
An FPGA Implementation of the Linear
Cryptanalysis

Francois Koeune, Gael Rouvroy, Francois-Xavier Standaert,
Jean-Jacques Quisquater, Jean-Pierre David, Jean-Didier Legat
{koeune,rouvroy,standaert,quisquater,david,legat}@dice.ucl.ac.be

UCL Crypto Group
Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium

Abstract. This paper deals with cryptographic concepts. It presents a
hardware FPGA implementation of linear cryptanalysis of DES1. Linear
cryptanalysis is the best attack known able to break DES faster than
exhaustive search. Matsui’s original attack [4, 5] could not be applied as
such, and we had to implement a modified attack [1] to face hardware
constraints. The resulting attack is less efficient than Matsui’s attack,
but fits in our hardware and breaks a DES key in 12-15 hours on one
single FPGA, therefore becoming the first practical implementation to
our knowledge. As a comparison, the fastest implementation known so
far used the idle time of 18 Intel Pentium III MMX, and broke a DES
key in 4.32 days.
Our fast implementation made it possible for us to perform practical
tests, allowing a comparison with theoretical estimations.

Keywords: Cryptography, linear cryptanalysis, FPGA, DES.

1 Introduction

Linear cryptanalysis [1, 4, 5] is a cryptanalytic technique that takes advantage of
possible input-output correlations over a cipher. Evaluating this relationship for
an sufficient number of plaintext/ciphertext pairs (typically 243, for a full DES),
it is possible to recover some bits of the key faster than an exhaustive search.

Although linear cryptanalysis is the best attack known against DES nowa-
days, this attack still has a “theoretical” flavour, in the sense that very few
experimental applications have actually been performed: a single experimenta-
tion for a full DES cipher has been performed in [5], and, until recently, remained
the only practical test to our knowledge.

However, recent technological advances have made the required computing
power reachable, as is witnessed by a set of 21 experiments [2, 3], using the idle
time of 18 Intel Pentium III MMX, capable of performing an attack in 4.32 days.

This paper proposes an FPGA implementation completing the attack in 12-15
hours, using hardware roughly worth $3500. We believe that our implementation
1 DES : Data Encryption Standard, the old U.S. cipher standard



is the fastest implementation known. Due to tight memory constraint, Matsui’s
original attack could not be implemented as such. Therefore we implement a
variant of it ([1]), which turns out to be less efficient on a theoretical point
of view, but gave birth to a very fast implementation. In fact, this attack can
be considered as more efficient than Matsui’s, in the sense that it requires less
plaintext-ciphertext (242 vs. 243) pairs, but recovers only 7 (resp. 14, by using
the dual equation) key bits rather than 13 (resp. 26).

The paper is organized as follows: section 2 describes our FPGA’s main
characteristics; section 3 reminds the basic principles of linear cryptanalysis;
section 4 presents the modified attack and its expected theoritical efficiency;
section 5 discusses the attack completion (i.e. recovering the full key); finally,
section 6 summarizes the results we obtained on a set of 27 practical tests.

2 Hardware Ressources

All our experiments were carried out on a Virtex1000BG560-4 FPGA board
developed by DICE 2. The board is composed of a control FPGA (FLEX 10K)
and a VIRTEX1000 FPGA3 associated with several processors (ARM and PIC)
and fast access memories. The board has multiple compatible PC interfaces (PCI,
RS232,USB). To carry out our simulations we used a PCI communication.

3 Linear cryptanalysis

This section is a brief reminder of Matsui’s linear cryptanalysis [4, 5]. This attack
is based on the existence of some unbalanced linear relationship between input
and output of a reduced-round version of the target encryption scheme. In the
case of DES, Matsui used the relationship

PL[15]⊕ PH [7, 18, 24, 29]⊕ CL[7, 18, 24] = K1[22]⊕K3[22]⊕K4[44]
⊕K5[22]⊕K7[22]⊕K8[44]⊕K9[22]⊕K11[22]⊕K12[44]⊕K13[22]. (1)

Basically, this relationship means that the exclusive-or of some well-chosen bits
of the plaintext (namely, the 7th, 18th, 24th, 29th bits of its high-order part)
and some well-chosen bits of the ciphertext is equal to the exclusive-or of some
well-chosen bits of the key with probability different from 1

2 .
We can easily calculate its dual, obtained by reversing the expression

PL[7, 18, 24]⊕ CL[15]⊕ CH [7, 18, 24, 29] = K2[22]⊕K3[44]⊕K4[22]
⊕K6[22]⊕K7[44]⊕K8[22]⊕K10[22]⊕K11[44]⊕K12[22]⊕K14[22], (2)

where X[7, 18, 24] := X[7]⊕X[18]⊕X[24]. Those characteristics are the best
linear approximations of 14-round DES cipher. They are satisfied with probabil-
ity p = 1

2 − 1.19× 2−21.

2 UCL Microelectronics laboratory (see http://www.dice.ucl.ac.be).
3 This FPGA counts about 6144 CLB’s.



Expression4 (1) is then extended to the full 16 rounds by adding two non-
linear round functions respectively in the first and 16-round:

PL[7, 18, 24, 29]⊕ PH [15]⊕ F1(PL,K1)[15]⊕ CH [7, 18, 24]⊕
F16(CL, K16)[7, 18, 24] = K2[22]⊕K4[22]⊕K5[44]⊕K6[22]⊕

K8[22]⊕K9[44]⊕K10[22]⊕K12[22]⊕K13[44]⊕K14[22], (3)

where F1(PL,K1) denotes the first round function. This relationship keeps ex-
actly the same probability as eq. (1). In fact only 6 bits of K1 (resp. K16)
influence the value of F1(PL,K1)[15] (resp. F16(CL,K16)[7, 18, 24]).

If we compute this equation for all 4096 possibilities of the key K1 and K16 a
large number of plaintexts, knowing that only one of these 4096 keys is correct,
we will find one significative probability corresponding to the 12 correct key bits.
The following algorithm summarizes this idea:

Algorithm

1. For each candidate Ki (i=1,2,. . . 4096) of (K1,K16), let Ti be the number of
plaintexts such that the left side of the eq. (3) is equal to zero.

2. Let Tmax be the maximal value, Tmin the minimal value of all Ti’s and N
the number of plaintexts/ciphertexts.
If |Tmax − N

2 | > |Tmin − N
2 |, then adopt the key candidate corresponding to

Tmax.
If |Tmax − N

2 | < |Tmin − N
2 |, then adopt the key candidate corresponding to

Tmin.

An extra bit can be found thanks to relation (3). Indeed, as K1 and K16 were
found thanks to the precedent algorithm, we can derive the value of K2[22] ⊕
K4[22]⊕K5[44]⊕K6[22]⊕K8[22]⊕K9[44]⊕K10[22]⊕K12[22]⊕K13[44]⊕K14[22].
It is therefore possible to recover 12+1 bits of the key. The same treatment can be
applied to the dual equation (3), thus yielding a total of 26 bits. The remaining
30 unknown key bits have to be searched exhaustively.

4 A chosen-plaintext linear cryptanalysis

As described in [5], Matsui’s Linear Cryptanalysis allows to find these 26 key
bits with 243 known-plaintext. Nevertheless, for a hardware implementation,
the main problem of this attack is the 2 × 212 counters (43-bits wide) needed
to perform the key guess. Knowing that we have about 24000 LUT’s on our
FPGA, the implementation of 212 parallelized counters is much too expensive
to be realistic (more than 350000 LUT’s).

So, we have to reduce the number of needed counters. Looking back at equa-
tion (3)5, we see that these counters are induced by the terms F1(PL,K1)[15]
4 We will leave the second relationship aside in this discussion, since it is the first one’s

dual.
5 The dual equation can be treated similarly.



and F16(CL,K16)[7, 18, 24], each of which depends on 6 key bits. If we could
force one of these terms (say, F1) to a constant value, we would get rid of 26

counters.
Due to the non-linear character of F1 (remember that F1 – or at least the

parts of its output we are interested in – basically corresponds to the S-box S5),
the only way to force F1(PL,K1)[15] to a constant value seems to be to fix its
input. As the key bits are obviously constant, all we have to do is to fix 6 bits of
PL to a constant value. As a consequence, this attack becomes a chosen-plaintext
attack. It is an attack proposed in [1].

Let us have a look at the success rate of this algorithm. In [4], the following
lemmas are proposed:

Lemma 1. Let N be the number of given random plaintexts and p be the prob-
ability that equation 3 holds, and assume |p− 1

2 | is sufficiently small. Then, the
success rate of the algorithm depends on l1, l2, . . . , ld (as defined in Lemma 2),
and

√
N |p− 1

2 | only.

Generally speaking, it is not easy to calculate numerically the accurate prob-
ability above. However, under a condition it can be possible as follows.

Lemma 2. With the same hypotheses as Lemma 1, let q(i) be the probability
that the following equation holds for a subkey K

(i)
n and a random variable X:

Fn(X, Kn)[l1, l2, . . . , ld] = Fn(X, K(i)
n )[l1, l2, . . . , ld] (4)

Then if q(i)’s are independent, the success rate of the algorithm is

∫ ∞

x=−2
√

N |p− 1
2 |

(
∏

K
(i)
n 6=Kn

∫ x+4
√

N(p− 1
2 )(1−q(i))

−x−4
√

N(p− 1
2 )q(i)

1√
2Π

e
−y2

2 dy)
1√
2Π

e
−x2

2 dx (5)

where the product is taken over all subkey candidates except Kn.

In the case we are considering, we have d = 3 and l1 = 7, l2 = 18, l3 = 24.
Then a numerical calculation of expression (5) is as follows.

N |p− 1
2
|−2 2|p− 1

2
|−2 4|p− 1

2
|−2 8|p− 1

2
|−2 16|p− 1

2
|−2

Success rate 20.1% 37.8% 64.1% 88.8% 98.8%

Table 1. Success rate



In addition we can write this table with p = 1
2 − 1.19× 2−21:

N 237 238 239 240 241 242 243 244 245 246

Success rate 2.1% 3.0% 4.6% 8.0% 14.6% 27.8% 50.2% 77.8% 95.7% 99.8%

Table 2. Success rate with p = 1
2
− 1.19× 2−21

It is of course difficult to compare this to Matsui’s results, since the latter
recovers 13 bits6 rather than 6+1. As a comparison basis, we nevertheless used
equation (5) to show the theoretical success probability of Matsui’s 14-round
attack7, which is as follows:

N |p− 1
2
|−2 2|p− 1

2
|−2 4|p− 1

2
|−2 8|p− 1

2
|−2 16|p− 1

2
|−2

Success rate 4.8% 17.7% 51.3% 87.0% 98.8%

Table 3. Success rate in Matsui’s case

N 237 238 239 240 241 242 243 244 245 246

Success rate 0.1% 0.1% 0.3% 0.8% 2.5% 9.3% 31.9% 71.8% 95.3% 99.8%

Table 4. Success rate in Matsui’s case with p = 1
2
− 1.19× 2−21

Therefore we can see that this method needs less plaintext/ciphertext pairs
than Matsui’s one, but retrieves less key bits. The next section discusses the
implication this has on a complete attack.

5 Completing the attack

Once these 6+1 bits of information have been obtained, the question becomes
of course: “how can they be exploited to obtain the complete key”.

Since the 6 bits yielded by the previous attack belong to the 12 involved
in the classical form of the linear cryptanalysis, we can now set up a classical
attack8, with these 6 bits fixed to the values we found in preceding phase. This
would give the 6 other bits and only require 26 counters to maintain, which
is clearly achievable by the FPGA. Applying the same treatment to the dual
equation (eq. (3)) would provide us with a total of 26 key bits.

6 The 13 other bits recovered by Matsui’s attack are obtained by using the dual char-
acteristic; as will be shown in next section, the same can be done in our case.

7 Due to the large (4095) number of factors involved, the equation could not be com-
puted exactly; therefore we used an approximation.

8 A known plaintext attack.



Let us consider the success rate of this method. The characteristic we use in
the second phase has probability 1

2 − 1.19× 2−21. Using equation (5), we obtain
the following values9:

N 237 238 239 240 241 242 243 244 245 246

Success rate 2.1% 3.1% 5.0% 8.9% 17.6% 35.4% 63.9% 90.1% 99.3% 100%

Table 5. Success rate to complete the attack with p = 1
2
− 1.19× 2−21

We obtain the success probability of the global attack by multiplying the
probabilities of the first and second phase (tables 2 and 5), as summarized in
table 6. This is to be compared with Matsui’s success rate, given by table 4.

N 237 238 239 240 241 242 243 244 245 246

Success rate 0.0% 0.1% 0.2% 0.7% 2.6% 9.8% 32.1% 70.1% 95.0% 99.8%

Table 6. Success rate of global attack

It turns out that these two tables are very close one to the other. One
could thus be tempted to conclude that this two-phase attack is as efficient
as Matsui’s. Unfortunately, it is not possible to reuse for second phase the plain-
text/ciphertext pairs used in first phase. As these pairs were explicitly con-
structed to make the first round constant, they cannot teach us any information
about the corresponding key bits.

Consequently, this attack finally requires twice the amount of plaintext/cipher-
text pairs required by Matsui for comparable efficiency. Its only advantage (be-
sides the fact that 6 bits of information are already available at mid-course) is
that it fits in our FPGA, and can actually be carried out in roughly 12 hours
(as a comparison, the only actual implementation of linear cryptanalysis that
we know [2, 3] performs an attack in 4.32 days. An exhaustive search of the
remaining 30 bits would take about 3 seconds.

Remark: The above estimations only take into account the probability for
the right key to be the first one in our guess list. In fact, a more efficient method
is used in [5]: the candidates are sorted according to their ranking in the linear
estimation, and are successively used as basis for exhaustive search. Similarly,
we could of course simultaneously treat the 2t more likely candidates yielded by
first phase, combining them with all possible values for the 6 remaining bits. In
view of the place left by our implementation on the Xilinx FPGA, it appears
we could set t = 3. Corresponding success probabilities are difficult to derive
theoretically (Matsui’s estimations were obtained by extrapolating the results
obtained against an 8-round DES). The next section summarizes the results we
obtained by actually running the attack.

9 These value are not the same as table 4, since the considered S-box (and thus
d, l1, . . . li) is different.



6 Experimental results

In this section, we give a description of the results we got running the first phase
of the attack (recover 6 key bits) on one single Xilinx FPGA. We carried out
the experiments at a work frequency = 66.6 MHz (=226) and we parallelized 6
attack blocks. Therefore we are able to compute 6 × 226 equations per second.
So, 243 evaluations take about 6 hours.

We carried out tests with 27 different keys. Table 7 summarizes the experi-
mental success rate to rank first the right subkey candidate for various amounts
N of chosen-plaintext/ciphertext pairs:

N 236 237 238 239 240 241 242 243

Success rate 0% 0% 0% 4% 4% 19% 37% 70%

Table 7. Experimental success rate in the first phase

These experimental results probably suggest that Matsui’s theoretical anal-
ysis is slightly pessimistic (see table 2). Our hardware design could help to ac-
curate existing mathematical model.

7 Conclusion

This paper presented the first known FPGA implementation of linear cryptanal-
ysis. Due to FPGA constraints, we choose an adapted attack that makes it less
memory-consuming. The resulting attack is less efficient (by a factor 2) than the
original one, but can actually be deployed on reasonably expensive hardware and
is capable of breaking a full DES key in 12-15 hours, including final exhaustive
search. In addition, it is worth noting that with the new Xilinx FPGA10, we
would be able to carry out the same attack in about 1 hour, without changing
the HDL code. Therefore, in some applications, FPGA’s can be used as powerful
cryptographic calculation tools.

References

1. L.R. Knudsen and J.E. Mathiassen A Chosen-Plaintext Linear Attack on DES. In
Bruce Schneier, editor, Proc. of FSE’00, LNCS, pages 262–272. Springer, 2000.

2. P. Junod. Linear cryptanalysis of DES. Master’s thesis, Swiss Institute of Technol-
ogy, Zurich, 2000.

3. P. Junod. On the complexity of Matsui’s attack. In Proc. of SAC’01, LNCS, pages
216–230. Springer, 2001.

4. M. Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth, editor,
Advances in Cryptology - EuroCrypt ’93, pages 386–397, Berlin, 1993. Springer-
Verlag. Lecture Notes in Computer Science Volume 765.

10 Xilinx VIRTEX-II XC2V8000.



5. M. Matsui. The first experimental cryptanalysis of the Data Encryption Standard.
In Yvo Desmedt, editor, Advances in Cryptology - Crypto ’94, pages 1–11, Berlin,
1994. Springer-Verlag. Lecture Notes in Computer Science Volume 839.

6. J.M. Rabaey. Digital Integrated Circuits. Prentice Hall, 1996.
7. Xilinx. Virtex 2.5V field programmable gate arrays data sheet. available from

http://www.xilinx.com.


	1: * This work has been funded by the Walloon region (Belgium) through the research project TACTILS.


