
ASIC Implementations of the Block Cipher SEA

for Constrained Applications

François Macé⋆, François-Xavier Standaert⋆⋆, Jean-Jacques Quisquater

UCL Crypto Group, Université Catholique de Louvain.

e-mails: mace,fstandae,jjq@uclouvain.be

Abstract. SEA is a scalable encryption algorithm targeted for small
embedded applications. It was initially designed for software implemen-
tations in controllers, smart cards or processors. In this paper, we inves-
tigate its hardware performances in a 0.13 µm CMOS technology. For
these purposes, different designs are detailed. First, a single clock cycle
per round loop architecture is implemented. Beyond its low cost perfor-
mances, a significant advantage of the proposed encryption core is its full
flexibility for any parameter of the scalable encryption algorithm, taking
advantage of generic VHDL coding. Second, a more realistic design with
a reduced datapath combined with a serial communication interface is
described in order to put forward the low-power opportunities of SEA.
Finally, a minimum datapath is presented and its applicability to RFID
encryption is discussed. Additionally to these results, performance com-
parisons with the AES Rijndael are proposed. They illustrate the interest
of platform/context-oriented block cipher design and, as far as SEA is
concerned, its low area requirements and reasonable efficiency.

1 Introduction

SEA is a parametric block cipher for resource constrained systems (e.g. sensor
networks, RFIDs) that has been introduced in [17]. It was initially designed as a
low-cost encryption/authentication routine (i.e. with small code size and mem-
ory) targeted for processors with a limited instruction set (i.e. AND, OR, XOR

gates, word rotation and modular addition). Additionally and contrary to most
present encryption algorithms (e.g. the DES [4] and AES Rijndael [3, 5]), the
algorithm takes the plaintext, key and bus sizes as parameters and therefore
can be straightforwardly adapted to various implementation contexts and/or
security requirements. Compared to older solutions for low cost encryption like
TEA (Tiny Encryption Standard) [21] or Yuval’s proposal [22], SEA also benefits
from a stronger security analysis, derived from recent advances in block cipher
design/cryptanalysis. In practice, SEA has been proven to be an efficient solution
for embedded software applications. In [15], the features of a low cost FPGA en-
cryption/decryption core have also been detailed. But its hardware performances
in a recent CMOS technology have not yet been investigated. Consequently, this
paper explores the space vs. speed vs. power consumption tradeoffs of various
designs for SEA. First, we consider a single cycle per round loop implementation.

⋆ François Macé is a PhD student funded by the FRIA, Belgium.
⋆⋆ Postdoctoral researcher of the Belgian Fund for Scientific Research (FNRS).

In addition to its performance evaluation, we show that the algorithm’s scala-
bility can be turned into a fully generic VHDL design, so that any text, key and

bus size can be straightforwardly re-implemented without any modification of
the hardware description language, with standard synthesis and implementation
tools. Then, we consider more realistic scenarios for constrained applications
and investigate the low power capabilities of SEA. For this purpose, we detail
a design combining a reduced datapath with a serial communication interface,
executing each round in 15 clock cycles. Finally, we present a minimum datapath
and discuss its application to RFID encryption constraints with respect to sim-
ilar designs proposed for the AES Rijndael. These results illustrate the interest
of platform/context oriented block cipher design for constrained applications.
The rest of the paper is structured as follows. Section 2 describes the algorithm.
Sections 3, 4 and 5 respectively detail our architectures and datapaths for SEA
in different implementation contexts. Finally, conclusions are in Section 6.

2 Algorithm Description

In this section, we give a complete description of the algorithm, starting with the
important parameters, then emphasizing its basic operation. Afterwards follows
the round and key round description and finally the generic pseudo-C code for
the whole execution of encryption and decryption.

2.1 Parameters and definitions

SEAn,b operates on various text, key and word sizes. It is based on a Feistel
structure with a variable number of rounds, and is defined with respect to the
following parameters:

– n: plaintext size, key size.
– b: processor (or word) size.
– nb = n

2b
: number of words per Feistel branch.

– nr: number of block cipher rounds.

As only constraint, it is required that n is a multiple of 6b1. For example, using
an 8-bit processor, we can derive a 96-bit block ciphers, denoted as SEA96,8.

Let x be a n
2 -bit vector. We consider two representations:

– Bit representation: xb = x(n
2 − 1) . . . x(2) x(1) x(0).

– Word representation: xW = xnb−1 xnb−2 . . . x2 x1 x0.

2.2 Basic operations

Due to its simplicity constraints, SEAn,b is based on a limited number of elemen-
tary operations (selected for their availability in any processing device) denoted
as follows: (1) bitwise XOR ⊕, (2) addition mod 2b ⊞, (3) a 3-bit substitution
box S := {0, 5, 6, 7, 4, 3, 1, 2} that can be applied bitwise to any set of 3-bit words
for efficiency purposes. In addition, we use the following rotation operations:

1 since nb must be integer and a multiple of 3 for the right use of the S-box

Li Ri

Sr

R Ki

R

Li+1 Ri+1

-1

KLi KRi

r

Ci

KLi+1 KRi+1

SR

Fig. 1. Encrypt/decrypt round and key round.

(4) Word rotation R, defined on nb-word vectors:

R : Z
nb

2b
→ Z

nb

2b
: x→ y = R(x)⇔ yi+1 = xi, 0 ≤ i ≤ nb − 2,

y0 = xnb−1

(5) Bit rotation r, defined on nb-word vectors:

r : Z
nb

2b
→ Z

nb

2b
: x→ y = r(x)⇔ y3i = x3i ≫ 1,

y3i+1 = x3i+1,
y3i+2 = x3i+2 ≪ 1, 0 ≤ i ≤

nb
3
− 1,

where ≫ and ≪ represent the cyclic right and left shifts inside a word.

2.3 The round and key round

Based on the previous definitions, the encrypt round FE , decrypt round FD and
key round FK are pictured in Figure 1 and defined as:

[Li+1, Ri+1] = FE(Li, Ri, Ki) ⇔ Ri+1 = R(Li)⊕ r
(

S(Ri ⊞ Ki)
)

Li+1 = Ri

[Li+1, Ri+1] = FD(Li, Ri, Ki) ⇔ Ri+1 = R−1
(

Li ⊕ r
(

S(Ri ⊞ Ki)
)

)

Li+1 = Ri

[KLi+1, KRi+1] = FK(KLi, KRi, Ci) ⇔ KRi+1 = KLi ⊕ R
(

r
(

S(KRi ⊞ Ci)
)

)

KLi+1 = KRi

2.4 The complete cipher

The cipher iterates an odd number nr of rounds. The following pseudo-C code
encrypts a plaintext P under a key K and produces a ciphertext C. P, C and
K have a parametric bit size n. The operations within the cipher are performed
considering parametric b-bit words.

C=SEAn,b(P, K)
{

% initialization:
L0&R0 = P ;
KL0&KR0 = K;

% key scheduling:
for i in 1 to ⌊nr

2 ⌋
[KLi,KRi] = FK(KLi−1,KRi−1, C(i));

switch KL⌊nr
2
⌋, KR⌊nr

2
⌋;

for i in ⌈nr

2 ⌉ to nr − 1
[KLi,KRi] = FK(KLi−1,KRi−1, C(r − i));

% encryption:
for i in 1 to ⌈nr

2 ⌉
[Li,Ri] = FE(Li−1,Ri−1,KRi−1);

for i in ⌈nr

2 ⌉ + 1 to nr

[Li,Ri] = FE(Li−1,Ri−1,KLi−1);
% final:

C = Rnr
&Lnr

;
switch KLnr−1, KRnr−1;

},

where & is the concatenation operator, KR⌊nr
2
⌋ is taken before the switch and

C(i) is a nb-word vector of which all the words have value 0 excepted the LSW
that equals i. Decryption is exactly the same, using the decrypt round FD.

3 Generic loop Architecture

Our generic loop architecture supports both encryption and decryption and ex-
ecutes one round per clock cycle. It yields a straightforward implementation in
which the round function and key schedule do not share any resources. Addi-
tionally, the left branch of the round function must be designed to support the
word rotate operation and its inverse. The proposed implementation benefits
from the same structure as the one detailed in [15] for FPGAs. Its purpose is to
illustrate the high scalability of the algorithm and its achievements on through-
put/area tradeoffs. Such a design is typically interesting when integrated in large
scale systems. By contrast, because of its n-bit architecture and interface, it is
not perfectly suited to low power, low cost applications.

3.1 Implementation details

The structure of our generic loop architecture of SEA is depicted in figure 2, with
the round function details in the left part and the key schedule in the right part.
It has a Feistel structure working on n-bit data blocks, each branch computing
operations on n

2 -bit operands. Resources consuming blocks are the S-boxes and
the mod2b adders. The Word Rotate and Bit Rotate blocks are implemented by
swapping wires. Encryption and decryption are supported by two multiplexors
controlled by the Encrypt signal. Two additional multiplexors in the key schedule
allow to switch the right and left part of the round key (KR⌊nr

2
⌋ and KL⌊nr

2
⌋)

at half the execution using the Switch command signal. Finally, the multiplexor
controlled by HalfExec provides the round function with the right part of the
Roundkey, transmitting its left part instead of the right one after the switch.
Supplementary area consumption is caused by the routing pathes.

R r Sbox

1 0

R

0 1

R
-1

0 1

r Sbox

0 1

0

1

1 0 0 1

1

0

1

0

NotState0 NotState0

NotState0 NotState0

DataInLeft DataInRight

KeyInLeft KeyInRight

Const_i

Switch Switch

H
a
lf
E
x
e
c

Encrypt

Encrypt

R

R
-1

r
Word

Rotate

Word Rotate

Inverse

Bit Rotate
XOR

operation

mod 2
b

addition

Fig. 2. Architecture of the generic loop implementation.

The algorithm can easily beneficiate of a modular implementation, taking as
only mandatory parameters the size of the plaintexts and keys n and the word
length b. The number of rounds nr is an optional input that can be automatically
derived from n and b according to the guidelines given in [17]. From the datapath
description of Figure 2, a scalable design can then be straightforwardly obtained
by using generic VHDL coding. A particular care only has to be devoted to
an efficient use of the mod 2b adders in the key scheduling part. In the round
function, the mod 2b adders are realized by using nb b-bits adders working in
parallel without carry propagation between them. In the key schedule, the signal
Const i can only take a value between 0 and nr

2 . Therefore, it may not be
necessary to use nb adders. If log2(

nr

2) ≤ b, then a single adder is sufficient. If

log2(
nr

2) > b, then ⌈
log2(nr

2
)

b
⌉ adders will be required. In the next section, we

detail the implementation results of this architecture for different parameters.

3.2 Implementation Results

We implemented SEA with the parameters n and b respectively ranging from
96 to 144 and from 4 to 12. The modular design was written in VHDL. The
synthesis was realized using Synopsys Design Analyzer r [19] and the place
and route was performed using Cadence r Soc EncounterTM[2]. We used the
0.13 µm high density standard cell library from UMC[20] with a power supply
voltage of 1.2V . Timing constraints for synthesis and place and route were set
to achieve a maximal frequency of 250 MHz. Power consumption figures were
extracted using power tools provided by Soc EncounterTM, using post place and
route simulations of the circuit activity and a wireload model.

Our results are summarized in Table 1 for various parameters. For comparison
purposes, we reported implementation results of the AES Rijndael. In addition,
we also provide an ASIC implementation of the ICEBERG block cipher [18]
that was specifically designed for efficient FPGA implementations. Both archi-
tectures have been chosen for comparison because of a similar “one clock cycle
per round” implementation context. These results clearly illustrate the space

Algo. n b nr Clock Throughput Area Gate Gate Total Power
Frequency [Mbps] [µm2] Equivalent Equivalent

[MHz] @ Synthesis @ P& R [µW]

SEA 96 8 93 250 258 22362 3758 4313 5102.64
SEA 108 6 111 250 243 23668 4003 4565 5844.02
SEA 126 7 117 250 269 28241 4770 5447 7216.96
SEA 132 11 121 250 273 29638 5071 5715 7894.62
SEA 144 4 149 250 242 32894 5764 6345 8029.56
SEA 144 6 139 250 259 32137 5525 6199 7789.28
SEA 144 8 135 250 267 31523 5427 6079 8201.22
SEA 144 12 133 250 271 31622 5550 6100 8183.44

AES [16] 128 - 10 224 2609.11 130 000 - 21337 -
AES [11] 128 - 10 295 3840 790 000 - 73200 86 000

ICEBERG 64 - 16 250 1000 45679 7732 8811 9577.11

Table 1. Implementation results for SEA, the AES and ICEBERG: n-bit loop architecture.
(Total power evaluated at the maximum working frequency)

vs. throughput tradeoff between SEA and the AES, which also appears in the
power consumption figures. Similarly, the table underlines the different optimiza-
tion goals of SEA (minimum code size in software) and ICEBERG (maximum
throughput/area ratio in reconfigurable hardware). We observe that, although
not directly purposed for hardware implementations, SEA performs relatively
well in this context. We also note that all these architectures allow both encryp-
tion and decryption facilities. Due to a particular structure of the key scheduling,
SEA and ICEBERG additionally provide “on-the-fly” key derivation both for
encryption and decryption (which is usually not achievable with other ciphers).

4 Reduced datapath with serial interface

The implementation results presented in the previous section may not be suf-
ficient for resource constrained applications. In particular, the proposed n-bit
architecture and interface for loading the key and data is not realistic in such
contexts. As a consequence, this section investigates an alternative implemen-
tation, trading throughput for area and combined with a smaller block (b-bit)
serial interface. For these purposes, we take advantage of a reduced datapath
and modify the description of the round and key round with the following goals:

– Reduce the area consumption of the module.
– Reduce its power consumption.
– Support both encryption and decryption.
– Achieve a good tradeoff between area, power and throughput.

4.1 Re-scheduling of the algorithm

The proposed re-scheduling of the round function and key expansion operations
are respectively shown in Algorithms 1 and 2. In order to better reduce the area
requirements, we also had to abandon a part of the genericity in our VHDL codes:
the parameter nb is now fixed to 6, but the value of b is still parametric. In the
re-scheduled algorithms, the word rotate operation is directly implemented as
the registers Ri, Li, KRi and KLi are accessed in read and/or write operations.
Seven working registers (registers A to G) are needed in order to execute all the
operations taking into account data dependencies. As it is easily observable, both
round function and key schedule operation take 10 cycles to be fully executed.

Algorithm 1 Alternative implementation of SEA - Round Function

Input: Ri, Li, RKi ∈ Z
nb

2b

Output: Ri+1, Li+1

E/D Encryption Decryption
1: A← Ri,0 + RKi,0;
2: B ← Ri,1 + RKi,1;
3: C ← Ri,2 + RKi,2;
4: (D, E, F)← r(S(A, B, C)); A← Ri,3 + RKi,3; C ← Ri,5 + RKi,5;

G← Li,5; G← Ri,5;
5: B ← Ri,4 + RKi,4; G← Li,0; Ri+1,5 ← Li,0 ⊕D;

Li+1,0 ← Ri,0; Ri+1,0 ← D ⊕G;
6: Li+1,1 ← Ri,1; Ri+1,1 ← E ⊕G; G← Li,1; A← Ri,3 + RKi,3;

C ← Ri,5 + RKi,5; Ri+1,0 ← Li,1 ⊕ E;
7: (D, E, F)← r(S(A, B, C)); Ri+1,2 ← F ⊕G; Ri+1,1 ← Li,2 ⊕ F ;

Li+1,2 ← Ri,2; G← Li,2;
8 : Li+1,3 ← Ri,3 Ri+1,3 ← D ⊕G; G← Li,3; Ri+1,2 ← Li,3 ⊕D;
9 : Li+1,4 ← Ri,4; G← Li,4; Ri+1,4 ← E ⊕G; Ri+1,3 ← E ⊕ Li,4;
10: Ri+1,5 ← F ⊕G; Ri+1,4 ← Li,5 ⊕ F ;

Li+1,5 ← Ri,5; Li+1,5 ← G;

Algorithm 2 Alternative implementation of SEA - Key Schedule

Input: KRi, KLi ∈ Z
nb

2b
, Consti ∈ Z

2b

Output: kRi+1, kLi+1

E/D Encryption Decryption
1: Ak← KRi,0 + Consti;
2: Bk← KRi,1;
3: Ck← KRi,2;
4: (Dk, Ek, Fk,)← r(S(1k, Bk, Ek)); Ak ← KRi,3; Ck← KRi,5;
5: Bk← KRi,4; KRi+1,1 ← KLi,1 ⊕Dk; KLi+1,1 ← KRi,1

6: KRi+1,2 ← KLi,2 ⊕ Ek; KLi+1,2 ← KRi,2; Ck← KRi,5; Ak ← KRi,3;
7: (Dk, Ek, Fk,)← r(S(Ak, Bk, Ek)); KLi+1,3 ← KRi,3;

KRi+1,3 ← KLi,3 ⊕ Fk;
8: KRi+1,0 ← KLi,0 ⊕ Fk; KLi+1,0 ← KRi,0;
9: KRi+1,4 ← KLi,4 ⊕Dk; KLi+1,4 ← KRi,4;
10: KRi+1,5 ← KLi,5 ⊕ Ek; KLi+1,5 ← KRi,5;

4.2 Implementation Structure

In order to achieve the goals of reducing the area and power consumption re-
quirements, our proposed implementation shares resources between the round
function and key schedule and works on b-bit operands. As a consequence they
cannot be executed in parallel anymore. Let us denote the ith operation in the
round function by ri and the ith operation in the key round by ki. Looking

carefully at Algorithms 1 and 2 reveals that certain operations can still be man-
aged in parallel. Namely, k1 can be executed together with r8, k2 with r9 and k3

with r10. In the same manner, we can execute k9 with r1 and k10 with r2. This
results in an execution of the combined round/keyround taking only 15 cycles.
Contrary to the implementation presented in section 3, we provide functional-
ities to load the cleartext and the key and to send back the ciphertext after
encryption, through a b-bit serial interface. Taking these interfaces into account,
both encryption and decryption can be concluded in 33 + 15 ∗ nr clock cycles.

RegFile

Left

G

RegFile

Right

B CA

E FD

r(Sbox(A,B,C))

0 1

0 1

1

0

1

0

Data_out

0

1

1 0

0

1

HalfExec

encrypt

encrypt

dec5

S
w
itc
h

0 1 SelOutAdd

0 1

0 1

Const_i

KeySched

Data_in

SelDEF

Fig. 3. Architecture of the alternative implementation (b bit operands).

An architecture realizing these implementation choices is presented in Figure
3. Again, a number of control signals are necessary to manage the execution of the
algorithm. encrypt and dec5 allow the selection of the right path for encryption
and decryption. KeySched and SelOutAdd allows switching the input path during
the round function or during the execution of the key schedule. HalfExec controls
the selection of the right or left part of the round key during the first half or the
second half of the encryption/decryption process. Finally, Switch allows directly
accessing the register file of the right part during the switch between the two
parts of the key. As some registers of the left and right register files have to be
simultaneously accessed, we additionally need to generate single input - multiple
outputs register files. The control part is realized using an FSM.

4.3 Implementation Results

Implementation results for the architecture of Figure 3 are given in table 2,
for different values of the generic parameter b. Synthesis and place and route
were realized using the same tools as in the previous section, with a maximal
frequency of 80 MHz and optimized for area constraints. Compared to the pre-
vious generic loop architecture, a first observation is that the area gains of the
modified architecture are negligible (when they exist). This is mainly due to the
different interfaces these architectures are using. As a matter of fact, the serial
interface considered in this section is more realistic for low cost, low power appli-
cations. Nevertheless, the alternative architecture saves a reasonable amount of
power. For example, the generic loop and alternative architectures for SEA144,12

respectively consume 59 µW and 25 µW at 100 KHz. We find 36 µW and 19
µW for SEA96,8. The same trend holds at higher frequencies, where the leak-
age power becomes negligible. Of course, this reduced power consumption comes
at the cost of a reduced throughput. Interestingly, a comparison with similar
architectures for the AES Rijndael reveals that the space vs. throughput trade-
off is not as straightforward as for the previous loop architecture: specialized
datapaths for the AES can achieve nice performances for low cost applications.
These results illustrate the good ability of the AES Rijndael to fit to any kind of
platform and application context. From these results, the AES implementations
also look more power consuming. But this statement (as any comparison in the
paper) probably has to be tempered by different design choices in the referenced
implementations. These results are only purposed to underline intuitive facts re-
garding the implementation abilities of different algorithms. Let’s finally remark
that AES implementation providing encryption only lead to lower area consump-
tion than our architecture while SEA saves more area than the proposed AES
architectures when both encryption and decryption have to be integrated.

b n nr ♯ Cycles Throughput Area Gate Gate Leakage Total Power Total Power
80 MHz [µm2] Equivalent Equivalent Power 80 MHz 100kHz
[Mbps] @ Synthesis @ P& R [µW] [µW] [µW]

8 96 93 1428 5.38 23186 3925 4472 17.453 1376 19.238
9 108 99 1518 5.69 25294 4281 4879 18.693 1546 20.527
10 120 113 1600 6 27606 4673 5325 19.911 1598 21.923
11 132 121 1712 6.17 29742 5035 5737 20.287 1664 23.101
12 144 133 1880 6.13 31342 5406 6046 22.351 1886 24.682

Table 2. Implementation results for SEA: b-bit architecture.

Width Equ. Process Max Freq Latency Throughput Total Power Enc/Dec
[bit] Gate [µm] [MHz] [nr. cycles] [Mbps] 80 MHz [µW]

Satoh et al. [16] 32 5400 0.11 131 54 311 - yes
Feldhoffer et al. [6] 8 3600 0.35 - 1016 - - no

Pramstaller et al. [14] 32 8500 0.6 50 92 70 - yes
Hämäläinen et al. [10] 8 3200 0.13 130 160 104 2400 no
Hämäläinen et al. [10] 8 3100 0.13 152 160 121 2960 no

Table 3. Implementation results for the AES.

5 Towards a minimum datapath

Since SEA has been designed for small-code software implementations using a
very limited instruction set, a final approach for its implementation would be to
design a minimum co-processor allowing to run this minimum set of instructions.
In contexts where throughput is not an issue, this would allow to reduced the cost
of the datapath beyond what can be expected for standard algorithms such as the
AES. As a matter of fact, the resulting implementations would be mainly similar
to the ones initially presented in [17], e.g. for SEA96,8 in AVR microcontrollers
(code size: 412 bytes, registers use: 10, SRAM use: 24 bytes, number of cycles:
<42.000, throughput at 100 MHz: 285 char/sec or 2.3 Kbit/sec).

An exemplary minimum datapath is pictured in Figure 4. Again, we in-
vestigated its implementation results for different word lengths b, with a fixed
nb = 6, as summarized in Table 4. An implementation with b = 11 achieves a
total text/key length of n = 132 (and would necessitate a 32 word RAM: 24
for cleartext/ciphertext and roundkey storage and 8 for working register, as in
a software implementation), which is close to the text/key length of the AES.
Therefore, it is worth being compared with the smallest reported implementa-
tion of the AES [7]. In the latter implementation, 28% of the resources are taken
by the datapath. In terms of gate equivalent after synthesis, this is a value of
952 gates. As a matter of fact, the minimum datapath of SEA is approximately
33% smaller. With respect to the power consumption, the figures given in [7]
show that a power consumption of 4.5 µW is generated at 100 KHz for the
whole circuit, while our datapath has a power consumption of around 4 µW.
But no special low power techniques have been applied to the implementation
of SEA and the 0.13 µm technology used in this paper generates much higher
leakages (around 90% of the power consumption at 100 KHz). In general, these
results illustrate that optimized implementations of SEA (e.g. using clock gating
or Vdd scaling [8]) could give rise to very low power consumption results. Note
that, roughly estimated, the execution of a combined round/keyround using the
minimum datapath of Figure 4 would take 50 clock cycles, which still improves
the performances of a purely software implementation. Additionally, the ability
to reduce the datapath to a minimum number of gates also makes sense from
a physical security point of view, e.g. if resistance against side-channel or fault
attacks is to be considered. Moving from these estimations to actual (possibly
physically secure) designs is a scope for further research.

b Equ. Gate Area Equ Gate Leakage Total Power Total Power
@ Synthesis @ P and R [µm2] @ P and R [µW] 100kHZ [µW] 80MHz [µW]

8 449 4753.7 917 2.865 3.218 293.5
9 507 5049.0 974 3.083 3.421 308.8
10 563 5332.6 1028 3.246 3.636 328.6
11 620 5624.6 1085 3.499 3.878 346.1
12 677 5920.1 1142 3.704 4.128 357.6

Table 4. Implementation results for the minimum datapath.

R2

R1

r(S(R2,In,R1))

In

Out

Fig. 4. Minimum datapath proposal for low cost, low power applications.

6 Conclusion

This paper details two implementations of SEA and evaluates their implemen-
tation cost using a standard cell EDA flow. The first implementation demon-
strates the high scalability properties of the algorithm and illustrates its area
vs. throughput tradeoff when compared to other block ciphers. The second im-
plementation slightly reduces the scalability of the algorithm but provides a
more realistic interface for low cost applications. It also reduces the power con-
sumption figures. Finally, a minimum datapath is discussed with respect to its
applicability to very constrained environments, e.g. RFIDs. If throughput con-
straints can be relaxed, it illustrates the good opportunities provided by SEA
to decrease the implementation cost of a block cipher beyond what is possible
with standard algorithms. Interestingly, SEA was not purposed for hardware
implementations, but presents interesting features in this context (e.g. “on-the-
fly” key derivation in both encryption and decryption). Improving the algorithm
structure towards better hardware performances is therefore possible and is a
scope for further research. It could then be compared with recent block and
stream ciphers specifically designed for low cost hardware implementations, e.g.

HIGHT [12], DESL [13], PRESENT [1], Trivium [9] or Grain [9]. Finally, SEA
has interesting opportunities to trade energy for security by (possibly adaptively)
reducing its (large) number of rounds. The resulting primitives would then range
from secure ciphers to reasonable scrambling functions, which may be relevant
in certain applications (e.g. sensor networks).

References

1. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw,
Y. Seurin, C. Vikkelsoe PRESENT: An Ultra-Lightweight Block Cipher”. Crypto-
graphic Hardware and Embedded Systems, to appear in the proceedings of CHES
2007, Vienna, Austria, September 2007.

2. http://www.cadence.com/

3. J. Daemen, V. Rijmen, The Design of Rijndael, Springer-Verlag, 2001.

4. FIPS 46-1, ”Data Encryption Standard”, Federal Information Processing Standard,
NIST, U.S. Dept. of Commerce, January 22, 1988.

5. FIPS 197, ”Advanced Encryption Standard”, Federal Information Processing Stan-
dard, NIST, U.S. Dept. of Commerce, November 26, 2001.

6. M. Feldhoffer, S. Dominikus, J. Wolkerstorfer, Strong Authentification for RFID
Systems using the AES Algorithm, in the proceedings of CHES 2004, LNCS, vol
3156, pp 347-370, Boston, Massachussets, USA, August 2004.

7. M. Feldhofer, J. Wolkerstorfer, V. Rijmen, AES Implementation on a Grain of Sand,
in IEE Proceedings on Information Security, vol 152, issue 1, pp 13- 20, October 2005.

8. R. Gonzalez, B.M. Gordon, M.A. Horowitz, Supply and Threshold Voltage Scaling
for Low Power CMOS, in the IEEE Journal of Solid-State Circuits, vol 32, num 8,
pp 1210-1216, August 1997.

9. T. Good, W. Chelton, M. Benaissa, Hardware Results for Selected Stream Cipher
Candidates, in the proceedings of SASC 2007, February 2007. Available for download
via http://www.ecrypt.eu.org/stream/,

10. P. Hämäläinen, T. Alho, M. Hännikäinen, T.D. Hämäläinen, Design and Imple-
mentation of Low-Area and Low-Power AES Encryption Hardware Core, in the pro-
ceedings of DSD 2006, pp 577-583, Cavtat, Croatia, August 2006.

11. A. Hodjat, P. Schaumont, I. Verbauwhede, Architectural Design Features of a Pro-
grammable High Throughput AES Coprocessor, in the proceedings of ITCC 2004, vol
2, pp 498-502, Las Vegas, Nevada, USA, April 2004.

12. D. Hong et al., HIGHT: A New Block Cipher Suitable for Low-Resource Device,
in the proceedings of CHES 2006, Lecture Notes in Computer Science, vol 4249, pp
46-59, Yokohama, Japan, October 2006.

13. G. Leander, C. Paar, A. Poschmann, K. Schramm, A Family of Lightweight Block
Ciphers Based on DES Suited for RFID Applications, to appear in the proceesings
of FSE 2007, Luxembourg, March 2007.

14. N. Pramstaller, S. Mangard, S. Dominikus, J. Wolkerstorfer, Efficient AES Imple-
mentations on ASICs and FPGAs, in the proceedings of the 4th Conference on the
Advanced Encryption Standard - AES 2004, pp 98-112, Bonn, Germany, may 2004.

15. F. Macé, F.-X. Standaert, J.-J. Quisquater, FPGA Implementation(s) of a Scalable
Encryption Algorithm, to appear in IEEE Transactions on VLSI.

16. A. Satoh, S. Morioka, K. Takano, S. Munetoh, A Compact Rijndael Hardware
Architecture with S-Box Optimization, in the proceedings ASIACRYPT 2001, LNCS,
vol 2248, pp 239-254, Gold Coast, Australia, December 2001.

17. F.-X. Standaert, G. Piret, N. Gershenfeld, J.-J. Quisquater,SEA: A Scalable En-
cryption Algorithm for Small Embedded Applications, in the Proceedings of CARDIS
2006, LNCS, vol 3928, pp 222-236, Tarragona, Spain, April 2006.

18. F.-X. Standaert, G. Piret, G. Rouvroy, J.-J. Quisquater, FPGA Implementations
of the ICEBERG Block Cipher, in the proceedings of ITCC 2005, vol 1, pp 556-561,
Las Vegas, Nevada, April 2005.

19. http://www.synopsys.com/

20. http://www.umc.com/

21. D.J. Wheeler, R. Needham, TEA, a Tiny Encryption Algorithm, in the proceedings
of FSE 1994, LNCS, vol 1008, pp 363-366, Leuven, Belgium, December 1994.

22. G. Yuval, Reinventing the Travois: Encryption/MAC in 30 ROM Bytes, in the
proceedings of FSE 1997, LNCS, vol 1267, pp 205-209, Haifa, Israel, January 1997.

