d).

The profiled extension of CEPACA, i.e., Moments-Correlating Profiled DPA
(MCP-DPA), correlates the statistical moments corresponding to one single S-
box. First, a profiling vector of leakage traces lpx,k = {li,t1x,k }

np

i=1 for the target

intermediate value z = S(x ⊕ k) is used to estimate the 2b moments M̂d
x,k and

then, a second vector of test traces ltx,k = {li,t1x,k }
nt
i=1 is correlated with M̂d

x,k

permuted according to the key guess k∗. The best key candidate is selected
according to (again for the raw moments):

k̃ = arg max
k∗

ρ̂(M̂d
x,k∗ , (l

t
x,k)d).

In this work MCP-DPA is extended to the bivariate setting in order to evaluate
the software implementation of a 1st-order masking scheme. Experiments per-
formed in this case will only consider MCP-DPA with 2nd-order moments, i.e.,
d1 = d2 = 1, hence the use of central mixed statistical moments:

CMd1,d2
x,k∗ = E

((
lp,t1x,k∗ − E(lp,t1x,k∗)

)d1 · (lp,t2x,k∗ − E(lp,t2x,k∗)
)d2)

.
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Analogously to its univariate counterpart, the best key candidate k̃ can then be
chosen according to the following equation:

k̃ = arg max
k∗

ρ̂
(
CMd1,d2

x,k∗ ,
(
lt,t1x,k − E(lt,t1x,k )

)d1 · (lt,t2x,k − E(lt,t2x,k )
)d2)

.

2.2 Evaluation metrics

Security evaluations of cryptographic devices usually pursue two objectives [41].
Firstly, it is of interest to measure how much information is leaking from the
target implementation, independently of the attacker, and secondly how easy
this information can be exploited by an adversary. In the context of this work,
both questions deserve attention since the aim of any preprocessing step is to
maximize the information leakages in order to make attacks easier. We will
therefore use the two types of metrics briefly introduced next.

Information theoretic metrics. Information theoretic (IT) metrics are in-
tended to measure how much information is leaking from the device under test.
The Signal-to-Noise Ratio (SNR) introduced by Mangard at CT-RSA 2004 [23]
is a simple and intuitive solution for this purpose:

SNR =
V̂arx,k

(
Êi[l

i
x,k]
)

Êx,k
[
V̂ari(lix,k)

] ,
where V̂ar and Ê respectively denote the sample variance and mean that are
estimated from a set of test traces. In comparison with other IT metrics, such
as the mutual information (MI) introduced in [41] that allows capturing any
leakage PDF, the SNR is limited to 1st-order moments. However, when consid-
ering univariate Gaussian random variables, it has been shown that Pearson’s
correlation coefficient can be connected with the SNR [23] and the MI [24]:

MI(X;Y ) ≈ −1

2
· log2

(
1− ρ(X,Y )2

)
= −1

2
· log2

1−

(
1√

1 + 1
SNR

)
2

.

Since our goal in the following is to quantify noise reduction by SSA, which
applies independently on each trace (i.e. from single measurements), we are
indeed in a context where the SNR brings all the necessary intuition, and we
will limit our information theoretic analysis to this metric. (As will be detailed,
this just requires taking advantage of mask knowledge in the protected case).

Security metrics. We will evaluate the efficiency of our experimental attacks
with the 1st-order success rate defined in [41], i.e., the probability that the correct
secret key is the most likely key candidate provided by an attack. In practice,
the success rate is widely used in the security evaluation of many cryptographic
implementations because of its ease of use and understandability.
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3 Singular Spectrum Analysis

SSA is a non-parametric technique used in time series analysis that was first
presented in the eighteenth century [33], but only gained interest with the more
recent publications by Broomhead and King [5, 6] in the late twentieth century.
So far, SSA has been successfully applied in many different areas, e.g., engineer-
ing and medicine, becoming a standard tool in some of them, e.g., meteorology
and geophysics. In the following, its two main steps (i.e., decomposition and re-
construction) are introduced based on our previous notations. We additionally
provide a couple of insights on how to take advantage of SSA in practice.

3.1 Decomposition

The first step of SSA is the decomposition of the original time series into a set
of elementary matrices required during the reconstruction phase. This process is
based on the embedding and singular value decomposition that we describe next.

Embedding. Given an N -time series l = (l1, l2, . . . , lN ) and the window length
W such that 2 < W ≤ N/2, we define D = N −W + 1 delayed vectors:

li = (li, li+1, . . . , li+W−1)> for 1 ≤ i ≤ D,

and the trajectory matrix:

L = (l1, l2, . . . , lD) =


l1 l2 · · · lD

l2 l3 · · · lD+1

...
...

. . .
...

lW lW+1 · · · lN

 ,

which is a Hankel matrix, i.e., a matrix with constant skew diagonals. The win-
dow length W plays a key role in the performance and accuracy of SSA, hence the
importance of choosing its optimal value. Too large or too small values can lead
to decompositions where the components are mixed-up between them, making
the reconstruction step difficult. In the context of noise reduction, conditions are
relaxed allowing practitioners to consider other aspects, e.g., performance, while
keeping the accuracy of the tool high. In this work, we will use the following
rule-of-thumb:

W = blog (N)
cc with c ∈ [1.5, 3], (1)

which has been shown near optimal for signal vs. noise separation [35].

Singular Value Decomposition. Given the trajectory matrix L from the
previous step, its singular value decomposition (SVD) [18] is computed. First,
the eigenvalues of LL> in decreasing order of magnitude λ1 ≥ λ2 ≥ · · · ≥ λd, i.e.,
the so called singular spectrum which gives name to SSA, and the corresponding
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eigenvectors u1,u2, . . . ,ud (with d = W if none of the eigenvalues is zero) are
obtained. The SVD decomposition of the trajectory matrix can be written as:

L = L1 + L2 + · · ·+ Ld, (2)

where the W × D elementary matrix Li =
√
λiuiv

>
i and vi = L>ui/

√
λi, for

1 ≤ i ≤ d. Computing (2) is the most time-consuming step in SSA, however only
the leading components are required during the reconstruction phase. In order to
alleviate this complexity burden the partial SVD (PSVD), which only calculates
a subset of the Li matrices in (2), is considered in the remaining sections.

3.2 Reconstruction

After having obtained the SVD decomposition of the original time series in the
previous phase, the reconstruction step aims for the extraction of its underlying
components. It is based on the diagonal averaging and grouping described next.

Diagonal averaging. If X is a W ×D matrix with elements xi,j for 1 ≤ i ≤W
and 1 ≤ j ≤ D, it can be immediately turned into the series x̃ = {x̃t}Nt=1 if and
only if X is a Hankel matrix. In that case, each entry x̃t is equal to all elements
xi,j along the anti-diagonal i + j = t + 1 of X. However, if X does not have
constant skew diagonals, an additional step is required. Namely, the averaging
of the anti-diagonals i+ j = k + 1 will transform X into the series x̃ = {x̃t}Nt=1

in a process which is also known as Hankelization [38]:

x̃t =



1

t

t∑
m=1

xm,t−m+1 for 1 ≤ t < W ∗,

1

W ∗

W∗∑
m=1

xm,t−m+1 for W ∗ ≤ t ≤ D∗,

1

N − t+ 1

N−D∗∑
m=t−D∗+1

xm,t−m+1 for D∗ < t ≤ N,

where W ∗ = min(W,D) and D∗ = max(W,D). Because matrices Li in (2) are not
Hankel matrices, by applying this procedure each matrix Li in (2) is transformed
into the ith (so-called) principal component gi of length N .

Grouping. Under the assumption of weak separability [19], the original N -time
series l can then be reconstructed by:

l = g1 + g2 + · · ·+ gd.

At this stage, the set of indices I = {1, . . . , d} is partitioned into m disjoint
subsets I1, . . . , Im. Since in the context of this work, SSA aims for signal vs.
noise decomposition, we are typically looking for a partitioning such that m = 2
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and I = {Isignal, Inoise}. The analysis of the eigenvalues λi in the SVD step is
the most common method for splitting I according to some criteria that depend
on the application area. In our case, indices whose respective eigenvalues are
small, usually producing a slowly decreasing sequence, are included in the group
of noisy components. The remaining components can be exhaustively tested in
order to find the combination bringing a better reconstruction of the noise-free
signal. In the following, we will determine the best grouping based on the SNR.

Summarizing, this section presented the main steps involved in SSA, that can
be recalled with the following equation:

Embedding︷ ︸︸ ︷
l −→ L =

SVD︷ ︸︸ ︷
L1 + L2 + · · ·+ Ld =

Averaging︷ ︸︸ ︷
g1 + g2 + · · ·+ gd =

Grouping︷ ︸︸ ︷∑
i∈Isignal

gi +
∑

i∈Inoise

gi .

Next, three different case studies will be presented, where raw and preprocessed
traces are compared in terms of the corresponding attacks’ performance. Addi-
tionally, decisions taken for the application of SSA such as the window length
W and the grouping of components will be discussed in more details.

4 Practical Experiments

4.1 Measurement setup

In order to evaluate the efficiency of SSA in the context of side-channel attacks,
two different (software and hardware) platforms have been considered. A LeCroy
HRO66Zi WaveRunner 12-bit oscilloscope with maximum 2GS/s sampling rate
and a passive probe have been used to measure the voltage drop over a 1Ω resistor
in the VDD path of both targets. We tested various sampling rates (between
500MS/s to 2GS/s) and consistently found similar experimental results.

Our first target device is an 8-bit Atmel ATMega644p microcontroller clocked
at 20MHz. We considered both an unprotected and a Boolean masked imple-
mentation on this platform. The 1st-order masking scheme implemented comes
from [34]. Two (input and output) mask bytes m and q are considered for each
plaintext byte. First, a masked S-box table such that S′(x⊕k⊕m) = S(x⊕k)⊕q
is precomputed in memory for every possible state byte x ⊕ k. Afterwards, the
AddRoundkey and MaskedSubBytes operations are performed. Note that in or-
der to avoid possible 1st-order leakages, the device has been provided with the
masked plaintext byte x ⊕m. We evaluated this scheme based on 128 000 pro-
filing traces and 2 000 attack traces. In order to limit our storage requirements,
only the last rounds of the precomputation and the subsequent operations have
been recorded, together with the randomly chosen bytes used for masking.

Our second target device is the crypto FPGA embedded in a SAKURA-G
board, namely a Xilinx Spartan-6 LX75 FPGA, driven at a frequency of 3MHz.
We evaluated an implementation of the PRESENT-80 block cipher based on
the Profile 1 in [32] on this platform. It corresponds to a serialized architecture
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without any countermeasure against side-channel attacks. Because of the higher
noise, our evaluations of this second (more noisy) case were based on non-profiled
attacks only. We used a total of 100 000 power traces acquired by using randomly
generated plaintexts and keeping the secret key value constant for this purpose.

4.2 Unprotected and masked AES in an Atmel microcontroller

Because of place constraints, our focus in this section will be on the practical
evaluation of SSA against the 1st-order Boolean masking scheme implemented on
our Atmel chip. The application to the unprotected implementation essentially
follows similar steps (and its results will be mentioned at the end of this section,
for comparison purposes). Both profiled and non-profiled attacks are considered
in this context. In particular, the SNR of our software implementation was (as
expected) reasonably high, which allowed us to obtain accurate templates using
the previously mentioned sets of 128 000 profiling traces and 2 000 attack traces.
For illustration, an exemplary power trace is shown in Fig. 1(a).

(a) Original trace.

(b) Singular Spectrum.

(c) Preprocessed trace.

Fig. 1: 1st-order masked implementation: power traces & singular spectrum.
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In order to keep the efficiency of SSA high, the window length W has been
taken accordingly to Equation (1) by setting c = 1.5. Preprocessing the raw
traces with W = blog(5 500)1.5c = 25 produces the singular spectrum shown in
Fig. 1(b). When applied to the problem of signal vs. noise decomposition, such a
singular spectrum generally allows for easy detection of interesting components
by mere visual inspection. In this particular case, the first component dominates
among the others, which usually indicates that it corresponds to low-frequency
noise. For the other leading components, and following the heuristic approach
used in the context of PCA and LDA, we tested a couple of re-constructions and
concluded that most of the useful signal was lying in the second component. As
can be seen in Fig. 1(c), the resulting preprocessed trace is very clean.

In order to reach a first intuition regarding the efficiency of SSA, and since
it is the criteria used to choose the best grouping, the SNR of the preprocessed
traces has been computed. Note that this is possible because the analysis is being
conducted in a profiling setting, and thus the knowledge of the masks allows for
the computation of the SNR as if the target was an unprotected implementation.
Fig. 2 shows a comparison of the SNR before and after preprocessing the traces
with SSA. As it can be seen, gains are close to a factor of 2.5.

(a) Signal-to-Noise ratio, original. (b) Signal-to-Noise ratio, SSA.

Fig. 2: 1st-order masked implementation, SNR.

In general, higher SNRs should translate into more successful attacks. This
has been practically verified by running bivariate attacks using raw and prepro-
cessed traces. The results of a bivariate MCP-DPA and TA exploiting Gaussian
mixtures over the number of attack traces, and the corresponding success rate
curves, are depicted in Fig. 3 and Fig. 4, respectively. As mentioned earlier, the
method applies similarly to unprotected devices (since the SSA transform is ap-
plied independently on every trace). For comparison purposes, we therefore add
the success rate curves of an attack against the same masked implementation,
but with all the masks set to zero (which is then equivalent to an unprotected
implementation), in Appendix A, Fig. 9. Interestingly, one could expect that
the factor 2.5 for the SNR gain translates into a gain in the measurement com-
plexity of the attacks of 2.5 for the unprotected implementation, and 2.52 for
the masked one. Yet, and despite significant, these gains are not that large. But
this is easily explained by the too high SNRs of our case study. That is, and
as carefully discussed in [13], these theoretical expectations are only verified for
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(a) Bivariate MCP-DPA, original. (b) Bivariate MCP-DPA, SSA.

(c) Bivariate TA, original. (d) Bivariate TA, SSA.

Fig. 3: 1st-order masked implementation, attack results.

low enough SNRs (typicaly below 1/10). So based on these first experiments, we
can already conclude that SSA is applicable to masking, without any particular
intuition regarding the target implementation. And we move to the next section
to investigate the relevant case of a more noisy hardware implementation.

(a) Success rate of bivariate MCP-DPA. (b) Success rate of bivariate TA.

Fig. 4: 1st-order masked implementation, success rate curves.

4.3 Unprotected PRESENT in a Xilinx FPGA

In this second case study, we performed a very similar evaluation, with the minor
difference that our attacks were all performed in a non-profiled attack setting.
As previously mentioned, this choice was motivated by the more noisy leakage
traces (so the more challenging profiling). Besides, it turned out that a Hamming
distance leakage model anyway provided us with satisfying results.

We again start by illustrating a power trace of this implementation, covering
9 clock cycles which correspond to the computation of 9 S-boxes, in Fig. 5(a).
The window length for SSA has been taken using c = 1.5 as in the previous case
and thus, W = blog(6 000)1.5c = 25. The singular spectrum in Fig. 5(b) is also
interpreted as in the previous section. Hence, only the second component is used
for signal reconstruction, leading to quite clean traces in Fig. 5c.
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(a) Original

(b) Singular Spectrum

(c) Preprocessed

Fig. 5: Unprotected PRESENT implem., power traces & singular spectrum.

Next, Fig. 6 depicts the SNR gains in this hardware context, which are now
close to a factor of 4. Since this time the SNR values are indeed in the range
of 1/10, it implies that we should observe gains of similar proportions in the
attacks. This is indeed exhibited by the results of CPA using the Hamming
distance between two consecutive S-box outputs, and MCC-DPA, that are shown
in Fig. 7. The connection between the SNR gains and the attacks’ measurement
complexity is further confirmed by the success rate curves in Fig. 8 where a
reduction by a factor close to 4 in the number of attack traces is achieved. So
despite being in a non-profiled attack scenario, the reduction of the noise now
quite accurately follows what is expected for standard DPA attacks.

5 Conclusions

This work has introduced SSA in the context of side-channel attacks. Our differ-
ent case studies have shown that, even when the amplitude of the signal is small
and the noise level high, SNR gains up to a factor 4 are achieved by applying
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(a) Signal-to-Noise ratio, original. (b) Signal-to-Noise ratio, SSA.

Fig. 6: Unprotected PRESENT implem., SNR.

(a) CPA with HD model, original. (b) CPA with HD model, SSA.

(c) MCC-DPA, original. (d) MCC-DPA, SSA.

Fig. 7: Unprotected PRESENT implem., attack results.

(a) Success rate of CPA with HD model. (b) Success rate of MCC-DPA.

Fig. 8: Unprotected PRESENT implem., success rate curves.
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a signal vs. noise decomposition of individual power traces. Furthermore, it has
also been verified that these SNR gains translate into successful attacks with
reduced measurement complexity. Unlike some advanced signal processing tech-
niques working in the frequency domain, the described technique is very easy to
use. Practitioners just have to set a window length (which can take advantage of
a standard rule-of-thumb), and then select their components by mere visual in-
spection of the singular spectrum (in view of the limited amount of components
that usually represent the signal, this step can even take advantage of exhaustive
testing). In view of these promising results, a natural open problem is to apply
SSA to a masked hardware implementation (i.e. with low SNR). Indeed, in this
case, an SNR gain factor g should translate into a success rate gain factor gd,
where d is the number of shares in the masking scheme. Such a result could
be obtained by extending our FPGA experiments towards a 1st-order secure
masked PRESENT implementation, e.g. based on the glitch-resistant masking
scheme proposed in [29]. Besides, and more technically, the experiments in this
paper were exploiting oscilloscopes with good sampling frequencies (which corre-
sponds to the usual adversarial power). Yet, it would be interesting to study SSA
in the context of limited sampling frequencies, in order to determine how cheap
side-channel measurement setups can be (for different device technologies).
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25. Meynard, O., Réal, D., Flament, F., Guilley, S., Homma, N., Danger, J.: Enhance-
ment of simple electro-magnetic attacks by pre-characterization in frequency do-
main and demodulation techniques. In: Design, Automation and Test in Europe,
DATE 2011, Grenoble, France, March 14-18, 2011. pp. 1004–1009. IEEE (2011),
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5763163
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Fig. 9: Unprotected implementation, success rate curves.


