
Power Analysis of an FPGA
Implementation of Rijndael:

Is Pipelining a DPA Countermeasure?

François-Xavier Standaert1, Sıddıka Berna Örs2, Bart Preneel2

1UCL Crypto Group, Laboratoire de Microélectronique
Université Catholique de Louvain,

Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium
standaert@dice.ucl.ac.be

2Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium.
siddika.bernaors,bart.preneel@esat.kuleuven.ac.be

Abstract. Since their publication in 1998, power analysis attacks have
attracted significant attention within the cryptographic community. So
far, they have been successfully applied to different kinds of (unpro-
tected) implementations of symmetric and public-key encryption schemes.
However, most published attacks apply to smart cards and only a few
publications assess the vulnerability of hardware implementations. In
this paper we investigate the vulnerability of Rijndael FPGA (Field Pro-
grammable Gate Array) implementations to power analysis attacks. The
design used to carry out the experiments is an optimized architecture
with high clock frequencies, presented at CHES 2003. First, we provide
a clear discussion of the hypothesis used to mount the attack. Then, we
propose theoretical predictions of the attacks that we confirmed exper-
imentally, which are the first successful experiments against an FPGA
implementation of Rijndael. In addition, we evaluate the effect of pipelin-
ing and unrolling techniques in terms of resistance against power analysis.
We also emphasize how the efficiency of the attack significantly depends
on the knowledge of the design.

1 Introduction

Side-channel analysis is becoming a classical topic in cryptographic design, but
although numerous papers investigate Differential Power Analysis (DPA) from a
theoretical point of view, only a few articles focus on their practical implemen-
tation. Moreover, most of the published research is related to smart cards and
only a few papers assess the context of hardware and FPGA implementations.

As soon as hardware design is concerned, the questions of effectiveness, clock
frequency and area requirements are of primary importance. In this paper, we
demonstrate that they also have a very substantial impact on the feasibility of
power analysis attacks. For this purpose, we investigated an optimized FPGA
implementation of the Advanced Encryption Standard Rijndael [1, 2], presented
at CHES 2003. In addition to the practical evaluation of the attack, we present



a number of original observations concerning: (i) the effect of pipelining and
unrolling techniques in terms of resistance against power analysis attacks; (ii)
the relationship between the knowledge of a hardware design and the efficiency
of power analysis attacks. (iii) the effect of high clock frequencies on the mea-
surement setup. Moreover, we characterized some design components (e.g. the
registers) in terms of predictablility and leakage. This results in tools that could
be used to analyze power analysis attacks in general. Finally, we compare our
results with the only published attack against a hardware implementation of
Rijndael that we are aware of [3] to validate our conclusions.

This paper is structured as follows. Section 2 presents the hypothesis used to
carry out the power analysis attack and Section 3 gives a short description of
our Rijndael implementation. Section 4 describes how to perform theoretical pre-
dictions on the power consumption in a pipeline design and Section 5 explains
how to use these predictions in order to mount a practical attack. Section 6
presents theoretical predictions of the attack and their practical implementation
is discussed in Sect. 7. Additional considerations about pipeline and unrolled
designs are presented in Sect. 8. Section 9 re-discusses the hypothesis. Finally,
conclusions are in Sect. 10.

2 Hypothesis

In Differential Power Analysis, an attacker uses a hypothetical model of the de-
vice under attack to predict its power consumption. These predictions are then
compared to the real measured power consumption in order to recover secret
information (e.g. secret key bits). The quality of the model has a strong impact
on the effectiveness of the attack and it is therefore of primary importance.

While little information is available on the design and implementation of FPGAs
(much of the information is proprietary), we can make assumptions about how
commercial FPGAs behave at the transistor level. The most popular technol-
ogy used to build programmable logic is static RAM1, where the storage cells,
the logic blocks and the connection blocks are made of CMOS gates. For these
circuits, it is reasonable to assume that the main component of the power con-
sumption is the dynamic power consumption. For a single CMOS gate, we can
express it as follows [5]:

PD = CLV 2
DDP0→1f (1)

where CL is the gate load capacitance, VDD the supply voltage, P0→1 the prob-
ability of a 0 → 1 output transition and f the clock frequency. Equation (1)
specifies that the power consumption of CMOS circuits is data-dependent. How-
ever, for the attacker, the relevant question is to know if this data-dependent
behavior is observable. This was confirmed by the following test.

Let three 4096-bit vectors be defined as follows. Initially, a0 = 00000...001 and
b0, c0 = 00000...000. Then:

ai+1 = SL(ai), bi+1 = bi ⊕ ai, ci+1 = ci ⊕ bi,

1 For all the experiments, we used a Xilinx Virtex XCV800 FPGA [4].



where SL is the shift left operator and consecutive values (xi, xi+1) are separated
by a register. It is easy to see that:

– a is a bit-vector with a constant Hamming weight (H(a) = 1). The position
of the 1-bit inside the vector is incremented/decremented from 0 to 4095.

– b is a bit-vector for which the Hamming weight is incremented/decremented
from 0 to 4095.

– c is a bit-vector for which the number of bit switches between two consecutive
states is incremented/decremented from 0 to 4095.

A design that generates these three vectors was implemented in the FPGA.

Fig. 1. One single power trace Fig. 2. Preliminary test

Figure 1 illustrates2 a single power trace. Figure 2 illustrates the power consump-
tion of vectors a, b and c during about 20 000 clock cycles. From this experiment,
we conclude that the power consumption clearly depends on the number of tran-
sitions in registers.

Based on these considerations, we used the following hypothesis to mount
power analysis attacks against FPGAs: “an estimation of a device power con-
sumption at time t is given by the number of bit transitions inside the device
registers at this time”. Predicting the transitions in registers is reasonable since
registers usually consume the largest part of the power in a design.

3 Hardware Description

A short description of the Rijndael algorithm is given in the Appendix A. The
architecture used to investigate DPA against Rijndael was presented last year
at CHES 2003 [6]. We briefly describe its significant details.

SubBytes: The substitution box (S-box) is implemented as a 256 x 8 multi-
plexer and takes advantage of specific properties of the FPGA. Note that two
pipeline stages are inserted for efficiency purposes, as represented in Appendix
B. In SubBytes, this S-box is applied to the 16 bytes of the state in parallel.
2 Measurement setups for DPA have already been intensively described in the open

literature. In Fig. 1, we observe the voltage variations over a small resistor inserted
in the supply circuit of the FPGA. Every trace was averaged 10 times in order to
remove the noise from our measurements.



MixAdd: In [6], an efficient combination of MixColums and the key addition is
proposed, based on an optimal use of the FPGA resources. The resulting Mix-
Add transform allows MixColumns and AddRoundKey to be computed in two
clock cycles, the key addition being embedded with MixColumns in the second
cycle.

Complete architecture: The complete architecture is represented in Fig. 3,
where all the registers are 128-bit long3. It is a loop architecture with pipeline,
designed for optimizing the ratio Throughput (Mbits/s)/Area (slices). It is im-
portant to remark that the multiplexer model for the S-box implies that its first
part uses four 128-bit registers. The resulting design implements the round (and
key round) function in 5 clock cycles and the complete cipher in 52 clock cycles.

4 Predictions in a pipeline design

The question we assess in this paper is to know whether pipelining has any influ-
ence on DPA resistance. We also investigate a practical design that is the result
of efficiency optimizations. Loop architectures are a relevant choice for investiga-
tion because they satisfy the usual area and throughput requirements for block
cipher applications. However, unrolled architectures will also be explored in a
further section.

Based on the hypothesis of Sect. 2, the first step in a power analysis attack is to
make theoretical predictions on the power consumption. This can be done using
a selection function D that we define as follows. Let Xi and Xi+1 be two consecu-
tive values inside a target register. An estimation of the register power consump-
tion at the time of the transition is given by the function D = H(Xi ⊕Xi+1).
An attacker who has to predict the transitions inside the registers of an imple-
mentation therefore needs to answer two basic questions:

1. Which register transitions can we predict?
2. Which register transitions leak information?

Answering these questions determines which registers will be targeted during
the attack. As an attacker can use the plaintexts (resp. ciphertexts) and pre-
dict transitions by partial encryption (resp. decryption), it is also important to
evaluate both scenarios.

4.1 Definitions
i. The predictability of a register is related to the number of key bits one should
know to predict its transitions. For block ciphers, this depends on the size of
the S-boxes and the diffusion layer. In practice, it is assumed that it is possible
to guess up to 16 key bits, and the diffusion layer usually prevents guessing of
more than one block cipher round. In Rijndael, S-boxes are 8-bit wide and their
outputs are thus predictable after the first (resp. final) key addition. However,
every MixColumns output bit depends on 32 key bits and is therefore computa-
tionally intensive to guess.
3 Except the first part of Mixadd that is 176-bit long.



ii. We denote a register as a full (resp. empty) register if its transitions leak
(resp. do not leak) secret information. For example, it is obvious that an input
(resp. output) register does not leak any secret information as it only contains
the plaintext (resp. ciphertext). A surprising consequence of the hypothesis in-
troduced in Sect. 2 is that the registers following an initial (resp. final) key
addition do not leak information either. To illustrate this statement, we use the
following key addition:

AddKey
{ result = input ⊕ key; }
Let assume that the result is actually stored in an FPGA register R . Let two
consecutive inputs of the key addition be denoted as input1 and input2. Using
the previously defined selection function, the register power consumption may
be estimated by:

PR ∝ H(result1 ⊕ result2) = H(input1 ⊕ key ⊕ input2 ⊕ key)
= H(input1 ⊕ input2) (2)

Equation 2 clearly specifies that the register R is empty. In practice, registers
of our Rijndael implementation will actually remain empty as long as the state
has not passed through the non-linear S-box. Thereafter, the power consumption
depends on H(sbox(input1⊕key)⊕sbox(input2⊕key)) and therefore on the key.

Remark that this observation strongly depends on the hypothesis and selec-
tion functions used to perform the attack, what we will discuss further in Sect.
9. Another surprising observation is that the register R may still leak secret in-
formation if reset signals are used. This is due to the constant state that reset
signals introduce. Then, we have:

PR ∝ H(“all zeroes”⊕ result1) = H(“all zeroes”⊕ input1 ⊕ key)
= H(input1 ⊕ key) (3)

which makes the power consumption dependent on the key again. As a conse-
quence, a secure hardware implementation should not apply reset signals to its
inner registers in order to delete this additional information leakage. Note that a
similar observation has been used to attack smart card implementations, where
the constant state actually corresponds to a constant instruction address.

4.2 Predictions in Rijndael

Figure 3 illustrates predictable and full registers when our AES design is filled
with 5 different texts, denoted 1,2,. . . ,5, during the first eight clock cycles of
an encryption. As an example, during the first cycle, register R1 contains the
plaintext 1 while all the other registers are undefined. During the second cycle,
R1 contains the plaintext 2, R2 contains the plaintext 1 and the other registers
are undefined. Remark that in the eighth cycle, the multiplexer starts to loop
and register R3 therefore contains data corresponding to plaintext 1 again.



txt

ciphertext

key

empty

full

A : predictable value

A : unpredictable value

12345XXX

X12345XX

XX123451

XXX12345

XXXX1234

XXXXX123

XXXXXX12

XXXXX123 XXXXXX12

R1

R2

R3

R4 R5 R6 R7

R8

R9

R10

R11 R12

SubBytes1

SubBytes2

ShiftRows

MixAdd1

MixAdd2

KeyRound

Fig. 3. Encryption predictions.

Similarly, Figure 4 illustrates predictable and full registers when our AES design
is filled with 5 different texts, denoted 1,2,. . . ,5, during the last six clock cycles
of an encryption. As an example, the register R12 contains the first ciphertext
in the second cycle, ciphertext 2 in the third cycle and ciphertext 3 in the fourth
cycle.

In the next section, we explain how theoretical predictions of the power con-
sumption can be used to attack an FPGA implementation of Rijndael.

5 Description of a correlation attack

A correlation attack [3, 7] against an FPGA implementation of Rijndael is di-
vided into three steps. Let N be the number of plaintext/ciphertext pairs for
which the power consumption measurements are accessible. Let K be the secret
encryption key. When simulating the attacks, we assume that K is known to the
attacker. In case of practical attacks, it is of course unknown.

Prediction phase: For each of the N encrypted plaintexts, the attacker
first selects the target registers and clock cycle for the previously defined se-
lection function D. In Fig. 3, we see that between cycles 7 and 8, registers
R4, R5, R6, R7, R8, R11 and R12 are full and have predictable and defined val-
ues. Similarly, in Fig. 4, we observe that between cycles 1 and 2, registers
R3, R4, R5, R6, R7 and R10 are full and have predictable and defined values.



txt

ciphertext

key

empty

full

A : predictable value

A : unpredictable value

XXXXXX

XXXXXX

45XXXX

345XXX

2345XX

12345X

512345

12345X X12345

R1

R2

R3

R4 R5 R6 R7

R8

R9

R10

R11 R12

SubBytes1

SubBytes2

ShiftRows

MixAdd1

MixAdd2

KeyRound

Fig. 4. Decryption predictions.

Depending on the knowledge of the design, these registers can therefore be tar-
geted. Due to the size of the Rijndael S-box, the predictions are performed on 8
bits and may be repeated for every 8-bit part of a register Ri.

Let t be the number of 8-bit registers targeted by the attacker. Then, he pre-
dicts the value of D (i.e. the number of bit switches inside the target registers
in the targeted clock cycle) for the 28 possible key guesses and N plaintexts.
The result of the prediction phase is an N × 28 selected prediction matrix,
containing integers between 0 and 8 × t. For simulation purposes, it is also in-
teresting to produce the global prediction matrix that contains the number
of bit switches inside all the 12 registers4 of the design, for all the cycles. That
is, if the encryption is performed in 52 clock cycles, we obtain a N × 52 matrix,
containing integers between 0 and 12 × 128 = 1536. This is only feasible if the
key is known. In accordance with the hypothesis of Sect. 2, these matrices give
estimations for the power consumption of the device.

Measurement phase: During the measurement phase, we let the FPGA
encrypt the same N plaintexts with the same key, as we did in the prediction
phase. While the chip is operating, we measure the power consumption for the 52
consecutive clock cycles. Then, the power consumption trace of each encryption
4 Remark that since the same key is used for all the measurements, the power con-

sumption of the key schedule is fixed and may be considered as a DC component
that we can neglect as a first approximation.



is averaged 10 times in order to remove the noise from our measurements and
we store the maximum values of each encryption cycle so that we produce an
N × 52 matrix with the power consumption values for all the texts, cycles. We
denote it as the global consumption matrix.

Correlation phase: In the correlation phase, we compute the correlation co-
efficient between a column of the global consumption matrix (corresponding to
the cycle targeted by the prediction phase) and all the columns of the selected
prediction matrix (corresponding to all the 28 key guesses). If the attack is suc-
cessful, we expect that only one value, corresponding to the correct key guess,
leads to a high correlation coefficient.

An efficient way to perform the correlation between theoretical predictions and
real measurements is to use the Pearson coefficient. Let Mi denote the ith mea-
surement data (i.e. the ith trace) and M the set of traces. Let Pi denote the
prediction of the model for the ith trace and P the set of such predictions. Then
we calculate:

C(M,P ) =
E(M.P )− E(M).E(P )√

V ar(M).V ar(P )
. (4)

where E(M) denotes the mean of the set of traces M and V ar(M) its variance.
If this correlation is high, it is usually assumed that the prediction of the model,
and thus the key hypothesis, is correct.

Finally, theoretical predictions of the attack can be performed by using the global
prediction matrix instead of the global consumption matrix. As the global pre-
diction matrix contains the number of bit switches inside all the registers, it
represents a theoretical noise free measurement and may help to determine the
minimum number of texts needed to mount a successful attack, i.e. an attack
where the correct key guess leads to the highest correlation coefficient. This is
investigated in the next section.

6 An attack using simulated data
In this section, we study the influence of the number of registers predicted on the
efficiency of the attack. Different scenarios can be considered that correspond
to different abilities of the attacker. In the most basic case, the attacker does
not have any information about the design and has to make assumptions about
its implementation. A reasonable assumption is that the S-box outputs will be
stored in registers5. Therefore, the attacker will only predict the switching ac-
tivity of 8 bits in R8 (in encryption) or R3 (in decryption). In the first step of
the simulated attack, we produce the selected prediction matrix and global
prediction matrix as defined in the previous section. Thereafter, we perform
the correlation phase between these two matrixes. If the attack is successful, we
expect that only one value, corresponding to the correct key guess, leads to a
high correlation coefficient.

5 This is usually the case in Rijndael because S-boxes are the most time (and space)
-consuming parts of the algorithm.



As the attacker is interested to determine the minimum number of plaintexts
necessary to extract the correct key, we calculated this correlation coefficient for
different values of N : 1 ≤ N ≤ 4096. As shown in Fig. 5.(A), after approxi-
mately 1500 plaintexts the right 8 key bits can be distinguished from a wrong
guess. We may therefore say that the attack is theoretically successful after
about 1500 texts.

In a more advanced scenario, the attacker has access to some implementation
details (for example the scheme of Fig. 3) and may determine the predictable
and full registers. Based on the complete predictions of Fig. 3, the correlation
coefficient values for every key guess and different numbers of traces are repre-
sented in Fig. 5.(B). We observe that the correct key guess is distinguishable
after about 500 plaintexts, but stays closely correlated to 3 other candidates.
The explanation of this phenomenon can be found in the implementation details
of the substitution box represented in the annexes (Figure 6). As the S-box is
a large multiplexer with two pipeline stage, 6 input bits are actually used to
select the values in registers R4, R5, R6, R7. Thereafter, two last bits select the
final result of R8. As a consequence, if the key guess is such that the first 6 input
bits of the S-box remain unchanged, the values stored in registers R4, R5, R6, R7

will be the same. Only the S-box output in register R8 will differ. As there are
4 such key guesses, we will have 4 closely correlated candidates, including the
correct one, what we can clearly observe in Fig. 5.(B).

A solution to this problem is to use the decryption predictions of Fig. 4. Then,
even if only one bit differs at the output of the S-box (in R8), it will not re-
sult in the same intermediate register transitions. Based on these predictions,
the correlation coefficient values for every key guess and different number of
traces are represented in Fig. 5.(C), where the correct key candidate is clearly
distinguishable after about 500 traces.

7 An attack using practical measurements

When attacking a device practically, the selected prediction matrix remains un-
changed while we replace the global prediction matrix by the real measured
global consumption matrix. Therefore, we let the FPGA encrypt 4096 plain-
texts with the same key as we did in the previous section and produced the
matrix as described in Sect. 5.

To evaluate the quality of our theoretical predictions, we made a preliminary
experiment and computed the correlation coefficient between one (in practice
the 26th) column of the global prediction matrix and every column of the
global consumption matrix. Figure 5.(D) clearly illustrates that the highest
correlation value appears for the predicted round, and therefore confirms that
our predictions are correlated with real measurements.

In order to identify the correct 8 MSBs of the final round key, we used the
correlation coefficient again. As it is shown in Fig. 5.(E), the correct key guess
is distinguishable after about 1000 traces. As a consequence, the attack is prac-



tically successful, i.e. the selected prediction matrix is sufficiently correlated
with the real measurements and we can extract the key information. Remark
that comparing Figures 5.(C) and 5.(E) allows us to evaluate the effect of the
measurement phase. Compared with smart cards, the sampling process was made
more difficult by the high clock frequency of the Rijndael design (around 100
MHz). Note also that the noise was removed from the measurements by an av-
eraging process, but this step could be removed or reduced if the measurement
setup was improved. Nevertheless, due to the specificities of our acquisition de-
vice6, the averaging was directly done during the measurement step and did not
increase the memory requirements of the attack. If we compare these results
with the only published power analysis attack against ASIC implementations of
Rijndael [3], the quality of our measurements seems to be better. Moreover, we
need significantly less plaintexts for the attack to be practically successful.

Finally, it is important to note that more key bits may be found using exactly
the same set of measurements. The attacker only has to modify the selected
prediction matrix and target different key bits. The full key can therefore be
recovered computing the correlation between the global consumption matrix
and 16 predictions, each one revealing 8 key bits.

8 Adding more pipeline

Previous sections emphasized that pipelining a loop implementation of Rijndael
does not provide any efficient protection against DPA. However, the predic-
tions of Sect. 6 also reveal that when only one register (e.g. R8 in Fig. 4.(A))
is predicted, we need significantly more traces than when several registers are
predicted. The efficiency of an attack against a loop implementation is notably
due to the fact that most registers are predictable, because only one round is
implemented. In case of unrolled and pipelined implementations, the situation
strongly differs, as only the outer rounds are partially predictable. As a conse-
quence, the inner rounds may be viewed as noise generators and therefore act
as a well known DPA countermeasure. Although noise addition does not funda-
mentally counteract power analysis attacks (the signal is still present and may
still be recovered), it has the advantage of decreasing the correlation between
predictions and measurements. Moreover, if the noise is added in the form of
unrolled pipeline stages, it does not reduce the efficiency of an implementation.
Finally, the method introduced in Sect. 5, allows us to theoretically predict the
effect of unrolled architectures with pipelining on resistance against DPA.

A first step to predict the effect of pipeline stages is to investigate the theo-
retical number of bit switches in a register. In the following, we will assume that
the rounds of a block cipher behave like a random number generator. In practice,
this is only true after a few rounds, when the diffusion is complete. Based on
this hypothesis, we may predict the probability P (x, n) of having x bit switches
between two states S1, S2 in an n-bit register:

6 Tektronix TDS 7104 oscilloscope.



P (x, n) = P (H(S1 ⊕ S2) = x) =
Cn,x

2n
(5)

As a consequence, the number of bit switches is distributed as a binomial which
can be approximated by a Gaussian distribution with parameters µ = n/2 and
σ2 = n/4. It is therefore possible to predict the number of bit switches in regis-
ters of arbitrary size.

For example, in the design of Fig. 3, we observe that one round is implemented in
5 cycles, using eight 128-bit registers. Its transitions may be simulated as a Gaus-
sian distributed random noise with parameters µ = 512 and σ2 = 256. In general,
if an n-round unrolled implementation is considered, we can add Gaussian dis-
tributed random noise with parameters µ = (n− 1).512 and σ2 = (n− 1).256 to
our previously computed global prediction matrix and then compute the corre-
lation with the selected prediction matrix.

The result of an attack using simulated data with 10 rounds unrolled and 5
pipeline stages per round is illustrated in Fig. 5.(F), where we used the same
selected prediction matrix as in the previous section. While the correct key
guess still has the best correlation value, we clearly observe that the correlation
value was significantly reduced if we compare with Fig. 5.(C), making a practical
attack much more difficult.

9 Hypothesis (2)

Looking back at the hypothesis of Sect. 2, it is important to evaluate how the
work presented in this paper could be improved and how representative are our
results. To the question “Are power analysis attacks realistic against efficient
FPGA implementations of Rijndael?” we may certainly answer “yes”. While at-
tackers usually investigate “toy” implementations for side-channel attacks, we
took a real and optimized design with high clock frequencies and evaluated the
significance of pipelining techniques in terms of DPA resistance. From an at-
tacker’s point of view, we have investigated the simplest possible hypothesis
and built a practical attack based on these simple assumptions. However, the
question “How to counteract these power analysis attacks?” is still open in dif-
ferent ways. When countermeasures are considered, it is important to note that
our measurements can be improved in several ways; moreover, the attack model
should be taken into account.

As an illustration, we limited the transition predictions to the registers of the
Rijndael design. However, it is clear that registers are not the only leaking parts
in FPGAs and transitions in other components could be predicted in order to
improve the attack. Similarly, looking back at Equation (1), a more accurate
prediction of the FPGA power consumption could be done by evaluating the
load capacitance values. A notifiable feature of FPGAs is that they are made of
different resources (e.g. logic blocks, connections) of which the power consump-
tion differs because of different effective load capacitances. As a consequence,



the power consumption of FPGA designs does not only depend on their switch-
ing activity but also on the internal resources used. In practice, more accurate
estimations about the most consuming components of an FPGA design can be
derived from the delay information that is generated by most implementation
tools [8]. As an input delay represents the delay seen by a signal driving that
input due to the capacitance along the wire, large (resp. small) delay values in-
dicate that the wire has a large (resp. small) capacitance. Based on the reports
automatically generated by implementation tools, one may expect to recover a
very accurate information about the signals that are driving high capacitances.
The knowledge of the implementation netlists with delay information is therefore
relevant; it will allow an attacker to improve the attack.

Finally, more advanced attack scenarios are possible, e.g. taking the key schedul-
ing into account, or using more complex power consumption models. The mea-
surement setup could also be improved and therefore the gap between theoretical
predictions of the attacks and practical results would be reduced. To conclude,
this paper used a simple leakage model and we could already recover secret in-
formation. However, as far as Boolean masking (or other countermeasures) are
concerned, it is certainly not sufficient to mask the transitions in registers only
and there are other leakage sources to investigate and prevent.

10 Conclusions

We have investigated a power analysis attack against a practical FPGA imple-
mentation of Rijndael and have exhibited the effect of pipelining and unrolling
techniques in this context. It is first demonstrated that pipelining a loop im-
plementation does not provide an effective countermeasure if an attacker has
access to the design details because most of the registers in the pipeline remain
predictable. Then we illustrate how the combination of pipelining and unrolling
techniques may counteract power analysis attacks as a random noise generator.
We also provide a theoretical model allowing the simulation and comparison of
the attacks in different contexts. In practice, we have mounted the first success-
ful attack against an efficient FPGA implementation of Rijndael. Finally, a clear
discussion of the hypothesis used to perform power analysis is provided with
some proposals for further improvements.



(A) (B)

(C) (D)

(E) (F)

Fig. 5. (A) A simulated attack using register R8 only.

(B) A simulated attack using complete encryption predictions (R4,R5,R6,R7,R8,R11,R12).

(C) A simulated attack using complete decryption predictions (R3,R4,R5,R6,R7,R10).

(D) Correlation between global predictions for cycle 26 and measurements (N = 4096).

(E) A correlation attack with real measurements.

(F) A simulated attack against an unrolled implementation.



References

1. J. Daemen, V. Rijmen, “The Design of Rijndael. AES – The Advanced Encryption
Standard,” Springer-Verlag, 2001.

2. FIPS 197, “Advanced Encryption Standard,” Federal Information Processing Stan-
dard, NIST, U.S. Dept. of Commerce, November 26, 2001.

3. S.B.Ors, F.Gurkaynak, E. Oswald, B. Preneel Power-Analysis Attack on an ASIC
AES implementation, in the proceedings of ITCC 2004, Las Vegas, April 5-7 2004.

4. Xilinx: Virtex 2.5V Field Programmable Gate Arrays Data Sheet,
http://www.xilinx.com.

5. J.M.Rabaey, Digital Integrated Circuits, Prentice Hall International, 1996.
6. F.-X.Standaert, G.Rouvroy, J.-J.Quisquater, J.-D.Legat, Efficient Implementation

of Rijndael Encryption in Reconfigurable Hardware: Improvements and Design
Tradeoffs, in the proceedings of CHES 2003, Lecture Notes in Computer Science,
vol 2779, pp 334-350, Springer-Verlag, 2003.

7. E.Brier, C.Clavier, F.Olivier, Optimal Statistical Power Analysis , IACR e-print
archive 2003/152.

8. L.T. Mc Daniel, An Investigation of Differential Power Analysis Attacks on FPGA-
based Encryption Systems, Master Thesis, Virginia Polytechnic Insitute and State
University, May 29, 2003.

9. P.Kocher, J.Jaffe, B.Jun, Differential Power Analysis, in the proceedings of
CRYPTO 99, Lecture Notes in Computer Science 1666, pp 398-412, Springer-Verlag.

A Short description of Rijndael

Rijndael is an iterated block cipher with a variable block length and a variable
key length. The block length and the key length can be independently specified to
128, 192 and 256 bit. This paper focusses on the 128-bit version. The algorithm
consists of a serial of 10 applications of a key-dependent round transformation
to the cipher state and the round is composed of four different operations. In
pseudo C, we have:

Round(state,roundkey)
{
SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state,roundkey);
}
SubBytes is a non-linear byte substitution operating on each byte of the state in-
dependently. ShiftRows is a cyclic shift of the bytes of the state. In MixColumns,
the columns (1 column = 4 bytes) of the state are considered as polynomials
over GF(28) and multiplied modulo x4 +1 with a fixed polynomial. Finally, Ad-
dRoundKey is a bitwise XOR with the bits of the key.

Rijndael’s initial 128-bit key is expanded to eleven 128-bit roundkeys by means
of a key scheduling algorithm. Although the key scheduling is also implemented



in hardware, its description is not necessary for the understanding of the paper
and we will consider it as a black box.

Finally, the complete cipher consists of an initial roundkey addition, 10 rounds
and a final round where MixColumns has been removed. In pseudo C, we have:

Rijndael(state,cipherkey)
{
KeyExpansion(cipherkey,expandedkey[0..10]);
AddRoundKey(state,expandedkey[0]);
for (i=1;i<10;i++)

{
Round(state,expandedkey[i]);
}

SubBytes(state);
ShiftRows(state);
AddRoundKey(state,expandedkey[10]);
}
A more detailed view of the Rijndael algorthm can be found in [1].

B Implementation of the substitution box

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

LUT4

MUXF5

MUXF5

MUXF5

MUXF5

MUXF5

MUXF5

MUXF5

MUXF5

MUXF6

MUXF6

MUXF6

MUXF6

LUT3

LUT3

MUXF5

Fig. 6. One output bit of the substitution box.


