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Abstract DeKaRT primitives are key-dependent reversible circuits presented at CHES
2003. According to the author, the circuits described are suitable for data scram-
bling but also as building blocks for block ciphers. Data scrambling of internal
links and memories on smart card chips is intended for protecting data against
probing attacks. In this paper, we analyze theDeKaRT primitive using linear
cryptanalysis. We show that despite its key-dependent behavior,DeKaRT still
has strongly linear structures, that can be exploited even under the particular hy-
pothesis that only one bit of the ciphertexts is available to the attacker (as it is the
case in the context of probing attacks), and using very few plaintext-ciphertext
pairs.
The attack methodology we describe could be applied to other data scrambling
primitives exhibiting highly biased linear relations.
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1. Introduction

Probing attacks on smart cards are invasive techniques consisting in intro-
ducing a conductor in some point of a tamper-resistant chip to monitor the
electric signal, in order to recover secret information passing through this
point [4, 5]. For example, the bus connecting the RAM and the micropro-
cessor is particularly vulnerable. Using classical block ciphers like DES or
AES seems to provide a natural solution to this problem; however it is simply
not realistic, because of the very high throughput and small size requirements.

It is why primitives have been developed offering hastier and lighter solu-
tions, but at the cost of a lower security level. In [2] implementations of keyed
bit permutations are proposed, trying to simultaneously achieve small logical
depth and large key space. Nevertheless this type of primitive has the draw-
back of being perfectly linear. At CHES2003, theDeKaRT construction was
presented [1], which was aimed at providing non-linearity but at the cost of a
heavier structure than in [2].

In this paper, we analyze the security of theDeKaRT primitive in accor-
dance with the usual properties of block ciphers. Despite the complex structure
of the primitive and its key-dependent behavior, it is underlined that the use of
such a scrambling function does not efficiently prevent probing attacks.

In practice, we illustrate the strongly linear structure of theDeKaRT block.
The main observation is that, although the suggested block size ofDeKaRT
primitives is very small compared to block ciphers (which reduces the total
number of plaintext-ciphertext pairs a priori available), it is still possible to do
linear predictions of its inputs. Moreover, these predictions may only involve
a very limited number of output bits, what is actually relevant in the prob-
ing attack context. As a block cipher building block,DeKaRT exhibit even
stronger weaknesses as more linear relationships are available to the attacker.

2. Specification of a Concrete Instance ofDeKaRT and
Notations

In [1] general building principles are given for construction of aDeKaRT
data scrambling function, but there is no precise instance defined. We believe
it is a mistake, as security analysis requires a completely specified cipher; and
security of a cipher which has not been subject to a substantial effort regarding
security analysis can be questioned (except if a security proof is given, which
is never the case for block ciphers). This is why we first specify a cipher, based
on the design principles given in [1].

A generic building blockacts on a small number of input data bits which are
divided into two groups ofm andn bits. Them input bits are used for control
and are passed to the output intact, like in the Feistel structure. They are used
to selectk out of2mk key bits by the multiplexer (MUX) circuit withm control
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Figure 1. ElementaryDeKaRT building block.

bits,2mk input bits andk output bits. In the original paper, the author suggests
anelementaryDeKaRT building blockwith parameters(m, n, k) = (2, 2, 3)
as shown in Figure 1 where after a XOR with 2 key bits,x3 andx2 pass through
a conditional switch. We will use this building block in our specification. Each
box requires 12 key bits. We will denote these bits by

(k(11), k(10), k(01), k(00)) =

(k(11)
X , k

(11)
⊕1 , k

(11)
⊕2 ; k

(10)
X , k

(10)
⊕1 , k

(10)
⊕2 ; k(01)

X , k
(01)
⊕1 , k

(01)
⊕2 ; k(00)

X , k
(00)
⊕1 , k

(00)
⊕2 )

wherek(i) denotes the three key bits selected by control bits(x1, x0) = i; k
(i)
X

is conditioning the switch, whilek(i)
⊕1 is XORed withx3 andk

(i)
⊕2 is XORed

with x2. The set of such 12 key bits is called asubkey.
The instance ofDeKaRT we will consider acts on blocks of 16 bits. Thus

the key dependent layer, denotedKT for KeyedTransform, consists in the
parallel application of 4 such elementary blocks. The number of rounds con-
sidered is 5 (this number is given as an example in [1], p.104). We will denote
the subkeys parameterizing the four elementary blocks of therth round by
RKr

3 , RKr
2 , RKr

1 , RKr
0 , from left to right. The set of 4 such subkeys is called

a round key(thus it has 48 bits).
The KT layer alternates with aBit Permutation layer (notedBP ). Two

design rules regardingBP were given in [1]:

The control bits ((x1, x0) in Fig. 1) in each layer should be used as the
transformed bits ((x3, x2) in Fig. 1) in the next layer.

For each elementary block, input bits should come from the maximum
possible number of blocks in the previousKT layer. In the instance
considered, it means that each of the 4 input bits to an elementary block
comes from a different block in the previousKT layer (which also im-
plies that the 4 output bits of an elementary block are sent to 4 different
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MUXMUX MUX

MUX MUX MUX

Figure 2. a part of the Key Expansion

blocks in the nextKT layer).

We arbitrarily chose a bit permutation following these rules. It is given in
Annex A.1 (see also Fig. 3).

Finally, as suggested in [1], the key expansion algorithm also alternates
“keyed" layers (with the key being an arbitrarily chosen constant), with bit
permutations layer. The 48-bit data obtained every two rounds is used as a
round key. The keyed layer is made out of the parallel application of 16re-
duced DeKaRT building block(as proposed in [1]) with 3-bit input and output,
alternating with a bit permutation layer complying with the design rules given
above. Fig. 2 pictures part of this algorithm. Note that the bit permutation layer
could have been chosen less “regular", but in fact its influence on the results of
our attack is negligible.

3. Analysis of an elementaryDeKaRT block

A DeKaRT building block generates key-dependent boolean functions. If
a (2,2,3) block is used, 4096 substitution tables (4 × 4 bits) can be generated,
as this type of block is parameterized by 12 key bits.

In this section, we investigate the possible linear approximations of an ele-
mentaryDeKaRT block. For each output bit, there exist24 − 1 possible
non-trivial input masks (i.e.24 − 1 possible linear combinations of input bits)
and if we combine output bits together, we have(24 − 1)× (24 − 1) possible
non-trivial linear approximations of theDeKaRT block. For such a small
block size, the problem of finding good linear approximations is therefore eas-
ily solved by exhaustive search.
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Table 1. Linear approximations of a singleDeKaRT block.

ε 1/2 3/8 1/4

Nbr. Approximations 2304 1024 768

In this paper, we define thebias of a linear approximation that holds with
probability p asε = |p − 1/2|. We also denote a linear approximation with
probabilityp = 0 or p = 1 as aperfectlinear approximation.

As theDeKaRT block defines 4096 substitution tables, we first investigated
the best linear approximations of each individual table. It is summarized in Ta-
ble 1, where we rejected approximations involving bitsy0, y1 only as they are
obviously perfectly linear. We observe that more than one half of the generated
tables presents perfect linear approximations and may therefore be considered
as very weak from a cryptographic point of view.

On the basis of this first experiment, we may therefore assess that a large num-
ber of keys will generate weak building blocks for the scrambling function
or block cipher as they are perfectly approximated by a linear approximation.
This motivated a more general analysis.

4. The Attack

The scenario of the attack is the following: we consider the case where the
data scrambling functionDeKaRT is used to protect communication between
the smart card microprocessor and the RAM; this is the most common use for
data scrambling functions. We assume the attacker is allowed to play with the
microprocessor, which implies that he can send known data to the memory.
Moreover he has access to a small number of bits of the encrypted data via
probing attack. Formally, this means that the attacker can obtain a certain
numberm of pairs(P, c), whereP is a known plaintext, andc is one fixed bit
of the corresponding ciphertextC. His goal is to obtain information about a
secret data (such as an RSA private key) present in the card and read from the
RAM at some time. Thus it itnot a key recovery attack, in the sense that we
do not intend to retrieve the key used forDeKaRT data scrambling (it can
be changed at each use of the card anyway). This security model is the one
described in [2].

Due to the building blocks ofDeKaRT being implemented using key-
dependent MUXs, the probability of a linear relation between a given bit of
the ciphertext and some bits of the plaintext is highly key-dependent. In our
attack, pairs(P, c) are used to identify a linear relation between one only bit
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of the ciphertext and a linear combination of bits of the plaintext, that holds
with a high bias for the key used. Then when the secret data pass through the
channel between the RAM and the processor, the relation we just identified
permits probabilistic information about it to be retrieved.

Let λ be the linear relation we are considering. Knowingm pairs(P, c),
we count how many of these satisfy the linear relationλ; let nm

λ be the ran-
dom variable corresponding to this number. We would like to compute the
probability thatλ holds for a random plaintext, providednm

λ takes valueB:

PK,P [λ holds|nm
λ = B] (1)

|PK,P [λ holds|nm
λ = B]−1/2| gives the reliability of the prediction we will

make. Let us define the random variableNλ as being the number of plaintexts
for whichλ holds, out of all216 plaintexts this time. Then we have:

PK,P [λ holds|nm
λ = B]

=
216∑

A=0

P [λ holds|Nλ = A] · P [Nλ = A|nm
λ = B]

=
216∑

A=0

A/216 · P [Nλ = A|nm
λ = B]

=
216∑

A=0

A/216 · P [nm
λ = B|Nλ = A] · P [Nλ = A]∑216

A′=0 P [Nλ = A′] · P [nm
λ = B|Nλ = A′]

∼=
∑216

A=0 A/216 · P [Bi(m,A/216) = B] · P [Nλ = A]∑216

A′=0 P [Bi(m, A′/216) = B] · P [Nλ = A′]
(2)

whereBi(., .) denotes the binomial distribution law, and the last approxima-
tion assumesm ¿ 216. Thus computation of (1) requires knowledge of the
probability distribution ofNλ, i.e. {PK [Nλ = A]}216

A=0. Next section will show
how such a distribution can be computed.

5. Computing Probability Distribution for a Linear
Relation Through a 5-Round Cipher

Consider 5 rounds ofDeKaRT , beginning and ending with a keyed layer
(see Fig. 3). We denote the plaintext by(p15, p14, ..., p1, p0) or (a(1)

15 , a
(1)
14 , ..., a

(1)
1 , a

(1)
0 ).

Also:

KT ((a(i)
15 , a

(i)
14 , a

(i)
13 , ..., a

(i)
1 , a

(i)
0 )) =: (b(i)

15 , b
(i)
14 , b

(i)
13 , ..., b

(i)
1 , b

(i)
0 )
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Figure 3. Linear Approximation through a 5-RoundDeKaRT

And:

BP ((b(i)
15 , b

(i)
14 , b

(i)
13 , ..., b

(i)
1 , b

(i)
0 )) =: (a(i+1)

15 , a
(i+1)
14 , a

(i+1)
13 , ..., a

(i+1)
1 , a

(i+1)
0 )

The exponent denotes the round number and the ciphertext will be denoted
by

(b(5)
15 , b

(5)
14 , ..., b

(5)
1 , b

(5)
0 ) or (c15, c14, ..., c1, c0)

Consider one bitα := b
(5)
0 of the ciphertext after a 5-round cipher. As an

example, we will analyze the linear relation betweenα andβ := a
(1)
0 (see

Fig. 3). Other relations can be analyzed similarly. We write successively:

α = b
(4)
14

b
(4)
14 is a function of(a(4)

15 , a
(4)
14 , a

(4)
13 , a

(4)
12 ) depending onK0 := RK4

3 (see
Fig. 3).
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(a(4)
15 , a

(4)
14 ) = (b(2)

7 , b
(2)
6 )

a
(4)
13 = b

(3)
7 is a function of(a(3)

7 , a
(3)
6 , a

(3)
5 , a

(3)
4 ) depending onK1 :=

RK3
1 . As for β fixed a

(3)
6 is balanced (i.e. takes values 0 and 1 equally

often) and as this bit affectsα only by means of the block keyed byK1,
key bitsk

(i)
⊕2 of K1 do not affect the probability of equationα = β.

a
(4)
12 = b

(3)
2 is a function of(a(3)

3 , a
(3)
2 , a

(3)
1 , a

(3)
0 ) depending onK2 :=

RK3
0 . For the same kind of reason as before, key bitsk

(i)
⊕1 of K2 do not

affect the probability.

Finally, (b(2)
7 , b

(2)
6 ) is a function of(a(2)

7 , a
(2)
6 , a

(2)
5 , a

(2)
4 ) depending on

K3 := RK2
1 . Still using the same arguments, we note that key bitsk

(i)
⊕1

of K3 do not affect the probability.

Thus the probability ofα = β (computed over all216 plaintexts) depends
on the 4 subkeysK0,K1,K2,K3 (or at least part of them). We write them as:

K0 = (k(11)
0 , k

(10)
0 , k

(01)
0 , k

(00)
0 )

K1 = (k(11)
1 , k

(10)
1 , k

(01)
1 , k

(00)
1 )

K2 = (k(11)
2 , k

(10)
2 , k

(01)
2 , k

(00)
2 )

K3 = (k(11)
3 , k

(10)
3 , k

(01)
3 , k

(00)
3 )

There are12 + 3 × 8 = 36 subkey bits implied. A priori this does not
allow easy exhaustive computation of the probability for every key (complex-
ity 236 × 216). However there are groups of values for which the associated
probability is the same. Let us say that 2 subkeysK1 andK1∗ areequiva-
lent if for any K0,K2,K3, the probability associated to(K0,K1,K2,K3) and
(K0,K1∗, K2, K3) is identical; Equivalence between 2 subkeysK2 andK2∗
is defined similarly. We can make the following observations:

Forβ fixed (a(3)
5 , a

(3)
4 ) is balanced. Therefore two subkeysK1 andK1∗

such that there exists a permutationπ : {0, 1}2 → {0, 1}2 satisfying

k
(i)
1 = k

(πi)
1∗ (∀i ∈ {00, 01, 10, 11}) are equivalent.

The same argument can be used forK2.

As from the output of the block keyed byK1 only bit b
(3)
7 matters, if

k
(i)
1,X = 1 (for somei ∈ {00, 01, 10, 11}), then k

(i)
1,⊕1 does not af-

fect the probability. Otherwise stated, ifK1 and K1∗ are such that
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k
(i)
1 = (1, 0, 0) while k

(i)
1∗ = (1, 1, 0) (other bits being the same), they

are equivalent.

With the same kind of argument,k
(i)
2 = (1, 0, 0) andk

(i)
2∗ = (1, 0, 1) are

equivalent.

Similarly, as outputb(4)
15 of the block keyed byK0 does not matter, we

have:

k
(i)
0 = (0, 0, 0) ∼ k

(i)
0 = (0, 1, 0) k

(i)
0 = (0, 0, 1) ∼ k

(i)
0 = (0, 1, 1)

k
(i)
0 = (1, 0, 0) ∼ k

(i)
0 = (1, 0, 1) k

(i)
0 = (1, 1, 0) ∼ k

(i)
0 = (1, 1, 1)

Suppose∃i, j : k
(i)
1 = (0, 0, 0) andk

(j)
1 = (0, 1, 0). Then, the key bit

added toa(3)
7 is 0 for the214 plaintexts for which(a(3)

5 , a
(3)
4 ) = i; it is

1 for the214 plaintexts for which(a(3)
5 , a

(3)
4 ) = j. Thus (taking into

account that for(a(3)
5 , a

(3)
4 ) fixed a

(3)
7 is balanced) when(a(3)

5 , a
(3)
4 ) ∈

{i, j}, b
(3)
7 = 1 one half of the times.

Now if we replacek(i)
1 andk

(j)
1 by (1, 0, 0), when(a(3)

5 , a
(3)
4 ) ∈ {i, j}

we haveb(3)
7 = a

(3)
6 . As a

(3)
6 is balanced (for fixed(a(3)

5 , a
(3)
4 )), we still

have thatb(3)
7 = 1 one half of the times.

The conclusion is that if a given key is such that∃i, j : k
(i)
1 = (0, 0, 0)

andk
(j)
1 = (0, 1, 0), then ifk(i)

1 andk
(j)
1 are replaced by(1, 0, 0) the key

obtained is equivalent to the former one.

Similarly, if ∃i, j : k
(i)
2 = (0, 0, 0) andk

(j)
1 = (0, 0, 1), replacing these

bits byk
(i)
2 = k

(j)
2 = (1, 0, 0) does not change the probability.

Putting all these observations together, there are 9 equivalence classes for
K1 as well as forK2. They are given in Table 2, with the number of elements
in each class (out of212).

Finally, the number of different quadruples(K0,K1,K2,K3) to explore
in order to compute the probability distribution{PK [Nα=β = A]}216

A=0 is
92 · (28)2 ∼= 222. This number could be further reduced, by exploiting more
complex equivalences such as: “ifK0 has such value, then value ofK1 does
not matter". However it is not necessary as with complexity222 ·216, the prob-
ability distribution ofNα=β is computable. It is roughly given in Annex A.2.

It is worth mentioning that in the previous discussion we made the (classi-
cal) hypothesis that the round keys are independent and uniformly distributed,
while in practise they are derived from the master key using the key expansion
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Table 2. Equivalence classes forK1 andK2 with their cardinalities

K1 # K2 #

(000; 000; 000; 000) 16 (000; 000; 000; 000) 16
(000; 000; 000; 010) 448 (000; 000; 000; 001) 448
(000; 000; 000; 100) 128 (000; 000; 000; 100) 128
(000; 000; 010; 010) 1120 (000; 000; 001; 001) 1120
(000; 000; 010; 100) 896 (000; 000; 001; 100) 896
(000; 010; 010; 010) 448 (000; 001; 001; 001) 448
(000; 010; 010; 100) 896 (000; 001; 001; 100) 896
(010; 010; 010; 010) 16 (001; 001; 001; 001) 16
(010; 010; 010; 100) 128 (001; 001; 001; 100) 128

Table 3. Families of linear relations with the best mean bias

Mean bias Number of lin. rel. Output bit

7 · 10−2 16 ∈ S1

4 · 10−2 64 ∈ S2

2, 5 · 10−2 192 ∈ S1

1, 5 · 10−2 64 ∈ S2

described in section 2; in fact some quadruples(K0,K1,K2,K3) simply can-
not be derived from a master key. Computation of the value taken byNα=β for
a small number of random keys from which round keys are derived perfectly
validated the hypothesis.

6. Searching for other Linear Relations Through a
5-Round Cipher

The procedure described in the previous section to compute the distribution
of Nλ for a given linear relationλ is complicated and has non-negligible time
complexity. It is however possible to identify linear relations having a big
mean bias by evaluating this bias using only a part of the216 plaintexts, and
this for a relatively small number of keys. Doing this, we observed that there
are “families" of linear relations having about the same mean bias. Moreover
linear relations from some families have their output bit belonging toS1 ≡
{c0, c1, c4, c5, c8, c9, c12, c13}, while those from the other families have their
output bit belonging toS2 ≡ {c2, c3, c6, c7, c10, c11, c14, c15}. This is due to
the fact that the last round ofDeKaRT need not be approximated if the output
bit ∈ S1.

Details about the families with the best mean bias are given in Table 3.
The linear relations of the first family (with bias∼ 7 · 10−2) are given in

Table 4.
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Table 4. Linear relations through 5-roundDeKaRT with the highest mean bias

p0 ⊕ c0 p4 ⊕ c1 p8 ⊕ c8 p12 ⊕ c9

p0 ⊕ c5 p4 ⊕ c4 p8 ⊕ c13 p12 ⊕ c12

p1 ⊕ c1 p5 ⊕ c0 p9 ⊕ c9 p13 ⊕ c8

p1 ⊕ c4 p5 ⊕ c5 p9 ⊕ c12 p13 ⊕ c13

7. Implementation of the Attack

As explained in Section 4, we assume that the attacker knows for example
128 pairs{(P j , cj

i )}j=0...127, whereP j is a plaintext andcj
i is theith bit of the

corresponding ciphertext. One attack strategy could be:

1 Consider all216− 1 possible input masksµ (i.e. all possible linear com-
binations of input bits).

2 For each of them, compute the bias ofµ • P = ci over the 128 pairs (•
denotes the scalar product overZ16

2 ).

3 The attacker intercepts a ciphertext bitc∗i of which he does not know the
corresponding plaintextP ∗. The input maskµ∗ with the highest bias
(computed at step 2) is used to predict the unknown bitµ∗ • P ∗.

The efficiency of this algorithm is measured by the bias associated toµ∗,
computed over all216 plaintexts this time. Indeed, it gives the reliability of
the guess made at step 3. Practical experiments show that we have a mean bias
of 0,059 when the ciphertext bit considered∈ S1 and of 0,022 when it is inS2.

However it is possible to do better if in step 1 of the attack, we restrain
ourself to the 336 relations mentioned in Section 6 (or more precisely, to those
of them concerning bitci). Then the bias obtained is 0,107 when the ciphertext
bit considered∈ S1 and 0,074 when it is inS2. Moreover the probability
computed over 128 plaintexts almost always "goes in the same direction" than
the one computed on all216 plaintexts (i.e. suggests the same value forµ •
P ⊕ ci). This significant improvement is due to the fact that if we consider
all possible input masks, it is often the case that estimation on 128 plaintexts
happens to emphasize a linear relation which in fact has a small (or null) bias
when computed over all216 plaintexts; a pre-selection of “a priori good" input
masks greatly reduces this phenomenon. It is this improvement that motivated
the research ofa priori good linear relations described in Section 6.

In Table 5 we give mean biases for different numbers of pairs(P j , cj
i )

known by the attacker. We insist on the fact that these figures aremeanbi-
ases. This means that sometimes the bias associated toµ∗ will be 0, which
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Table 5. Mean bias as a function of the number of pairs known by the attacker

# pairs ifci ∈ S1 if ci ∈ S2

64 0,095 0,067
128 0,107 0,074
256 0,118 0,083
512 0,123 0,087
1024 0,127 0,092

means that the attack has completely failed. Other times the bias will be 1/4
(or even 1/2) and the information gained by the attacker is real. The attacker
must be able to compute a priori the bias he can expect. It is given by equation
(2) in Section 4.

As an improvement to the attack, it could also be possible to consider several
approximations (implying the same ciphertext bitci) simultaneously in order
to retrieve more information. However this is far from trivial, as the possible
correlation between these approximations must be taken into account. The
paper from Biryukov&al. [6] could help in this context.

Also, we assumed only one bit of the ciphertext was available. If several are,
this allows more bits of information about the plaintext to be retrieved (more-
over linear approximations implying linear combinations of these ciphertext
bits can be considered, which can improve the efficiency of the attack).

8. Conclusion

In this paper we have seen thatDeKaRT , despite its structure being signi-
ficatively more complex than previous primitives, is vulnerable to linear crypt-
analysis. Even using one only bit of the ciphertext (as it is often the case in
the context of probing attacks), it is possible to obtain information about an
unknown plaintext using very few known (Plaintext, Ciphertext bit) pairs. We
do not claimDeKaRT is useless for data scrambling: indeed, the require-
ments for such a type of primitive can be relaxed in comparison with usual
requirements for block ciphers. More than the overall structure, some pro-
posals for the number of rounds provided in the original paper seem to be
too optimistic for a really strong security. The purpose of this paper is rather
showing that such type of key-dependent transform still has strongly linear
structures. It is why we believe it is possible to construct a better primitive
with the same throughput and size constraints; probably a structure nearer the
classical paradigms of block cipher design (constant and highly non-linear S-
boxes) could achieve it. There is place for research effort in this direction.
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Table A.1. Probability Distribution ofNα=β

Nα=β PK

∈ [0, 16383] 0,006
= 16384 0,010

∈ [16385, 22527] 0,029
= 22528 0,013

∈ [22529, 24575] 0,013
= 24576 0,053

∈ [24577, 26623] 0,024
= 26624 0,028

∈ [26625, 27647] 0,009
= 27648 0,022

∈ [27649, 28671] 0,014
= 28672 0,045

∈ [28673, 29695] 0,012
= 29696 0,026

∈ [29697, 30719] 0,013
= 30720 0,050

∈ [30721, 31743] 0,015
= 31744 0,016

∈ [31745, 32767] 0,013
= 32768 0,178

Appendix

1. The Bit Permutation layer BP

The bit permutation we chose is:

Inp. Bit Pos. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Outp. Bit Pos. 5 0 15 10 1 4 11 14 13 8 7 2 9 12 3 6

2. Probability Distribution of Nα=β

Out of the216 + 1 a priori possible values forNα=β , only 199 occur with a non-zero
probability. In Table A.1 we only mention the ones having probability≥ 0, 01. Moreover
we give probabilities associated with intervals. As it is easy to show thatP [Nα=β = A] =
P [Nα=β = 216 −A], the table only goes from 0 to215.
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