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Motivation

Consolidate state-of-the-art about optimal distinguishers with a
deeper look on the probability estimation

Perceived Information (PI): information-theoretic metric quantifying
the amount of leakage
Show that PI is related to maximizing the success rate through the
Maximum a posteriori probability (MAP)
Use the maximum likelihood (ML) to derive MIA and the
(experimental) template attack in case of profiling



4 June 29-30, 2015 Institut Mines-Télécom Cryptarchi 2015

Motivation

Consolidate state-of-the-art about optimal distinguishers with a
deeper look on the probability estimation
Perceived Information (PI): information-theoretic metric quantifying
the amount of leakage
Show that PI is related to maximizing the success rate through the
Maximum a posteriori probability (MAP)

Use the maximum likelihood (ML) to derive MIA and the
(experimental) template attack in case of profiling



4 June 29-30, 2015 Institut Mines-Télécom Cryptarchi 2015

Motivation

Consolidate state-of-the-art about optimal distinguishers with a
deeper look on the probability estimation
Perceived Information (PI): information-theoretic metric quantifying
the amount of leakage
Show that PI is related to maximizing the success rate through the
Maximum a posteriori probability (MAP)
Use the maximum likelihood (ML) to derive MIA and the
(experimental) template attack in case of profiling



5 June 29-30, 2015 Institut Mines-Télécom Cryptarchi 2015

Motivation
Profiling device Attacking device

P̂ for an estimation offline P̃ estimated online on-the-fly

→ P exact probability
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Notations

secret key k∗ deterministic but unknown
m independent measurements x = (x1, ..., xm) and independent
and uniformly distributed inputs t = (t1, ..., tm)

leakage model y(k) = ϕ(f(k, t)), where ϕ is a device specific
leakage function and f maps the inputs to an intermediate
algorithmic state
x = y(k∗) + n with independent noise n



8 June 29-30, 2015 Institut Mines-Télécom Cryptarchi 2015

Perceived information

Idea [Renauld et al., 2011]

Metric quantifying degraded leakage models
Testing models against each other, e.g., from the true distribution
against estimations
Generalization of mutual information

Ideal case

the distribution P is known
PI is MI

MI(K;X,T ) = H(K) +
∑

k P(k)
∑

t P(t)
∑

x P(x|t, k) log2 P(k|t, x)
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Perceived information

Profiled case

the distribution P is known
test a profiled model P̂ against P

PI(K;X,T ) = H(K) +
∑

k P(k)
∑

t P(t)
∑

x P(x|t, k) log2 P̂(k|t, x)

Real case

the distribution P is unknown
test a profiled model P̂ against an online estimated model P̃

P̂ I(K;X,T ) = H(K) +
∑

k P(k)
∑

t P(t)
∑

x P̃(x|t, k) log2 P̂(k|t, x)

(P̃ estimated with non-parametric estimators, e.g. each x has P̃= 1
m )
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Maximum a posteriori probability

MAP
The optimal distinguishing rule is given by the maximum a posteriori
probability (MAP) rule

D(x, t) = argmax
k

P(k|x, t)

With the help of Bayes’ rule...

P(k|x, t) = P(x|k, t) · P(k)
P(x|t)

=
P(x|k, t) · P(k)∑
k P(k)P(x|t, k)
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Relation between MAP and PI

Profiling scenario
Profiled model P̂, model P̃ estimated online on-the-fly

P̂(k|x, t) ∝
∏m

i=1 P̂(k|xi, ti)

We start by maximizing MAP:

argmax
k

P̂(k|x, t) = argmax
k

m∏
i=1

P̂(k|xi, ti)

= argmax
k

∏
x,t

P̂(k|x, t)mP̃k(x,t)

where P̃k(x, t) = P̃(x, t|k) is the "counting" estimation (online) of x and
t that depends on k. Now taking the log2 gives:

= argmax
k

∑
x,t

P̃k(x, t) log2 P̂(k|x, t)
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Relation between MAP and PI (cont’d)

= argmax
k

∑
x,t

P̃k(x, t) log2 P̂(k|x, t)

= argmax
k

∑
x,t

P̃(x, t|k) log2 P̂(k|x, t)

= argmax
k

∑
t

P̃(t)
∑
x

P̃(x|t, k) log2 P̂(k|x, t)

Taking the average over k and adding H(K) gives P̂ I(K;X,T ) =

H(K) +
∑
k

P(k)
∑
t

P(t)
∑
x

P̃(x|t, k) log2 P̂(k|x, t)
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Relation between MAP and PI (cont’d)

PI⇔ MAP
P̂ I (real case) is the expectation of the MAP over the keys

Profiled case
If we have an infinite number of traces to estimate P̃→ P then we
recover PI(K;X,T)

Ideal case
If we have an infinite number of traces to estimate P̃→ P and P̂→ P
then we recover MI(K;X,T)
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Assumptions for ML

The leakage model follows the. . .

Markov condition
The leakage x depends on the secret key k only through the computed
model y(k). Thus, we have the Markov chain

(k, t)→ y = ϕ(f(t, k))→ x

Related to the EIS [Schindler et al., 2005] assumption.
Markov condition: invariance of conditional probabilities
EIS assumption: invariance of images under different subkeys
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Maximum Likelihood Attack

Maximum Likelihood Attack
Assuming we have y(k) = ϕ(f(t, k)) that follows the Markov condition,
then the optimal distinguishing rule is given by the maximum likelihood
(ML) rule

D(x, t) = argmax
k

P(x|y)

Proven and investigated in [Heuser et al., 2014]
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Maximum Likelihood Attack

Similarly, as in the previous derivation we have:

argmax
k

P(x|y) = argmax
k

m∏
i=1

P(xi|yi) = argmax
k

∏
x,y

P(x|y)mP̃(x,y)

Taking the log2 gives us:

argmax
k

∑
x,y

P̃(x, y) log2 P(x|y)

Now we add the cross entropy term that does not depend on a key
guess k:

−
∑
x,y

P̃(x, y) log2 P(x).
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Maximum Likelihood Attack

This results into:

argmax
k

∑
x,y

P̃(x, y) log2
P(y|x)
P(y)

In practice...

P is most likely not known perfectly by the attacker
So it is either estimated offline (leading to P̂)
Or it is estimated online “on-the-fly" (leading to P̃)
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Maximum Likelihood Attack

Profiled
If P̂ is estimated offline on a training device, we get

argmax
k

∑
x,y

P̃(x, y) log2
P̂(y|x)
P̂(y)

Which is the template attack [Chari et al., 2002]

i.e. a distinguisher resulting from the MAP with
A priori knowledge on the key distribution
& assumting the Markov condition
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Maximum Likelihood Attack

Profiled
If P̂ is estimated offline on a training device, we get

argmax
k

∑
x,y

P̃(x, y) log2
P̂(y|x)
P̂(y)

Which is the template attack [Chari et al., 2002]

Non-Profiled
If P̃ is estimated online on a the device under attack, we get

argmax
k

∑
x,y

P̃(x, y) log2
P̃(y|x)
P̃(y)

Which is the Mutual Information Analysis [Gierlichs et al., 2008]
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Conclusion

Maximizing the PI = optimizing the MAP attacks (on average over
the keys)
ML is a alternative to MAP (no penalty if keys are uniform)
Maximum likelihood attacks correspond to
• template attacks when probabilities are estimated offline (P̂)
• MIA when probabilities are estimated online “on-the-fly" (P̃)

All attacks work by "testing" a model (estimated offline or online
"on-the-fly") against fresh samples
For profiled attacks, a (well estimated) more accurate model
always help / for non-profiled ones, simpler (easier to estimate
online “on-the-fly") models can be better
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Thank you!

Questions?

annelie.heuser@telecom.paristech.fr
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