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• Bound the information locally (i.e. on each 
share) and ensure independence (between the 
leakage of the shares) in order to obtain 
security globally (e.g. for AES implementations)

• Limitation: high security requires large # of 
shares ⇒ implies significant overheads
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Leakage-resilience problem 2

• Concretely: can we gain efficiency by working at 
the block cipher level, i.e. bound the 
information (locally) for one execution, assume 
independence (for different executions) and 
gain security (globally) for many executions?

• Theoretically: can we prove the security of an 
implementation and what does it mean? (How 
to reason generally about specific objects?)
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Micali & Reyzin 2004 3

• Physically observable cryptography

• « Only computation leaks » assumption
• Used in all following works

• Indistinguishability ≠ unpredictability (with L)
• Impact for encryption & authentication
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• Leakage-resilient cryptography

• Funnily similar to threshold implementations
• Both exclude one input to gain independence
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• Most natural construction:
• Forward-secure PRG [BY03]

• Re-keying impact: bounds the number of (noisy) 
measurements per key (prevents averaging)
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• Most natural construction [GGM84]:

• Re-keying impact: bounds the number of noise-
free observations per key (allows averaging) 
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• Key recovery security (standard DPA) [BGS15]:

• « Bounded security » for the PRG only
• (Analytical/algebraic attacks not considered)

PRG PRF
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Take home message 8

• Leakage-resilience can at least provide good 
security guarantees (against key recovery
attaks) for stateful primitives such as PRGs
• With a constant overhead factor ≤ 2

• Yet, we need at least one stateless primitive 
execution for initialization (that needs to be
secured by other means such as masking)
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FOCS 2008 / Eurocrypt 2009 9

• L modeled as a polytime function => alternating
structure prevents « precomputation attack »



CCS 2010 10

• Alternating randomness (to save key material)
• Unfortunately not sufficient (CHES 2012)…



CHES 2012 11

• Fresh randomness in each round
• Sound but expensive (generated after L)



CT-RSA 2013 12

• Public randomness generated from a PRG
• (Non quantitative) proof in MiniCrypt



CCS 2010 again (I) 13

• Most natural construction proven under a     
(non standard) random oracle assumption
• L cannot query the random oracle



CCS 2010 again (II) 14

• ≈ formalization of early re-keying attempts
• e.g. ASIACCS 2008: internal wall within AES
• e.g. early patents in the field from CRI
• (Where it was already clear that init. is challenging!)
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Wrapping up 15

• Finding realistic & efficient ways to guarantte
the independence between multiple PRG 
rounds is notorioulsy difficult (!)

• No perfectly satisfying solution so far

• Mostly because L is assumed polytime

• & no other restrictions seem realistic

• Note: similar story for PRFs and PRPs (although
less relevant in view of the separation in slide 7)
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• Unrealistic: leakages ≈ Gbytes of data

Bounded range 16



Security against DPA 17

• Not sufficient to prove anything



• Hard to guarantee (indistinguishability-based)

Key has high HILL pseudoentropy 18



Wrapping up 19

• Finding realistic ways to bound the leakage in 
leakage-resilient PRGs is notoriously difficult

• No perfectly satisfying solution so far

• ∃ a gap between what proofs require and 
what engineers can guarantee (evaluate)
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• Main issue: leakage function is hard to model 
• It solves Maxwell’s equations 
• But circuits give immediate solutions

Looking for physical assumptions 20

=> Just don’t model it!
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Our setting (Crypto 2013)

(a) Give public I/O access to device & setup

(b) Assume L(k,x) can be simulated

• Using the same HW as the target 
• But without knowing the secret key k!

21



has simulatable leakages if ∃ S  such that        
the bit b in the following game is hard to guess

More formally

L
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has simulatable leakages if ∃ S  such that        
the bit b in the following game is hard to guess

• With S  (k,x,     (x)) = L(k,x) (makes our results 
dependent only on the number of calls to S  )

More formally

defL

L

L

22



• Let L(k,x) = 𝑙𝑝(k,x)||𝑙𝑐(k,      (x))
– 𝑙𝑝 corresponds to the first rounds of
– 𝑙𝑐 corresponds to the last rounds of  

• e.g. 

Block cipher leakage simulator

def
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• Let L(k,x) = 𝑙𝑝(k,x)||𝑙𝑐(k,      (x))
– 𝑙𝑝 corresponds to the first rounds of
– 𝑙𝑐 corresponds to the last rounds of  

• e.g. 

 Instantiate S  (k,x,y) = 𝑙𝑝(k,x)|| 𝑙𝑐(k,y)

Block cipher leakage simulator

def

L

23



Why would this work?

Simulatable leakages ≈ DPA + I/O’s leakages

24
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- this is exactly what the simulator does
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- OK if ∃ leakage samples without interest:                    



HILL

Summarizing 25

a. Attacks against q-sim. exploit the same leakages as 
DPA if the traces are consistent with the I/O’s

- this is exactly what the simulator does

b. Additionally needs concatenation
- OK if ∃ leakage samples without interest:                    

c. q-sim. at least easier to guarantee than H



HILL

Summarizing

L

L

L

25

a. Attacks against q-sim. exploit the same leakages as 
DPA if the traces are consistent with the I/O’s

- this is exactly what the simulator does

b. Additionally needs concatenation
- OK if ∃ leakage samples without interest:                    

c. q-sim. at least easier to guarantee than H

d. Engineering challenges

(constructive) Design alternative S  instances
(constructive) Given S , design        with q-sim. leakages
(destructive) Given S  and , break the q-sim. game

First instances falsified by Galea et al. (cfr. end of talk if time allows)



Most natural construction

• Goal: remain secure after ≈ 106 runs
• While relying on q-sim. for q=2

• Proving it was surprisingly difficult so far
• (see slides 9 to 19 of this talk)

26



Proof idea #1: replacing lemma

Original view   

27



Proof idea #1: replacing lemma

a. Exploit the 2-sim. leakages assumption  

27



Proof idea #1: replacing lemma

b. Exploit the BC ≈ PRF assumption

27



Proof idea #2: extend (hybrid argument)

Original view

28



Proof idea #2: extend (hybrid argument)

a. Completely random view (l=4 calls to S  )
L

28



Proof idea #2: extend (hybrid argument)

b. Real view with random y4 (l=4 calls to S  )
L

28



Proof idea #2: extend (hybrid argument)

b. Real view with random y4 (l=4 calls to S  )

Theorem: yl ≈ Un given y1,…,yl-1,L(k0),L(kl-2) if BC is 

a PRF and has 2-simulatable leakages

(with security degradation proportional to 2l)

L

28
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CBC-MAC (is insecure) 29

• Master k key re-used multiple times
Eventually leaked in full (via DPA)
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LR-MAC: security definition 30

• Natural extension of unforgeability without L

• Adversary gets the leakage for tag generation
• But not during the verification algorithm
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Construction I: re-keying MAC 31

• Pragmatism: requires one leak-free block cipher
execution for initialization (cfr. slide 8)
• Then takes advantage of statefullness

• F expected to be (much) more efficient than F*



Construction II: hash-then-MAC 32

• Conceptually simpler (but requires a hash function)



Encryption: construction 33

• Essentially the LR-PRG as a stream cipher
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Encryption: security definition 34

• Conceptual problem: distinguishing is always
easy if L is given in the challenge phase 

• Theoretical approach: exclude L in the challenge 
phase (which is not justified in practice)

• Our (pragmatic) approach: admit semantic
security is impossible. Leakage will always allow
distinguishing plaintexts/ciphertexts!

• CPA security reduction: security of R rounds 
reduces to security of 1 round (independent of 
what we can actualy achieve for 1 round)
• See our CCS 2015 paper for the details
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How to instantiate the leak-free BC? 35

• Mask the AES (or masking-oriented ciphers)
• But overheads always quadratic in d

• Use non-standard constructions
• Heuristic (easy-to-mask) fresh re-keying
• GGM PRF with chosen plaintexts

• Exploit homomorphisms in asymmetric crypto 
• Overheads linear in d (but large for small d’s)
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A recent proposal (Crypto 2016) 36

• Cryptographically strong re-keying function
• sk =< 𝐑, msk >=  < 𝐑, msk𝑖 >

• Security based on hard lattice problems
• Simple & efficient: all computations in GF(2𝑚)
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Conclusions 37

• Concretely, leakage-resilience is effective and 
efficient for stateful primitives such as PRGs

• Protection of stateless primitives such as PRFs
and PRPs is much more challenging

• Pragmatic solution: minimize the number of 
(leak-free) stateless primitives in leakage-
resilient encryption and authentication



Open problems 38

• Sound (empirically falsifiable) assumptions
• e.g. new instances of leakage simulators

• Can we better formalize CPA security with L?

• Leakage-resilient decryption & tag verification
• Excluded from the analysis so far
• Mostly because of IV control by the Adv.

• Leakage-resilient authenticated encryption



THANKS
http://perso.uclouvain.be/fstandae/
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Background

• Split & Concatenate Simulator (CRYPTO 2013)

L 𝑥, 𝑘, 𝑦 ≈ L(𝑥,  𝑘, 𝑦∗)||L(𝑥∗,  𝑘, 𝑦)

• Longo Galea et al (ASIACRYPT 2014): ∃ correlation 

between samples within real traces (e.g. 𝜌 > 0.5)
… that are significantly reduced in simulated ones 

⇒ Allows distinguishing!

• Proposed solution: very noisy implementations, but it 

scales badly: noise arbitrarily reduced with averaging

Can we do better?
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Origin of the intra-trace correlation

• Algorithmic? Unlikely: 𝜌 𝑥, Sbox 𝑥 ≪ 0.5

• Physical then ⇒ let’s use a simple physical model

L 𝑥, 𝑘, 𝑦 = 𝛿 𝑥, 𝑘, 𝑦 + 𝑁

⇒ Does the correlation come from signal or noise?

• In particular for large parallel implementations  

(since we know 8-bit AES implementations can be 

broken in one trace anyway – see SASCA paper) 

signal noise
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Another idea: separate signal and noise

• Sliding signal + noise simulator 

 𝛿(𝑥,  𝑘, 𝑦∗) ∙ +   𝛿(𝑥∗,  𝑘, 𝑦) ∙ + N

• Real traces

• Simulated traces

avg. trace
avg. trace – single trace

LOOKS BETTER

(but probably not enough for low-freq. events)

 More research needed!


