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Abstract. Rank estimation is an important tool for side-channel evalu-
ations laboratories. It allows determining the remaining security after an
attack has been performed, quantified as the time complexity required
to brute force the key given the leakages. Several solutions to rank es-
timation have been introduced in the recent years. In this paper, we
first clarify the connections between these solutions, by organizing them
according to their (maximum likelihood or weak maximum likelihood)
strategy and whether they take as argument a side-channel distinguish-
ers’ output or some evaluation metrics. This leads us to introduce new
combinations of these approaches, and to discuss the use of weak max-
imum likelihood strategies for suboptimal but highly parallel enumera-
tion. Next, we show that the different approaches to rank estimation can
also be implemented with different mixes of very similar tools (e.g. his-
tograms, convolutions, combinations and subsampling). Eventually, we
provide various experiments allowing to discuss the pros and cons of these
different approaches, hence consolidating the literature on this topic.

1 Introduction

Most side-channel attacks published in the literature proceed with a divide-
and-conquer strategy. That is, they first extract information about independent
pieces of a master key (next called subkeys), and then combine this information
in order to recover their concatenation. Typical tools for the subkey information
extraction include Kocher et al.’s Differential Power Analysis (DPA) [9], Brier
et al.’s Correlation Power Analysis (CPA) [3], Chari et al.’s Template Attacks
(TA) [4], Schindler et al.’s Linear Regression (LR) based attacks [11] and many
others. As for the recombination part, two typical situations can happen. First,
when the attack is close enough to succeed, key enumeration can be used, in
order to list the most likely key candidates in decreasing order of likelihood [13].
With current computation power, this approach is typically successful when the
correct (master) key is ranked up to positions 240-250 in such a list. Second,
when the enumeration becomes too intensive for being conducted in practice,
rank estimation can be used [14]. In this case, one additionally requires the
knowledge of the master key, hence it is only applicable in an evaluation context
(while key enumeration is also applicable in an attack context). Based on the
value of the master key and the subkey information, rank estimation aims to
efficiently approximate the correct key rank (with a given accuracy).



Sampling-based Metric-based

wML

How: subsampling + combinations
What: SR lower bound What: SR lower bound

(+ subopt. parallel enumeration) (with limited sampling)
Acronym: SLB, Ref.[∅] Acronym: MLB, Ref. [5, 15]

ML

How: histograms + convolutions
What: SR estimation What: SR upper bound

(tight even for large keys) (with limited sampling)
Acronym: SE, Ref. [1, 8, 14] Acronym: MUB, Ref. [∅]

Table 1. Approaches to key rank estimation (italic cases are new).

Rank estimation is especially useful for evaluation laboratories. Indeed, it is
a tool of choice for quantifying the security of an implementation whenever it
goes beyond the computing power of the evaluator (i.e. whenever an implemen-
tation is not trivially insecure). As a result, a number of works have investigated
solutions to improve the original algorithm from [14]. In particular, Glowacz et
al. presented a more efficient rank estimation tool at FSE 2015, that is based on
a simple convolution of histograms and allows obtaining tight bounds for the key
rank of (even large) keys [8]. A comparable result was developed independently
by Bernstein et al. [1].1 In parallel, Ye et al. investigated an alternative solu-
tion based on a weak Maximum Likelihood (wML) approach [15], rather than
a Maximum Likelihood (ML) one for the previous examples. They additionally
combined this wML approach with the possibility to approximate the security
of an implementation based on “easier to sample” metrics, e.g. starting from the
subkey Success Rates (SR) rather than their likelihoods, typically. Eventually,
at Eurocrypt 2015 Duc et al. described a simple alternative to the algorithm of
Ye et al. and provided an “even easier to sample” bound on the subkey SR, by
exploiting their formal connection with a Mutual Information metric [5].

This state-of-the-art suggests the informal classification of approaches to key
rank estimation in Table 1, based on whether the algorithms consider ML or
wML adversaries/evaluations, and whether they are sampling-based or metric-
based.2 Looking at this table, it is clear that from the “quality of evaluation”
point-of-view, the sampling-based ML approach is the most accurate. Indeed, the
wML approach corresponds to a suboptimal adversary, hence can only lead to
a Sampled Lower Bound (SLB). Besides, a straightfroward metric-based evalua-
tion can only lead to a Metric-based Lower Bound (MLB), because of a Jensen
inequality (i.e. since it combines the average success rates of several subkeys

1 Their “Polynomial Rank Outlining” algorithm can be viewed as similar to the FSE
2015 one, by considering the multiplication of two polynomials as the convolution of
coefficient vectors, and the coefficient in the polynomials as histogram counts.

2 Quite naturally, metrics such as the subkey success rates also need to be sampled
somehow. So the term “metric-based” only refers to the type of inputs provided to
the rank estimation algorithms, to be compared with the sampling-based approach
where the sampled probabilities output by a side-channel attack are used directly.



which lower bounds the average success of combined attacks against several sub-
keys). As a result, one can naturally question the interest of these alternative
approaches, for which we can put forward two main motivations:

1. For the wML approach, in addition to the rank estimation, it outputs an ef-
fort distributor which indicates how the enumeration effort should be spread
over the subkeys, and therefore directly leads to a suboptimal but parallel
enumeration algorithm with minimum memory requirements (which is in
contrast with the optimal but more expensive and serial solution in [13]).

2. For the metric-based approach, the main motivation is to speed up the eval-
uations, i.e. to run the rank estimation once based on the subkey metrics in
order to obtain a master key metric, rather than running it many times to
obtain many master key rank samples to be “metrified” (e.g. averaged).

In view of this state-of-the-art, our contribution is threefold. We start by in-
vestigating two cases from Table 1 that were not experimented so far. Namely,
we first show that the simple algorithm from [5] (that exploits a combination
of subsampled metrics) naturally applies in a sampling-based setting, leading to
the previously mentioned SLB that directly suggests a suboptimal but parallel
enumaration strategy. Second, we provide a Metric-based Upper Bound (MUB)
on the SR which allows very fast security evaluations and nicely completes the
lower bound provided by the metric-based wML approach. Third and eventu-
ally, we provide an experimental evaluation of these different solutions, allowing
to comprehend their pros and cons. In particular, our experiments include an
analysis of the number of cores that would be necessary for the parallel wML
enumation to start gaining advantage over the serial approach of [13].

Related works. Two recent works related to key enumeration and rank estima-
tion will appear in the proceedings of SAC 2015 [2] and ASIACRYPT 2015 [10].
More precisly, they primarily contribute to key enumeration algorithms that can
be parallelized, based on simple backtracking procedures for the SAC proposal,
and by casting the enumeration problem as a knapsack for the ASIACRYPT
one. The second paper additionally proposes an alternative solution for rank
estimation, which leads to similar outcomes as the FSE 2015 algorithm.

Notations. We next use sans serif font for functions (e.g. F), calligraphic fonts
for sets (e.g. A) and denote the ith element of a list L by L[i− 1].

2 Errors and bounds

As first discussed in [14], estimating the rank of a key essentially amounts to
performing a mix of depth-first and breadth-first searches in a high-dimensional
space representing the key probabilities of a side-channel attack, which turns
out to be computationally hard as the key rank increases. It implies that with
current computational means and knowledge, it is typically impossible to know
the exact position of keys ranked beyond 280 − 290 in such high-dimensional
spaces. As a result, the only solution is to estimate the rank and to bound the



Fig. 1. Errors & bounds in key enumeration and rank estimation.

error on this rank estimation. Since there are in fact several types of errors that
can be introduced in the course of a side-channel attack, we start this paper with
a brief discussion about which are the important errors in key enumeration and
rank estimation, and how they can be efficiently bounded by evaluators.

For this purpose, we summarize the main intuitions in Figure 1, starting
with “simulated leakages” (i.e. mathematically-generated ones for which we ex-
actly know the distribution). In this case, the evaluator will start by producing
a “distinguishing vector” for which there are only small numerical errors (due to
the ε machine), that can generally be neglected. More significantly, this distin-
guishing vector can be made of probabilities (e.g. for TA and LR based attacks)
or scores (e.g. for DPA and CPA). This is an important distinction, since in
the first case the evaluator will be able to combine the information of indepen-
dent subkeys on a sound basis, whereas in the second case he will potentially
introduce “combination ordering errors”. For example, say we have two lists of
subkey probabilities [p1, p2] and [pa, pb] with p1 > p2 and pa > pb (resp. scores
[s1, s2] and [sa, sb] with s1 > s2 and sa > sb). Whereas it is clear (using both
scores and probabilities) that the best-rated key corresponds to the pair {p1, pa}
or {s1, sa} and the worst-rated one corresponds to the pair {p2, pb} or {s2, sb},
only probabilities allow comparing the pairs {p1, pb} and {p2, pa} (by multiply-
ing the probabilities). Intuitively, the key property here is that a probability of
1 for a subkey implies a success rate of 1 for this subkey, which therefore allows
“guiding” the key enumeration and rank estimation algorithms.3 Given this dif-

3 By contrast, one could typically imagine a scenario where the scores obtained from
a CPA lead to a correlation 0.2 for a subkey that is known with high confidence and
the same correlation of 0.2 for a subkey that is not know at all – because of differ-
ent Signal-to-Noise Ratios. In this case, the key enumeration and rank estimation
algorithms will not be able to list keys optimally. Quite naturally, it is possible to
mitigate such issues by outputing the p-values of the CPA distinguisher, but this re-



ference, it is then possible to enumerate optimally based on probabilities, or to
enumerate exactly w.r.t. some scores, whenever the key rank is computationally
reachable (e.g. when it is smaller than 250 on the figure). By contrast, if the rank
is too high for the keys to be enumerated, the only option is key rank estimation,
where additional rounding errors will appear. Interestingly, it is shown in [1, 8,
10] that the errors due to this rounding can be kept small comparatively to the
key rank. For example, rank estimation algorithms allow claiming that a key
is rated among ranks 280 and 281 (or even tighter bounds) which is perfectly
relevant in a side-channel evaluation context, since it indicates its remaining
computational security. Admittedly, this does not mean that the rank estima-
tion itself is perfectly accurate, since the only thing we can guarantee in our
example is that the key rank is in a (large) set of size 281 − 280 = 280.

Next, and when moving to the practically relevant case of measured leakages,
two additional types of errors can appear. First, the measurements are typically
operated with a sampling device, with 8 bits to 12 bits of accuracy, which causes
quantization errors. However, the impact of these errors tends to vanish as the
number of measured leakages q in the attack increases (since the cardinality of
the joint leakages then increases exponentially in q, e.g. 256q or 4096q for our
8-bit and 12-bit cases). More importantly, model errors can be introduced, i.e.
discrepancies between the true leakage distribution and the one exploited by
the adversary. However, these errors are in fact independent of the enumeration
strategies. So indeed, when speaking about optimal enumeration, the optimality
is relative to the leakage models, which we expect to be sound in worst-case
security evaluations (and can be guaranteed with leakage certification tests [6]).
But for the rest, the main errors that we consider and bound in this paper are
the rounding ones, that are unavoidable when estimating large ranks.

3 Algorithm specification

3.1 Algorithms inputs

Details on how a side-channel attack extracts information from leakage traces are
not necessary to understand the following analysis. We only assume that for a n-
bit master key k, an attacker recovers information on Ns subkeys k0, ..., kNs−1 of
length b = n

Ns
bits (for simplicity, we assume that b divides n). The side-channel

adversary uses the leakages corresponding to a set of q inputs Xq leading to a set
of q leakages Lq. As a result of the attack, he obtains Ns lists of 2b probabilities
Pi = Pr[k∗i |Xq,Lq], where i ∈ [0, Ns − 1] and k∗i denotes a subkey candidate
among the 2b possible ones. As just mentioned, TA and LR based attacks directly
output such probabilities. For other attacks such as DPA or CPA, one can either
go for score-based rank estimation or use Bayesian extensions [13].

quires making additional assumptions on its distribution, and eventually corresponds
to a type of profiling which would then allow evaluators to directly estimate prob-
abilities. So in general, we believe it is advisable to directly use probability-based
distinguishers for optimal key enumeration and rank estimation algorithms.



Based on these notations, our sampling-based approaches to rank estimation
will require two additional inputs. First the lists of probabilities might be turned
into lists of log probabilities, denoted as LPi = log(Pi). Next, these lists of prob-
abilities will also be be translated into lists of cumulative probabilities as follows.
First a sorted list is produced as: SPi = sort(Pi,decreasing). Then, the list of

cumulative probabilities is derived as CPi such that CPi[j] =
∑j

jj=0 SPi[jj].

As for the metric-based approaches, they will require the subkey success
rates of order d introduced in [12], which simply correspond to the probability
that the correct subkey is rated among the first d ones by an attack. In the
following, we will denote the lists of 2b success rates of order d (with d ∈ [1, 2b])
as SRi. We will additionally denote the “derivative” of these success rates (i.e.
the probabilities that a key is rated exactly at position d) as ∆SRi such that
∆SRi[d] = SRi[d]− SRi[d− 1] (with SRi[0] set to 0 by definition).

3.2 Toolbox

For convenience, we now introduce a number of generic tools that will be used to
simplify the description of our following algorithms, and can be found (or easily
developed) in most mathematical programming languages.

Linear histograms. The function H = hist lin(LP, bins) creates a standard his-
togram from a list of (e.g.) log probabilities LP and linearly-spaced bins bins.

Logarithmic indexing. Given a list of (e.g.) probabilities P indexed from 1 to 2b

and a width w, the function LI = index log(P,w) groups the elements in the
list by the logarithm of their indexes according to a width w. An example of
such a logarithmic indexing with w = 1 is illustrated in the left part of Figure 2,
where we have LI[0] = P [0], LI[1] = P [1] + P [2] and so on. More precisely
LI[k] =

∑
j∈Ek P [j − 1] with Ek = {j ∈ N ∩ [2k·w, 2(k+1)·w[} and k ∈ [1, b

w ].

20 21 22 23 24 20 21 22 23 24

Fig. 2. Logarithmic indexing with w = 1 (left) and logarithmic downsampling (right).

Linear downsampling. Given a list of (e.g.) cumulative probabilities CP or suc-
cess rates SR, the function downs lin(CP,Nmax) (resp. downs lin(SR,Nmax))
reduces the size of CP (resp. SR) by selecting Nmax linearly-spaced samples
over the probabilities (resp. success rates). This downsampling is illustrated on
the Y axis of Figure 3, where we keep the values sampled by the blue dotted lines.

Logarithmic downsampling. Given a list of (e.g.) cumulative probabilities CP
or success rates SR, the function downs log(CP ) (resp. downs log(SR)) reduces
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Fig. 3. Illustration of dowsampling possibilities.

the size of CP (resp. SR) by sampling logarithmically over the indexes, and
selecting one sample per power of two of the keys (resp. orders). An example of
this downsampling is given on the X axis of Figure 3, where we keep the values
sampled by the red dotted lines (and in the right part of Figure 2).

Convolution. This is the usual convolution algorithm which from two histograms
H1 and H2 of sizes n1 and n2 computes H1,2 = conv(H1, H2) where H1,2[k] =∑k

i=0H1[i]×H2[k − i]. It can be implemented efficiently with a FFT.

Linear combination. Given two lists of (e.g.) cumulative probabilities CP1 and
CP2 of sizes n1 and n2, the linear combination CP1,2 = comb lin(CP1, CP2) can
be computed as CP1,2[k] = max{CP1[i]×CP2[j] | i·j = k} for k ∈ [0, n1 ·n2−1].
Such a combination assumes that the underlying relation between the indexes
is multiplicative, which is the case for cumulative probabilities. As for the linear
downsampling, this linear combination similarly applies to success rates.

Logarithmic combination. Given two lists of (e.g.) cumulative probabilities CP1

and CP2 of sizes n1 and n2, the logarithmic combination CP1,2 = comb log(CP1,
CP2) can be computed as CP1,2[k] = max{CP1[i] × CP2[j] | i + j = k} for
k ∈ [0, n1 + n2 − 1]. Such a combination assumes that the underlying relation
between the indexes is additive, which is the case when a list has been previously
processed by downs log (so it again applies to success rates as well).

Effort distributor. In general, the (linear or logarithmic) downsampling and com-
bination procedures, output lists with reduced number of samples. But as men-
tioned in introduction, for sampling-based wML rank estimation, it may addi-
tionally be interesting to output a so-called effort distributor. In this case, these
procedures (applied to lists of cumulative probabilities) will also input/output
the indices of the retained samples, which indicates how much effort should be
devoted (i.e. how many keys should be tested) for each subkey.



Sampling-based Metric-based

wML
Input: subkey cumulative prob. Input: subkey success rates

Approx: log. downsampling Approx: log. downsampling
Aggreg: log. combination Aggreg: log. combination

ML
Input: subkey log. probabilities Input: subkey SR derivative

Approx: linear histograms Approx: log. indexing
Aggreg: convolution Aggreg: convolution

Table 2. Tools used in our rank estimation algorithms.

3.3 Preprocessing

As part of our evaluations, we will also consider the preprocessing which consists
of merging m lists of probabilities Pi of size 2b in order to generate a larger
list P ′i = merge(P0, P1, . . . , Pm−1), such that P ′i contains the 2m·b product of
probabilities of these lists. Taking again our notations where the n bits of master
key are split in Ns subkeys of b bits, it amounts to split them into a N ′s = Ns/m
subkeys of m · b bits. This process is in fact similar to the previously described
linear combination one. We just use the term merging and denote it as mergem
when it is used for pre-processing (to be consistent with previous works).

3.4 Overview of the tools used in different approaches

Before describing our four rank estimation algorithms in detail, Table 2 provides
a quick overview of the different tools that we exploit in the different approaches.
As clearly seen from the table, each of the algorithms is mainly characterized by
a type of input together with an approximation and an aggregation procedure.
Note that for the sampling-based ML one, we use exactly the FSE 2015 algo-
rithm [8]. This choice is motivated by the fact that it is the fastest one published
so far.4 As for the metric-based wML approach, we use a slight variant of the
EUROCRYPT 2015 heuristic [5], where we replace the linear downsampling by
a logarithmic downsampling (which turns out to be more efficient).5

3.5 Sampling-based rank estimation

We use exactly the solution proposed at FSE 2015, recalled in Algorithm 1. As
detailed in [8], it allows reaching tight bounds for the key ranks (for key sizes
up to 1024 bits), typically setting the log of the ratio between the upper and
lower bounds to less than one bit. In the following, we will consider this Sampled
Estimation (SE) as a reference (i.e. our most accurate rank estimation).

4 Together with its analog in [1] which would yield very similar performances.
5 The algorithm by Ye et al. could be used as a sightly more accurate alternative.

However, as our proposal, it can only provide a lower bound on the success rate
because it is based on a wML approach. We focused on the EUROCRYPT 2015
heuristic because of its simplicity and connections with the other solutions of Table 2.



Algorithm 1 Sampling-based rank estimation (SE).

Input: The log proba. of the master key lpk, lists of log proba. LPi, and bins bins.
Output: An estimation of the master key rank.

Hcurr = hist lin(LP0, bins)
for i = 1 to N ′s − 1 do
Hi ← hist lin(LPi, bins)
Hcurr ← conv(Hcurr, Hi)

end for
rank ← log2(

∑N′
s·Nbin−(N′

s−1)

i=bins(lpk) Hcurr[i])
return rank

Note that if the evaluator’s goal is to estimate a success rate of a given order
for the master key (or more generally to build a security graph such as described
in [14]), he will need to repeat Algorithm 1 several times in order to obtain many
estimates of the key rank that he will average afterwards, i.e. a quite costly task
which may motivate the use of metric-based approaches to rank estimation.

3.6 Sampling-based success lower bound

The ML rank estimation actually corresponds to an optimal enumeration strat-
egy such as described in [13]. In this context, the adversary/evaluator produces a
list of (master) key candidates in decreasing order of likelihood that he can test.
Quite naturally, such an optimal enumeration implies that (most of the times)
when moving from the ith most likely key to the i + 1th one, the indices of
several subkeys will vary. In general, such an approach therefore has significant
memory requirements (corresponding to the size of the lists to produce and send
to the “key testing” hardware). The wML approach introduced in [15] actually
corresponds to a much simpler (greedy) strategy where, when moving from the
ith most likely key to the i + 1th one, the indices of only one subkey are mod-
ified. While obviously suboptimal, this strategy has the significant advantage
that it has essentialy no memory requirements, i.e. one only needs to store the
number of candidates to enumerate per subkey (i.e. the effort distributor), and is
straightforward to parallelize. Its simplified version (inspired from [5] but replac-
ing the linear downsampling and combination by logarithmic ones) is described
in Algorithm 2. It outputs a SLB on the (single) attack’s success together with an
effort distributor. Since the combination is done using a logarithmic downsam-
pling, any output of the effort distributor ED[i] (with i ∈ [0, n]) is a N ′s-element
list corresponding to an effort of 2i, where every element of the list is a subkey
effort. For simplicity, we will say that a key k is in the effort distributor ED[i]
if the rank of all its subkeys is lower than the corresponding subkey effort in the
list ED[i]. As in the SE approach, estimation of a success rate thanks to this
approach requires repeating attacks (and Algorithm 2) several times.



Algorithm 2 Sampling-based success lower bound (SLB).

Input: Lists of cumulative proba. CPi and actual subkeys k = {k0, ..., kN′
s−1}.

Output: An upper bound on the master key rank.

CPcurr ← downs log(CP0)
EDcurr ← ∅
for i = 1 to N ′s − 1 do
CP ′i ← downs log(CPi)
CPcurr, ED ← comb log(CP,CP ′i , EDcurr)
EDcurr = EDcurr ∪ ED

end for
log rank ← 0
while k /∈ ED[log rank] do
log rank ← log rank + 1

end while
return 2log rank

3.7 Metric-based success rate lower bound

As previously mentioned, a possible drawback of the previous sampling-based
approaches is that producing success rate curves based on them requires run-
ning the rank estimation algorithms several times. One natural solution to avoid
this drawback is to consider metric-based approaches, where the evaluator does
not directly deal with DPA outcomes (i.e. subkey log probabilities or cumula-
tive probabilities), but with the success rates of every subkey considered inde-
pendently. Concretely, this approach highly resembles the one in the previous
section (only its inputs are different). However, it does not only correspond to
a suboptimal wML strategy: it also includes an additional loss of tightness due
to a Jensen inequality. In the following, we refer to this strategy, described in
Algorithm 3, as the Metric-based success rate Lower Bound MLB approach.

Algorithm 3 Metric-based success rate lower bound (MLB).

Input: Lists of success rates SRi.
Output: A lower bound on the master key success rate.

SRlow ← downs log(SR0)
for i = 1 to N ′s − 1 do
SRi

low ← downs log(SRi)
SRlow ← comb log(SRlow, SR

i
low)

end for
return SRlow



3.8 Metric-based success rate upper bound

The metric-based approach in the previous section is very convenient to ma-
nipulate (i.e. simple and efficient) but it only provides a lower bound for the
success rate. This section finally brings its natural complement, i.e. an easy-to-
manipulate metric-based upper bound for this success rate. For this purpose,
the main technical ingredient is to replace the logarithmic downsampling of the
success rate curves (where only the sample with maximum success rate is kept)
by a logarithmic indexing of the derivative success rates with width w (which
are then combined thanks to the convolution tool). As a result, we obtain the
Metric-based success rate Upper Bound (MUB) described in Algorithm 4.

Algorithm 4 Metric-based success rate upper bound (MUB).

Input: Lists of derivative success rates ∆SRi and bin log-width w.
Output: An upper bound on the master key success rate.

LIcurr = index log(∆SR0, w)
for i = 1 to N ′s − 1 do
LIi ← index log(∆SRi, w)
LIcurr ← conv(LIcurr, LIi)

end for

SRup[0]←
∑j= 1

w
−1

j=0 LIcurr[j]
for i = 1 to n− 1 do

SRup[i]← SRup[i− 1] +
∑j= 1

w
·(i+1)−1

j= 1
w
·i LIcurr[j]

end for
SRup[n]← SRup[n− 1]+ LIcurr[n]
return SRup

In practice, the lower w is, the tighter the bound is. For simplicity, we will
assume w is at most equal to 1 and that 1

w must fall into the integer domain (our
following experiments will take w = 0.001). An explanation why this algorithm
indeed gives an upper bound for the success rate is given in the Appendix A.

4 Experiments

In this section, we provide experiments to illustrate our four methods. For this
purpose, we considered the standard case study (also used in previous evalua-
tions of rank estimation algorithms) of a simulated AES-128 implementation,
for which every encryption leaks 16 samples denoted as li = L(S(xi, ki)) + N
with i ∈ [0, 15], where L is the leakage function, S is the AES S-box and N is a
random noise following a Gaussian distribution. Concretely, we tried different L’s
(Hamming weight, linear, non-linear) which had no impact on our observations
(as previously reported). We also tried having different L’s and N ’s for the differ-
ent subkeys with the same conclusion. So because of place constraints, we only
report experiments for a single leakage function and noise level. Based on these
leakages, we implemented a simple univariate TA, in order to produce the lists
of probabilities defined in Section 3.1. For all our experiments, our evaluation
metrics were obtained by launching 1000 independent attacks.



4.1 Sampling-based evaluations.

A comparison of the (tight) rank estimation bound from FSE 2015 (using 10,000
bins) with the sampling-based lower bound of Algorithm 2 is reported in Figure 4,
for different number of measurements (hence security levels). As expected, we
see that the wML approach can only provide a lower bound on the success rate.
The SLB curves additionally exhibit the (positive) impact of merging the subkey
probabilities prior to the evaluation for the quality of the lower bound.
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Fig. 4. Sampling-based rank estimations for different security levels. Upper left: 80-bit
security level. Upper right: 65-bit security level. Bottom: 30-bit security level.

Besides, and as discussed in Section 3.6, Algorithm 2 can also be used to
provide a simple (yet suboptimal) enumeration strategy that can be parallelized.
So assuming that the optimal enumeration algorithm in [13] is implemented in a
purely serial fashion (which is correct as soon as generating the list of most likely
keys becomes more expensive than testing them), another interesting experiment
is to measure the gap between these two approaches. For this purpose, Figure 5
shows the number of cores needed to reach the success rate of a (purely serial)



ML enumeration with the suboptimal but parallel wML heuristic of Algorithm 2,
for the same experiments as reported in Figure 4. For example, we see that for
the ≈ 80-bit security level (upper left plot) and assuming a merge3 preprocessing,
we can reach the same 80% success rate with both approaches assuming that the
parallel enumeration exploits 210 computing cores. This result is interesting since
it suggests that for organized adversaries, the enumeration overheads of a wML
enumeration strategy may be compensated by computing capabilities. Note that
these results assume that it takes as much time for the enumeration algorithm
to output a candidate as it takes to test it, which is a conservative estimate if
one assumes that the testing can be performed by some dedicated hardware.
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Fig. 5. Number of cores needed to reach the success rate of a (serial) ML enumeration
with the suboptimal but parallel wML heuristic of Algorithm 2. Upper left: 80-bit
security level. Upper right: 65-bit security level. Bottom: 30-bit security level.

4.2 Metric-based evaluations

We now describe the metric-based counterpart to the previous sampling-based
experiments, reported in Figure 6. We again use the estimate from Algorithm 1



as a reference, and this time compare it with Algorithms 3 and 4. Note that for
comparison purposes, our subkey success rates were directly sampled (i.e. not
bounded as suggested in [5]). This allows us to gauge the impact of the differ-
ent enumeration strategies for similar inputs. As expected again, Algorithms 3
and 4 indeed provide lower and upper security bounds. However, while those
metric-based solutions are especially convenient from an evaluation time point
of view (see the following discussion in Section 4.3), it is also clear from the fig-
ure that none of them provides tight approximations of the security level. This
is somehow expected as well since the MLB curves correspond to an adversary
who is weakened both by a wML approach and a Jensen inequality, while the
MUB one is based on the rough bound discussed in Appendix A. Note that we
used w = 0.001: improvements were not noticeable anymore for lower widths.
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Fig. 6. Metric-based rank estimations for different security levels. Upper left: 80-bit
security level. Upper right: 65-bit security level. Bottom: 30-bit security level.

Interestingly though, these conclusions are moderated when looking at the
complete security graphs obtained with these different approaches, reported in
Figure 7 (i.e. plots of the success rate in function of the number of measure-



ments and time complexity of the attacks [14]). Namely, the upper and lower
security bounds that correspond to the MLB and MUB curves are not so op-
timistic/pessimistic from this point-of-view. This is in fact mainly due to the
weaker impact of enumeration (compared to measurements) in side-channel anal-
ysis. That is, adding a new measurements reduces the security exponentially,
while enumerating only does it polynomially. So overall, despite being based on
relatively rough heuristics, Algorithms 3 and 4 can in fact be used to obtain a
reasonable view of the security level of leaking implementation. The latter ob-
servation is in line with the experiments in [15] where the gap between the ML
and wML approach appeared to be limited when looking at similar figures.

Fig. 7. Security graphs. Upper left: SE methods, upper right: MLB+merge3 prepro-
cessing, lower left: MUB (bottom left), lower right: MLB with no merging.

4.3 Time complexity

In order to provide a complete view of the rank estimation problem, we finally
provide a brief discussion of the time complexity of these approaches. Note that
this discussion mainly makes sense in the context of an evaluation, where many
attacks have to be launched in parallel (while in a real attack context, a single



enumeration is usually enough). Taking our exemplary experiments, we per-
formed 1000 attacks for each security level. In this case, the SE computation
required approximatively 5 minutes proceed (per number of traces), with 10,000
initial bins. By contrast, only one second was needed for computing MUB with
w = 0.001 (so a factor 300 less). In addition, the MLB computations required
1 second, 3 seconds and 5 minutes with the merge1, merge2 and merge3 prepro-
cessings. (Note that the time to compute the subkeys success rates are included
in these MUB and MLB times). Eventually, the SLB computation required 3
second, 38 seconds and 2 hours with the merge1, merge2 and merge3 preprocess-
ings. So overall, we can conclude that in the simple context we investigated, the
sampling-based approach leads to very accurate results in a sufficiently short
time. But in contexts where the evaluation cost increases, simpler metric-based
bounds can gain more interest. Such bounds are anyway usful for fast prototyp-
ing since they can be combined with the Mutual Information based evaluations
in [5]. In this case, we gain the additional advantage that the analyis does not
have to be repeated for several number of measurements (i.e. the success rate
for any such number is derived from a Mutual Information metric).

5 Conclusion

This paper clarifies the link between various approaches to rank estimation. We
divided our investigations in two parts, one sampling-based that is closer to the
goals of concrete adversaries, one metric-based that is closer to evaluator’s ones.
We additionally discussed the interest of wML enumeration strategies in order to
make this task easily parallelizable. Our experiments suggest that tight rank es-
timation can be efficiently implemented thanks to a simple algorithm from FSE
2015. But they also highlight that the wML and metric-based approaches can
gain interest (e.g. for adversaries with high parallel computing power and to fur-
ther speed up the evaluation time, respectively). In view of the efficient solutions
existing for rank estimation, an important scope for further research remains to
find new algorithms for optimal and parallel enumeration. First proposals in this
direction can be found at SAC 2015 [2] and ASIACRYPT 2015 [10].

Acknowledgements. F.-X. Standaert is a research associate of the Belgian
Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in parts
by the European Commission through the ERC project 280141 (CRASH).



References

1. Daniel J. Bernstein, Tanja Lange, and Christine van Vredendaal. Tighter, faster,
simpler side-channel security evaluations beyond computing power. IACR Cryp-
tology ePrint Archive, 2015:221, 2015.

2. Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor, Elmar Tischhauser, and
Marc Witteman. Fast and memory-efficient key recovery in side-channel attacks.
IACR Cryptology ePrint Archive, 2015:795, 2015.

3. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, CHES
2004, Cambridge, MA, USA, August 11-13, 2004. Proceedings, volume 3156 of
LNCS, pages 16–29. Springer, 2004.

4. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton
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A Bound from the metric-based maximum likelihood

We start from the observation that if the lists of probabilities obtained for each
S-box are independent, rank(k0) = d0, . . . , rank(kN ′

s
) = dN ′

s
and rank(k) = d,

then d ≥
∏

i di. When estimating a master key success rate, it implies that:

ŜR[d] ≤
∑

di,
∏

i di≤d

∆SR0[d0]× · · · ×∆SRN ′
s
[dN ′

s
].

Algorithm 4 just computes such a sum of products of derivative success rates.

Note that the independence condition for the S-box probabilities in this
bound is not the same as the usual independent leakages considered, e.g. in
leakage-resilience cryptography [7], which is a purely physical condition. Here,
we only need that the adversary considers the subkeys independently.


