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Abstract. The maximum likelihood side-channel distinguisher of a tem-
plate attack scenario is expanded into lower degree attacks according to
the increasing powers of the signal-to-noise ratio (SNR). By exploiting
this decomposition we show that it is possible to build highly multivariate
attacks which remain efficient when the likelihood cannot be computed in
practice due to its computational complexity. The shuffled table recompu-
tation is used as an illustration to derive a new attack which outperforms
the ones presented by Bruneau et al. at CHES 2015, and so across the
full range of SNRs. This attack combines two attack degrees and is able
to exploit high dimensional leakage which explains its efficiency.

Keywords: Template Attacks, Taylor expansion, Shuffled table recomputation.

1 Introduction

In order to protect embedded systems against side-channel attacks, countermea-
sures need to be implemented. Masking and shuffling are the most investigated
solutions for this purpose [18]. Intuitively, masking aims at increasing the order
of the statistical moments (in the leakage distributions) that reveal sensitive
information [8, 15], while shuffling aims at increasing the noise in the adversary’s
measurements [14]. As a result, an important challenge is to develop sound tools
to understand the security of these countermeasures and their combination [31].
For this purpose, the usual strategy is to consider template attacks for which one
can split the evaluation goals into two parts: offline profiling (building an accurate
leakage model) and online attack (recovering the key using the leakage model). As
far as profiling is concerned, standard methods range from non-parametric ones
? Annelie Heuser is a Google European Fellow in the field of Privacy and is partially
founded by this fellowship.
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(e.g., based on histograms or kernels) of which the cost quite highly suffers from
the curse of dimensionality (see e.g., [2] for an application of these methods in
the context of non-profiled attacks) to parametric methods, typically exploiting
the mixture nature of shuffled and masked leakage distributions [16,17,25,27,33],
which is significantly easier if the masks (and permutations) are known during
the profiling phase. Our premise in this paper is that an adversary is able to
obtain such a mixture model via one of these means, and therefore we question
its efficient exploitation during the online attack phase.

In this context, a starting observation is that the time complexity of template
attacks exploiting mixture models increases exponentially with the number of
masks (when masking) and permutation length (when shuffling [37]). So typically,
the time complexity of an optimal template attack exploiting Q traces against
an implementation where each n-bit sensitive value is split into Ω shares and
shuffled over Π different positions is in O

(
Q · (2n)Ω−1 ·Π!

)
, which rapidly turns

out to be intractable. In order to mitigate the impact of this high complexity,
we propose a small, well-controlled and principled relaxation of the optimal
distinguisher, based on its Taylor expansion (already mentioned in the field of
side-channel analysis in [6,11]) of degree L. Such a simplification leads to various
concrete advantages. First, when applied to masked implementations, it allows us
to perform the (mixture) computations corresponding to the (2n)Ω factor in the
complexity formula only once (thanks to precomputation) rather than Q times.
Second, when applied to shuffled implementations, it allows us to replace the Π!
factor in this formula by

(
Π

min(dΠ2 e,L)
)
=
(
Π
L

)
, thanks to the bounded degree L.

Additionally it can be noticed that an attacker will only build, during the
offline profiling, the leakage models needed for the attack. By applying the Taylor
expansion of the optimal distinguisher the complexity of the offline profiling is
significantly reduced. In general the complexity of the offline profiling becomes
equivalent to the complexity of the online attack.

The resulting “rounded template attacks” additionally carry simple intuitions
regarding the minimum degree of the Taylor expansion needed for the attacks to
succeed. Namely, this degree L needs to be at least equal to the security order O
of the target implementation, defined as the smallest statistical moment in the
leakage distributions that are key-dependent.

We then show that these attacks only marginally increase the data complexity
(for a given success rate) when applied against a masked (only) implementation.
More importantly, we finally exhibit that rounded template attacks are especially
interesting in the context of high-dimensional higher-order side-channel attacks,
and put forward the significant improvement of the attacks against the masked
implementations with shuffled table recomputations from CHES 2015 [7].

Introduction to Shuffled Table Recomputation. Masking the linear parts
of a block cipher is straightforward whereas protecting the non-linear parts is
less obvious. To solve this issue different methods have been proposed. One can
cite algebraic methods [3, 30], using Global Look-Up Table (GLUT) [28] and
table recomputation [1,8,10,19]. Table recomputation methods are often used
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in practice as they represent a good tradeoff between memory consumption and
execution time since they precompute a masked substitution box (S-Box) that is
stored in a table.

However, some attacks still manage to recover the mask during the table
recomputation [6, 36]. As a further protection the recomputation can be shuffled.
This protection uses a random permutation which is drawn over S2n , the set of
all the permutation of Fn2 . Therefore, some random masks are uniformly drawn
over Fn2 to ensure the security against first-order attacks.

Contributions. We show that the expansion of the likelihood allows attacks
with a very high computational efficiency, while remaining very effective from a
key recovery standpoint. This means that the expanded distinguisher requires
only little more traces to reach a given success rate, while being much faster to
compute.

We also show how to grasp in a multivariate setting several leakages of different
orders. In particular, we present an attack on shuffled table recomputation which
succeeds with less traces than [7]. Notice that the likelihood attack cannot be
evaluated in this setting because it is computationally impossible to average over
both the mask and the shuffle (the sole number of shuffles is 2n! ≈ 21684 with
n = 8).

Finally, we show that are our rounded version of the maximum likelihood
allows better attacks than the state-of-the-art. Namely, our attack is better than
the classical 2O-CPA and the recent attack of CHES’15 [7] in all noise variance
settings.

Outline. The remainder of the paper is organized as follows. Sec. 2 provides the
necessary notations and mathematical definitions. The theoretical foundation of
our method is presented in Sec. 3. The case-study (shuffled table recomputation) is
shown in Sec. 4. Sec. 5 evaluates the complexity of our method. The performance
results are presented in Sec. 6. Conclusions and perspectives are presented in
Sec. 7. Some technical results are deferred to the appendices.

2 Notations

2.1 Parameters

Randomization countermeasures consist in masking and shuffling protections.
When evaluating randomized implementations, there are a number of important
parameters to consider. First, the number of shares and the shuffle length in the
scheme, next denoted as Ω and Π, are algorithmic properties of the countermea-
sure. These numbers generally influence the tradeoff between the implementation
overheads and the security of the countermeasures. Second, the order of the
implementation protected by a randomization countermeasure, next denoted
as O, which is a statistical property of the implementation. It corresponds to the
smallest key-dependent statistical moment in the leakage distributions. When
only masking is applied and the masked implementation is “perfect” (meaning
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that the leakage of each share is independent of each other), the order O equals
to Ω at best. Finally, the number of dimensions (or dimensionality) used in
the traces, next denoted as D, is a property of the adversary. In this respect,
adversaries may sometimes be interested by using the lowest possible D (since it
makes the detection of POIs in the traces easier). But from the measurement
complexity point of view, they have a natural incentive to use D as large as
possible. A larger dimension D allows to increase the signal to noise ratio [5].

In summary, our notations are:

– Ω: number of shares in the masking countermeasure,
– Π: length of the shuffling countermeasure,
– O: order of the implementation,
– D: dimensionality of the leakages.

Examples. Existing masking schemes combine these four values in a variety
of manners. For example, in a perfect hardware masked implementation case
with three shares, we may have Ω = 3, O = 3 and D = 1 (since the three
shares are manipulated in parallel). If this implementation is not perfect, we may
observe lower order leakages (e.g. Ω = 3, O = 1 and D = 1, that is a first-order
leakage). And in order to prevent such imperfections, one may use a Threshold
Implementation [24], in which case one share will be used to prevent glitches
(so Ω = 3, O = 2 and D = 1). If we move to the software case, we may then
have more informative dimensions, e.g. Ω = 3, O = 3, D = 3 if the adversary
looks for a single triple of informative POIs. But we can also have a number
of dimensions significantly higher than the order (which usually corresponds to
stronger attacks). Let us also give an example of S-boxes masking with one mask,
where the masking process of the S-box (often called recomputation) is shuffled.
A permutation Φ of Π = 2n values is applied while computing the masked table.
If the attacker ignores the recomputation step, he can carry out an attack on the
already computed table. Hence parameters Ω = 2, O = 2, D = 2 (also known
as “second-order bivariate CPA”). But the attacker can also exploit the shuffled
recomputation of the S-box in addition to a table look-up, as presented in [7];
the setting is thus highly multivariate: Ω = 2, Π = 2n, O = 2, D = 2 · 2n + 1.
Interestingly, the paper [7] shows an attack at degree L = 3 which succeeds in
less traces than attacks at minimal degree L = O = 2.

In general, a template attack based on mixture distributions (often used in
parametric estimation) would require a summation over all random values of the
countermeasure, that is R, which consists in the set of masks and permutations.
One can represent R as the Cartesian product of the set of mask and the set of
permutations. Let us denote byM the set of mask and S the set of permutations.
Then R =M×S. Therefore, the cardinality of R is 2n(Ω−1)Π!.

Eventually, the security of a masked implementation depends on its order and
noise level. More precisely, the security increases exponentially with the order
(with the noise as basis) [12]. So for the designer, there is always an incentive to
increase the noise and order. And for adversary, there is generally an incentive
to use the largest possible D (given the time constraints of his attack), so that
he decreases the noise.
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2.2 Model

We characterize the protection level in terms of the most powerful attacker,
namely an attacker who knows everything about the design, except the masks
and the noise. This means that we consider the case where the templates are
known. How the attacker got the templates is related with security by obscurity,
somehow he will know the model. Of course depending on the learning phase
these estimations can be more or less accurate. For the sake of simplicity we
assume in this paper the better scenario where all the estimations are exact6.

Besides, we assume that the noise is independently distributed over each
dimension. This is the least favorable situation for the attacker (as there is in
this case the most noise entropy). For the sake of simplicity, we assume that
the noise variance is equal to σ2 at each point d = 1, 2, . . . , D. This allows for
a simple theoretical analysis. Let us give an index q = 1, 2, . . . , Q to each trace.
For one trace q, the model is written as:

X = y(t, k∗, R) +N, (1)

where for notational convenience the dependency in q and d has been dropped.
Here X is a leakage measurement; y = y(t, k∗, R) is the deterministic part of
the model that depends on the correct key k∗, some known text (plaintext or
ciphertext) t, and the unknown random values (masks and permutations) R.
Each sample (of index d) of N is a random noise, which follows a Gaussian
distribution pN (z) = 1√

2πσ2
exp

(
− z2

2σ2

)
.

Uppercase letters are generally used for random variables and the correspond-
ing lowercase letters for their realizations. Bold symbols are used to denote vectors
that have length Q, the number of measurements. Namely, X denotes a set of
Q random variables i.i.d. with the same law as X. So, X is a Q×D matrix; R
denotes a set of random variables i.i.d. with the same law as R; t denotes the
set of input texts of the measurements X; y(t, k,R) denotes the set of leakage
models, where k is a key guess, k∗ being the correct key value.

Notations Xd and X(q) are used to denote the d-th column and the q-th line
of the matrix X, respectively.

We are interested in attacks where each intermediate data is a n-bit vector.
In particular, we target S-boxes, denoted by S. Regarding the transduction from
the intermediate variable to the real-valued leakage, we take the example of the
Hamming weight wH defined by wH(z) =

∑n
i=1 zi where zi is the ith bit of z.

3 A Generic Log-Likelihood for Masked Implementations

In this section we derive a rounded version of Template Attack. Namely we
expand a particular instantiation of the template attack the so-called optimal
distinguisher using its Taylor Expansion. By rounding this expansion at the Lth
6 We recall that, even if the templates are perfectly known, the online attack phase
still requires O(Q · 2n(Ω−1) ·Π!) computations.
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degree we are able to build a rounded version of the optimal distinguisher (later
defined as ROPTL). This attack features two advantages: it allows to combine
different statistical moments and its complexity becomes manageable.

3.1 Maximum Likelihood (ML) Attack

The most powerful adversary knows exactly the leakage model (but the actual
key, the masks, and the noise are unknown during the online step) and computes
a likelihood. In the case of masking the optimal distinguisher which maximize
the success rate is given by [6]:

Theorem 1 (Maximum Likelihood). When the y (t, k, R) are known and the
Gaussian noise N is i.i.d. across the queries (measurements) and independent
across the dimension, then the optimal distinguisher is:

OPT: RDQ × RDQ −→ Fn2

(x, y (t, k, R)) 7−→ argmax
k∈Fn2

Q∑
q=1

logE exp
−‖x(q) − y(t(q), k, R)‖2

2σ2

(2)

where the expectation operator E is applied with respect to the random variable
R ∈ R, and the norm is the Euclidean norm ‖x(q)−y(t(q), k, R)‖2 =

∑D
d=1(x

(q)
d −

yd(t
(q), k, R))2.

Proof. It is proven in [6] that the Maximum Likelihood distinguisher is:

argmax
k∈Fn2

Q∏
q=1

∑
r∈R

P (r) p
(
x(q)|y

(
t(q), k, r

))
.

Applying (1) for Gaussian noise and taking the logarithm yields (2). �

In the sequel, we denote by LL(q) = logER exp −‖x
(q)−y(t(q),k,R)‖2

2σ2 the contribu-
tion of one trace q of the Log-Likelihood full distinguisher LL =

∑Q
q=1 LL

(q).

Remark 1. Notice that for each trace q, the Maximum Likelihood distinguisher
involves a summation over #R values, which correspond to #R accesses to
precharacterized templates.

If D = 1, then the signal-to-noise ratio (SNR) is defined in a natural way as
the ratio between the variance of the model Y and the variance of the noise N .
But when the setup is multivariate, it is more difficult to quantify a notion of
SNR. For this reason, we use the following quantity

γ =
1

2σ2
, (3)

which is actually proportional to an SNR, in lieu of SNR. In practice, we assume
that γ is small. It is indeed a condition for masking schemes to be efficient (see
for instance [12]).
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Proposition 1 (Taylor Expansion of Optimal Attacks in Gaussian Noise).
The attack consists in maximizing the sum over all traces q = 1, . . . , Q of

+∞∑
`=1

κ`
`!
(−γ)`, (4)

where κ` is the `th-order cumulant of the random variable ‖x−y(t, k, R)‖2, which
can be found inductively from `th-order moments:

µ` = ER
(
‖x− y(t, k, R)‖2`

)
, (5)

using the relation:

κ` = µ` −
`−1∑
`′=1

(
`− 1

`′ − 1

)
κ`′µ`−`′ (` ≥ 1). (6)

Proof. The log-likelihood can be expanded according to the increasing powers of
the SNR as:

logE exp
(
−γ‖x− y(t, k, R)‖2

)
=

+∞∑
`=1

κ`
`!
(−γ)`, (7)

where we have recognized the cumulant generating function [34]. The above
relation (6) between cumulants and moments is well known [39]. �

Definition 1. The Taylor expansion of the log-likelihood truncated to the Lth
degree LLL in SNR is

LLL =

L∑
`=1

(−1)`κ`
γ`

`!
. (8)

Put differently, we have LL = LLL + o(γL) (using the Landau notation). The
optimal attack can now be “rounded” in the following way:

Definition 2 (Rounded OPTimal Attack of Degree L in γ). The rounded
optimal Lth-degree attack consists in maximizing over the key hypothesis the
sum over all traces of the Lth order Taylor expansion LLL in the SNR of the
log-likelihood :

ROPTL : RDQ × RDQ −→ Fn2
(x, y (t, k, R)) 7−→ argmax

k∈Fn2
LLL. (9)

Proposition 2. If the degree L is smaller than the order O of the countermeasure
then the attack fails to distinguish the correct key.
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Proof. One can notice that µ` combines (by a product) a most ` terms following
the formula:

µ` =
∑

k1+...+kD=`

(
`

k1, . . . , kD

)
E

∏
0<i<D+1

(xi − yi)2·ki ,

with k1 + . . .+ kd = `. It implies that it exits at most ` different ki > 0 and as a
consequence there are at most ` different variables in the expectation. Therefore
by definition of a perfect masking scheme µL does not depend on the key. As a
consequence LLL with L < O neither depends on the key.

�

Theorem 2. Let an implementation be secure at order O. The lowest-degree
successful attack is the one at degree L = O which maximizes LLL. This is
equivalent to summing

µL = ER
(
‖x− y(t, k, R)‖2L

)
,

over all traces and

– maximize the result over the key hypotheses, if L is even;
– minimize the result over the key hypotheses, if L is odd.

Proof. Since κ` is independent of k for all ` ≤ L, the first sensitive contribution
to the log-likelihood is

(−1)LκL
γL

L!
.

Now, κL = µL+ lower order terms (which do not depend on the key as the
implementation is secure at order O), and removing constants independent of k
the contribution to the log-likelihood reduces to (−1)LµL. �

Theorem 3 (Mixed Degree Attack). Assuming an implementation secure
at order O, the next degree successful attack is the one at degree L+ 1 = O + 1
which maximizes LLL+1. This is equivalent to summing

µL(1 + γµ1)− γ
µL+1

L+ 1
,

over all traces and

– maximize the result over the key hypotheses, if L is even;
– minimize the result over the key hypotheses, if L is odd.

Proof. The (L+ 1)th-order term in the log-likelihood becomes

(−1)LκL
γL

L!
+ (−1)L+1 κL+1

(L+ 1)!
γL+1.

Now from (6) we have, for L > 0

κL+1 = µL+1 − (L+ 1)µLµ1 + lower-order terms.
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Removing terms that do not depend on k, we obtain:

(−1)LγL
(
µL − γ(

µL+1

L+ 1
− µLµ1)

)
.

Compared to a Lth-degree attack, we see that µL is replaced by a corrected
version:

µL(1 + γµ1)− γ
µL+1

L+ 1
,

where µ1 is independent of k. However, µ1 cannot be removed as it scales the
relative contribution of µL and µL+1 in the distinguisher. �

Remark 2. In contrast to LLL, implementing LLL+1 requires knowledge of the
SNR parameter γ = 1/2σ2.

Remark 3. In general, when L ≥ O the rounded optimal attack ROPTL exploits
all key dependent terms of degree `, where O ≤ ` ≤ L, whereas an LO-CPA [8]
or MCP-DPA [22] only exploit the term of degree L.

4 Case Study: Shuffled Table Recomputation

In this section we apply the ROPTL formula of Eq. (9) of Def. 2 to the particular
case of a block cipher with a shuffled table recomputation stage. We show that in
this scenario our new method allows to build a better attack than that from the
state-of-the-art. By combining the second and the third cumulants we construct
an attack which is better than:

– any second-order attack;
– the attack presented at CHES 2015. Following the notations of [7] we denote

this attack by MVATR (which stands for Multi-Variate Attack on Table
Recomputation) in the rest of this article. This is a third-order attack that
achieves better results than 2O-CPA when the noise level σ is below a given
threshold (namely σ2 ≤ 2n−2 − n/2).

4.1 Parameters of the Randomization Countermeasure

In order to validate our results we take as example a first order (O = 2), masking
scheme where the sensitive variables are split into two shares (Ω = 2). The
nonlinear part of this scheme is computed using a table recomputation stage.
This step is shuffled (Π = 2n) for protection against some known attacks [26,36].
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The beginning of this combined countermeasure is given in Algorithm 1. The
table is recomputed in a random order from line 3 to line 7.
Algorithm 1: Beginning of computation of a block cipher masked by table
recomputation in a random order
input : t, one byte of plaintext, and k, one byte of key
output :The application of AddRoundKey and SubBytes on t, i.e., S[t⊕ k]
// Table precomputation protected by shuffling ................

1 m←R Fn2 , m′ ←R Fn2 // Draw of random input and output masks
2 ϕ←R Fn2 → Fn2 // Draw of random permutation of Fn2
3 for ϕ(ω) ∈ {ϕ(0), ϕ(1), . . . , ϕ(2n − 1)} do // S-box masking
4 z ← ϕ(ω)⊕m // Masked input
5 z′ ← S[ϕ(ω)]⊕m′ // Masked output
6 S′[z] = z′ // Creating the masked S-box entry
7 end

// Masked computation .............................................

8 t← t⊕m // Plaintext masking
9 t← t⊕ k // Masked AddRoundKey

10 t← S′[t] // Masked SubBytes
11 t← t⊕m′ // Demasking
12 return t

We used lower case letter (e.g., m, ϕ) for the realizations of random variables,
written upper-case (e.g., M , Φ). For the sake of simplicity in the rest of this case
study, we assume that m = m′.

An overview of the leakages over time is given in Fig. 1.
We detail below the mathematical expression of these leakages. The ran-

domization consists in one mask M chosen randomly in {0, 1}n, and one shuffle
(random permutation of {0, 1}n) denoted by Φ. Thus, we denote R = (M,Φ),
which is uniformly distributed over the Cartesian product {0, 1}n × S2n (i.e.
M = {0, 1}n and S = S2n), where Sm is the symmetric group of m elements. We
have D = 2n+1 + 2 leakage models, namely:

– X0 = y0 (t, k, R) +N0 with y0 (t, k, R) = wH(M),
– X1 = y1 (t, k, R) +N1 with y1 (t, k, R) = wH(S[T ⊕ k]⊕M),
– Xi = yi (t, k, R)+Ni, for i = 2, . . . , 2n+1 with yi (t, k, R) = wH(Φ(i−2)⊕M),
– Xj = yj (t, k, R) + Nj , for j = 2n + 2, . . . , 2n+1 + 1 with yj (t, k, R) =
wH(Φ(j − 2n − 2)).

We recall that we assume the noises N are i.i.d. Clearly, there is a second-
order leakage, as the pair (X0, X1) does depend on the key. But there is also a
large multiplicity of third-order leakages, such that (X1, Xi, Xj=i+2n), as will be
analyzed in this case-study.

The following side-channel attacks are applied on a set of Q realizations.
Let us define I and J as I = J2, 2n + 1K and J = J2n + 2, 2 × 2n + 1K. Then
the maximal dimensionality is D = 2 + 2 × 2n, and we denote a sample d as
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Fig. 1: Leakages of the shuffled table recomputation scheme

d ∈ {0, 1} ∪ I ∪ J . The Q leaks (resp. models) at sample d are denoted as xd and
yd = yd(t, k, R).

In order to simplify the notations we introduce

f
(q)
d =

(
x
(q)
d − yd

(
t(q), k, R

))2
, (10)

with d ∈ {0, 1} ∪ I ∪ J . The (q) can be omitted where there is no ambiguity.

4.2 Second-Order Attacks

As any other high order masking scheme, our example can be defeated by High
Order Attacks [8, 20,29, 38]. As our scheme is a first order masking scheme with
two shares it can be defeated using a second order attack [8, 20] which combines
the leakages of the two shares using a combination function [8,20,25] such as the
second order CPA (2O-CPA) with the centered product as combination function.

Using our notation it implies D = 2.

Definition 3 (2O-CPA [29]). We denote by 2O-CPA the CPA using the centered
product as combination function. Namely:

2O-CPA: RQ × RQ × RQ −→ Fn2
(x0,x1,y) 7−→ argmax

k∈Fn2
ρ̂ [x0 ◦ x1,y] , (11)

where y = EM (y0 (t, k, R) ◦ y1 (t, k, R)), ◦ is the element wise product and ρ̂
is an estimator of the Pearson coefficient. It can be noticed that as the terms
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y0 (t, k, R) and y1 (t, k, R) only depend on M the expectation is only computed
overM.

Remark 4. Here we have assumed without loss of generality that the leakages
and the model are centered.

An attacker can restrict himself in order to ignore the recomputation stage.
Since such attacker ignores the table recomputation no random shuffle is involved.
As a consequence the optimal distinguisher restricted to these leakages becomes
computable. Nevertheless as we will see in Sec. 6 this approach is not the best.
Indeed a lot of exploitable information is lost by not taking into account the
table recomputation.

Definition 4 (OPT2O Distinguisher — Eq. (2) for D = 2). We define by
OPT2O the optimal attack which targets the mask and the masked sensitive value.

OPT2O : R2Q × R2Q → Fn2

(xd, yd (t, k, R))d∈{0,1} 7→ argmax
k∈Fn2

Q∑
q=1

logE exp

−γ ∑
d∈{0,1}

f
(q)
d

 ,

(12)

with f (q)d as defined in Eq. (10).

4.3 Exploiting the Shuffled Table Recomputation Stage

It is known that the table recomputation step can be exploited to build better
attacks than second order attacks [6,36]. Recently a new attack has been presented
which remains better than the 2O-CPA even when the recomputation step is
protected [7]. Let us recall the definition of this attack:

Definition 5 (MVATR [7]). The MultiVariate Attack (MVA) exploiting the
leakage of the table recomputation (TR) is given by the function:

MVATR : RQ(2
n+1+1) × RQ −→ Fn2

(xd,y)d∈{1}∪I∪J 7−→ argmax
k∈Fn2

ρ̂

−1

2

∑
i∈I,j=i+2n

xi ◦ xj

 ◦ x1,y

 ,
(13)

where, like for Def. 3, y = EM (y0 (t, k, R) ◦ y1 (t, k, R)), ◦ is the element wise
product and ρ̂ is an estimator of the Pearson coefficient.

Let us now apply our new ROPTL on a block cipher protected with a shuffled
table recomputation. In this case the lower moments are given by:

µ` = E

[(∑
d

fd

)`]
= E

( f0︸︷︷︸
S[t⊕k]⊕M

+ f1︸︷︷︸
M

+
∑
i∈I

fi︸︷︷︸
Φ(ω)⊕M

+
∑
j∈J

fj︸︷︷︸
Φ(ω)

)` .
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Proposition 3. The second degree rounded optimal attack on the table recom-
putation is:

ROPT2 : R2Q × R2Q −→ Fn2

(xd, yd (t, k, R))d∈{0,1} 7−→ argmax
k∈Fn2

Q∑
q=1

E(f (q)0 × f (q)1 ).
(14)

Proof. Combine Theorem 2 and Eq. (30) of Appendix A.2. �

Remark 5. The ROPT2 which targets the second order moment happens not to
take into account the terms of the recomputation stage. Naturally the only second
order leakages are also the ones used by 2O-CPA and OPT2O distinguishers.

Proposition 4. The third degree rounded optimal attack on the table recompu-
tation is:

ROPT3 : R(2n+1+2)Q × R(2n+1+2)Q −→ Fn2

(xd, yd (t, k, R))d∈{0,1}∪I∪J 7−→ argmax
k∈Fn2

Q∑
q=1

µ
(q)
2 (1 + γµ

(q)
1 )− γ µ

(q)
3

3
,

(15)

where the values of µ(q)
1 , µ(q)

2 and, µ(q)
3 are respectively provided in Eq. (22) of

Appendix A.1, Eq. (30) of Appendix A.2 and Eq. (33) of Appendix A.3.

Proof. Combining Theorem 2 and Appendix A. �

Proposition 5. To compute µ1, µ2 and µ3 an attacker does not need to compute
the expectation over S2n .

Proof. Proof given in Appendix A. �

5 Complexity

In this section we give the time complexity needed to compute OPT and ROPTL.
We also show that when L� D the complexity of ROPTL remains manageable
whereas the complexity of OPT is prohibitive. In this section all the complexities
are computed for one key guess.

5.1 Complexity in the General Case

Let us first introduce an intermediate lemma.

Lemma 1. The complexity of computing µ` (for one trace) is lower than:

O
((

D + `− 1

`

)
· 2(Ω−1)n ·

(
Π

min
(⌈
Π
2

⌉
, `
))) . (16)
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Proof. See Appendix B.1. �

Proposition 6. The complexity of OPT is:

O
(
Q · (2n)Ω−1 ·Π! ·D

)
. (17)

The complexity of ROPTL is lower than:

O
(
Q · L ·

(
D + L− 1

L

)
· 2(Ω−1)n ·

(
Π

min
(⌈
Π
2

⌉
, L
))) . (18)

Proof. The proof is given in Appendix B.2. �
Prop. 6 allows to compare the complexity of the two attacks. One can no-

tice that there are still terms with Π! or D! in ROPTL such as
(
D+L−1

L

)
or(

Π
min(dΠ2 e,L)

)
. Nevertheless these two terms can be seen as constants where

L� D. As a consequence we have the following remark.

Important Remark. When the degree L of the attack ROPTL is such that
L� D the complexity of OPT is much higher than the complexity of ROPTL.
Indeed the main term for OPT is Π! whereas the one for ROPTL is 2(Ω−1)n.

Proposition 7. The complexity of ROPTL can be reduced to O
(
Q·L·

(
D+L−1

L

))
with a precomputation in O

(
L ·
(
D+L−1

L

)
· 2(Ω−1)n ·

(
Π

min(dΠ2 e,L)
))

.

Proof. See Appendix B.3. �
This means that for Q large enough i.e. when γ is low enough this compu-

tational “trick” allows a speed-up factor of 2(Ω−1)n
(

Π
min(dΠ2 e,L)

)
. The idea is to

output the values depending on the queries from the computation of the expec-
tations. These expectations only depend on the model which can be computed
only once.

5.2 Complexity of our Case Study

Let us now compute the complexity of these two distinguishers applied to our
case study. Of course an approach could be to use the formula of the previous
section 5.1. But one can notice that a lot of terms could be independent of the
key and as consequence not needed in an attack. Another approach is to use the
formula of the distinguisher.

Proposition 8. The complexity of OPT is:

O
(
Q · (2n) · 2n! ·

(
2n+1 + 2

))
. (19)

The complexity of ROPT2 is:

O (Q · 2n) . (20)

The complexity of ROPT3 is lower than:

O
(
Q · 24n

)
. (21)
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Proof. See Appendix B.4. �

Remark 6. As already mentioned an attacker can ignore the leakages of the table
recomputation and only target the two shares. In such case the complexity of
OPT2O (Def. 4) is O (Q · (2n)). With the result of Prop. 7 the complexity of
ROPT2 reduces to O (Q).

Remark 7. Using the result of Prop. 7 the complexity of ROPT3 can be reduced
to O

(
Q · 22n

)
with a precomputation step of O

(
22n
)
.

Remark 8. A summary of the complexity, and the computation time of the
distinguishers are provided in Appendix B.5 in Table 1.

6 Simulation Results

In this section we validate in simulation the soundness of our approach for the
case study described in Sec. 4.1. The results of these simulations are expressed in
success rate (defined in [32] and denoted by SR). All simulations are computed
using the Hamming weight model as a leakage model. As we assume an attacker
with a perfect knowledge, the leakages are the model (denoted by y) plus some
noise. The noise is Gaussian with a standard deviation of σ.

In Subsec 6.1 we assume that the attacker does not take into account the
table recomputation stage. He only targets the leakages of the mask and the
masked share (the leakage of masked S-Box). Namely the leakages which occurs
in lines 1 and 10 of Algorithm 1. This approach allows to compute the restricted
version of the maximum likelihood. We compare the results of the maximum
likelihood, our rounded version and the high order attacks.

In Subsec 6.2 we present our main results. In this subsection the attacker can
exploit the leakage of the mask, the masked share and all the leakages of the
table recomputation. In this scenario we show that our rounded version of the
optimal distinguisher outperforms all the attacks of the state-of-the-art.

6.1 Exploiting only Leakage of the Mask and the Masked Share

In this subsection all the attacks are computed using only the leakages of the
line 1 and the line 10 of Algorithm 1.

In this case study we assume a perfect masking scheme with: Y0 = wH(M)
and Y1 = wH(S[T ⊕ k]⊕M).

It can be seen in Fig. 2 that even for small noise (σ = 1, Fig. 2a) the 2O-CPA
and ROPT2 are equivalent. Indeed the two curves superimpose almost perfectly
(in order to better highlight a difference, as many as 1000 attacks have been
carried out for the estimation of the success rate). Moreover these two attacks
are nearly equivalent to the optimal distinguisher (we recover here the results
of [6]). We can notice that for both σ = 1 and σ = 2, ROPT4 is not as good as
ROPT2. This means that the noise standard deviation is not large enough for
approximations of higher degrees to be accurate. Indeed when the noise is not
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low enough the weight of each term of the decomposition can be such that some
useful terms vanish due to the alternation of positive and negative terms in the
Taylor expansion.

Let us recall that the decomposition of Eq. (8) is valid only for low γ =
1/(2σ2) i.e. high noise. The error term ( o(γL)) in the Taylor expansion gives the
asymptotic evolution of this error when the noise increases but does not provide
information about the error for a fixed value of noise variance. This means that
the noise is too small for ROPT4 to be a good approximation of OPT although
ROPT2 is nearly equivalent to OPT.

For σ = 2 the noise is high enough to have a good approximation of OPT by
ROPT4. For this noise all the attacks are close to OPT (Fig. 2b).

In the context where only the mask and the masked share are used it is
equivalent to compute the 2O-CPA, ROPT2 and OPT. As a consequence in the
rest of this article only the 2O-CPA will be displayed.

To conclude our ROPTL is in this scenario at least as good as the HO-CPA of
order L, which validates the optimality of state-of-the-art attacks against perfect
masking schemes of order O = L.
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Fig. 2: Bivariate attacks

6.2 Exploiting the Shuffled Table Recomputation

In this subsection the attacker can target the leakage of the mask, the masked share
and all the leakages occurring during the table recomputation. As a consequence
the attacks of Subsec 6.1 remain possible. It has been shown in [6,33] that the
2O-CPA with the centered product becomes close to the OPT2O (the Maximum
Likelihood) when the noise becomes high. It is moreover confirmed by our
simulation results as it can be seen in Fig. 2. We choose as attack reference for
the Fig. 3 the 2O-CPA and not the OPT2O because it performs similarly Fig. 2
and it is much faster to compute (see Table 1) which is mandatory for attacks
with high noise (e.g. for σ = 12) which involve many traces.
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Following the formulas provided previously empirical validations have been
done. For σ ≤ 8 the attacks have been redone 1000 times to compute the SR.
For σ > 8 the attacks have been done 250 times. Results are plotted in Fig. 3.
In these figures the results of the 2O-CPA, the MVATR and ROPT3 are plotted.
Noticed that the likelihood is not represented because we cannot average over R.

Recall that the cardinality of the support of R is 2n × 2n!. It can be first
noticed that for all the noises ROPT3 is the best attack.

Let us analyze how much better ROPT3 is than 2O-CPA and MVATR. The
comparison with our new attack can be divided in three different categories. For
low noise σ = 3 (see Fig. 3b) the results of ROPT3 are similar to the results of
MVATR. This means that the leakage of the shuffled table recomputation is the
most leaking term in this case. At the opposite when the noise is high (for σ = 12
see Fig. 3g) ROPT3 becomes close to 2O-CPA which means that as expected the
most informative part is the second order term. For medium noise 7 ≤ σ ≤ 9 (see
Fig. 3d, Fig. 3e and Fig. 3f) the results of ROPT3 are much better than the result
of 2O-CPA and MVATR. Moreover, the gain compared to the second best attack
is maximum when the results of 2O-CPA and MVATR are the same. Indeed for
σ = 7 (see Fig. 3d), ROPT3 needs 35000 traces to reach 80% of success whereas
MVATR (the second best attack) needs 60000 traces. This represents a gain of
71%. For σ = 8 (see Fig. 3e), ROPT3 needs 65000 traces to reach 80% of success
whereas the MVATR and the 2O-CPA needs 120000 traces. This represents a
gain of 85%. And when the noise increases to σ = 9 (see Fig. 3f), ROPT3 needs
120000 traces to reach 80% of success whereas 2O-CPA (the second best attack)
needs 200000 traces, which is a gain of 66%.

These results can be interpreted as follows: The MVATR is a third order
attack which depends on the third order moment. The 2O-CPA is a second order
attack which depends on the second order moment. The new ROPT3 attack
combines these two moments. When the noise is low the MVATR and the ROPT3

performs similarly; this shows that the dominant term in the Taylor expansion
is the third order one. At the opposite when the noise increases the ROPT3

becomes close to the 2O-CPA which indicates that the important term in the
Taylor expansion is the second order one. As ROPT3 combines the second and
the third order moment weighted by the SNR it is always better than any attack
exploiting only one moment.

7 Conclusions and Perspectives

In this article, we derived new attacks based on the Lth degree Taylor expansion
in the SNR of the optimal Maximum Likelihood distinguisher. We have shown
that this Lth degree truncation allows to target a moment of order L. The new
attack outperforms the optimal distinguisher with respect to time complexity. In
fact as we have theoretically shown, the Taylor approximation can be effectively
computed whereas the fully optimal maximum likelihood distinguisher, was not
computationally tractable.
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Fig. 3: Attack on shuffled table recomputation
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We have illustrated this property by applying our new method in a complex
scenario of “shuffled table recomputation” and have compared the time complexity
of the new attack and the optimal distinguisher. In addition, we have shown that
in this context our attack has a higher success rate than all the attacks of the
state-of-art over all possible noise variances.

An open question is how to quantify the accuracy of the approximation
LL −→ LL` as a function of the noise. In other words, what is the optimal degree
of the Taylor expansion of the likelihood for a given SNR? Another interesting
extension of this framework would be on hardware devices which are known to
leak at various orders (see the real-world examples in [21–23]).

A Computation of the Moments

A.1 Computation of µ1

There is no computational difficulty:

µ1 = E(f0) + E(f1) +
∑
i∈I

E(fi) +
∑
j∈J

E(fj). (22)

Now, when there is no ϕ in the R.V., then the expectation is only on M
(indeed, 1

2n!

∑
ϕ∈S2n

1 = 1). Thus,

E(f0) =
1

2n

∑
m∈Fn2

(x0 − wH(S[t⊕ k]⊕m))2 =
1

2n

∑
m∈Fn2

(x0 − wH(m))2, (23)

which cannot further be simplified (in the simulations, it will be computed by
the computer).

Similarly

E(f1) =
1

2n

∑
m∈Fn2

(x1 − wH(S[t⊕ k]⊕m))2 =
1

2n

∑
m∈Fn2

(x1 − wH(m))2. (24)

When there is an expectation on Φ, then at order one, it considers only one
value Φ(ω). It is uniformly distributed, hence one can replace the expectation
on Φ by an expectation on one value of ϕ, we call M ′. For instance:

E(fi) =
1

2n!

∑
ϕ∈S2n

(xi − wH(ϕ(ω)))2

=
1

2n

∑
m′∈Fn2

(xi − wH(m′))2, (25)

which can thus be computed with the same average method as E(f0).
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Lastly, when there is both M and Φ(ω), then whichever variable can absorb
the other one, since both are uniformly distributed on Fn2 . This means that:

E(fj) =
1

2n

∑
m∈Fn2

1

2n!

∑
ϕ∈S2n

(xj − wH(ϕ(ω)⊕m))2

=
1

22n

∑
m,m′∈Fn2

(xj − wH(m⊕m′))2

=
1

22n

∑
m̃,m′∈Fn2

(xj − wH(m̃⊕m′ ⊕m′))2 where m̃ = m⊕m′ (26)

=
1

2n

∑
m̃∈Fn2

(xj − wH(m̃))2, (27)

which is once again a similar computation as done for computing E(f0).

A.2 Computation of µ2

Recall that only the key dependent terms of µ2 are needed for ROPT2 and
ROPT3.

Notice that the square terms are computed as the non-square terms. For
instance,

E(f20 ) =
1

2n

∑
m∈Fn2

(x0 − wH(S[t⊕ k]⊕m))4 =
1

2n

∑
m∈Fn2

(x0 − wH(m))4, (28)

which we drop since it does not depend on k. All in one, the only key-dependent
term is:

E(f0 × f1) =
1

2n

∑
m∈Fn2

(x0 − wH(S[t⊕ k]⊕m))2(x1 − wH(m))2, (29)

which cannot be further simplified and will be computed by the computer. So,
for the purpose of the attack, we have:

µ2 = E(f0 × f1) + cst. (30)

A.3 Computation of µ3

We shall consider only terms which depend on the key, hence product of three
terms, one of which (at least) is f0. Obviously, E(f30 ) does not depend on k, for
the same reason as given in Eqn. (28). But the two terms:

1. E(f20 f1) and
2. E(f0f21 )
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Notice that they are present
(
3
2

)
= 3 times each when developing the cube.

Interestingly, those are not the only cases where f0 and f1 are selected.

E(f0f1fj)

=
1

2n

∑
m∈Fn2

1

2n!

∑
ϕ∈S2n

(x0 − wH(S[t⊕ k]⊕m))2(x1 − wH(m))2(xj − wH(ϕ(ω)⊕m))2

=
1

2n

∑
m∈Fn2

1

2n

∑
m′∈Fn2

(x0 − wH(S[t⊕ k]⊕m))2(x1 − wH(m))2(xj − wH(m′ ⊕m))2

=
1

2n

∑
m∈Fn2

(x0 − wH(S[t⊕ k]⊕m))2(x1 − wH(m))2
1

2n

∑
m′∈Fn2

(xj − wH(m′ ⊕m))2

=
1

2n

∑
m∈Fn2

(x0 − wH(S[t⊕ k]⊕m))2(x1 − wH(m))2
1

2n

∑
m̃′∈Fn2

(xj − wH(m̃′))2
(As in
Eq. (26))

= E(f0f1)E(fj).

Similarly, we have:

E(f0f1fi) = E(f0f1)E(fi).

Now, we consider products without f1. Obviously, taking only f0 and fi is
not enough, since: E(f20 fi) = E(f20 )E(fi) and E(f0f2i ) = E(f0)E(f2i ) are key
independent. The same goes for E(f20 fj) and E(f0f2j ). We are left with E(f0fifi′),
E(f0fjfj′), and E(f0fifj).

The term E(f0fifi′) = E(f0)E(fifi′)) does not depend on k, because there is
no M in fi.

The term E(f0fjfj′) can also factorize as E(f0)E(fjfj′)), hence it does not
depend on k. The reason is more subtle, so we detail it:

E(f0fjfj′) =
1

2n

∑
m∈Fn2

(x0 − wH(S[t⊕ k]⊕m))2

× 1

2n(2n − 1)

∑
(m′,m′′)∈Fn2×F

n
2

s.t. m′ 6=m′′

(xj − wH(m′ ⊕m))2(xj′ − wH(m′′ ⊕m))2.

Now, the second sum does not depend on m, as shown below:
1

2n(2n − 1)

∑
(m′,m′′)∈Fn2×F

n
2

s.t. m′ 6=m′′

(xj − wH(m′ ⊕m))2(xj′ − wH(m′′ ⊕m))2 =

1

2n

∑
m′∈Fn2

(xj − wH(m′ ⊕m))2
1

2n − 1

∑
m′′∈Fn2 \{m′}

(xj′ − wH(m′′ ⊕m))2 =

1

2n

∑
m̃′∈Fn2

(xj − wH(m̃′))2
1

2n − 1

∑
m′′∈Fn2 \{m̃′⊕m}

(xj′ − wH(m′′ ⊕m))2 =

1

2n

∑
m̃′∈Fn2

(xj − wH(m̃′))2
1

2n − 1

∑
m̃′′∈Fn2 \{m̃′′��

�XXX⊕m⊕m}

(xj′ − wH(m̃′′))2.
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Consequently, the last case is E(f0fifj). We can subdivide it into two cases:
j = i + 2n and j 6= i + 2n. When j = i + 2n, the permutation Φ is evaluated
at the same ω in fi and fj . We denote by M ′ the R.V. Φ(ω), where ω = j − 2.
Hence:

E(f0fifj=i+2n) =

1

2n

∑
m∈Fn2

(x0 − wH(S[t⊕ k]⊕m))2
1

2n

∑
m′∈Fn2

(xi − wH(m′))2(xj − wH(m′ ⊕m))2.

(31)

These terms (for all j ∈ J) correspond to the MVATR attack published at CHES
2015 [7].

Eventually, there are the terms for j 6= i−2n. They are actually key dependent,
hence must be kept. They are equal to:

E(f0fifj 6=i+2n) =
1

2n

∑
m∈Fn2

(x0 − wH(S[t⊕ k]⊕m))2

× 1

2n
1

2n − 1

∑
(m′,m′′)∈Fn2×F

n
2

s.t. m′ 6=m′′

(xi − wH(m′))2(xj − wH(m′′ ⊕m))2.

Interestingly, without the constraint m′ 6= m′′, this quantity does not depend
on the key. So, the leakage which is exploited here is due to the fact Φ is not
a random function, but a bijection. As, in µ3, we are only interested in non
constant terms, we can rewrite:

E(f0fifj 6=i+2n) = cst− 1

2n

∑
m∈Fn2

(x0 − wH(S[t⊕ k]⊕m))2

× 1

2n
1

2n − 1

∑
(m′,m′′)∈Fn2×F

n
2

s.t. m′=m′′

(xi−wH(m′))2(xj−wH(m′′ ⊕m))2

= cst− 1

2n

∑
m∈Fn2

(x0 − wH(S[t⊕ k]⊕m))2

× 1

2n − 1

∑
m′∈F2

(xi − wH(m′))2(xj − wH(m′ ⊕m))2. (32)

The non-constant term is similar to Eqn. (31) provided a scaling by −(2n−1)/2n

is done.
So, for the purpose of the attack, we have:

µ3 = cst+ 3E(f20 f1) + 3E(f0f21 ) + 3!E(f0 × f1)
(∑
i∈I

E(fi) +
∑
j∈J

E(fj)

)

+ 3!

2n+1∑
i=2

E(f0fifj=i+2n) + 3!

2n+1∑
i=2

∑
j∈{2+2n,...,2n+1+1}\{i+2n}

E(f0fifj). (33)
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B Complexity Proofs

B.1 Proof of Lemma 1

In order to prove Lemma 1 let us first introduce a preliminary result.

Lemma 2. The quantity
(
Π
`

)
is increasing if ` < dΠ/2e and its maximum is(

Π
dΠ2 e

)
.

Proof. (
Π

`+ 1

)
=

Π!

(Π − `− 1)!(`+ 1)!
=
Π − `− 1

`+ 1

(
Π

`

)
,

and the factor Π−`−1
`+1 is strictly greater than 1. Indeed,

Π − `− 1

`+ 1
> 1 ⇐⇒ Π > 2(`+ 1) ⇐⇒ ` < dΠ/2e .

�
Finally we can prove Lemma 1.

Proof. Let us first assume that one dimension leaks at most one element of
the permutation. We can thus develop the expression of µ`, and we denote the
complexity under the braces.

µ` = ER
(
‖x− y(t, k, R)‖2`

)
=

∑
k1+...+kD=`︸ ︷︷ ︸
(D+`−1

` )

`!∏D
d=1 kd!

ER︸︷︷︸
2(Ω−1)n( Π

dΠ2 e)

(
D∏
d=1

fkdd

)
︸ ︷︷ ︸

min(D,`)

As k1 + . . .+ kD = ` there are at most D indices kd, 1 ≤ d ≤ D such that kd 6= 0.
Hence there are at most min (D, `) elements in the product.

Each dimensions which leaks an element of the permutation can also leaks the
masks. The worst case in terms of complexity is when all the permutation leakages
depend also on the masks. Let us denote by i such that 1 ≤ i ≤ min (D, `) the
number of those terms. Then the expectation is computed over 2(Ω−1)n Π!

(Π−i)! .
Nevertheless by taking into account the commutativity properties of the product
one can only compute 2(Ω−1)n

(
Π
i

)
.

By Lemma 2 we have that is value
(
Π
i

)
is maximum with

(
Π
`

)
when ` ≤

⌈
Π
2

⌉
.

When ` > Π
2 + 1 the maximum is

(
Π
dΠ2 e

)
.

Finally as there are
(
D+`−1

`

)
elements in the sum.

The complexity of µ` is lower than O
((
D+`−1

`

)
2(Ω−1)n

(
Π

min(dΠ2 e,`)
))

. �
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B.2 Proof of Proposition 6

In order to prove Lemma 6 let us first introduce a preliminary result.

Lemma 3. The quantity
(
D−1+`

`

)
is increasing with ` if D > 1.

Proof. We have that :(
D − 1 + `+ 1

`+ 1

)
=
D + `

`+ 1

(
D − 1 + `

`

)
,

where ∀`, D+`
`+1 > 1 provided D > 1. �

Finally let us prove Prop. 6.

Proof.

Complexity of OPT: Following Eq. (2) we have that the computation for a key
guess of OPT is:

Q∑
q=1︸︷︷︸
Q

log E︸︷︷︸
Π!2n(Ω−1)

exp
−‖x− y(t, k, R)‖2

2σ2︸ ︷︷ ︸
D

. (34)

We assume that the computation of the log and the exp is constant. As a con-
sequence the complexity of the optimal distinguisher is O

(
Q · (2n)Ω−1 ·Π! ·D

)
Complexity of ROPTL: The computation of ROPTL involves the computation
of the µ` with ` ≤ L (Eq. (2) and Eq. (1)). By Lemma 1 and Lemma 3 all
these terms have a complexity lower than O

((
D+L−1

L

)
· 2(Ω−1)n ·

(
Π

min(dΠ2 e,L)
))

(Eq. (16)).
As a consequence the complexity of ROPTL is lower than

O
(
Q · L

(
D + L− 1

L

)
· 2(Ω−1)n ·

(
Π

min
(⌈
Π
2

⌉
, L
))) . (35)

�

B.3 Proof of Proposition 7

Proof. Let us develop all the product in the term µ` in order to compute the
expectation in the minimum number of values.

µ` = EM
(( D∑

d=1

(xd,q − yd)2
)`)

=
∑

`1,`2,...,`D∑D
d=1=`

`!∏D
d=1 `d!

EM
(
(x1 − y1)2`1 · · · (xD − yD)2`D

)
.
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Moreover (xd − yd(t, k,M))2`d =
∑2`d
i=0

(
2`d
i

)
x2`d−id yd(t, k,M)i

µ` =
∑

`1,`2,...,`D∑D
d=1 `d=`

`!∏D
d=1 `d!

EM

(
D∏
d=1

(
2`d∑
i=0

(
2`d
i

)
x2`1−id yd(t, k,M)i

))

=
∑

`1,`2,...,`D∑D
d=1 `d=`

`!∏D
d=1 `d!

∑
i1≤2`1

...
iD≤2`D

D∏
d=1

((
2`d
id

)
x2`d−idd

)
EM

(
D∏
d=1

yd(t, k,M)id

)
︸ ︷︷ ︸

can be precomputed

.

�

B.4 Proof of Proposition 8

Proof. In our case study the size of the permutation is Π = 2n.
Then the complexity of OPT is given by a straightforward application of

Eq. (17).
From Eq. (14) we have that for ROPT2 the computation for one key guess

and one trace is given by E(f0×f1). In this equation the expectation is computed
over 2n values (Eq. (28)).

From Eq. (15) we have that for ROPT3 the computation for one key guess

and one trace is given by µ
(q)
2 (1 + γµ

(q)
1 ) − γ µ

(q)
3

3 . It can be seen in Eq. (23),
Eq. (24), Eq. (25) and Eq. (27) that the expectation of µ1 is computed over 2n
values. The dominant term in µ3 (Eq. (33)) is :

2n+1∑
i=2

∑
j∈{2+2n,...,2n+1+1}\{i+2n}︸ ︷︷ ︸

22n

E︸︷︷︸
22n

(f0fifj).

The expectation in this term is computed over 22n values (Eq. (32)). The sum is
computed on less than 22n. �

B.5 Time and complexity

The times of the section are expressed in seconds. All the attacks have been
run on Intel Xeon X5660 running at 2.67 GHz. All the implementations are
mono-thread. The model of the simulations is the one describe in Sec. 6. For each
distinguisher the attacks are computed 1000 times on 1000 traces.

C Analysis of the DPAcontest.

Recently an open implementation of a masking scheme with shuffling has been
presented in the DPA contest v4.2 [35]. In this implementation the execution of
the different states is performed in an random order.
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Attack Dimension Time (in seconds) Computational Complexity

2O-CPA 2 39 O (Q)
ROPT2 2 295 O (Q)
OPT2O 2 9473 O (Q · (2n))
MVATR 2n+1 + 1 130 O (Q · 2n)
ROPT3 2n+1 + 2 2495 O

(
Q · 22n

)
OPT 2n+1 + 2 Not computable O

(
Q · (2n) · 2n! ·

(
2n+1 + 2

))
Table 1: Time and complexity

An attacker can target the integrated leakages of the different states in order
to counter the shuffling [9, 31].

A better approach is to take into account the possible leakages of the per-
mutation. In this case the optimal distinguisher will be not computable as it
involves an expectation over 16! values. In this case the rounded optimal attack
will reduced this complexity.

Let us defined the leakages of such implementations.

– X0 = y0 (t, k, R) +N0 with y0 (t, k, R) = wH(M),
– X1 = y1 (t, k, R) +N1 with y1 (t, k, R) = wH(S[π (T ⊕ k)]⊕M),
– Xi = yi (t, k, R) +Ni, for i = 2, . . . , 18 with yi (t, k, R) = wH(Φ(i− 2)),

Then similarly to the Appendix A we have that:

µ1 = E(f0) + E(f1) +
∑
i∈I

E(fi), (36)

µ2 = E(f0 × f1) + cst. (37)

Additionally as it is a low entropy masking scheme the secret key can leaked
in an univariate high order attack. Depending on the number of masks involve
in the masking scheme it could be at order 2, 3 or more. For simplicity let us
assume it is at order 3. In such cases

µ3 = E(f31 ) + 3E(f20 f1) + 3E(f0f21 ) + 3!

2n+1∑
i=2

E(f0f1fi) + cst. (38)

Of course an attacker can additionally exploit all the leakages of the different
states in order to increase the success of the attacks.

In some particular low entropy masking schemes the same masks are reused
several time or are linked by deterministic relations (e.g the first version of the
DPAcontest). In this context it could be interesting to combine the leakages of
different states [4]. In this case our method could benefit of the multiple possible
points combinations.
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