
Inner Product Masking for Bitslice Ciphers and
Security Order Amplification for Linear Leakages

Weijia Wang1, François-Xavier Standaert2, Yu Yu1,3,
Sihang Pu1, Junrong Liu1, Zheng Guo1, and Dawu Gu1

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, China

Email: {aawwjaa,yyuu,push.beni,liujr,guozheng,dwgu}@sjtu.edu.cn
2 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium

Email: fstandae@uclouvain.be
3 Westone Cryptologic Research Center

Abstract. Designers of masking schemes are usually torn between the
contradicting goals of maximizing the security gains while minimizing
the performance overheads. Boolean masking is one extreme example of
this tradeoff: its algebraic structure is as simple as can be (and so are
its implementations), but it typically suffers more from implementation
weaknesses. For example knowing one bit of each share is enough to know
one bit of secret in this case. Inner product masking lies at the other
side of this tradeoff: its algebraic structure is more involved, making it
more expensive to implement (especially at higher orders), but it ensures
stronger security guarantees. For example, knowing one bit of each share
is not enough to know one bit of secret in this case.
In this paper, we try to combine the best of these two worlds, and pro-
pose a new masking scheme mixing a single Boolean matrix product (to
improve the algebraic complexity of the scheme) with standard additive
Boolean masking (to allow efficient higher-order implementations). We
show that such a masking is well suited for application to bitslice cipher-
s. We also conduct a comprehensive security analysis of the proposed
scheme. For this purpose, we give a security proof in the probing model,
and carry out an information leakage evaluation of an idealized imple-
mentation. For certain leakage functions, the latter exhibits surprising
observations, namely information leakages in higher statistical moments
than guaranteed by the proof in the probing model, which we can connect
to the recent literature on low entropy masking schemes. We conclude
the paper with a performance evaluation, which confirms that both for
security and performance reasons, our new masking scheme (which can
be viewed as a variation of inner product masking) compares favorably
to state-of-the-art masking schemes for bitslice ciphers.

1 Introduction

In the recent literature on masking schemes, increasing the algebraic complexity
of the operation mixing the shares has been frequently used to improve the

resistance of cryptographic implementations in scenarios where limited noise
is available in the adversary’s measurements. Examples include inner product
masking [1], polynomial masking [7, 14] and affine masking [6]. For a comparable
amount of shares, these masking schemes offer a (sometimes slightly) better
security than the mainstream Boolean masking. Yet, this usually comes at the
cost of (sometimes large) performance overheads.

In this paper, we therefore start from the observation that it would be inter-
esting to design a hybrid masking scheme, where some of the shares are mixed
based on a more complex operation (to guarantee some security in low noise con-
texts where the simplicity of Boolean masking is problematic), while the others
are just mixed thanks to additive Boolean masking (which efficiently generalizes
to higher-orders [15]). We instantiate a first proposal in this direction, that we
denote as Boolean matrix product masking, and which is particularly well suited
to block ciphers with efficient bitslice representation. In this masking scheme,
we split the secret x into n shares x = (x1, . . . , xn) and use a (public) random
nonsingular Boolean matrix A, such that x = A× x1 ⊕

⊕
2≤i≤n xi (see Section

2.1 for definitions and notations) and the public matrix A is fixed as a constant
in each running of the masked block cipher. Intuitively, our masking scheme can
therefore be seen as a variant of inner product masking specialized to bitslice
ciphers (yet applicable to the AES), which we discuss in Sections 2.6 and 2.7.
Note that inner product masking is itself a particular case of the code-based
masking recently introduced in [4, 3]. Next, we show how to perform standard
operations such as addition and multiplication (i.e. bitwise XOR and AND in
GF(2)) securely. The standard operations can be composed to protect a complete
bitslice cipher such as the recently introduced (X)LS-designs [8, 11].

We then investigate the security of our masking scheme in the probing mod-
el [10], and prove that it guarantees dth-order security for n ≥ 2d+ 1. Further,
we evaluate the concrete information leakage of our masking shares based on
an information theoretic analysis [16]. As expected, the results show that they
leak less than Boolean shares and comparably to inner product shares in low
noise contexts. More surprisingly, the information theoretic analysis also reveals
that in high noise contexts, Boolean matrix product masking (and, in fact, inner
product masking in general) can lead to additional gains. Namely, their infor-
mation leakages can be of higher order than what is guaranteed by the proof in
the probing model. As in the context of low entropy masking scheme, we can
justify that this gain can only be observed for linear leakage functions [9].

We finally complement these results with a performance evaluation, which
allows us to complete the picture of our new masking scheme. In particular,
the implementations of the masked LS-design Fantomas exhibit excellent per-
formances, with only limited overheads compared to Boolean masking.

2 Our Construction

In this section, we give the construction of our masking scheme, including the
encoding and decoding of the secret and different operations in masked domain.

2

2.1 Preliminaries

Let lowercases (e.g., i, x) denote any integral variables or binary vectors, and
capital letters (e.g., A) be the Boolean matrices. A(i, :) (or A(i) for short) denotes
the ith row of matrix A and x(i) denotes the ith element of vector x. And A(:, i)
denotes the ith column of matrix A. Let A(i : j, k) (resp., A(k, i : j)) be the
elements of kth column (resp., kth row) and ith to jth row (resp., ith to jth
column). Let the bold lowercases (e.g., x = (x1, x2, . . .)) denote the vectors whose
elements are binary vectors, and let the bold capital letters be vectors of Boolean
matrices (e.g., X = (X1, X2, . . .))). Finally, Let E denote the identity matrix
and A−1 and AT denote the inverse and transpose of the matrix A, respectively.
We recall the tensor product (denoted as ⊗) between Boolean matrices. Suppose
that two matrices are A, B with size m1×n1 and m2×n2 respectively, then the
result is a matrix C with size m1m2 × n1n2:

A⊗B def
=

 A(1, 1) , . . . , A(1, n1)
. . . , . . . , . . .

A(m1, 1) , . . . , A(m1, n1)

⊗
 B(1, 1) , . . . , B(1, n2)

. . . , . . . , . . .
B(m2, 1) , . . . , B(m2, n2)

=

 A(1, 1)B , . . . , A(1, n1)B
. . . , . . . , . . .

A(m1, 1)B , . . . , A(m1, n1)B

 = C,

where A(i, j)B =

 A(i, j)B(1, 1) , . . . , A(i, j)B(1, n2)
. . . , . . . , . . .

A(i, j)B(m2, 1) , . . . , A(i, j)B(m2, n2)

.

2.2 Encoding & Decoding of the secret variable

The encoding of an m-bit secret variable (say, x) is close to that of the Boolean
masking but the first share is multiplied by a nonsingular matrix: x = (A×x1)⊕
x2 ⊕ . . .⊕ xn. Algorithms 1 and 2 are the pseudocode of encoding and decoding
respectively. Note that the matrix A (and its inverse) is fixed in each running of
the block cipher, thus in the remainder of this paper, we often omit the matrix
A and use the shares x = (x1, . . . , xn) to represent the encoding of x.

Algorithm 1 Enc

Require: m-bit secret variable x, invertible matrix A and its inverse A−1

Ensure: Enc(x) = x = (x1, . . . , xn) as the masked variables
1: for i = 1; i < n; i++ do
2: xi+1 is a randomly generated m-bit value
3: end for
4: x1 := A−1 × (x⊕

⊕n
i=2 xi)

3

Algorithm 2 Dec

Require: masked variables x = x1, . . . , xn

Ensure: x = Dec(x) as the secret variable
1: x := (A× x1)⊕

⊕n
i=2 xi

2.3 Initialization for masked operations

In order to reduce the complexity of masked operations, an initialization step is
necessary to pre-compute some variables. Algorithm 3 details the pre-computation
of the matrices (A,A−1), Â, À and Á, where ⊗ is tensor product, ReRandMat()
is the function that re-randomize the nonsingular matrix and its inverse (detail-
s deferred to Section 2.5), Aold and A−1old are the Boolean matrices of the last
running (which can been replaced by the identity matrix for the first run), and
E′ consists of the (i + m(i − 1))-th rows of the m ×m2 identity matrix for all

i ∈ {1, . . . ,m}. For example, we have: E′ =

1, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 1, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 1

 for m = 3.

Algorithm 3 Setup

Require: length of the masked variable m
Ensure: random nonsingular m×m matrix A (and its inverse A−1) and some other

pre-computed values
1: (A,A−1) := ReRandMat(Aold,A

−1
old)

2: Â := A−1 × (E′ × (A⊗A))
3: À := A−1 × (E′ × (A⊗ E))
4: Á := A−1 × (E′ × (E ⊗A))

2.4 Operations in masked domain

Mask refreshing. Mask refreshing is a re-randomized procedure to re-encode
the secret variables. As we will introduce in Section 3.1, this procedure will be
called n times at the beginning of block cipher to re-randomize the masking of
the key. Algorithm 4 gives the details of this operation.

Addition (XOR) of two masked variables. Algorithm 5 gives the masked
addition of x = (x1, . . . , xn) and y = (y1, . . . , yn) that are encodings of two
secret values x and y respectively.

Bitand of two masked variables. The most basic nonlinear operation for
bitslice S-box is the bitand. This operation in masked domain is given in Al-
gorithm 6, where variables, x and y, are encoded as x = (x1, . . . , xn) and

4

Algorithm 4 Refresh

Require: masked variable x = (x1, . . . , xn)
Ensure: refreshed encoding x′ = (x′1, . . . , x

′
n)

1: randomly generate a vector of m-bit variables a = (a1, . . . , an) s.t. (A× a1)⊕ a2⊕
. . .⊕ an = 0

2: for i = 1; i ≤ n; i++ do
3: x′i := xi ⊕ ai

4: end for

Algorithm 5 SecAdd

Require: two masked variables x = (x1, ..., xn) and y = (y1, ..., yn)
Ensure: encoding of x⊕ y (namely, (Enc(x⊕ y) = z = (z1, ..., zn))
1: for i = 1; i ≤ n; i++ do
2: zi := xi ⊕ yi
3: end for

y = (y1, . . . , yn) respectively, and � denotes bitand. The algorithm is similar
in spirit to the ISW scheme [10] except for some additional adaptions to the
matrix case. Note that xi ⊗ yi is of size m2 × 1 (by tensor product ⊗), and the
(pre-computed) matrices Â, À and Á are all of size m ×m2 (see Algorithm 3).
Thus ti,j is always of size m × 1. We next sketch the proof of correctness for
Algorithm 6. First we have:

(A× x1 ⊕ x2 ⊕ . . .⊕ xn)� (A× y1 ⊕ y2 ⊕ . . .⊕ yn)

= ((A× x1)� (A× y1))⊕ ((A× x1)� y2)⊕ . . .⊕ ((A× x1)� yn)

⊕ (x2 � (A× y1)) ⊕ (x2 � y2) ⊕ . . .⊕ (x2 � yn)

. . .

⊕ (xn � (A× y1)) ⊕ (xn � y2) ⊕ . . .⊕ (xn � yn) .

We handle the terms separately, let u = (A × x1) � (A × y1), then we have:
u(i) =

⊕
i,j∈(1,...,m)A(i, j)x1(i)y1(j) = (A(i, :) ⊗ A(i, :)) × (x1 ⊗ y1). Thus we

have ti,j = A−1 × (A× x1)� (A× y1) = Â× (x1 ⊗ y1). Similar conclusions can
be obtained for A−1× (A×x1)�yi and A−1×xi� (A×x1) when i ∈ (2, . . . , n).
Therefore we can prove that (A×x1⊕x2⊕ . . .⊕xn)� (A× y1⊕ y2⊕ . . .⊕ yn) =
(
⊕

i,j∈(2,...,m) ti,j) ⊕ (
⊕

j∈(1,...,m)A × t1,j) ⊕ (
⊕

i∈(1,...,m)A × ti,1). Finally the

lines 6-19 are very similar to the ISW scheme and please refer to [10] for the
remainder of correctness proof.

Note that Algorithm 6 includes the multiplication operation between a fix
matrix (size of m×m2 or m×m) and a scalar, which is not very efficient with
the processors that don’t support the ‘popcnt’ instruction.4 Thus we present in
Algorithms 7, 8 and 9 different ways of computing the multiplication between
a matrix A (size of m1 ×m2) and a scalar x for different situations. Algorithm
7 benefits from the ‘popcnt’ instruction and its time / memory complexities

4 ‘popcnt’ instruction counts the number of bits set to 1 in one cycle

5

are O(m1 ∗ m2/w) / O(1), where w is the bit width of the processor and we
only consider the case that w|m1 and w|m2. Algorithm 8 first operates the
bitand between each line of A and x, resulting in a matrix V of size m1 ×m2,
then it computes the product y in a bitslice manner by XORing the columns
of V . Its time complexity is also O(m1 ∗m2/w) but the memory complexity is
O(m1 ∗m2) for the storage of matrix V . Thus Algorithm 8 can obtain a same
time complexity without the supporting of ‘popcnt’ instruction at the cost of
some (but not much) memory complexity. As show in Figure 1, Algorithm 9
first separates A and x into k equal sized parts (each of length is l = m2/k) and
creates the look-up table Mi() for each part of scalar (i.e., x((i−1)∗ l+ 1 : i∗ l))
multiplied by the corresponding part of matrix (i.e., A(:, (i − 1) ∗ l + 1 : i ∗ l)).
As presented before, the matrix A should be fixed during each running of the
encryption / decryption, thus these look-up tables can be pre-computed in the
setup stage and stored in the memory or flash. Finally the multiplication can
be done by XORing the result of k times table look-up. The time complexity of
Algorithm 9 is O(k ∗m1/w) excluding the pre-computing of look-up tables, but
the memory complexity is relatively larger: O(k ∗m1 ∗ 2m2/k). In particular, if
we take k = m2, we then have the same time complexity as Algorithm 8 but
double the memory. Note that, thanks to the table look-up process, there are
less variables operated in Algorithm 9, thus it can be more secure than the other
two against multivariate side-channel attacks.

Algorithm 6 SecBitAnd

Require: x = (x1, . . . , xn), y = (y1, . . . , yn),Â,
À, Á

Ensure: encoding of x�y (i.e., z = (z1, . . . , zn))
1: for i = 1; i ≤ n; i++ do
2: for j = 1; j ≤ n; j++ do

3: ti,j :=

Â× (xi ⊗ yj) if i = j = 1

À× (xi ⊗ yj) if i = 1

Á× (xi ⊗ yj) if j = 1

xi � yj others
4: end for
5: end for
6: Let a matrix of vectors T = (ti,j)

7: for i = 1; i ≤ n; i++ do
8: ri,i := ti,i
9: for j = i + 1; j ≤ n; i++ do

10: Set ri,j to be a random m×1
vector

11: rj,i := tj,i + (ri,j + ti,j)
12: if i = 1 then
13: ri,j := A× ri,j
14: end if
15: end for
16: end for
17: for i = 1; i ≤ n; i++ do
18: zi :=

⊕
j rj,i

19: end for

6

Algorithm 7 MatrixMul-popcnt

Require: an m1×m2 matrix A, an m2×1
scalar x

Ensure: y = A× x
1: for i = 1; i ≤ m1; i++ do
2: v = A(i, :)� xT

3: y(i) = popcnt(v)
4: end for

Algorithm 8 MatrixMul-bitslice

Require: an m1 ×m2 matrix A
Ensure: y = A× x
1: for i = 1; i ≤ m1; i++ do
2: V (i, :) = A(i, :)� xT

3: end for
4: y = V (:, 1)
5: for j = 2; j ≤ m2; j++ do
6: y = y ⊕ V (:, j)
7: end for

Algorithm 9 MatrixMul-tabulate

Require: an m1 × m2 matrix A, k that
we have k|m2

Ensure: pre-computed tables Mi∈{1,...,k}
1: Pre-computation Stage:
2: l = m2/k
3: for i = 1; i ≤ k; i++ do
4: create the loop-up table Mi for any

l-bit value multiplied by the matrix
A(:, (i−1)∗ l+1 : i∗ l), i.e., Mi(v) =
A(:, (i− 1) ∗ l + 1 : i ∗ l)× v

5: end for

Require: an m2 × 1 scalar x, k and the
pre-computed tables Mi∈{1,...,k}

Ensure: y = A× x
1: Online Stage:
2: l = m2/k
3: y = M1(x(1 : l))
4: for i = 2; i ≤ k; i++ do
5: y = y ⊕Mi(x((l − 1) ∗ i + 1 : l ∗ i))
6: end for

A(1,1) … A(1,l) A(1,l+1) … A(1,2l) A(1,(k-1)l+1) ……

...
...

A(m1,1) … A(m1,l) A(m1,l+1) … A(m1,2l) A(m1,(k-1)l+1) …

...
...

...
...

...
...

...
...

...
...

...
...

...
...

…

…

… ×

A(1,m2)

A(m1,m2)

...
...

x(1)

x(l)

x(l+1)

...
...

...

x(2l)

x(k-1)l+1)

...

x(m2)

M1()

M2()

Mk()

...

x

x

x

x

A x×

Fig. 1. Create the look-up table.

7

2.5 Nonsingular matrix re-randomization

We introduce in Algorithm 10 how to re-randomize a nonsingular matrix and its
inverse in an efficient manner. A random elementary matrix T is generated using
only rows switching from the identity matrix (lines 1, 2). It is obvious that this
matrix is orthogonal, i.e., T−1 = TT. In each iteration of the loop (lines 5-7),
a random elementary matrix P is generated using only one row addition with
random bits and the corresponding row of A is re-randomized by multiplying
with P , i.e., P ×A. We also keep a record of its inverse A−1 × P−1 = A−1 × P
(since P ’s inverse is P itself) along the way so that Algorithm 10 needs no
matrix inverse operations. We admit that the output of Algorithm 10 is not
strictly uniform over the set of all Boolean nonsingular matrices. But this is not
a problem in our setting where we anyway assume that the matrix is fixed and
public in each run of the masked block cipher.

Algorithm 10 ReRandMat

Require: Aold and A−1
old

Ensure: m×m random matrices A, A−1

1: T := E, A := Aold, A−1 := A−1
old

2: Randomly permute the rows of T
3: A := T ×A, A−1 := A−1 × TT

4: for i = 1; i ≤ m; i++ do
5: P := E
6: generate m− 1 random bits, replace the zeros in P (i) with the random bits
7: A := P ×A, A−1 := A−1 × P
8: end for

Based on the operations above, we can construct the masking scheme of
bitslice block cipher. The description of masked (X)LS-design block ciphers is
given in the full version due to lack of space.

2.6 Links with inner product masking

Our masking scheme can be seen as a variant of inner product masking, spe-
cialized to bitslice ciphers for efficiency purposes. Recall that the inner product
masking shares a secret variable as x = l1 · x1 + l2 · x2 + . . . + ln · xn, where ·
denotes the multiplication in a Galois field, the vector (l1, . . . , ln) is public, and
every (n−1)-tuple of {x1, . . . , xn} is independent of x. As the multiplication (in
a Galois field) of two variables x · y can be represent as y left-multiplied by the
x’s GF(2m)-multiplication matrix X, i.e., x · y = X × y, where the first column
of X is x and the other ones are generated by X(, i) = 2i · x, the inner product
masking can been rewritten as x = A1×x1+ . . .+An×xn, where A1, . . . , An are
GF(2m)-muliplication matrices. Thus the inner product masking can been seen
as a masking such that (1) each share is multiplied by a different Boolean matrix
and, (2) the matrices are selected as corresponding to Galois field multiplication
rather than simply as nonsingular Boolean.

8

2.7 Application to the AES

The application of our masking to the AES is also possible. As the Galois field
multiplication of two variables x · y can be represented as x · y = X × y, we
define a function FGF : Fm

2 → Fm
2 × Fm

2 , which converts any value in GF(2m) to
the corresponding Boolean matrix, i.e., FGF(x) = [20 · x : 21 · x : . . . : 2m−1 · x],
where : concatenates the vectors (or matrices) of two sides thereof. Then the
multiplication of two variables x̂ = Ax × x and ŷ = Ay × y equals:

z = A−1z × (x̂ · ŷ)

= A−1z × (x̂ · (Ay × y))

= A−1z × FGF(2m)(x̂)×Ay × y
= A−1z × [FGF(20)× x̂ : . . . : FGF(2m−1)× x̂]×Ay × y
= [A−1z × FGF(20)×Ax × x : . . . : A−1z × FGF(2m−1)×Ax × x]×Ay × y .

This process is precised in Algorithm 11. G(, i) denotes the t-th column of
binary matrix G, the list of matrices (J1, . . . , Jm) can be hard-coded in the
implementation and the corresponding (H1, . . . ,Hm) can be pre-computed in
the setup phase. Therefore, the masked multiplication in Galois field can be
constructed by modifying the line 3 of Algorithm 6 using Algorithm 11.

Algorithm 11 GFMul

Require: two variables x, y and the corresponding matrices Ax, Ay and Az

Ensure: z = A−1
z × ((Ax × x) · (Ay × y))

1: (J1, . . . , Jm) := (FGF(20), . . . , FGF(2m−1))
2: (H1, . . . , Hm) := (A−1

z × J1 ×Ax, . . . , A
−1
z × Jm ×Ax)

3: for i = 1; i <= m; i++ do
4: G(, i) := Hi × x
5: end for
6: temp := G×Ay

7: z := temp× y

3 Security Analysis

3.1 Provable security in the probing model

In this section, we give a security proof for our masking scheme in the probing
model introduced in [10]. Recall that an m-bit variable x is encoded into n shares
(x1, . . . , xn) with x = (A×x1)⊕x2⊕ . . .⊕xn for a nonsingular public matrix A.
We omit the leakage about A since it is public. We will show that our masking
scheme is secure against d-probing adversary for n ≥ 2d + 1. That is, every
d-tuple of its intermediate variable is independent of any sensitive variables. In
order to do this, we shall show that every d-tuple of its intermediate variable
can be perfectly simulated without knowledge of any inputs.

9

Security for the masking operations We start the security analysis of the
masked operations with a security proof for Algorithm 6.

Theorem 1 Let x1, . . . , xn and y1, . . . , yn be two encodings from the input-
s of Algorithm 6 and let n ≥ 2d + 1. Then the distribution of every tuple
of d intermediate variables in Algorithm 6 is independent of the distributions
x = A× x1 ⊕

⊕
2≤i≤n xi and y = A× y1 ⊕

⊕
2≤i≤n yi.

Our proof follows and is very similar to the one outlined in [10]. We show
that we can efficiently construct a (n − 1)-tuple of random variables which is
identically distributed to any d-tuple (v1, v2, . . . , vd) of intermediate variables
of Algorithm 6, independently of any statement about x and y. Therefore, we
shall construct a set I of indices in {1, . . . , n} with cardinalities lower than or
equal to n− 1 and such that the distribution of any d-tuple (v1, v2, . . . , vd) can

be perfectly simulated from x|I
def
= (xi)i∈I and y|I

def
= (yi)i∈I . This will prove

the Theorem 1 since, x1, . . . , xn (and y1, . . . , yn) being (n−1)-wise independent,
x|I and y|I are jointly independent of (x; y) as long as the cardinalities of I is
strictly smaller than d, where I is constructed as follows:

1. Initially, I is empty and all vh’s are unassigned.
2. For every intermediate variables of the form xi, yi, ti,i, ri,j (for any i 6= j),

or a sum of values of above form (including zi as a special case), add i to I.
This covers all the intermediate variables except for ones corresponding to
ti,j or ri,j + ti,j for some i 6= j. For such variables, add both i and j to I.

3. Now that the set I has been determined, and cardinality of I can be at most
m = 2t since there are at most t intermediate variables. We show how to
complete a perfect simulation of the values on intermediate variables using
only values x|I and y|I . Assign values to the ri,j as follows:
– If i ∈ I (regardless of j), then ri,j does not enter into the computation

for any intermediate variables. Thus, its value can be left unassigned.
– If i ∈ I, but j /∈ I, then ri,j is assigned a random independent value.

Analysis: Note that if i < j this is what would have happened in the
Algorithm 6. If i > j, however, we are making use of the fact that by
construction, ri,j will never be used in the computation of any inter-
mediate variables. Hence, we can treat ri,j as a uniformly random and
independent value.

– If both i ∈ I and j ∈ I, then we have access to xi, xj , yi and yj . Thus,
we compute ri,j and rj,i exactly as they would have been computed in
the actual Algorithm 6.

4. For every intermediate variable of the form xi, yi, xiyi (for any i 6= j), or
a sum of values of the above form (including zi as a special case), we know
that i ∈ I, and all the needed values of ri,j have already been assigned in
a perfect simulation. Thus, the intermediate variable can be computed in a
perfect simulation.

5. The only types of intermediate variables left are ti,j or ri,j + ti,j . But by
step 2, both i, j ∈ I, and by Step 3, zi,j has been assigned, thus the value of
intermediate variable can be simulated perfectly.

10

6. Note that all zi values for i ∈ I can be simulated perfectly by the argument
above. This completes the simulation and the argument of correctness.

Theorem 1 considers the probing of any variable in Algorithm 6 and Corollary
1 below states a result for the probing of the output variables.

Corollary 1 Let x1, . . . , xn and y1, . . . , yn be two encodings from the inputs of
Algorithm 6. Then the distribution of every tuple of (n−1) outputs in Algorithm
6 is independent of the distributions x = A× x1 ⊕

⊕
2≤i≤n xi and y = A× y1 ⊕⊕

2≤i≤n yi.

The proof of Corollary 1 follows from that of Theorem 1 by considering
output zi. To this end, we can add at most n − 1 indices into the set I, which
correspond to n− 1 shares of output.

The security proofs of Algorithm 4 and 5 are quite simple and we give an
informal one for Algorithm 5 (masked addition) with inputs x = (x1, . . . , xn)
and y = (y1, . . . , yn) here. The intermediate variables in the algorithm are xi, yi
and xi ⊕ yi for i ∈ {1, . . . , n}. Thus any d-family variables of above correspond
to at most d shares of x or y, which are uniform and independent of x or y.
Therefore, Algorithm 5 is secure against a d-probing adversary for n ≥ d + 1.
Likewise, we can get the same conclusion for Algorithm 4.

Security of the general masking scheme. We now show the security of the
general masking scheme. That is, we compose the proofs of individual masked
operations to a general one, e.g., the masked (X)LS-design cipher.

Our analysis is similar to the work in [10, 2, 1]. Firstly we only provide an
analysis that the composed masked operations have d-probing security. Namely,
the distribution of any tuple of d or less intermediate variables in the masked
cipher is independent of any plaintext or key. This requires that, for a sequence
of operations, the adversary could learn di intermediate variables for each op-
eration, as long as

∑
i di ≤ d ≤ (n − 1)/2. We consider w masked operations

F = (f1, . . . , fw) in sequence. As shown in Figure 2, suppose that the adver-
sary probes di intermediate variables in the i-th operation fi and let φw−1 be
the input of the last operation fw, then we can see that dw probes of fw are
corresponding to at most 2dw shares of φw−1. Since φw−1 is in turn the output
of fw−1 and by Corollary 1, the probing of dw variables to fw can be perfectly
simulated from 2dw shares of the input of fq−1. By adding the probing of dw−1
variables of fw−1, the probing of (dw + dw−1) variables of fw and fw−1 can be
perfectly simulated from 2(dw + dw−1) shares of the input of fw−1. At last, by
induction we can conclude that the probing of

∑
i di variables of the sequence

of the operations can be perfectly simulated from 2
∑

i di shares of the inputs
of the whole masked operations. As discussed in [1, Section 5.2], to handle the
situation that adversary learns up to d variables in each execution of the masked
cipher (and thus he probes many values in a multiple-run setting), the masking
refreshing algorithm (i.e., Algorithm 4) should be carried out on the secret key
whenever the encryption / decryption starts over again. It should be noted that

11

the refreshing algorithm should be called n times for nth-order masking against
an (n− 1)-probing adversary.

f1 f2ϕ1 fw-1 fwϕw-1
……

Plaintext

and key
Ciphertext

Fig. 2. The sequence of operations in consideration.

3.2 Practical evaluation

In order to illustrate Boolean matrix product masking’s resistance to higher-
order side-channel attacks, we evaluate the information leakage of its shares and
compare it to the one of Boolean masking and inner product masking shares.
We focus on the m = 4 case (which allows us to limit the computational cost
of the evaluations) and follow the evaluation framework of [16]. Namely, we
compute the mutual information between a secret m-bit value and the leakage
of its n shares. For this purpose, we follow the standard simulation setting with
Hamming weight power model and Gaussian noise that has been used, e.g. in [17,
1] for analyzing Boolean and inner product masking. That is, we model the
leakage of shares x = (x1, . . . , xn) for secret variable x as:

Leakage(x) = Leakage((x1, . . . , xn)) = (HW(x1) + ε1, . . . ,HW(xn) + εn) , (1)

where HW(·) denotes the Hamming weight and each εi for i ∈ {1, . . . , n} is
Gaussian noise. Figure 3 shows the mutual information in log10 scale for the
leakages of different masking schemes of order n = 2, 3 for 4-bit secret variables.
For better comparison, we also show the leakage of inner product masking (in
both GF(24) and GF(28)) [1]. For this first experiment, we picked up a public
matrix A = (1 1 0 0; 0 0 1 1; 1 0 1 0; 1 1 0 1) for Boolean matrix product masking,
and took (l1 = 1, l2 = 15), (l1 = 1, l2 = 255) and (l1 = 1, l2 = 13, l3 = 15) for
inner product masking of order n = 2, 3 (similar to the choices made in [1]).
Based on these settings, our observations are threefold.

First, the mutual information of all settings decreases with the noise level
and both inner product and Boolean matrix product masking leak consistently
less than the Boolean masking (for all noise levels).

Second, and as expected, inner product masking has lower information leak-
age than our masking scheme in low noise region for n = 3, since in our case
only one share is of higher algebraic complexity. This is the price to pay for the
more efficient generalization of our scheme to the higher-order cases. That is,
Boolean matrix product masking should be seen as a tradeoff between Boolean
masking and inner product masking in low noise contexts.

12

-2 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0 .0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-7

-6

-5

-4

-3

-2

-1

0

1

Log
10

(Noise variance)

Lo
g 10

(M
I)

our masking with n=2
our masking with n=3
Boolean masking with n=2
Boolean masking with n=3
IP masking with n=2,4-bit
IP masking with n=3,4-bit
IP masking with n=2,8-bit

Fig. 3. Mutual information in function of the noise variance for different schemes.

Third, another important (and somewhat surprising) observation from Figure
3 is that the slopes of the IT curves for our masking scheme exceed what is
predicted by the probing proof of security. For example, for n = 2 we can see that
this slope tends to -3, while it is only -2 for Boolean and inner product masking.
This is naturally a very useful observation, since it implies larger (concrete)
security levels for our shares. (As proven in [5] the mutual information metric is
directly proportional to the success rate of a worst-case side-channel adversary).
And similar observations hold for n = 3. Interestingly, these reductions of the
information leakages can be directly connected to the results in [9] where it
is shown that the information leakages can indeed be reduced in such a way
for certain types of encodings and (linear) leakage functions. However, contrary
to low entropy masking schemes (which loose their security properties in case
of nonlinear leakages) the “security order amplification” we observe is only a
bonus in our case (i.e. even for nonlinear leakage function, we at least keep the
security guarantee of the probing model). To further confirm this observation,
we computed the (noise-free) statistical moments of the share’s leakages for our
encodings, together with the Boolean ones. Recall that in [9], the statistical
moments for nth-order masking are defined as m =

∏n
i=1(xi−E(xi))

oi , where E
is the expectation and oi ∈ {0, 1, 2, . . .}. Thus the degree of a statistical moment
is o =

∑n
i=1 oi. In Table 1, the degree of the lowest key-dependent statistical

moments (denoted as omin) for different matrices A are listed. We can see that
the value of omin relates to the choice of matrix A, and specifically the minimum
Hamming weight of its (or its inverse’s) rows (denoted as h and ih for A and
A−1 respectively). This can be easily explained by considering the fact that
if the leakage function is linear, it will manipulate the bits of an m-bit nibble
independently, and therefore the matrix multiplication has the impact of XORing
more independent shares together. As a result, for a Boolean matrix product
masking with n shares, the degree of the lowest key-dependent statistical moment
is omin = min(2n, h+n− 1, (n− 1) ∗ ih+ 1), where the 2n value comes from the
fact that there is at least one moment of this order that is key-dependent, namely

13

the one multiplying the square of all the shares. For completeness, we confirm
these expectations on Figure 4, where we plot the mutual information leakages
of our masking scheme in function of the values of omin.5 For comparison we
also add the curves of Boolean for n = 2.

Table 1. Degree of the lowest secret variable-dependent statistical moments.

type of masking and its degree h, ih omin

our masking,
n = 2

1, 1 2
2,3 3
3,4 4

h ≥ 4 or ih ≥ 4 4

our masking,
n = 3

2, 1 3
2,2 4
3,2 5
4,2 6

h ≥ 5 or ih ≥ 3 6

Boolean masking, n = 2 2

Boolean masking, n = 3 3

-2 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0 .0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-8

-7

-6

-5

-4

-3

-2

-1

0

1

Log
10

(Noise variance)

Lo
g 10

(M
I)

our masking with n=2, o

min
=2

our masking with n=2, o
min

=3

our masking with n=2, o
min

=4

Boolean masking with n=2

Fig. 4. Mutual information in function of the noise variance for Boolean matrix product
masking using the matrices A for different degree of lowest key-dependent statistical
moments.

The latter observation leads to two additional discussion points. First, by the
the links between inner product masking and ours in Section 2.6, the security

5 We take the matrices A as (1 0 0 0; 1 1 1 0; 0 0 1 0; 1 1 1 1), (1 1 0 0; 0 0 1 1; 1 0 1 0; 1 1 0 1)
and (1 1 1 0; 1 1 0 1; 1 0 1 1; 0 1 1 1) respectively.

14

order amplification in this section also holds for inner product masking. That
is, by selecting the L vectors appropriately, we can also improve the statistical
order inner product masking for linear leakage functions, which we could confirm
experimentally. So by chance, the authors in [1] just picked up the worst possible
L vectors for their information theoretic evaluations.

Second, as for low entropy masking schemes, such gains are not observed
for non-linear leakage functions. Hence, it is an interesting scope for further
research to investigate how they materialize in real-world devices. Most likely, the
situation will be intermediate (i.e. lower gains than with perfectly linear leakage
functions, but less informative leakages than with Boolean masking). Similarly,
the order amplification observation in this section is only shown for the encoding
parts of the schemes. We leave it as another interesting open question to find
out if other parts of the computations maintain this property. Here as well, we
conjecture that the situation will be intermediate (i.e. not all the tuples will allow
order amplification for linear leakages but many of them will be less informative
than with Boolean masking). So overall, this suggests inner product masking (in
general) has interesting potential for reducing the number and informativeness
of ”tuples of interest” in masked implementations.

4 Performance Evaluation

In order to compare the efficiency of our proposed masking scheme with Boolean
masking, we applied them to protect the LS-designs Fantomas [8]. The cipher
uses 8-bit bitslice S-box and 16-bit L-box for 12 rounds. We implemented Boolean
matrix product masking for n = 2, 3, 4 and m = 4, 8. For the part of matrix
multiplication, we apply the Algorithm 9 and set the k to 1 and m for matrix of
size m×m (for matrix A) and m×m2 (for matrices Â, Á and À) respectively 6.
Thus the (additional) memory for the pre-computed lookup tables is 2m + m ∗
2m ∗ 3 bytes, where the left side 2m bytes come from the look-up table for A×x
and the right side m ∗ 2m ∗ 3 bytes come from the look-up takes for Â×x, Á×x
and À× x. As analyzed in Section 3.1, we run the masking refreshing algorithm
n times on the key shares at the beginning of every execution of the cipher. We
also implemented the Boolean masking [10] with the same number of shares.
We wrote the codes in C language and ran them on a Atmega 2560 processor.
Admittedly, the efficiency of our codes could be highly improved if rewritten in
assembly language.

We summarize the performances of our implementations in Table 2. We can
see that the penalty factors of our masking (using 8 × 8 matrix A) are not
far from the ones of Boolean masking (with same n), which indicates that the
efficiency of our masking scheme is comparable to Boolean masking. Note that
it is counterintuitive that the performance of our masking for m = 8 is (slightly)
better than that for m = 4. Yet, this is due to the fact that the smallest unit

6 Note that in this case we don’t need to keep the memory for the matrices Â, À and
Á

15

of variable in C language is the 8-bit ‘char’, and thus the operations on 4 × 4
matrices take more time than necessary.7

Table 2. Performances of our implementations.

masking type n m clock cycles penalty factor

No Masking 386048 1

Boolean 2 1112064 2.88

Boolean 3 2285568 5.92

Boolean 4 3743744 9.70

Our Masking 2 8 2421760 6.27

Our Masking 3 8 4670464 12.10

Our Masking 4 8 7450624 19.30

Our Masking 2 4 2428928 6.29

Our Masking 3 4 5480448 14.1963

Our Masking 4 4 9590784 24.84

5 Conclusion

In this paper, we have proposed Boolean matrix product masking as a variant of
the inner product masking in [1]. It can be used as an efficient alternative to the
commonly used Boolean masking to protect bitslice ciphers such as the (X)LS-
designs, and leads to efficient implementations in software computing platform-
s. Our scheme is proven secure in the probing model. Besides, its information
theoretic analysis reveals that inner product masking can generally exhibit in-
formation leakages reduced beyond the guarantees given by the probing security
order for linear leakage functions. Thanks to our matrix descriptions, we can ad-
ditionally provide a simple explanation of this phenomena, which relates to the
minimum Hamming weight of the multiplication matrices used in inner product
masking. It is therefore an interesting scope for further research to investigate
the behavior of such masking schemes in the context of concrete (close to but not
exactly linear) leakage functions, and to analyze how this security order ampli-
fication be in complete implementations (and not just encodings). Incidentally,
this will require the development of new analysis models and tools - since highly
multivariate side-channel (e.g. information theoretic) analysis is computationally
hard, and this effect is not captured by probing security.

Besides, all our analyses considered the matrix used in our multiplication
as fixed and public. Yet, since this matrix is not supposed to leave the device
to protect, nothing prevents the designers to keep it secret. This would make
the security analysis more involved (since it would then include some kind of

7 This problem could be solved by an optimized assembly implementation.

16

reverse engineering problem), but has interesting potential to further improve
the security of our masking scheme without any performance penalty, which we
leave as another important scope for further research.

Acknowledgements. This work has been funded in parts by the European
Commission through the ERC project 280141, the CHIST-ERA project SEC-
ODE, Major State Basic Research Development Program (973 Plan)
(2013CB338004). François-Xavier Standaert Standaert is a research associate
of the Belgian Fund for Scientific Research (FNRS-F.R.S.). Yu Yu was support-
ed by the National Natural Science Foundation of China Grant (Nos. 61472249,
61572192, 61572149) and International Science & Technology Cooperation &
Exchange Projects of Shaanxi Province (2016KW-038). Zheng Guo was sup-
ported by the National Natural Science Foundation of China (No. 61402286)
and Shanghai Minhang Innovation project (No. 2015MH069). Junrong Liu was
supported by the National Natural Science Foundation of China (No. U1536103).
Dawu Gu was supported by National Natural Science Foundation of China (No.
61472250).

References

1. Balasch, J., Faust, S., Gierlichs, B.: Inner product masking revisited. In: Oswald
and Fischlin [12], pp. 486–510

2. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P., Grégoire, B., Strub, P.: Verified
proofs of higher-order masking. In: Oswald and Fischlin [12], pp. 457–485

3. Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-
channel attacks. Adv. in Math. of Comm. 10(1), 131–150 (2016)

4. Castagnos, G., Renner, S., Zémor, G.: High-order masking by using coding theory
and its application to AES. In: Cryptography and Coding - 14th IMA International
Conference, IMACC 2013, Oxford, UK, December 17-19, 2013. Proceedings. pp.
193–212 (2013)

5. Duc, A., Faust, S., Standaert, F.: Making masking security proofs concrete - or
how to evaluate the security of any leaking device. In: Oswald and Fischlin [12],
pp. 401–429

6. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-
order side channel analysis. In: Selected Areas in Cryptography - 17th International
Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010, Revised
Selected Papers. pp. 262–280 (2010)

7. Goubin, L., Martinelli, A.: Protecting AES with shamir’s secret sharing scheme.
In: Preneel and Takagi [13], pp. 79–94

8. Grosso, V., Leurent, G., Standaert, F., Varici, K.: LS-designs: Bitslice encryption
for efficient masked software implementations. In: Fast Software Encryption - 21st
International Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised Selected
Papers. pp. 18–37 (2014)

9. Grosso, V., Standaert, F., Prouff, E.: Low entropy masking schemes, revisited. In:
Smart Card Research and Advanced Applications - 12th International Conference,
CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Selected Papers.
pp. 33–43 (2013)

17

10. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Advances in Cryptology - CRYPTO 2003, 23rd Annual Internation-
al Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003,
Proceedings. pp. 463–481 (2003)

11. Journault, A., Standaert, F.X., Varici, K.: Improving the security and efficiency of
block ciphers based on LS-designs. In: 9th International Workshop on Coding and
Cryptography, WCC 2015, Paris, France, April 2015 (2015)

12. Oswald, E., Fischlin, M. (eds.): Advances in Cryptology - EUROCRYPT 2015 -
34th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, Lecture
Notes in Computer Science, vol. 9056. Springer (2015)

13. Preneel, B., Takagi, T. (eds.): Cryptographic Hardware and Embedded Systems -
CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - October 1,
2011. Proceedings, Lecture Notes in Computer Science, vol. 6917. Springer (2011)

14. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using
secure multi-party computation protocols. In: Preneel and Takagi [13], pp. 63–78

15. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Crypto-
graphic Hardware and Embedded Systems, CHES 2010, 12th International Work-
shop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings. pp. 413–427
(2010)

16. Standaert, F., Malkin, T., Yung, M.: A unified framework for the analysis of side-
channel key recovery attacks. In: Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings. pp. 443–
461 (2009)

17. Standaert, F., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: Another look on second-order
DPA. In: Abe, M. (ed.) Advances in Cryptology - ASIACRYPT 2010 - 16th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings. Lecture Notes in Computer
Science, vol. 6477, pp. 112–129. Springer (2010)

18

