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Abstract— This paper presents FPGA (Field Programmable
Gate Array) implementations of ICEBERG, a block cipher de-
signed for reconfigurable hardware implementations and pre-
sented at FSE 2004. All its components are involutional and
allow very efficient combinations of encryption/decryption. The
implementations proposed also allow changing the key and
Encrypt/Decrypt (E/D) mode for every plaintext, without any
performance loss. In comparison with other recent block ciphers,
the implementation results of ICEBERG show a significant im-
provement of hardware efficiency. Moreover, the key andE/D
agility allows considering new encryption modes to counteract
certain side-channel attacks.

I. I NTRODUCTION

In October 2000, NIST (National Institute of Standards
and Technology) selected Rijndael as the new Advanced
Encryption Standard. The selection process included
performance evaluation on both software and hardware
platforms. However, as implementation versatility was a
criteria for the selection of the AES, it appeared that Rijndael
was not optimal for reconfigurable hardware implementations.
Its highly expensive substitution boxes are a typical bottleneck
but the combination of encryption and decryption in hardware
is probably as critical.

ICEBERG is a block cipher designed for efficient
reconfigurable hardware implementations. It is based on
an involutional structure so that the forward and inverse
operation of the cipher may be performed with exactly the
same hardware. All its components easily fit into the 4-bit
input lookup tables1 of FPGAs, and its key scheduling allows
the round keys to be derived “on the fly” in encryption and
decryption mode. In addition to hardware efficiency, the key
and E/D agility allows considering new encryption modes
to counteract certain side-channel attacks. In practice, very
low-cost hardware crypto-processors and high throughput
data encryption are potential applications ofICEBERG.

This paper presents FPGA implementations ofICEBERG
and compares their performances with the ones of recent
block ciphers (e.g. AES and NESSIE candidates). Although
ICEBERG implementations offer features that most block
ciphers do not provide (e.g. key and E/D agility), its
implementation results exhibit a significant improvement of
hardware efficiency. For this purpose, we investigated various
contexts (loop and unrolled implementations, with or without
feedback) on the recent Xilinx Virtex-IIr technology.

1LUTs are 4-bit input function generators and constitute the basic building
block of most recent reconfigurable devices.

The paper is structured as follows. Section 2 briefly presents
the specifications ofICEBERGand Section 3 describes our
FPGA design methodology. Section 4 lists the combinatorial
cost of the block cipher components. The implementation
results for various architectures are in Sect. 5 and comparisons
with other block ciphers are in Sect. 6. Resistance against
side-channel analysis is briefly discussed in Sect. 7. Finally,
conclusions are in Sect. 8.

II. SPECIFICATIONS

A. Block and Key Size

ICEBERGoperates on 64-bit blocks and uses a 128-bit key. It
is an involutional iterative block cipher based on the repetition
of 16 identical key-dependent round functions. In the next
subsections, we briefly present the algorithm. A more detailed
description can be found in the original paper [1].
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Fig. 1. The round function.

B. The round function

The round function is pictured in Fig. 1, where we distinguish
a non-linear layer and a linear diffusion layer.

The non-linear layer is built from the parallel application
of 8× 8 substitution boxes to the cipher state. For efficiency
purposes, these boxes are constructed from smaller4 × 4
S-boxesS0, S1 and bit permutationsP8 (i.e. 8-bit wire
crossings).

The linear diffusion layer is built from bit permutations
P64 (i.e. 64-bit wire crossings), bit permutationsP4 (i.e.
4-bit wire crossings), bitwise key additions (denoted as⊕ in
the figure) and small4 × 4 diffusion boxesD. These boxes
perform a simple multiplication:
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where every output bit is a⊕ operation between three input
bits. It is therefore efficiently combined with the key addition
inside a single 4-input LUT.

C. The key schedule

The key scheduling process consists of key expansion and
key selection.

The key expansion expands the cipher keyK into a
sequence of keysK0,K1, ..., K16. We set the initial key
K0 = K. The following keys are obtained by a keyround
function so that :Ki+1 = keyround(Ki).

The keyround is pictured in Fig. 2, where we distinguish a
conditional shift layer, bit permutationsP128 (i.e. 128-bit
wire crossings) and S-boxesS0. The conditional shift
operation depends on a round constantC that will be
discussed further.
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Fig. 2. The key round.

Finally, thekey selectionfirst performs a simple compression
function that selects 64 bytes ofKi having odd indices.
Thereafter, a4 × 4 key selection box is applied in parallel
to every 4-bit key-block. It performs the following boolean
operation:

y(0) = (x(0)⊕ x(1)⊕ x(2)) · sel ∨ (x(0)⊕ x(1)) · sel
y(1) = (x(1)⊕ x(2)) · sel ∨ x(1) · sel
y(2) = (x(2)⊕ x(3)⊕ x(0)) · sel ∨ (x(2)⊕ x(3)) · sel
y(3) = (x(3)⊕ x(0)) · sel ∨ x(3) · sel

Depending on the value of a selection bitsel, we obtain the
round keyRKi

0 or RKi
1 for the roundi.

D. Encryption/decryption process

The complete cipher consists of an initial round key addition,
15 rounds and a final transform. Due to the involutional
structure of every single component ofICEBERG, the
E/D mode is fixed with the selection bit only:sel = 1
in encryption andsel = 0 in decryption. In pseudo C, we have:

ICEBERG(state,cipherkey,sel)
{
KeyExpansion(cipherkey,expandedkey[0..16]);
for (i=0;i<16;i++)

{
KeySelection(expandedkey[i],sel,roundkey[i]);
}

KeySelection(expandedkey[16],not(sel),roundkey[16]);

AddRoundKey(state,roundkey[0]);
for (i=1;i<16;i++)

{
Round(state,roundkey[i]);
}

NonLinearLayer(state);
AddRoundKey(state,roundkey[16]);
}
The round constants are :C = 0 until round 8, C = 1
thereafter. A particular structure of the expanded key is
therefore obtained:

K0 = K16

K1 = K15

... (1)

As a consequence,ICEBERGallows the encryption/decryption
with exactly the same hardware (only the selection bit has to
be changed) and the expanded key may be derived “on the
fly” in encryption and decryption (the storage of round keys
is not necessary). More details about this particular structure
are available in the paper of FSE 2004.

III. D ESIGN METHODOLOGY

Present reconfigurable components like FPGAs are usually
made of reconfigurable logic blocks combined with fast access
memories (RAM blocks) and high speed arithmetic circuits
[2], [3]. Basic logic blocks of FPGAs include a 4-input
function generator (called lookup table, LUT) and a storage
element. In addition, most FPGA manufacturers provide users
with fast carry logic and particular structures of the logic
blocks to efficiently implement distributed memories, shift
registers,... A brief description of these components is given
in Appendix.

As reconfigurable components are divided into logic elements
and storage elements, an efficient implementation will be the
result of a better compromise between combinatorial logic
used, sequential logic used and resulting performances. These
observations lead to different definitions of implementation
efficiency:

1) In terms of performances, let the efficiency of a block ci-
pher be the ratioThroughput (Mbits/s)/Area (LUTs,
RAM blocks).

2) In terms of resources, the efficiency is easily tested by
computing the ratioNbr of registers/Nbr of LUTs:
it should be close to one.

ICEBERG was designed in order to allow very efficient
FPGA implementations and our architectures are defined
in order to maximize these notions of hardware efficiency.
It practically results in the pipelining of the round and
keyround functions. Pipelining increases the encryption speed
by processing multiple blocks of data simultaneously. It is
achieved by inserting rows of registers among combinatorial
logic. Parts of logic between two consecutive registers form
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pipeline stages and we define themaximum pipeline as the
pipeline of which the number of stages implies that the ratio
Nbr of registers/Nbr of LUTs is the closest to one (and
lower than one).

Finally, depending on the optimization criteria, different
architectures can be employed. Optimization for maximum
speed can be achieved by a fully pipelined unrolled
architecture. In the applications requiring minimum area, a
loop architecture with only one round implemented seems to
be the best choice. For both cases, we tried to maximize the
previously defined efficiency. In addition, we provide results
of non-pipelined implementations that are useful when a
block cipher is used in feedback modes. In the next sections,
we present the results of various FPGA implementations of
ICEBERG.

IV. COMBINATORIAL COST OF ICEBERGCOMPONENTS

As all components perfectly fit into 4-input LUTs, we can
directly evaluate their combinatorial cost in the Xilinx Virtex-
IIr family of devices:

Round Keyround
Components HW cost (LUTs) Components HW cost (LUTs)

S0, S1 layers 64 Shift layer 128
Non-linear layer 64× 3 = 192 S0 layer 128

Linear diffusion layer 64 Keyround 384
Round 256 Selection layer 64

Remark that if the maximum pipeline is not inserted, the
shift layers can be efficiently implemented inside the Virtex
slice, using additional multiplexersF5 andF6 available next
to the LUT [2].

In the next section, we investigate the practical implementation
of different architectures forICEBERG.

V. I MPLEMENTATION RESULTS

All the architectures proposed in this section allow the choice
of the key andE/D mode for every plaintext. The area and
frequency estimations presented are provided after implemen-
tation with Xilinx ISEr 6.1 on the Xilinx Virtex-IIr technol-
ogy. The timing constraints were applied to the inner clock
and we used the input-output (IO) registers embedded into the
FPGA IOBs2 in order to take the interface constraints into
account. It is important to note that the limiting factor of our
work frequencies was always the input-output management.
As an illustration, the internal clock of the fully pipelined
unrolled implementation without IO registers is near to the
maximum (380 Mhz), but if IO registers are considered, it
decreases to 297 Mhz, what we believe to be a fair frequency
estimation.

A. Unrolled architectures

For high throughput applications, we propose an unrolled
implementation with the 16 rounds implemented and we
applied two pipelining strategies. If a maximum throughput
is required, a full pipe implementation is provided, with the

2IOBs : Input-Output Blocks.

Type # of # of Latency Out. every Freq. Throughput
slices RAMBs (cycles) (cycles) (Mhz) (Mbits/sec)

Full Pipe 6808 0 66 1 297 19008
Half Pipe 4946 0 33 1 271 17344

RAM 3132 64 33 1 210 13440

TABLE I

UNROLLED ARCHITECTURES RESULTS ONV IRTEX-II r.

maximum pipeline inserted. However, for large designs, the
implementation (and specially the routing task) may become
the bottleneck, with routing delays larger than logic delays.
Therefore, for an optimized efficiency, we propose the half
pipe architecture. In addition to a better tradeoff between logic
and routing delays, it also allows an efficient implementation
of the shift layer, using the additional multiplexers available
inside the Virtex slice. Both architectures are pictured in Fig. 3.
Finally, if the half pipe architecture is considered, we can also
implement the round S-box inside the FPGA RAM blocks.
The implementation results for these three proposals are in
Table II.
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Fig. 3. Unrolled architectures : full pipe and half pipe.

B. Loop architectures

In the applications requiring minimum area, we propose a loop
architecture with only one round implemented. In order to
decrease the area requirements, we only considered the half
pipe strategy. In addition to the efficiency advantages already
mentioned, half pipe structures are specially convenient for
loop architectures because they allow the combination of the
loop multiplexer with the round and keyround logic. Our
proposal is pictured in Fig. 4, where we share the initial and
final key addition. As for unrolled architectures, it is possible
to use the FPGA RAM blocks to implement the round S-box.
The implementation results for these loop architectures are
provided in Table II.

C. Feedback modes

As soon as a feedback mode is used, pipelining techniques
are not relevant for block cipher implementations. This is due
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Fig. 4. Loop architecture.

Type # of # of Latency Out. every Freq. Throughput
slices RAMBs (cycles) (cycles) (Mhz) (Mbits/sec)

Loop 631 0 34 2/32 254 1016
RAM 526 4 34 2/32 227 908

TABLE II

LOOP ARCHITECTURE RESULTS ONV IRTEX-II r.

to the fact that multiple blocks of data cannot be managed
in parallel because encrypting one block of data requires
the result of the previously encrypted block. Although we
do not recommend the use of feedback modes in FPGA
implementations of block ciphers (they do not allow us to take
advantage of hardware efficiency), we propose the following
designs for comparison purposes. An unrolled architecture
without pipelining and a minimum latency loop architecture
are represented in Fig. 5. The implementation results of these
designs are in Table III.
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Fig. 5. Feedback mode : Unrolled and loop architectures.

Type # of # of Latency Out. every Freq. Throughput
slices RAMBs (cycles) (cycles) (Mhz) (Mbits/sec)

Unrolled 3174 0 1 1 14 896
Loop 571 0 17 1/16 147 588
RAM 467 4 17 1/16 145 580

TABLE III

FEEDBACK MODE RESULTS ONV IRTEX-II r.

VI. COMPARISONS WITH OTHER BLOCK CIPHERS

Comparing the performances of block cipher hardware
implementations is generally a delicate task. This is due
to the high dependency of these implementation results on
the design methodology, but also to the various commercial
FPGAs that may be chosen for evaluation. In the case of
ICEBERG, it is even more critical as our implementations
provide keyand E/D agility: two properties that are never
combined in other block cipher implementations3. The
following considerations must therefore be taken with care
and should be considered as general guidelines more than as
a strict comparison.

We tried to find the best results for various block ciphers in
non feedback modes, if possible in the most recent technology
(Virtex-IIr). Then, we provide the area and throughput results.
If no RAMBs are used, the ratio Throughput/Area is given
in order to estimate the hardware efficiency. We also specify
the architecture used (loop or unrolled) and its basic features
(encryption only, encryption/decryption, key agility).

In general,ICEBERG implementations exhibit a significant
improvement of the hardware efficiency, even if we compare
them with encryption only designs. It is clear that the
most relevant implementation schemes forICEBERG do
not use RAMBs because they considerably increase the
S-box memory requirements4. LUT-only implementations
are also the best estimators for ASIC performances and
underline the excellent potentialities ofICEBERG for
hardware implementations in general. More specifically, only
Rijndael [12] and the 3DES have an efficiency comparable
to ICEBERGwith an E/D structure. However, the specified
Rijndael implementation does not provide key andE/D
agility, uses RAM blocks and shares resources between the
round and keyround. For 3DES, it is well known that it
allows very efficient implementation opportunities and having
a comparable efficiency is probably an excellent result for
ICEBERG.

VII. R ESISTANCE AGAINST SIDE-CHANNEL ATTACKS

Although cryptosystem designers frequently assume that
secret parameters will be manipulated in closed reliable
computing environments, Kocher etal. stressed in 1998
[17] that actual computers and microchips leak information
correlated to the data handled. Side-channel attacks based
on time, power and electromagnetic measurements were
successfully applied to smart card implementations of block
ciphers. Protecting implementations against side-channel
attacks is usually difficult and expensive. Masking all the data
with random boolean values is suggested in several papers
[18], [19] and the use of small substitution tables allows this
to be efficiently implemented, although it is still an expensive
solution (the additional cost of masking a2n-bit table is
another22n-bit table).

3Excepted in the Triple-DES.
4The ICEBERGS-box memory requirements are :(24 × 4) × 6 = 384

bits. If RAMBs are used, it becomes28 × 8 = 2048 bits.
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Algorithm Device Enc. Dec. Key ag. Loop/Unr.
0.22 µm

Twofish [4] Virtexr • • U
Serpent [4] Virtexr • • U

0.18 µm
Rijndael [5] Virtex-Er • • U
Camelia [6] Virtex-Er • • U
Khazad [7] Virtex-Er • • U
Misty1 [7] Virtex-Er • • U
Rijndael [5] Virtex-Er • • L

0.15 µm
RC6 [8] Virtex-IIr • • U
IDEA [9] Virtex-IIr • • U

SHACAL-1 [10] Virtex-IIr • • U
3DES [11] Virtex-IIr • • • U
ICEBERG Virtex-IIr • • • U
3DES [11] Virtex-IIr • • • L
ICEBERG Virtex-IIr • • • L

0.15 µm + RAMBs
Rijndael [12] Virtex-IIr • • L

ICEBERG Virtex-IIr • • • L
Rijndael [13] Virtex-IIr • • L

ICEBERG Virtex-IIr • • • U

TABLE IV

BASIC FEATURES OF COMPARED BLOCK CIPHERS.

Algorithm # Slices # RAMBs Throughput Thr./Area
(Mbits/sec) (Mbits/sec / slices)

0.22 µm
Twofish [4] 21000 0 15200 0.72
Serpent [4] 19700 0 16800 0.85

0.18 µm
Rijndael [5] 2784 100 11776 -
Camelia [6] 9692 0 6750 0.7
Khazad [7] 7175 0 7872 1.10
Misty1 [7] 6322 0 10176 1.61
Rijndael [5] 2524 0 2085 1.17

0.15 µm
RC6 [8] 7456 0 4800 0.64
IDEA [9] 9793 0 6800 0.69

SHACAL-1 [10] 13729 0 17021 1.24
3DES [11] 604 0 917 1.51
ICEBERG 4946 0 17344 3.51
3DES [11] 227 0 326 1.44
ICEBERG 631 0 1016 1.61

0.15 µm + RAMBs
Rijndael [12] 146 3 358 -

ICEBERG 526 4 908 -
Rijndael [13] ≈1125 18 1408 -

ICEBERG 3132 64 13440 -

TABLE V

PERFORMANCES OF COMPARED BLOCK CIPHERS.
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The key agility provided by ICEBERG (changing the
key at every plaintext block is for free) also offers interesting
opportunities to prevent certain side-channel attacks by
defining new encryption modes where the key is changed
sufficiently often. As most side-channel attacks need to
collect several leakage traces to remove the noise from useful
information, changing the key frequently, even in a well
chosen deterministic way (e.g. LFSR-based), could help to
counteract (or at least make more difficult) these attacks.
A thorough analysis of side-channel resistance based on
re-keying techniques would deserve further research and
analysis.

VIII. C ONCLUSION

We presented FPGA implementations ofICEBERG, a block
cipher designed for hardware implementations. In terms
of area requirements, throughput and hardware efficiency,
ICEBERGexhibits excellent abilities compared to most recent
block ciphers. The simplicity of the design is also considerably
improved and allows the fast development of an efficient
architecture. In practice, an unrolled (resp. loop) architecture
has a throughput of 17,3 Gbits/sec (resp. 1,0 Gbits /sec),
using 4946 FPGA slices (resp.631 FPGA slices) in the Xilinx
Virtex-IIr technology. In addition,ICEBERGallows key and
E/D agility. These properties could be used to improve
resistance against certain side-channel attacks, although this
last point is let as a scope for further research. Due to the
simplicity of its component functions,ICEBERGis also likely
to exhibit excellent implementation results in hardware in
general (not only FPGAs).
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APPENDIX

All the implementation results provided in this paper were obtained using
Xilinx Virtex-II devices [2]. In general, FPGAs may be viewed as a “sea”
of programmable logic gates where the logic, but also the routing are user
programmable. This section briefly describes these components.

The main element of the Xilinx Virtex-II devices is the Configurable
Logic Block (CLB) that is made up of two slices, each one divided into two
Logic Cells (LC). An LC includes a 4-input function generator, carry logic
and a storage element. The output from the function generator in each LC
drives both the CLB output and the D input of the flip-flop. Figure 6 shows
a simplified view of a single slice.

Virtex-II function generators are implemented as 4-input LUTs that can also
provide a 16×1-bit synchronous RAM or a 16-bit shift register. In addition,
the F5 multiplexer in each slice combines the LUT outputs. This combination
provides a function generator that implements any 5-input function, a 4:1
multiplexer, a 32 × 1-bit synchronous RAM or selected functions of up
to nine bits. Similarly, the F6 multiplexer combines the outputs of all four
LUTs in the CLB by selecting one of the F5-multiplexer outputs. Finally,
the arithmetic logic includes fast carry chains and additional logic gates
(e.g. XORCY) to improve the efficiency of adder/multiplier implementations.
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Fig. 6. The Virtex-II slice.

Virtex-II FPGAs also incorporate several large RAM Blocks (RAMB). These
ones complement the distributed LUT implementations of RAMs. Every
block is a fully synchronous dual-ported RAM with independent control
signals for each port. The data widths of the two ports can be configured
independently.


