Towards Fair and Efficient Evaluations of Leaking Cryptographic Devices (Overview of the ERC Project CRASH, part I)

François-Xavier Standaert UCL Crypto Group, Belgium SPACE, December 2016

Outline

- Introduction
 - Side-channel analysis (attack steps)
 - Heuristic vs. optimal separation
- Measurement & preprocessing
 - Filtering, leakage/POI detection, dimension. reduction
- Predictions & modeling
 - Profiled vs. non-profiled separation, leakage certification
- Exploitation
 - Soft Analytical Side-Channel Attacks
- Post-processing
 - Key enumeration, rank estimation
- Future trends
 - Security without obscurity
 - IT metrics & (tight) proofs

Outline

- Introduction
 - Side-channel analysis (attack steps)
 - Heuristic vs. optimal separation
- Measurement & preprocessing
 - Filtering, leakage/POI detection, dimension. reduction
- Predictions & modeling
 - Profiled vs. non-profiled separation, leakage certification
- Exploitation
 - Soft Analytical Side-Channel Attacks
- Post-processing
 - Key enumeration, rank estimation
- Future trends
 - Security without obscurity
 - IT metrics & (tight) proofs

Standard DPA

executed operations

executed operations

executed operations

executed operations

Standard DPA

leakage trace

Outline

- Introduction
 - Side-channel analysis (attack steps)
 - Heuristic vs. optimal separation
- Measurement & preprocessing
 - Filtering, leakage/POI detection, dimension. reduction
- Predictions & modeling
 - Profiled vs. non-profiled separation, leakage certification
- Exploitation
 - Soft Analytical Side-Channel Attacks
- Post-processing
 - Key enumeration, rank estimation
- Future trends
 - Security without obscurity
 - IT metrics & (tight) proofs

sound but expensive

- AES Rijndael example
 - 128-bit key fixed
 - *N_r* traces with <u>random</u> plaintexts
 - *N_f* traces with a <u>fixed</u> plaintexts
 - Apply Student's t-test to the f&r classes:

•
$$\Delta(t) = \left[\hat{\mu}_f(t) - \hat{\mu}_r(t)\right] / \left[\left(\hat{\sigma}_f^2(t)/N_f\right) + (\hat{\sigma}_r^2(t)/N_r)\right]$$

- AES Rijndael example
 - 128-bit key fixed
 - *N_r* traces with <u>random</u> plaintexts
 - *N_f* traces with a <u>fixed</u> plaintexts
 - Apply Student's t-test to the f&r classes:
 - $\Delta(t) = \left[\hat{\mu}_f(t) \hat{\mu}_r(t)\right] / \left[\left(\hat{\sigma}_f^2(t)/N_f\right) + (\hat{\sigma}_r^2(t)/N_r)\right]$
- Large t statistic: « some data dependency detected »

- *ρ*-test
 - 128-bit key fixed
 - *N* traces with random plaintexts
 - Targets an enumerable intermediate value X
 - Estimate Pearson's coefficient: $\hat{r}(t) = \hat{\rho}(L_X(t), model_t(X))$

- *ρ*-test
 - 128-bit key fixed
 - *N* traces with random plaintexts
 - Targets an enumerable intermediate value X
 - Estimate Pearson's coefficient: $\hat{r}(t) = \hat{\rho}(L_X(t), model_t(X))$
- Model estimated with cross-validation

- *ρ*-test
 - 128-bit key fixed
 - *N* traces with random plaintexts
 - Targets an enumerable intermediate value X
 - Estimate Pearson's coefficient: $\hat{r}(t) = \hat{\rho}(L_X(t), model_t(X))$
- Model estimated with cross-validation

• Hypothesis test (Z transform): $\frac{1}{2} \times ln\left(\frac{1+\hat{r}(t)}{1-\hat{r}(t)}\right) \sim N\left(0,\frac{1}{\sqrt{N-3}}\right)$

CRI's t-test pro: sampling complexity!

- CRI's t-test pro: sampling complexity!
 - Better **signal** for well-chosen fixed classes

- CRI's t-test pro: sampling complexity!
 - Better **signal** for well-chosen fixed classes
 - Easier estimation (2 classes vs. 256 classes)

- CRI's t-test con: possible false negative!
 - Possibly no signal for badly-chosen fixed classes

- t-test false negatives do not hurt (integrated over time)
- But there are many false positives (w.r.t. DPA)
- Only the value of ho is connected with key recovery SR

- t-test false negatives do not hurt (integrated over time)
- But there are many false positives (w.r.t. DPA)
- Only the value of ho is connected with key recovery SR

sampling complexity vs

- t-test false negatives do not hurt (integrated over time)
- But there are many false positives (w.r.t. DPA)
- Only the value of ρ is connected with key recovery SR

Fixed vs. fixed leakage detection test

- CRI's fixed vs. random test (e.g. HW leakages)
 - Maximum HW difference observed = 4
 - "Algorithmic noise" due to the random class

Fixed vs. fixed leakage detection test

- CRI's fixed vs. random test (e.g. HW leakages)
 - Maximum HW difference observed = 4
 - "Algorithmic noise" due to the random class

- Natural extension: *fixed vs. fixed test*
 - Maximum HW difference = 8
 - Average signal multiplied 2
 - No algorithmic noise!

 $max(\hat{\mu}_{f_A}(t))$

 $min(\hat{\mu}_{f_B}(t))$

- Gain dominated by the increased signal
- Reduction of the sampling complexity by a factor ≈ 5

Real measurements (parallel AES in an FPGA)

Fixed vs. random t-test (with 500 traces)

- Gain dominated by the reduced noise
- Reduction of the sampling complexity by a factor ≈ 5

Real measurements (parallel AES in an FPGA)

- Gain dominated by the reduced noise
- Reduction of the sampling complexity by a factor ≈ 5

П

better deal on averag

D

simila

isks of fasle positives & negatives

Outline

- Introduction
 - Side-channel analysis (attack steps)
 - Heuristic vs. optimal separation
- Measurement & preprocessing
 - Filtering, leakage/POI detection, dimension. reduction
- Predictions & modeling
 - Profiled vs. non-profiled separation, leakage certification
- Exploitation
 - Soft Analytical Side-Channel Attacks
- Post-processing
 - Key enumeration, rank estimation
- Future trends
 - Security without obscurity
 - IT metrics & (tight) proofs

Prediction and modeling

- General case: profiled DPA
 - Build "templates", i.e. $\hat{f}(l_i|k, x_i)$
 - e.g., Gaussian, regression-based
 - Which directly leads to $\widehat{\Pr}[k|l_i, x_i]$

- General case: profiled DPA
 - Build "templates", i.e. $\hat{f}(l_i|k, x_i)$
 - e.g., Gaussian, regression-based
 - Which directly leads to $\widehat{\Pr}[k|l_i, x_i]$
- "Simplified" case: non-profiled DPA
 - Just assumes some model
 - e.g., CPA with $m_i^{k^*} = HW(z_i)$
 - e.g., DPA with $m_i^{k^*} = z_i[1]$

Separation result (I)

• Only profiled DPA is *guaranteed* to succeed!

• Only profiled DPA is *guaranteed* to succeed!

- Regression: $L(z_i) \approx F(z_i) + N_i$ with:
 - Linear basis (i.e., 8 bits)
 - Quadratic basis (i.e., add 28 products)
 - ..
 - Full basis (i.e., 256 elements)

• e.g., if $L(z_i) = HW(z_i)$

- Full basis perfectly explains any L by overfitting
 - Even for incorrect key candidates!
• e.g., if $L(z_i) = HW(z_i)$

- Full basis perfectly explains any L by overfitting
 Even for incorrect key candidates!
- \Rightarrow Non-profiled DPA needs a good assumption
 - e.g., the model is linear, simple, ...
 - This, in general, is only provided by profiling

Illustration

$$\tilde{k} = \underset{k^*}{\operatorname{argmax}} \prod_{i=1}^{q} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma(L)} \cdot \exp\left(-\frac{1}{2} \cdot \left(\frac{l_i - m_i^{k^*}}{\sigma(L)}\right)^2\right)$$

- More efficient (better model)
- Outputs probabilities

- Less efficient (worse model)
- Outputs scores

Illustration

Outputs probabilities

Outputs scores

Outline

- Introduction
 - Side-channel analysis (attack steps)
 - Heuristic vs. optimal separation
- Measurement & preprocessing
 - Filtering, leakage/POI detection, dimension. reduction
- Predictions & modeling
 - Profiled vs. non-profiled separation, leakage certification
- Exploitation
 - Soft Analytical Side-Channel Attacks
- Post-processing
 - Key enumeration, rank estimation
- Future trends
 - Security without obscurity
 - IT metrics & (tight) proofs

Model optimality caveats

• A model is optimal if $\widehat{\Pr}_{model} [l|k] = \Pr_{chip} [l|k]$

- A model is optimal if $\widehat{\Pr}_{model} [l|k] = \Pr_{chip} [l|k]$
- $\Rightarrow \text{Theory would say it is } \varepsilon \text{-close to optimal if}$ $SD(\widehat{\Pr}_{model} [l|k], \Pr_{chip} [l|k]) < \varepsilon$
- (with SD a statistical distance)

- A model is optimal if $\widehat{\Pr}_{model} [l|k] = \Pr_{chip} [l|k]$
- $\Rightarrow \text{Theory would say it is } \varepsilon \text{-close to optimal if} \\ SD(\widehat{\Pr}_{model} [l|k], \Pr_{chip} [l|k]) < \varepsilon$
- (with SD a statistical distance)
- Convenient since ε would quantify the loss
 That could be reported in SR bounds [DFS15]

- A model is optimal if $\widehat{\Pr}_{model} [l|k] = \Pr_{chip} [l|k]$
- $\Rightarrow \text{Theory would say it is } \varepsilon \text{-close to optimal if} \\ SD(\widehat{\Pr}_{model} [l|k], \Pr_{chip} [l|k]) < \varepsilon$
- (with SD a statistical distance)
- Convenient since ε would quantify the loss
 That could be reported in SR bounds [DFS15]
- Problem: $\Pr_{chip} [l|k]$ is unknown

[DFS15] A Duc, S. Faust, F.-X. Standaert, *Making Masking Security Proofs Concrete* [...], EUROCRYPT 2015.

- Distinguish estimation & assumption errors
 - Recall estimation errors decrease with # meas.

- Distinguish estimation & assumption errors
 - Recall estimation errors decrease with # meas.
- Example:

- Distinguish estimation & assumption errors
 - Recall estimation errors decrease with # meas.
- Example:

No samples

[DSV14] F. Durvaux, F.-X. Standaert, N. Veyrat-Charvillon, How to Certify the Leakage of a Chip, EUROCRYPT 2014.

- Distinguish estimation & assumption errors
 - Recall estimation errors decrease with # meas.
- Example:

estimation errors dominate

 \Rightarrow need to measure more

[DSV14] F. Durvaux, F.-X. Standaert, N. Veyrat-Charvillon, How to Certify the Leakage of a Chip, EUROCRYPT 2014.

- Distinguish estimation & assumption errors
 - Recall estimation errors decrease with # meas.
- Example:

 $N_1 > N_0$ samples

- Distinguish estimation & assumption errors
 - Recall estimation errors decrease with # meas.
- Example:

assumption errors dominate

[DSV14] F. Durvaux, F.-X. Standaert, N. Veyrat-Charvillon, How to Certify the Leakage of a Chip, EUROCRYPT 2014.

- Distinguish estimation & assumption errors
 - Recall estimation errors decrease with # meas.
- Example:

assumption errors dominate

\Rightarrow need another model

⇒good enough model: *ass. err << est. err*. given *N*

[DSV14] F. Durvaux, F.-X. Standaert, N. Veyrat-Charvillon, *How to Certify the Leakage of a Chip*, EUROCRYPT 2014.

• Test the hypothesis that

 $\widehat{\Pr}_{model}[l|k] \stackrel{\scriptscriptstyle N}{=} \Pr_{chip}[l|k]$

- Test the hypothesis that $\widehat{\Pr}_{model} [l|k] \stackrel{N}{=} \Pr_{chip} [l|k]$
- Taking advantage of cross-validation
 - modeling samples

test samples

- Test the hypothesis that $\widehat{\Pr}_{model} [l|k] \stackrel{N}{=} \Pr_{chip} [l|k]$
- Taking advantage of cross-validation
 - modeling samples

test samples

- Test the hypothesis that $\widehat{\Pr}_{model} [l|k] \stackrel{N}{=} \Pr_{chip} [l|k]$
- Taking advantage of cross-validation
 - modeling samples

test samples

- Test the hypothesis that $\widehat{\Pr}_{model} [l|k] \stackrel{N}{=} \Pr_{chip} [l|k]$
- Taking advantage of cross-validation
 - modeling samples

- te
 - test samples

- Output a p-value p(N)
 - Small p's indicate hyp. is likely incorrect

Main drawback: cost (of sampling distributions)

Towards easy certification

Towards easy certification

- Compare moments (rather than distributions)
 - 1. $\widehat{M}_d \stackrel{N}{\leftarrow} \widehat{\Pr}_{model} [l|k]$ 2. $\widetilde{M}_d \stackrel{N}{\leftarrow} \Pr_{chip} [l|k]$
- 3. Test equality $\widehat{M}_d = \widetilde{M}_d$

- Compare moments (rather than distributions) 1. $\widehat{M}_{d} \stackrel{N}{\leftarrow} \widehat{\Pr}_{model} [l|k]$ 3. Test equality 2. $\widetilde{M}_{d} \stackrel{N}{\leftarrow} \Pr_{chip} [l|k]$ $\widehat{M}_{d} = \widetilde{M}_{d}$
- + Can be done with simple univariate tests
 - e.g., T-test (assuming \widehat{M}_d , \widetilde{M}_d are Gaussian)

Towards easy certification

- Compare moments (rather than distributions) 1. $\widehat{M}_{d} \stackrel{N}{\leftarrow} \widehat{\Pr}_{model} [l|k]$ 3. Test equality 2. $\widetilde{M}_{d} \stackrel{N}{\leftarrow} \Pr_{chip} [l|k]$ $\widehat{M}_{d} = \widetilde{M}_{d}$
- + Can be done with simple univariate tests • e.g., T-test (assuming \widehat{M}_d , \widetilde{M}_d are Gaussian)
- Is it theoretically sound? No!

- Compare moments (rather than distributions) 1. $\widehat{M}_{d} \stackrel{N}{\leftarrow} \widehat{\Pr}_{model} [l|k]$ 3. Test equality 2. $\widetilde{M}_{d} \stackrel{N}{\leftarrow} \Pr_{chip} [l|k]$ $\widehat{M}_{d} = \widetilde{M}_{d}$
- + Can be done with simple univariate tests • e.g., T-test (assuming \widehat{M}_d , \widetilde{M}_d are Gaussian)
- Is it theoretically sound? No!
 - But counterexamples are involved
 - & SCA literature frequently does it
 - Leakage detection, HO attacks, ...

Software experiments

• Repeating the Eurocrypt 2014 case study

Software experiments

• Unprotected AES implementation, Atmel AVR

Unprotected AES implementation, Atmel AVR

Unprotected AES implementation, Atmel AVR

Unprotected AES implementation, Atmel AVR

- Eurocrypt 2014: no errors detected with up to 256x1000 measurements & Gaussian template
- CHES 2016: small errors in \widetilde{M}_3 and \widetilde{M}_4
- \Rightarrow Is there an inconsistency in our results?
- \Rightarrow Do these errors lead to significant information loss

- Eurocrypt 2014: no errors detected with up to 256x1000 measurements & Gaussian template
- CHES 2016: small errors in \widetilde{M}_3 and \widetilde{M}_4
- ⇒ Is there an inconsistency in our results?
 ⇒ Do these errors lead to significant information loss
- Additional test: Moments-Correlating DPA [MS14]

$$\mathsf{MPC-DPA}(d) = \hat{\rho}(\hat{M}_d, l^d)$$

• Metric intuition: $N_s = \frac{c}{\widehat{\rho}(\widehat{M}_d, l^d)^2}$

[MS14] A. Moradi, F.-X. Standaert, Moments-Correlating DPA, Theory of Implementations workshop, 2014.

Software experiments (III)

moments-correlating DPA

little information in skewness/kurtosis

moments-correlating DPA

Software experiments (III)

moments-correlating DPA

Outline

- Introduction
 - Side-channel analysis (attack steps)
 - Heuristic vs. optimal separation
- Measurement & preprocessing
 - Filtering, leakage/POI detection, dimension. reduction
- Predictions & modeling
 - Profiled vs. non-profiled separation, leakage certification
- Exploitation
 - Soft Analytical Side-Channel Attacks
- Post-processing
 - Key enumeration, rank estimation
- Future trends
 - Security without obscurity
 - IT metrics & (tight) proofs

Standard DPA

- More samples per intermediate value
 - Multivariate DPA
 - e.g., dimensionality reduction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - •

- More samples per intermediate value
 - Multivariate DPA

. . . .

- e.g., dimensionality reduction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
- More intermediate values

ARK	SB SR	MC ARK	ROUND 2	ROUND 3	ROUND 4	OTHER ROUNDS	FINAL ROUND
-----	----------	-----------	---------	---------	---------	-----------------	----------------

- More samples per intermediate value
 - Multivariate DPA
 - e.g., dimensionality reduction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - . . .

More intermediate values (CRYPTO 1998)

STANDARD DPA

- More samples per intermediate value
 - Multivariate DPA
 - e.g., dimensionality reduction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - . . .

More intermediate values (ASIACRYPT 2014)

MULTI-TARGET DPA

- More samples per intermediate value
 - Multivariate DPA
 - e.g., dimensionality reduction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - . . .

More intermediate values (FSE 2003)

COLLISION ATTACKS

- More samples per intermediate value
 - Multivariate DPA
 - e.g., dimensionality reduction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - . . .

More intermediate values (CHES 2009)

ALGEBRAIC SIDE-CHANNEL ATTACKS (ASCA)

ASCA limitations

- Cannot deal with measurement noise
 - Despite progresses, e.g., Tolerant ASCA
- Large (time and) memory complexities
 - Limited to a single plaintext, typically
 - Sometimes even less

ASCA limitations

- Cannot deal with measurement noise
 - Despite progresses, e.g., Tolerant ASCA
- Large (time and) memory complexities
 - Limited to a single plaintext, typically
 - Sometimes even less
- ⇒ Emerging intuition: ASCA require "hard" information and only standard DPA can efficiently exploit "soft" (probabilistic) information obtained from the measurements of multiple plaintexts

ASCA limitations

- Cannot deal with measurement noise
 - Despite progresses, e.g., Tolerant ASCA
- Large (time and) memory complexities
 - Limited to a single plaintext, typically
 - Sometimes even less
- ⇒ Emerging intuition: ASCA require "hard" information and only standard DPA can efficiently exploit "soft" (probabilistic) information obtained from the measurements of multiple plaintexts
- *Our contribution*: show this intuition is incorrect!

• Representation of the algorithm/implementation

- Representation of the algorithm/implementation
- Based on two types of nodes

- Representation of the algorithm/implementation
- Based on two types of nodes
 - Variable nodes x_i (i.e., intermediate values)

- Representation of the algorithm/implementation
- Based on two types of nodes
 - Variable nodes x_i (i.e., intermediate values)
 - Factor nodes of two types
 - A priori knowledge $f_i(x_i) = \Pr[x_i|L]$
 - Exactly the output of standard DPA!
 - Operations: $f(x_1, x_2, x_3) = 1$ if $OP(x_1, x_2) = x_3$ 0 otherwise

- Representation of the algorithm/implementation
- Based on two types of nodes
 - Variable nodes xi (i.e., intermediate values)
 - Factor nodes of two types
 - A priori knowledge $f_i(x_i) = \Pr[x_i|L]$
 - Exactly the output of standard DPA!
 - Operations: $f(x_1, x_2, x_3) = 1$ if $OP(x_1, x_2) = x_3$ 0 otherwise
- Edges carry two types of messages
 - Type q messages: from variables to factors
 - Type *r* messages: from factors to variables

SASCA (II): belief propagation

• Propagates the information (probabilities) through the factor graph via message passing

SASCA (II): belief propagation

• Propagates the information (probabilities) through the factor graph via message passing

• From variables to factors

$$q_{v_n \to f_m}(x_n) = \prod_{m' \in M \setminus m} r_{f_{m'} \to v_n}(x_n)$$

 ≈ product over all incoming messages excluding the one of the target factor node

SASCA (II): belief propagation

• Propagates the information (probabilities) through the factor graph via message passing

• From factors to variables

$$r_{f_m \to v_n}(x_n) = \sum_{x_m \neq x_n} f_m(x_m) \cdot \prod_{n' \in N \setminus n} q_{v_{n'} \to f_m}(x_{n'})$$

 ≈ weighted sum of products over all incoming messages excluding the target variable node

Example (I): factor graph

Example (II): adding the messages

Example (III): initialize the q's (v to f)

Example (IV): initialize the r's (f to v)

Example (V): update the q's (v to f)

Example (VI): update the r's (f to v)

Example (VII): update the q's (v to f)

Experimental setting

- Good news: any knowledge can be exploited
- e.g. (open source) AES furious assembly code

ASM code	Graph description	Factor graph
ld H1, Y+ eor ST11, H1 mov ZL, ST11 lpm ST11, Z	* _Xor AK[1,1]_0 ST[1,1]_0 K[1,1]_0 * _Sbox SB[1,1]_0 AK[1,1]_0	$\begin{array}{c c} & \mathcal{K}^{0}_{1,1} & \mathcal{ST}^{0}_{1,1} & \mathcal{AK}^{0}_{1,1} & \mathcal{SB}^{0}_{1,1} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & $
mov H3, ST11 eor H3, ST21 mov ZL, H3 lpm H3, Z	* _Xor MC[3,1]_0 SB[1,1]_0 SB[2,1]_0 * _Xtime XT[1,1]_0 MC[3,1]_0	$SB_{1,1}^{0} SB_{2,1}^{0} MC_{3,1}^{0} XT_{1,1}^{0}$
mov ZL, ST24 lpm H3, Z eor ST11, H3 eor ST11, H1	* _Sbox SK[1,1]_1 K[2,4]_0 _Xor XK[1,1]_1 SK[1,1]_1 K[1,1]_0 _XorCst K[1,1]_1 XK[1,1]_1 0x1	K ⁰ _{2,4} SK ¹ _{1,1} K ⁰ _{1,1} XK ¹ _{1,1} K ¹ _{1,1} SBOX XOR XORCST XORCST XORCST XORCST

Experimental setting

- Good news: any knowledge can be exploited
- e.g. (open source) AES furious assembly code

ASM code	Graph description	Factor graph
ld H1, Y+ eor ST11, H1 mov ZL, ST11 lpm ST11, Z	* _Xor AK[1,1]_0 ST[1,1]_0 K[1,1]_0 * _Sbox SB[1,1]_0 AK[1,1]_0	$\begin{array}{c c} & \mathcal{K}^{0}_{1,1} & \mathcal{ST}^{0}_{1,1} & \mathcal{AK}^{0}_{1,1} & \mathcal{SB}^{0}_{1,1} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & $
mov H3, ST11 eor H3, ST21 mov ZL, H3 lpm H3, Z	* _Xor MC[3,1]_0 SB[1,1]_0 SB[2,1]_0 * _Xtime XT[1,1]_0 MC[3,1]_0	<i>SB</i> ⁰ _{1,1} <i>SB</i> ⁰ _{2,1} <i>MC</i> ⁰ _{3,1} <i>XT</i> ⁰ _{1,1} <i>XT</i> ⁰ _{1,1}
mov ZL, ST24 lpm H3, Z eor ST11, H3 eor ST11, H1	* _Sbox SK[1,1]_1 K[2,4]_0 _Xor XK[1,1]_1 SK[1,1]_1 K[1,1]_0 _XorCst K[1,1]_1 XK[1,1]_1 Ox1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Simulated HW leakages with variable noise

Experimental results

univariate TA, sBOX output bivariate TA, sBOX input and output

SASCA attack, no key schedule leakages

SASCA attack,all intermediate values

Experimental results

SNR

2 5 10 20 50 100 200 500 10002000 5000 Number of traces

univariate TA, SBOX output bivariate TA, SBOX input and output

SASCA attack, no key schedule leakages

SASCA attack,all intermediate values
Experimental results

univariate TA, SBOX output bivariate TA, SBOX input and output

SASCA attack, no key schedule leakages

SASCA attack,all intermediate values

Experimental results

univariate TA, sBOX output bivariate TA, sBOX input and output

SASCA attack, no key schedule leakages

SASCA attack, all intermediate values

More results

• Also works in practice (Asiacrypt 2015)

More results

- Also works in practice (Asiacrypt 2015)
- And against masked implementations

More results

- Also works in practice (Asiacrypt 2015)
- And against masked implementations
 - Improvement of the CHES 2016 horizontal attacks

Outline

- Introduction
 - Side-channel analysis (attack steps)
 - Heuristic vs. optimal separation
- Measurement & preprocessing
 - Filtering, leakage/POI detection, dimension. reduction
- Predictions & modeling
 - Profiled vs. non-profiled separation, leakage certification
- Exploitation
 - Soft Analytical Side-Channel Attacks
- Post-processing
 - Key enumeration, rank estimation
- Future trends
 - Security without obscurity
 - IT metrics & (tight) proofs

SCA possible outcomes

• Enough measurements ⇒ direct key recovery

- Enough measurements ⇒ direct key recovery
- Not enough measurements but enough computational power ⇒ key enumeration

- Enough measurements ⇒ direct key recovery
- Not enough measurements but enough computational power ⇒ key enumeration
- But what to do if it is not enough?
 - Key rank estimation (requires key knowledge)
 ⇒ Only possible for evaluators

- Enough measurements ⇒ direct key recovery
- Not enough measurements but enough computational power ⇒ key enumeration
- But what to do if it is not enough?
 - Key rank estimation (requires key knowledge)
 ⇒ Only possible for evaluators
- Note: only optimal with probabilities (to combine the information of ≠ S-boxes)

FSE 2015 rank estimation (I)

• Thanks to T-systems people (Glowacz, Schueth)

- Thanks to T-systems people (Glowacz, Schueth)
- Representation with histograms

• The rank is the number of key in the green zone

Combination with convolution

Combination with convolution

- ... and keep track of the error that depends on:
- The number of bins
- The number of conv.

Combination with convolution

... and keep track of the error that depends on:

- The number of bins
- The number of conv.

- Just iterating this gives the key rank accurately
 - e.g., < 1 bits in < 1 sec. for a 128-bit key

• Security graph (IMO the sound outcome of an evaluation)

Outline

- Introduction
 - Side-channel analysis (attack steps)
 - Heuristic vs. optimal separation
- Measurement & preprocessing
 - Filtering, leakage/POI detection, dimension. reduction
- Predictions & modeling
 - Profiled vs. non-profiled separation, leakage certification
- Exploitation
 - Soft Analytical Side-Channel Attacks
- Post-processing
 - Key enumeration, rank estimation
- Future trends
 - Security without obscurity
 - IT metrics & (tight) proofs

standard practice

attack-based evaluations

Security evaluation tools

standard practice

attack-based evaluations

success probability

standard practice

helps evaluations

attack-based evaluations

proof-based evaluations

Outline

- Introduction
 - Side-channel analysis (attack steps)
 - Heuristic vs. optimal separation
- Measurement & preprocessing
 - Filtering, leakage/POI detection, dimension. reduction
- Predictions & modeling
 - Profiled vs. non-profiled separation, leakage certification
- Exploitation
 - Soft Analytical Side-Channel Attacks
- Post-processing
 - Key enumeration, rank estimation
- Future trends
 - Security without obscurity
 - IT metrics & (tight) proofs

• Discrete observations:

$$MI(S; O) = H[S] + \sum_{s \in S} Pr[s] \cdot \sum_{o \in O} Pr[o|s] \cdot \log_2(Pr[s|o])$$

• With: $Pr[s|o] = \frac{Pr[o|s]}{\sum_{s^*} Pr[o|s^*]}$

33

• Continuous observations:

$$MI(S; O) = H[S] + \sum_{s \in S} \Pr[s] \cdot \int_{O} f(o|s) \cdot \log_{2}(\Pr[s|o]) \ do$$

• With: $\Pr[s|o] = \frac{f(o|s)}{\sum_{s^{*}} f(o|s^{*})}$

• Continuous observations:

$$MI(S;O) = H[S] + \sum_{s \in S} \Pr[s] \cdot \int_{O} f(o|s) \cdot \log_2(\Pr[s|o]) \ do$$

• With:
$$\Pr[s|o] = \frac{f(o|s)}{\sum_{s^*} f(o|s^*)}$$

 Intuition: average amount of information on S that is gained by observing a sample o Higher MI(S; O) asymptotically implies higher Bayesian classification success rate:

$$SR(n) = \Pr_{O} \left[\operatorname{argmax}_{s^{*}} \Pr[s^{*}|o_{1}] \cdot \Pr[s^{*}|o_{2}] \cdots \Pr[s^{*}|o_{n}] = s \right]$$

• With *n* observations used for classification

• Higher MI(S; O) asymptotically implies higher Bayesian classification success rate:

$$SR(n) = \Pr_{o} \left[\operatorname{argmax}_{s^{*}} \Pr[s^{*}|o_{1}] \cdot \Pr[s^{*}|o_{2}] \cdots \Pr[s^{*}|o_{n}] = s \right]$$

• With *n* observations used for classification

- In practice, the true distributions Pr_{real}[o|s] and f_{real}(o|s) are generally unknown
 - So they can be sampled (i.e., measured)
 - But they cannot be computed exactly

- In practice, the true distributions Pr_{real}[o|s] and f_{real}(o|s) are generally unknown
 - So they can be sampled (i.e., measured)
 - But they cannot be computed exactly
- Hence, for the classification we use statistical models Pr_{model}[o|s] and f_{model}(o|s)
 - But these models can suffer from both estimation errors and assumption errors

- In practice, the true distributions Pr_{real}[o|s] and f_{real}(o|s) are generally unknown
 - So they can be sampled (i.e., measured)
 - But they cannot be computed exactly
- Hence, for the classification we use statistical models Pr_{model}[o|s] and f_{model}(o|s)
 - But these models can suffer from both estimation errors and assumption errors

 \Rightarrow How to be sure that the model is good?

- Exactly reflects this practical challenge
- For example in the continuous case:

$$PI(S; O) = H[S] + \sum_{s \in S} Pr[s] \cdot \int_{O} f_{real}(o|s) \cdot \log_2(Pr_{model}[s|o]) do$$

- Exactly reflects this practical challenge
- For example in the continuous case:

$$PI(S; O) = H[S] + \sum_{s \in S} Pr[s] \cdot \int_{O} f_{real}(o|s) \cdot \log_2(Pr_{model}[s|o]) do$$

 Intuition: average amount of information on S that is gained by observing a sample o, biased by the model estimation/assumption errors

- Exactly reflects this practical challenge
- For example in the continuous case:

$$PI(S; O) = H[S] + \sum_{s \in S} Pr[s] \cdot \int_{O} f_{real}(o|s) \cdot \log_2(Pr_{model}[s|o]) do$$

- Intuition: average amount of information on S that is gained by observing a sample o, biased by the model estimation/assumption errors
- PI(S; 0) is a statistical distance between the real and modeled distributions (i.e., a measure of how well a model "explains" real observations)

• Say you have a set of 2*m* observations per *s*

- Say you have a set of 2*m* observations per *s*
- 1. Use *m* observations to build a model for each *s*:

- Say you have a set of 2*m* observations per *s*
- 1. Use *m* observations to build a model for each *s*:

$$\hat{\mathbf{f}}_{\text{model}}(o|s) \stackrel{m}{\leftarrow} \mathbf{f}_{\text{real}}(o|s)$$

2. Use the other *m* observations to test the model:

$$\widehat{PI}(S; O) = H[S] + \sum_{s \in S} \Pr[s] \cdot \sum_{\substack{m \\ o' \leftarrow f}} \sum_{\substack{m \\ real}} \frac{1}{m} \cdot \log_2(\widehat{Pr}_{model}[s|o'])$$

- Say you have a set of 2*m* observations per *s*
- 1. Use *m* observations to build a model for each *s*:

$$\hat{\mathbf{f}}_{\text{model}}(o|s) \stackrel{m}{\leftarrow} \mathbf{f}_{\text{real}}(o|s)$$

2. Use the other *m* observations to test the model:

$$\widehat{PI}(S; O) = H[S] + \sum_{s \in S} \Pr[s] \cdot \sum_{\substack{o' \leftarrow f \\ real}(O|S)} \frac{1}{m} \cdot \log_2(\widehat{Pr}_{model}[s|o'])$$

(More efficient use of observations with cross-validation)
Efficiency gain (I)

• Directly estimating model *convergence* and *informativeness* based on the SR is expensive

The PI curve allows "getting rid of" the *n* axis
 ⇒ it is faster to estimate than the SR surface

The PI curve allows "getting rid of" the *n* axis
 ⇒ it is faster to estimate than the SR surface

The PI curve allows "getting rid of" the *n* axis
 ⇒ it is faster to estimate than the SR surface

Interpretation (I)

- Allows sound & efficient comparison of models
 - e.g., model 2 more informative than model 1

- Allows sound & efficient comparison of models
 - and model 1 converges faster than model 2

Interpretation (II)

• For a given *m*, one can always compute the success rate curves to gain concrete intuition

Interpretation (II)

• For a given *m*, one can always compute the success rate curves to gain concrete intuition

• Remaining question: how far are we from the MI?

• Leakage certification allows answering this!

Masking

- Let $z = S(x \oplus k) = S(y)$ be a leaking S-box
- Let $y = y_1 \oplus y_2 \oplus \cdots \oplus y_d$ be a sharing of y

• Perform computations on "shared" variables

More generally (II)

• Linear operations: $f(a) = f(a_1) \oplus f(a_2) \oplus \cdots \oplus f(a_d)$

More generally (II)

- Linear operations: $f(a) = f(a_1) \oplus f(a_2) \oplus \cdots \oplus f(a_d)$
- Multiplications: $c = a \times b$ in three steps

More generally (II)

- Linear operations: $f(a) = f(a_1) \oplus f(a_2) \oplus \cdots \oplus f(a_d)$
- Multiplications: $c = a \times b$ in three steps

$\begin{bmatrix} a_1 b_1 \end{bmatrix}$	$a_{1}b_{2}$	a_1b_3
$a_{2}b_{1}$	$a_{2}b_{2}$	a_2b_3
$a_{3}b_{1}$	$a_{3}b_{2}$	a_3b_3

partial products

- Linear operations: $f(a) = f(a_1) \oplus f(a_2) \oplus \cdots \oplus f(a_d)$
- Multiplications: $c = a \times b$ in three steps

$$\begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix} + \begin{bmatrix} 0 & r_1 & r_2 \\ -r_1 & 0 & r_3 \\ -r_2 & r_3 & 0 \end{bmatrix}$$

refreshing

- Linear operations: $f(a) = f(a_1) \oplus f(a_2) \oplus \cdots \oplus f(a_d)$
- Multiplications: $c = a \times b$ in three steps

$$\begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix} + \begin{bmatrix} 0 & r_1 & r_2 \\ -r_1 & 0 & r_3 \\ -r_2 & r_3 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

refreshing

compression

- Linear operations: $f(a) = f(a_1) \oplus f(a_2) \oplus \cdots \oplus f(a_d)$
- Multiplications: $c = a \times b$ in three steps

$$\begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix} + \begin{bmatrix} 0 & r_1 & r_2 \\ -r_1 & 0 & r_3 \\ -r_2 & r_3 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

refreshing

compression

\Rightarrow Quadratic overheads & randomness

- Linear operations: $f(a) = f(a_1) \oplus f(a_2) \oplus \cdots \oplus f(a_d)$
- Multiplications: $c = a \times b$ in three steps

$$\begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix} + \begin{bmatrix} 0 & r_1 & r_2 \\ -r_1 & 0 & r_3 \\ -r_2 & r_3 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

refreshing

compression

⇒Quadratic overheads & randomness ⇒Composable (from gadgets to circuits)

Yuval Ishai, Amit Sahai, David Wagner: *Private Circuits: Securing Hardware against Probing Attacks*. CRYPTO 2003: 463-481. Matthieu Rivain, Emmanuel Prouff: *Provably Secure Higher-Order Masking of AES*. CHES 2010: 413-427. Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub, Rébecca Zucchini: *Strong Non-Interference and Type-Directed Higher-Order Masking*. ACM Conference on Computer and Communications Security 2016: 116-129

Main theorem (informal)

- Assume leakage variables $L_{Z_i} = \delta(Z_i) + N$ s.t.
 - $MI(Z_i; L_{Z_i}) \leq \frac{c}{d} \text{ (why } d? \text{ or } d^2 \text{ in proofs)}$
 - The leakages of the shares are independent
- For a masking scheme with *d* shares
- And an adversary using *m* measurements

• Then:
$$SR \le 1 - (1 - MI(Z_i; L_{Z_i})^d)^m$$

Alexandre Duc, Sebastian Faust, François-Xavier Standaert: Making Masking Security Proofs Concrete - Or How to Evaluate the Security of Any Leaking Device. EUROCRYPT (1) 2015: 401-429

Main theorem (informal)

- Assume leakage variables $L_{Z_i} = \delta(Z_i) + N$ s.t.
 - $MI(Z_i; L_{Z_i}) \leq \frac{c}{d}$ (multiplications)
 - The leakages of the shares are independent
- For a masking scheme with *d* shares
- And an adversary using *m* measurements

• Then:
$$SR \le 1 - (1 - MI(Z_i; L_{Z_i})^d)^m$$

Alexandre Duc, Sebastian Faust, François-Xavier Standaert: *Making Masking Security Proofs Concrete - Or How to Evaluate the Security of Any Leaking Device*. EUROCRYPT (1) 2015: 401-429

Main theorem (informal)

- Assume leakage variables $L_{Z_i} = \delta(Z_i) + N$ s.t.
 - $MI(Z_i; L_{Z_i}) \le \frac{c}{d}$ (multiplications)
 - The leakages of the shares are independent
- For a masking scheme with *d* shares
- And an adversary using *m* measurements

• Then:
$$SR \le 1 - (1 - MI(Z_i; L_{Z_i})^d)^m$$

- For m = 1, SR $\leq MI(Z_i; L_{Z_i})^d \propto (\sigma_N^2)^d$
- (Intuitively \approx "noisy" piling up lemma)

Alexandre Duc, Sebastian Faust, François-Xavier Standaert: Making Masking Security Proofs Concrete - Or How to Evaluate the Security of Any Leaking Device. EUROCRYPT (1) 2015: 401-429

• 1-bit, 2-shares example

• 1-bit, 2-shares example

Information theoretic intuition

- Slope of the IT curves = *d* (i.e., security order)
 - e.g., for information leakage of an encoding

- As masking order increases, the # of *d*-tuples of informative samples increases (say by *d*)
- \Rightarrow the gap between "simple" attacks targeting one *d*-tuple and *d* ones increase by a factor *d*

• As masking order increases, the # of *d*-tuples of informative samples increases (say by *d*)

 \Rightarrow the gap between "simple" attacks targeting one *d*-tuple and *d* ones increase by a factor *d*

• If shares are re-used (allowing averaging before combination) this factor becomes d^d

- As masking order increases, the # of *d*-tuples of informative samples increases (say by *d*)
- \Rightarrow the gap between "simple" attacks targeting one *d*-tuple and *d* ones increase by a factor *d*
- If shares are re-used (allowing averaging before combination) this factor becomes d^d
- ⇒ It means security depends on efficiency (in cycles), e.g., parallelism reduces # of leaking tuples
 - And that t-tests become irrelevant with large #dim.

Outline

- Introduction
 - Side-channel analysis (attack steps)
 - Heuristic vs. optimal separation
- Measurement & preprocessing
 - Filtering, leakage/POI detection, dimension. reduction
- Predictions & modeling
 - Profiled vs. non-profiled singation, leakage certification
 Exploitation
 Section
- - Soft Analytical Side-Channel Attacks
- Post-processing
 - Key enumeration, rank estimation
- Future trends
 - Security without obscurity
 - Exploiting (tight) proofs

Conclusions

- For some parts, verifiably fair (i.e., close to worst-case) security evaluations are possible
 - But measurements & preprocessing remain essentially based on engineering knowledge
 - & there remain challenges for highly multivariate and (very) high-order side-channel attacks

Conclusions

- For some parts, verifiably fair (i.e., close to worst-case) security evaluations are possible
 - But measurements & preprocessing remain essentially based on engineering knowledge
 - & there remain challenges for highly multivariate and (very) high-order side-channel attacks
- Transparency is needed for high security
 - e.g., HW with 2⁸⁰ security should be open source

Conclusions

- For some parts, verifiably fair (i.e., close to worst-case) security evaluations are possible
 - But measurements & preprocessing remain essentially based on engineering knowledge
 - & there remain challenges for highly multivariate and (very) high-order side-channel attacks
- Transparency is needed for high security
 e.g., HW with 2⁸⁰ security should be open source
- First focus should be on understanding (adv.'s practicality comes only afterwards)
 - e.g., thing about linear cryptanalysis

Open problems

- Effective countermeasures against side-channel attacks always combine sound hardware assumptions & mathematical amplification
- ⇒ Empirically verifiable (falsifiable) assumptions
- ⇒ Systematic ways to deal with hardware defaults (or constructions that are less demanding)
- ⇒ Tight proofs in (reasonably) realistic models

Open problems

- Effective countermeasures against side-channel attacks always combine sound hardware assumptions & mathematical amplification
- ⇒ Empirically verifiable (falsifiable) assumptions
- ⇒ Systematic ways to deal with hardware defaults (or constructions that are less demanding)
- ⇒ Tight proofs in (reasonably) realistic models
- Tools, formal methods, design automation

Open problems

- Effective countermeasures against side-channel attacks always combine sound hardware assumptions & mathematical amplification
- ⇒ Empirically verifiable (falsifiable) assumptions
- ⇒ Systematic ways to deal with hardware defaults (or constructions that are less demanding)
- ⇒ Tight proofs in (reasonably) realistic models
- Tools, formal methods, design automation
- We need both theoretical works to lay out foundations & experimental case studies

THANKS

http://perso.uclouvain.be/fstandae/

http://perso.uclouvain.be/fstandae/PUBLIS/183.pdf