
Leakage-Resilient (Symmetric) Cryptography

François-Xavier Standaert

UCL Crypto Group, Belgium

Summer school on real-world crypto, 2016

Outline

• Starting point (link with previous lecture)
• Seed results (TCC 2004, FOCS 2008)
• Primitives (PRGs/PRFs,PRPs)

• If you don’t care about proofs
• The stateful/stateless separation

• The proof/assumptions challenge
• Ensuring independence
• Bounding the leakage
• The simulatable leakage attempt

• « Pragmatic » auth. & encryption (CCS 2015)
• Back to stateless primitives
• Conclusions & open problems

Outline

• Starting point (link with previous lecture)
• Seed results (TCC 2004, FOCS 2008)
• Primitives (PRGs/PRFs,PRPs)

• If you don’t care about proofs
• The stateful/stateless separation

• The proof/assumptions challenge
• Ensuring independence
• Bounding the leakage
• The simulatable leakage attempt

• « Pragmatic » auth. & encryption (CCS 2015)
• Back to stateless primitives
• Conclusions & open problems

Masking 1

• Bound the information locally (i.e. on each
share) and ensure independence (between the
leakage of the shares) in order to obtain
security globally (e.g. for AES implementations)

Masking 1

• Bound the information locally (i.e. on each
share) and ensure independence (between the
leakage of the shares) in order to obtain
security globally (e.g. for AES implementations)

• Limitation: high security requires large # of
shares

Masking 1

• Bound the information locally (i.e. on each
share) and ensure independence (between the
leakage of the shares) in order to obtain
security globally (e.g. for AES implementations)

• Limitation: high security requires large # of
shares ⇒ implies significant overheads

Leakage-resilience problem 2

• Concretely: can we gain efficiency by working at
the block cipher level, i.e. bound the
information (locally) for one execution, assume
independence (for different executions) and
gain security (globally) for many executions?

Leakage-resilience problem 2

• Concretely: can we gain efficiency by working at
the block cipher level, i.e. bound the
information (locally) for one execution, assume
independence (for different executions) and
gain security (globally) for many executions?

• Theoretically: can we prove the security of an
implementation and what does it mean? (How
to reason generally about specific objects?)

Outline

• Starting point (link with previous lecture)
• Seed results (TCC 2004, FOCS 2008)
• Primitives (PRGs/PRFs,PRPs)

• If you don’t care about proofs
• The stateful/stateless separation

• The proof/assumptions challenge
• Ensuring independence
• Bounding the leakage
• The simulatable leakage attempt

• « Pragmatic » auth. & encryption (CCS 2015)
• Back to stateless primitives
• Conclusions & open problems

Micali & Reyzin 2004 3

• Physically observable cryptography

• « Only computation leaks » assumption
• Used in all following works

• Indistinguishability ≠ unpredictability (with L)
• Impact for encryption & authentication

Dziembowski & Pietrzak 2008 4

• Leakage-resilient cryptography

• Intriguing at first sight (alternating structure)

Dziembowski & Pietrzak 2008 4

• Leakage-resilient cryptography

• Funnily similar to threshold implementations

Dziembowski & Pietrzak 2008 4

• Leakage-resilient cryptography

• Funnily similar to threshold implementations
• Both exclude one input to gain independence

Outline

• Starting point (link with previous lecture)
• Seed results (TCC 2004, FOCS 2008)
• Primitives (PRGs/PRFs,PRPs)

• If you don’t care about proofs
• The stateful/stateless separation

• The proof/assumptions challenge
• Ensuring independence
• Bounding the leakage
• The simulatable leakage attempt

• « Pragmatic » auth. & encryption (CCS 2015)
• Back to stateless primitives
• Conclusions & open problems

Outline

• Starting point (link with previous lecture)
• Seed results (TCC 2004, FOCS 2008)
• Primitives (PRGs/PRFs,PRPs)

• If you don’t care about proofs
• The stateful/stateless separation

• The proof/assumptions challenge
• Ensuring independence
• Bounding the leakage
• The simulatable leakage attempt

• « Pragmatic » auth. & encryption (CCS 2015)
• Back to stateless primitives
• Conclusions & open problems

Stateful PRGs 5

• Most natural construction:
• Forward-secure PRG [BY03]

Stateful PRGs 5

• Most natural construction:
• Forward-secure PRG [BY03]

• Re-keying impact: bounds the number of (noisy)
measurements per key (prevents averaging)

Stateless PRFs 6

• Most natural construction [GGM84]:

Stateless PRFs 6

• Most natural construction [GGM84]:

• Re-keying impact: bounds the number of noise-
free observations per key (allows averaging)

The stateful / stateless separation 7

• Key recovery security (standard DPA) [BGS15]:

PRG PRF

The stateful / stateless separation 7

• Key recovery security (standard DPA) [BGS15]:

• « Bounded security » for the PRG only
• (Analytical/algebraic attacks not considered)

PRG PRF

Take home message 8

• Leakage-resilience can at least provide good
security guarantees (against key recovery
attaks) for stateful primitives such as PRGs
• With a constant overhead factor ≤ 2

Take home message 8

• Leakage-resilience can at least provide good
security guarantees (against key recovery
attaks) for stateful primitives such as PRGs
• With a constant overhead factor ≤ 2

• Yet, we need at least one stateless primitive
execution for initialization (that needs to be
secured by other means such as masking)

Outline

• Starting point (link with previous lecture)
• Seed results (TCC 2004, FOCS 2008)
• Primitives (PRGs/PRFs,PRPs)

• If you don’t care about proofs
• The stateful/stateless separation

• The proof/assumptions challenge
• Ensuring independence
• Bounding the leakage
• The simulatable leakage attempt

• « Pragmatic » auth. & encryption (CCS 2015)
• Back to stateless primitives
• Conclusions & open problems

FOCS 2008 / Eurocrypt 2009 9

• L modeled as a polytime function => alternating
structure prevents « precomputation attack »

CCS 2010 10

• Alternating randomness (to save key material)
• Unfortunately not sufficient (CHES 2012)…

CHES 2012 11

• Fresh randomness in each round
• Sound but expensive (generated after L)

CT-RSA 2013 12

• Public randomness generated from a PRG
• (Non quantitative) proof in MiniCrypt

CCS 2010 again (I) 13

• Most natural construction proven under a
(non standard) random oracle assumption
• L cannot query the random oracle

CCS 2010 again (II) 14

• ≈ formalization of early re-keying attempts
• e.g. ASIACCS 2008: internal wall within AES
• e.g. early patents in the field from CRI
• (Where it was already clear that init. is challenging!)

Wrapping up 15

• Finding realistic & efficient ways to guarantte
the independence between multiple PRG
rounds is notorioulsy difficult (!)

Wrapping up 15

• Finding realistic & efficient ways to guarantte
the independence between multiple PRG
rounds is notorioulsy difficult (!)

• No perfectly satisfying solution so far

• Mostly because L is assumed polytime

• & no other restrictions seem realistic

Wrapping up 15

• Finding realistic & efficient ways to guarantte
the independence between multiple PRG
rounds is notorioulsy difficult (!)

• No perfectly satisfying solution so far

• Mostly because L is assumed polytime

• & no other restrictions seem realistic

• Note: similar story for PRFs and PRPs (although
less relevant in view of the separation in slide 7)

Outline

• Starting point (link with previous lecture)
• Seed results (TCC 2004, FOCS 2008)
• Primitives (PRGs/PRFs,PRPs)

• If you don’t care about proofs
• The stateful/stateless separation

• The proof/assumptions challenge
• Ensuring independence
• Bounding the leakage
• The simulatable leakage attempt

• « Pragmatic » auth. & encryption (CCS 2015)
• Back to stateless primitives
• Conclusions & open problems

• Unrealistic: leakages ≈ Gbytes of data

Bounded range 16

Security against DPA 17

• Not sufficient to prove anything

• Hard to guarantee (indistinguishability-based)

Key has high HILL pseudoentropy 18

Wrapping up 19

• Finding realistic ways to bound the leakage in
leakage-resilient PRGs is notoriously difficult

• No perfectly satisfying solution so far

• ∃ a gap between what proofs require and
what engineers can guarantee (evaluate)

Outline

• Starting point (link with previous lecture)
• Seed results (TCC 2004, FOCS 2008)
• Primitives (PRGs/PRFs,PRPs)

• If you don’t care about proofs
• The stateful/stateless separation

• The proof/assumptions challenge
• Ensuring independence
• Bounding the leakage
• The simulatable leakage attempt

• « Pragmatic » auth. & encryption (CCS 2015)
• Back to stateless primitives
• Conclusions & open problems

• Main issue: leakage function is hard to model
• It solves Maxwell’s equations
• But circuits give immediate solutions

Looking for physical assumptions 20

• Main issue: leakage function is hard to model
• It solves Maxwell’s equations
• But circuits give immediate solutions

Looking for physical assumptions 20

=> Just don’t model it!

Our setting (Crypto 2013)

(a) Give public I/O access to device & setup

21

Our setting (Crypto 2013)

(a) Give public I/O access to device & setup

(b) Assume L(k,x) can be simulated

• Using the same HW as the target
• But without knowing the secret key k!

21

has simulatable leakages if ∃ S such that
the bit b in the following game is hard to guess

More formally

L

22

has simulatable leakages if ∃ S such that
the bit b in the following game is hard to guess

• With S (k,x, (x)) = L(k,x) (makes our results
dependent only on the number of calls to S)

More formally

defL

L

L

22

• Let L(k,x) = 𝑙𝑝(k,x)||𝑙𝑐(k, (x))
– 𝑙𝑝 corresponds to the first rounds of
– 𝑙𝑐 corresponds to the last rounds of

• e.g.

Block cipher leakage simulator

def

23

• Let L(k,x) = 𝑙𝑝(k,x)||𝑙𝑐(k, (x))
– 𝑙𝑝 corresponds to the first rounds of
– 𝑙𝑐 corresponds to the last rounds of

• e.g.

 Instantiate S (k,x,y) = 𝑙𝑝(k,x)|| 𝑙𝑐(k,y)

Block cipher leakage simulator

def

L

23

Why would this work?

Simulatable leakages ≈ DPA + I/O’s leakages

24

Summarizing 25

a. Attacks against q-sim. exploit the same leakages as
DPA if the traces are consistent with the I/O’s

- this is exactly what the simulator does

b. Additionally needs concatenation
- OK if ∃ leakage samples without interest:

HILL

Summarizing 25

a. Attacks against q-sim. exploit the same leakages as
DPA if the traces are consistent with the I/O’s

- this is exactly what the simulator does

b. Additionally needs concatenation
- OK if ∃ leakage samples without interest:

c. q-sim. at least easier to guarantee than H

HILL

Summarizing

L

L

L

25

a. Attacks against q-sim. exploit the same leakages as
DPA if the traces are consistent with the I/O’s

- this is exactly what the simulator does

b. Additionally needs concatenation
- OK if ∃ leakage samples without interest:

c. q-sim. at least easier to guarantee than H

d. Engineering challenges

(constructive) Design alternative S instances
(constructive) Given S , design with q-sim. leakages
(destructive) Given S and , break the q-sim. game

First instances falsified by Galea et al. (cfr. end of talk if time allows)

Most natural construction

• Goal: remain secure after ≈ 106 runs
• While relying on q-sim. for q=2

• Proving it was surprisingly difficult so far
• (see slides 9 to 19 of this talk)

26

Proof idea #1: replacing lemma

Original view

27

Proof idea #1: replacing lemma

a. Exploit the 2-sim. leakages assumption

27

Proof idea #1: replacing lemma

b. Exploit the BC ≈ PRF assumption

27

Proof idea #2: extend (hybrid argument)

Original view

28

Proof idea #2: extend (hybrid argument)

a. Completely random view (l=4 calls to S)
L

28

Proof idea #2: extend (hybrid argument)

b. Real view with random y4 (l=4 calls to S)
L

28

Proof idea #2: extend (hybrid argument)

b. Real view with random y4 (l=4 calls to S)

Theorem: yl ≈ Un given y1,…,yl-1,L(k0),L(kl-2) if BC is

a PRF and has 2-simulatable leakages

(with security degradation proportional to 2l)

L

28

Outline

• Starting point (link with previous lecture)
• Seed results (TCC 2004, FOCS 2008)
• Primitives (PRGs/PRFs,PRPs)

• If you don’t care about proofs
• The stateful/stateless separation

• The proof/assumptions challenge
• Ensuring independence
• Bounding the leakage
• The simulatable leakage attempt

• « Pragmatic » auth. & encryption (CCS 2015)
• Back to stateless primitives
• Conclusions & open problems

CBC-MAC (is insecure) 29

CBC-MAC (is insecure) 29

• Master k key re-used multiple times
Eventually leaked in full (via DPA)

LR-MAC: security definition 30

• Natural extension of unforgeability without L

LR-MAC: security definition 30

• Natural extension of unforgeability without L

• Adversary gets the leakage for tag generation

LR-MAC: security definition 30

• Natural extension of unforgeability without L

• Adversary gets the leakage for tag generation
• But not during the verification algorithm

Construction I: re-keying MAC 31

Construction I: re-keying MAC 31

• Pragmatism: requires one leak-free block cipher
execution for initialization (cfr. slide 8)
• Then takes advantage of statefullness

Construction I: re-keying MAC 31

• Pragmatism: requires one leak-free block cipher
execution for initialization (cfr. slide 8)
• Then takes advantage of statefullness

• F expected to be (much) more efficient than F*

Construction II: hash-then-MAC 32

• Conceptually simpler (but requires a hash function)

Encryption: construction 33

• Essentially the LR-PRG as a stream cipher

Encryption: security definition 34

• Conceptual problem: distinguishing is always
easy if L is given in the challenge phase

Encryption: security definition 34

• Conceptual problem: distinguishing is always
easy if L is given in the challenge phase

• Theoretical approach: exclude L in the challenge
phase (which is not justified in practice)

Encryption: security definition 34

• Conceptual problem: distinguishing is always
easy if L is given in the challenge phase

• Theoretical approach: exclude L in the challenge
phase (which is not justified in practice)

• Our (pragmatic) approach: admit semantic
security is impossible. Leakage will always allow
distinguishing plaintexts/ciphertexts!

Encryption: security definition 34

• Conceptual problem: distinguishing is always
easy if L is given in the challenge phase

• Theoretical approach: exclude L in the challenge
phase (which is not justified in practice)

• Our (pragmatic) approach: admit semantic
security is impossible. Leakage will always allow
distinguishing plaintexts/ciphertexts!

• CPA security reduction: security of R rounds
reduces to security of 1 round (independent of
what we can actualy achieve for 1 round)
• See our CCS 2015 paper for the details

Outline

• Starting point (link with previous lecture)
• Seed results (TCC 2004, FOCS 2008)
• Primitives (PRGs/PRFs,PRPs)

• If you don’t care about proofs
• The stateful/stateless separation

• The proof/assumptions challenge
• Ensuring independence
• Bounding the leakage
• The simulatable leakage attempt

• « Pragmatic » auth. & encryption (CCS 2015)
• Back to stateless primitives
• Conclusions & open problems

How to instantiate the leak-free BC? 35

• Mask the AES (or masking-oriented ciphers)
• But overheads always quadratic in d

How to instantiate the leak-free BC? 35

• Mask the AES (or masking-oriented ciphers)
• But overheads always quadratic in d

• Use non-standard constructions
• Heuristic (easy-to-mask) fresh re-keying
• GGM PRF with chosen plaintexts

How to instantiate the leak-free BC? 35

• Mask the AES (or masking-oriented ciphers)
• But overheads always quadratic in d

• Use non-standard constructions
• Heuristic (easy-to-mask) fresh re-keying
• GGM PRF with chosen plaintexts

• Exploit homomorphisms in asymmetric crypto
• Overheads linear in d (but large for small d’s)

A recent proposal (Crypto 2016) 36

A recent proposal (Crypto 2016) 36

• Cryptographically strong re-keying function
• sk =< 𝐑, msk >= < 𝐑, msk𝑖 >

A recent proposal (Crypto 2016) 36

• Cryptographically strong re-keying function
• sk =< 𝐑, msk >= < 𝐑, msk𝑖 >

• Security based on hard lattice problems
• Simple & efficient: all computations in GF(2𝑚)

Outline

• Starting point (link with previous lecture)
• Seed results (TCC 2004, FOCS 2008)
• Primitives (PRGs/PRFs,PRPs)

• If you don’t care about proofs
• The stateful/stateless separation

• The proof/assumptions challenge
• Ensuring independence
• Bounding the leakage
• The simulatable leakage attempt

• « Pragmatic » auth. & encryption (CCS 2015)
• Back to stateless primitives
• Conclusions & open problems

Conclusions 37

• Concretely, leakage-resilience is effective and
efficient for stateful primitives such as PRGs

Conclusions 37

• Concretely, leakage-resilience is effective and
efficient for stateful primitives such as PRGs

• Protection of stateless primitives such as PRFs
and PRPs is much more challenging

Conclusions 37

• Concretely, leakage-resilience is effective and
efficient for stateful primitives such as PRGs

• Protection of stateless primitives such as PRFs
and PRPs is much more challenging

• Pragmatic solution: minimize the number of
(leak-free) stateless primitives in leakage-
resilient encryption and authentication

Open problems 38

• Sound (empirically falsifiable) assumptions
• e.g. new instances of leakage simulators

• Can we better formalize CPA security with L?

• Leakage-resilient decryption & tag verification
• Excluded from the analysis so far
• Mostly because of IV control by the Adv.

• Leakage-resilient authenticated encryption

THANKS
http://perso.uclouvain.be/fstandae/

http://perso.uclouvain.be/fstandae/

Related publications & further readings. Masking (slide 1). Security graph. Alexandre Duc, Sebastian Faust, François-Xavier Standaert: Making

Masking Security Proofs Concrete - Or How to Evaluate the Security of Any Leaking Device. EUROCRYPT (1) 2015: 401-429. Performance figures. Vincent

Grosso, François-Xavier Standaert, Sebastian Faust: Masking vs. multiparty computation: how large is the gap for AES? J. Cryptographic Engineering 4(1):

47-57 (2014). Physically observable cryptography (slide 3). Silvio Micali, Leonid Reyzin: Physically Observable Cryptography (Extended Abstract). TCC

2004: 278-296. Leakage-resilient cryptography (slide 4). Stefan Dziembowski, Krzysztof Pietrzak: Leakage-Resilient Cryptography. FOCS 2008: 293-302.

Threshold implementations (Slide 4). Svetla Nikova, Vincent Rijmen, Martin Schläffer: Secure Hardware Implementation of Nonlinear Functions in the

Presence of Glitches. J. Cryptology 24(2): 292-321 (2011). Stateful PRGs (slide 5). Mihir Bellare, Bennet S. Yee: Forward-Security in Private-Key

Cryptography. CT-RSA 2003: 1-18. Stateless PRFs (slide 6). Oded Goldreich, Shafi Goldwasser, Silvio Micali: How to Construct Random Functions

(Extended Abstract). FOCS 1984: 464-479. Stateless/stateful separation (slide 7). Sonia Belaïd, Vincent Grosso, François-Xavier Standaert: Masking and

leakage-resilient primitives: One, the other(s) or both? Cryptography and Communications 7(1): 163-184 (2015). FOCS 2008/Eurocrypt 2009 stream

ciphers (slide 9). Stefan Dziembowski, Krzysztof Pietrzak: Leakage-Resilient Cryptography. FOCS 2008: 293-302. Krzysztof Pietrzak: A Leakage-Resilient

Mode of Operation. EUROCRYPT 2009: 462-482. CCS 2010 PRG (slide 10). Yu Yu, François-Xavier Standaert, Olivier Pereira, Moti Yung: Practical

leakage-resilient pseudorandom generators. ACM Conference on Computer and Communications Security 2010: 141-151. CHES 2012 PRG (slide 11).

Sebastian Faust, Krzysztof Pietrzak, Joachim Schipper: Practical Leakage-Resilient Symmetric Cryptography. CHES 2012: 213-232. CT-RSA 2013 PRG

(slide 12). Yu Yu, François-Xavier Standaert: Practical Leakage-Resilient Pseudorandom Objects with Minimum Public Randomness. CT-RSA 2013: 223-

238. Random oracle assumption (slides 13-14). Yu Yu, François-Xavier Standaert, Olivier Pereira, Moti Yung: Practical leakage-resilient pseudorandom

generators. ACM Conference on Computer and Communications Security 2010: 141-151. Christophe Petit, François-Xavier Standaert, Olivier Pereira, Tal

Malkin, Moti Yung: A block cipher based pseudo random number generator secure against side-channel key recovery. ASIACCS 2008: 56-65. P. Kocher.

Leak resistant cryptographic indexed key update. US Patent 6539092. Leakage-resilient PRFs (slide 15). François-Xavier Standaert, Olivier Pereira, Yu Yu,

Jean-Jacques Quisquater, Moti Yung, Elisabeth Oswald: Leakage Resilient Cryptography in Practice. Towards Hardware-Intrinsic Security 2010: 99-134.

Yevgeniy Dodis, Krzysztof Pietrzak: Leakage-Resilient Pseudorandom Functions and Side-Channel Attacks on Feistel Networks. CRYPTO 2010: 21-40.

Sebastian Faust, Krzysztof Pietrzak, Joachim Schipper: Practical Leakage-Resilient Symmetric Cryptography. CHES 2012: 213-232. Yu Yu, François-Xavier

Standaert: Practical Leakage-Resilient Pseudorandom Objects with Minimum Public Randomness. CT-RSA 2013: 223-238. Michel Abdalla, Sonia Belaïd,

Pierre-Alain Fouque: Leakage-Resilient Symmetric Encryption via Re-keying. CHES 2013: 471-488. Bounded range leakage / HILL pseudoentropy

(slides 16 and 18). Leakage-Resilient Cryptography. FOCS 2008: 293-302. François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater,

Moti Yung, Elisabeth Oswald: Leakage Resilient Cryptography in Practice. Towards Hardware-Intrinsic Security 2010: 99-134. Simulatable leakage

assumption (slides 20-28). François-Xavier Standaert, Olivier Pereira, Yu Yu: Leakage-Resilient Symmetric Cryptography under Empirically Verifiable

Assumptions. CRYPTO (1) 2013: 335-352. Bristol distringuisher (slide 25). Jake Longo, Daniel P. Martin, Elisabeth Oswald, Daniel Page, Martijn Stam,

Michael Tunstall: Simulatable Leakage: Analysis, Pitfalls, and New Constructions. ASIACRYPT (1) 2014: 223-242. Leakage-resilient authentication &

encryption (slides 29-34). Olivier Pereira, François-Xavier Standaert, Srinivas Vivek: Leakage-Resilient Authentication and Encryption from Symmetric

Cryptographic Primitives. ACM Conference on Computer and Communications Security 2015: 96-108. Leakage exclusion for challenge queries (slide 34).

Moni Naor, Gil Segev: Public-Key Cryptosystems Resilient to Key Leakage. CRYPTO 2009: 18-35. Carmit Hazay, Adriana López-Alt, Hoeteck Wee, Daniel

Wichs: Leakage-Resilient Cryptography from Minimal Assumptions. EUROCRYPT 2013: 160-176. Michel Abdalla, Sonia Belaïd, Pierre-Alain Fouque:

Leakage-Resilient Symmetric Encryption via Re-keying. CHES 2013: 471-488. Instantiations of a leak-free block cipher (slide 35). Masking. Vincent

Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici: LS-Designs: Bitslice Encryption for Efficient Masked Software Implementations. FSE

2014: 18-37. Fresh re-keying. B. Gammel, W. Fischer, and S. Mangard. Generating a Session Key for Authentication and Secure Data Transfer. US

Patent App. 14/074,279. Nov. 2013. Marcel Medwed, François-Xavier Standaert, Johann Großschädl, Francesco Regazzoni: Fresh Re-keying: Security

against Side-Channel and Fault Attacks for Low-Cost Devices. AFRICACRYPT 2010: 279-296. Christoph Dobraunig, François Koeune, Stefan Mangard,

Florian Mendel, François-Xavier Standaert: Towards Fresh and Hybrid Re-Keying Schemes with Beyond Birthday Security. CARDIS 2015: 225-241. GGM

PRF with chosen plaintexts. Marcel Medwed, François-Xavier Standaert, Antoine Joux: Towards Super-Exponential Side-Channel Security with Efficient

Leakage-Resilient PRFs. CHES 2012: 193-212. Asymmetric cryptography. Eike Kiltz, Krzysztof Pietrzak: Leakage Resilient ElGamal Encryption.

ASIACRYPT 2010: 595-612. Daniel P. Martin, Elisabeth Oswald, Martijn Stam, Marcin Wójcik: A Leakage Resilient MAC. IMA Int. Conf. 2015: 295-310.

Crypto 2016 re-keying schemes (slide 36). Stefan Dziembowski, Sebastian Faust, Gottfried Herold, Anthony Journault, Daniel Masny, Francois-Xavier

Standaert: Towards Sound Fresh Re-Keying with Hard (Physical) Learning Problems. IACR Cryptology ePrint Archive 2016: 573 (2016).

Additional slides
(leakage simulators & the Bristol distinguisher)

Background

• Split & Concatenate Simulator (CRYPTO 2013)

L 𝑥, 𝑘, 𝑦 ≈ L(𝑥, 𝑘, 𝑦∗)||L(𝑥∗, 𝑘, 𝑦)

Background

• Split & Concatenate Simulator (CRYPTO 2013)

L 𝑥, 𝑘, 𝑦 ≈ L(𝑥, 𝑘, 𝑦∗)||L(𝑥∗, 𝑘, 𝑦)

• Longo Galea et al (ASIACRYPT 2014): ∃ correlation

between samples within real traces (e.g. 𝜌 > 0.5)
… that are significantly reduced in simulated ones

⇒ Allows distinguishing!

Background

• Split & Concatenate Simulator (CRYPTO 2013)

L 𝑥, 𝑘, 𝑦 ≈ L(𝑥, 𝑘, 𝑦∗)||L(𝑥∗, 𝑘, 𝑦)

• Longo Galea et al (ASIACRYPT 2014): ∃ correlation

between samples within real traces (e.g. 𝜌 > 0.5)
… that are significantly reduced in simulated ones

⇒ Allows distinguishing!

• Proposed solution: very noisy implementations, but it

scales badly: noise arbitrarily reduced with averaging

Background

• Split & Concatenate Simulator (CRYPTO 2013)

L 𝑥, 𝑘, 𝑦 ≈ L(𝑥, 𝑘, 𝑦∗)||L(𝑥∗, 𝑘, 𝑦)

• Longo Galea et al (ASIACRYPT 2014): ∃ correlation

between samples within real traces (e.g. 𝜌 > 0.5)
… that are significantly reduced in simulated ones

⇒ Allows distinguishing!

• Proposed solution: very noisy implementations, but it

scales badly: noise arbitrarily reduced with averaging

Can we do better?

Origin of the intra-trace correlation

• Algorithmic? Unlikely: 𝜌 𝑥, Sbox 𝑥 ≪ 0.5

Origin of the intra-trace correlation

• Algorithmic? Unlikely: 𝜌 𝑥, Sbox 𝑥 ≪ 0.5

• Physical then ⇒ let’s use a simple physical model

Origin of the intra-trace correlation

• Algorithmic? Unlikely: 𝜌 𝑥, Sbox 𝑥 ≪ 0.5

• Physical then ⇒ let’s use a simple physical model

L 𝑥, 𝑘, 𝑦 = 𝛿 𝑥, 𝑘, 𝑦 + 𝑁

signal noise

Origin of the intra-trace correlation

• Algorithmic? Unlikely: 𝜌 𝑥, Sbox 𝑥 ≪ 0.5

• Physical then ⇒ let’s use a simple physical model

L 𝑥, 𝑘, 𝑦 = 𝛿 𝑥, 𝑘, 𝑦 + 𝑁

⇒ Does the correlation come from signal or noise?

signal noise

Origin of the intra-trace correlation

• Algorithmic? Unlikely: 𝜌 𝑥, Sbox 𝑥 ≪ 0.5

• Physical then ⇒ let’s use a simple physical model

L 𝑥, 𝑘, 𝑦 = 𝛿 𝑥, 𝑘, 𝑦 + 𝑁

⇒ Does the correlation come from signal or noise?

• In particular for large parallel implementations

(since we know 8-bit AES implementations can be

broken in one trace anyway – see SASCA paper)

signal noise

Repeating experiments with a 65nm ASIC

• Intra-trace correlation (real traces, sample 500)

Repeating experiments with a 65nm ASIC

• Intra-trace correlation (real traces, sample 500)

• Same, with simulated traces L(𝑥, 𝑘, 𝑦∗)||L(𝑥∗, 𝑘, 𝑦)

Repeating experiments with a 65nm ASIC

• Intra-trace correlation (real traces, sample 500)

• Same, with simulated traces L(𝑥, 𝑘, 𝑦∗)||L(𝑥∗, 𝑘, 𝑦)

• & fake simulated traces 𝛿 𝑥, 𝑘, 𝑦 + 𝑁1||𝛿 𝑥, 𝑘, 𝑦 + 𝑁2

Repeating experiments with a 65nm ASIC

• Intra-trace correlation (real traces, sample 500)

• Same, with simulated traces L(𝑥, 𝑘, 𝑦∗)||L(𝑥∗, 𝑘, 𝑦)

• & fake simulated traces 𝛿 𝑥, 𝑘, 𝑦 + 𝑁1||𝛿 𝑥, 𝑘, 𝑦 + 𝑁2

A first improvement

• Sliding simulator

𝐿(𝑥, 𝑘, 𝑦∗) ∙ + 𝐿(𝑥∗, 𝑘, 𝑦) ∙

A first improvement

• Sliding simulator

𝐿(𝑥, 𝑘, 𝑦∗) ∙ + 𝐿(𝑥∗, 𝑘, 𝑦) ∙

• Real traces

A first improvement

• Sliding simulator

𝐿(𝑥, 𝑘, 𝑦∗) ∙ + 𝐿(𝑥∗, 𝑘, 𝑦) ∙

• Real traces

• Simulated traces

A first improvement

• Sliding simulator

𝐿(𝑥, 𝑘, 𝑦∗) ∙ + 𝐿(𝑥∗, 𝑘, 𝑦) ∙

• Real traces

• Simulated traces
NOT ENOUGH

Another idea: separate signal and noise

• Sliding signal + noise simulator

 𝛿(𝑥, 𝑘, 𝑦∗) ∙ + 𝛿(𝑥∗, 𝑘, 𝑦) ∙ + N

Another idea: separate signal and noise

• Sliding signal + noise simulator

 𝛿(𝑥, 𝑘, 𝑦∗) ∙ + 𝛿(𝑥∗, 𝑘, 𝑦) ∙ + N

avg. trace
avg. trace – single trace

Another idea: separate signal and noise

• Sliding signal + noise simulator

 𝛿(𝑥, 𝑘, 𝑦∗) ∙ + 𝛿(𝑥∗, 𝑘, 𝑦) ∙ + N

• Real traces

avg. trace
avg. trace – single trace

Another idea: separate signal and noise

• Sliding signal + noise simulator

 𝛿(𝑥, 𝑘, 𝑦∗) ∙ + 𝛿(𝑥∗, 𝑘, 𝑦) ∙ + N

• Real traces

• Simulated traces

avg. trace
avg. trace – single trace

Another idea: separate signal and noise

• Sliding signal + noise simulator

 𝛿(𝑥, 𝑘, 𝑦∗) ∙ + 𝛿(𝑥∗, 𝑘, 𝑦) ∙ + N

• Real traces

• Simulated traces

avg. trace
avg. trace – single trace

LOOKS BETTER

(but probably not enough for low-freq. events)

 More research needed!

