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Summary. Due to its potential to greatly accelerate a wide variety of applications,
reconfigurable computing has gained importance in the industrial development of
digital signal processing systems. This chapter discusses how the specificities of Field
Programmable Gate Arrays (FPGAs) can be exploited for the secure and efficient
implementation of symmetric cryptographic algorithms and protocols.

1 Introduction

Reconfigurable computing intends to fill the gap between hardware and soft-
ware, achieving potentially much higher performance than software, while
maintaining a higher level of flexibility than hardware. Reconfigurable devices
such as FPGAs contain arrays of computational elements whose functionality
is determined through multiple programmable configuration bits. These ele-
ments, sometimes known as logic blocks, are connected using a set of routing
resources that are also programmable. As a consequence, the realization of
FPGA designs can be performed at the user site. Synthesis and implementa-
tion tools allow the high level description of a hardware design to be translated
into the programming file for an FPGA. The run-time operation of a reconfig-
urable system consequently occurs in two distinct phases: configuration and
execution. First, the programming file of the reconfigurable device is directed
from a host PC or an on-board memory to the FPGA. This configuration data
is used to define the actual operation of the hardware. Thereafter, during the
execution phase, the reconfigurable device acts as a purpose-built hardware.

The structure of actual computation blocks within the reconfigurable hard-
ware varies from system to system. Each computation unit, or logic block, can
be as simple as a 3-input function generator (usually denoted as Look-Up-
Table (LUT)), or as complex as an 8-bit Arithmetic and Logic Unit (ALU).
This difference in the block size is commonly referred to as the granular-
ity of the logic block. Fine-grain blocks are useful for bit-level manipulations.
Coarse-grain blocks are better optimized for high-level data manipulation. The
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Fig. 1. High level view of an FPGA.

granularity of the FPGA also has a potential impact on the configuration time
of the device. A fine-grained array has many configuration points to perform
very small computations, and thus requires more data bits during reconfigu-
ration. Recent FPGAs such as the one illustrated in Figure 1 usually combine
different sizes or types of blocks in order to efficiently support different kinds
of computations. For example, standard logic blocks using 4-input LUTs are
combined with embedded RAM blocks, multipliers and micro-processors. Next
to the computational blocks, the interconnections also have a major impact
in the final performance of an FPGA. Recent devices are usually structured
in different lengths of interconnects in order to efficiently deal with close and
remote connections between the different logic blocks.

In the following of this paper, we assume a reader with basic knowledge in
FPGA design and cryptographic algorithms. Rather than providing a general
introduction to reconfigurable cryptographic implementations, this paper aims
to put forward a number of specificities of these devices and to discuss how
they can be exploited efficiently and securely. Underlining how FPGA designs
differ from standard integrated circuit designs with this respect is an alterna-
tive goal. Due to the very general nature of this topic, it is not intended to be
extensively covered and our different sections attempt (as far as possible) to
redirect the reader towards further readings when necessary. As introduction
to the following issues, we suggest [10] for a general report on reconfigurable
computing, [22] for detailed descriptions on the efficient implementation of
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cryptographic algorithms on FPGAs, [11] for a good bibliography on FPGA
security issues and [36] for a combined discussion of implementations and at-
tacks on FPGAs. Additionally, since most of our running examples are using
Xilinx FPGAs, we refer to [37] for a detailed description of these devices.

The rest of the paper is structured as follows. Section 2 discusses the ef-
ficient exploitation of different FPGA features, from low-level facilities of the
logic blocks to high-level architectural features. Section 3 details some met-
rics used for evaluating the efficiency of a cryptographic implementation. The
two last sections investigate different issues related to the security of reconfig-
urable devices. Section 4 comments on the applicability of an important class
of physical attacks (denoted as side-channel attacks) to recent FPGAs. Sec-
tion 5 surveys other security topics, related to fault insertion and bitstream
security. Our conclusions are in Section 6. We note finally that most of the
examples used in this paper are borrowed from implementation works of the
UCL Crypto Group. Many similar results can be found in the literature and
this paper does not aim to give an overview of previously published works.

2 Efficient FPGA implementations

This section considers the exploitation of different features in recent recon-
figurable devices for the efficient implementation of symmetric cryptographic
algorithms. We first investigate the slice structure, then describe the exploita-
tion of additional embedded blocks and conclude by discussing the possible
advantages of higher-level architectural facilities provided by recent FPGAs,
namely embedded micro-processors and dynamic reconfiguration. We note
that most of these features directly derive from the FPGA datasheets. How-
ever, since they are not always optimally (and automatically) exploited by
the synthesis and implementation tools, it is important to have them in mind
already during the high-level description of a cryptographic design.

2.1 Exploiting the slice structure

In this first subsection, we consider a Xilinx Virtex-II FPGA. Such devices
embed programmable logic blocks, RAMs and multipliers. The slice is the logic
unit that is generally used to evaluate an FPGA design’s area requirements.
Such a slice, depicted in Fig. 3 is made up of 2 LUTs, 2 flip flops (or registers)
and a few additional gates. According to the user’s choice, any of these LUTs
can be configured in one out of three possible ways: RAM16 that act like a
24

× 1-bit RAM storage, SRL16 that implements a 16-bit linear shift register
and LUT that is capable of computing any 4-to-1 boolean function. A more
detailed view of half a slice is given in Fig. 2. An interesting thing to notice is
the fast carry chain (emphasized on the picture) crossing the slice. It allows
the efficient implementation of carry-propagate adders and, as will be shown,
can sometimes be used to simplify the combinatorial cost of some designs.
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Fig. 2. Top-half slice of a Xilinx Virtex-II. Fig. 3. Slice configurations.

The “maximum” pipeline strategy and limitations

A first observation from these pictures is that any LUT in a slice comes with
its flip flop. A consequence is that a straightforward pipelining strategy can
be applied to the hardware design of, e.g. block ciphers in which the number
of pipeline stages equals (or is close to) the design’s logic depth expressed in
LUTs. This is in contrast with ASICs where every flip flop has its cost. Such
strategies, looking for the maximum pipeline, generally give rise to very good
synthesis results. However, the implementation (especially the routing task)
of block ciphers within certain FPGAs can then become the bottleneck, due
to high data diffusion. As mentioned, e.g. in [28], the design of a maximum
pipelined Advanced Encryption Standard (AES) Rijndael exhibits delays with
20% of logic and 80% of routes. It suggests that such a strategy is not optimum
in these contexts. Improved solutions involve either the use of registers to
pipeline the routes (if very high frequencies are to be reached) or the limitation
of the design logic depth to 2 (or more) LUTs (if high efficiencies are required).

The slice multiplexors

Next to the slice LUTs, Xilinx FPGAs provide multiplexors (usually denoted
as multiplexors Fx) allowing to efficiently implement distributed RAM and
ROM within the FPGA. These element have a strong impact on the imple-
mentation efficiency of encryption algorithms using substitution boxes, e.g.

the AES Rijndael that uses a 28
× 8 S-box. As an illustration, the previously

described Virtex-II allows implementing a 28
× 1 ROM with 16 LUTs and

consequently, the AES Rijndael S-box fits in 64 slices. In the recent Virtex-5
family of FPGAs, the 4-input LUTs have been turned into 6-input LUTs.
Using the same additional multiplexors allows to implement a 28

× 1 ROM
with only 4 LUTs and consequently the AES Rijndael S-box fits into 32 slices.
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The shift-register slice structure

A second convenient feature of the Virtex-II slice is the possibility to configure
the LUT as a 16-bit shift register. This feature has a significant impact, e.g. in
the implementation of stream ciphers using linear feedback shift registers. It
is worth noticing that the efficient exploitation of the SRL16 primitives highly
depends on the required taps positions in the stream ciphers. Any time an
intermediate value is extracted from the SRL16 primitives, a new LUT has to
be used. As a consequence, it may happen that a k-bit register with k < 16
occupies a complete SRL16 cell. The stream cipher Grain implementation in
[7] is a good example of a straightforward (but very efficient) exploitation of
these shift register-configured LUTs, with convenient taps positions.

Another interesting use of the shift register structure occurs when the tar-
get ciphers have an unbalanced structure. As a typical example, the Data
Encryption Standard (DES) has a very light key scheduling algorithm, com-
pared to its round function. Therefore, the maximum pipeline strategy ap-
plied to the round and key round result in different number of pipeline stages.
In a maximum pipeline implementation with “on-the-fly” round key deriva-
tion, several slices will consequently be “wasted” to pipeline the key schedule
(meaning that their corresponding LUT will not be used). In such a context,
the shift register structure can provide up to 16 pipeline stages with one single
LUT, which result in a much more efficient implementation, e.g. in [23].

Additional logic gates within the slice

Finally, configurable logic blocks generally embed additional logic gates that
can be efficiently exploited in certain specific contexts. One classical example is
the XOR gate that is illustrated by the emphasized path in Fig. 2. Since most
symmetric encryption algorithms make an extensive use of such gates, they
are generally useful to cryptographic designers. As an illustration, combining
this gate with one LUT allows implementing a 5-bit XOR operation. In a
maximum pipeline AES Rijndael implementation taking advantage of this 5-
bit XOR, the combination of the MixColumns and AddRoundKey operations
can consequently fit in only two pipeline stages, e.g. in [28]. Note that there
is generally only one such XOR gate for several LUTs in a slice, which has to
be taken into account during the designing phase (e.g. two LUTs can share
the same XOR gate, but it has to have the same input).

2.2 Exploiting embedded blocks

Most recent FPGAs have an hybrid structure combining fine-grain logic blocks
with larger-grain, specialized embedded blocks. Next to the inner structure
of the FPGA logic blocks that was previously discussed, this subsection in-
vestigates how these larger blocks can be useful in the context of symmetric
cryptographic implementations. For illustration, we selected two frequently
available such blocks, namely embedded memories and multipliers.
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RAM blocks

Just as distributed RAM and ROM can implement the S-boxes of a block
cipher, embedded memories can play the same role. However, in order to effi-
ciently exploit these blocks, it is important to fill them as completely as possi-
ble, e.g. with the substitution tables defined in the target cipher specifications.
As an illustration, the RAM blocks in the Virtex-E devices are dual-ported
4096-bit synchronous. Since the AES S-box has 28

× 8 = 2048 bits of memory
requirements, it means that two S-boxes can fit in one such block. By con-
trast, Virtex-II devices incorporate dual-port synchronous RAM blocks of 18
Kbit. Storing the Rijndael S-boxes in such blocks is consequently not an effi-
cient solution. An alternative proposal to exploit these larger memories is to
implement both the S-boxes and the MixColumns operation as precomputed
tables. Namely, let us consider the combination of SubBytes and MixColumns
in Rijndael. An output column of this transform equals:







b0

b1

b2

b3







=







02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02







×







SB(a0)
SB(a1)
SB(a2)
SB(a3)







,

where the bi’s represent the combined transform output bytes and the ai’s its
input bytes to the S-boxes. Therefore, if we define four tables as:

T0(a) =







02 × SB(a)
SB(a)
SB(a)

03 × SB(a)







, T1(a) =







03 × SB(a)
02 × SB(a)

SB(a)
SB(a)







,

T2(a) =







SB(a)
03 × SB(a)
02 × SB(a)

SB(a)







, T3(a) =







SB(a)
SB(a)

03 × SB(a)
02 × SB(a)







,

the combination of SubBytes and MixColumns equals:






b0

b1

b2

b3







= T0(a) ⊕ T1(a) ⊕ T2(a) ⊕ T3(a)

The size of one Ti table is 28
× 32 ≃ 8 Kbits. It is consequently possible to

store the four tables in two dual-port 18 Kbit RAM blocks, e.g. as in [24].
Similarly, such 18 Kbit memory blocks offer a straightforward solution to
implement a masked DES design to improve the security against side-channel
attacks (see Section 4.2 for details). As the DES S-boxes have 26

× 4 bits
of memory requirements, its masked counterpart has 212

× 4 ≃ 16 Kbit of
memory requirements, which just fits into the Virtex-II RAM blocks [32].
It is finally important to note that, due to their fixed position within the
device, embedded RAM blocks impose stronger routing constraints than their
distributed counterpart of the previous subsection. It may affect the operating
frequency of a design, specially if a large number of embedded blocks are used.
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Embedded multipliers

Although arithmetic operands are more likely to be exploited in asymmet-
ric cryptographic applications, there are examples of symmetric ciphers in
which one can also take advantage of embedded multipliers. In the IDEA
block cipher, integer multiplication modulo (2n + 1) is usually the bottleneck
for hardware implementations. Such constraints suit pretty well to FPGAs
embedding small multiplier blocks, such as the Virtex-II family of devices [4].

2.3 Exploiting further features

The previously described FPGA features related to the logic block structure
and the use of embedded memories and multipliers have been intensively used
in a variety of implementation works. In this subsection, we briefly describe
some more recent (and less investigated) trends in the design of reconfigurable
systems that can potentially be exploited in cryptographic applications.

Microprocessors and controllers

Microprocessors and controllers of two shapes can be found in recent recon-
figurable devices. First, hard cores can be discretely embedded in the device,
as the previously described RAM blocks and multipliers. This is typically
the case of the PowerPC microprocessor that is available in recent Xilinx
devices, e.g. the Virtex-II-pro. Second, micro-controllers can be synthesized
and implemented within the FPGA logic blocks, just as distributed memo-
ries. This is typically the case of the MicroBlaze (32-bit RISC) and PicoBlaze
(8-bit RISC) controllers that are freely available soft cores from Xilinx1. In
a processor-based FPGA system, customized IP cores can then be connected
to the controllers through various interfaces like the on-chip-peripheral bus
(OPB) or the fast simplex link (FSL). In general, processor-based embedded
systems cannot be compared favorably with specialized cryptographic designs
in which the hardware is optimized and possibly pipelined in order to reach
high implementation efficiencies. However, when the system specifications es-
tablish that a general-purpose processor must be used, the MicroBlaze and
PicoBlaze solutions can be suitable. They additionally offer the flexibility of
being programmed with a software language. For example, [13] describes the
implementation of various block ciphers within a MicroBlaze-based system.

1 As an illustration, a PicoBlaze core takes less than 200 logic cells in a Spartan-II
device and can run at 76 MHz. A MicroBlaze core takes less than 1000 logic cells
in a Virtex-II device and can run at 125 MHz.
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Dynamic reconfiguration

Dynamic reconfiguration refers to the possibility of reconfiguring an FPGA
partially, while operating and without compromising the integrity of the ap-
plication running. It is sometimes referred to as partial or run-time reconfig-
uration [18]. From a theoretical point of view, dynamic reconfiguration allows
using more hardware than physically present in the FPGA which can be used
to reduce the size of the device as well as its overall power consumption.
From an application point of view, the expected benefits include any adaptive
change of the FPGA design due to environmental changes (e.g. a change of
algorithm or change of performance constraints). However, the exploitation
of such techniques pose a number of practical issues, including the reliability
of the design flow and the time required for the re-configuration. Its exploita-
tion in cryptographic applications is therefore a scope for further research,
although it appears as a promising opportunity to improve systems flexibility.

2.4 Combining the tricks: the flexibility vs. efficiency tradeoff

To conclude this first section, let us first mention that all the previous tricks
only constitute a part of the possibilities offered by recent FPGAs, can be
efficiently combined and generally have to be considered during the high-level
modeling stage of a hardware design. For example, the way the inner structure
of the slice can be exploited strongly determines the pipelining strategy to use.
Second, it is important to consider that the optimal exploitation of one spe-
cific target FPGA, by designing in function of the slice structure or available
embedded blocks, makes the hardware code less portable. It also sometimes
requires to map some parts of the design by hand into the FPGA resources.
There is consequently a tradeoff to find between the efficient exploitation of a
given device and the possibility to use an IP core in a variety of systems and
products. Note finally that although our illustrative implementation examples
are based on symmetric cryptographic algorithms, the techniques discussed
in this section generally apply for any reconfigurable hardware design.

3 Fair evaluation of a cryptographic FPGA design

Before any cryptographic design is implemented always comes the question of
the performance goals to achieve. Stating these goals properly in function of
a target application and determining good metrics for the performance eval-
uation is therefore an important step in the understanding of reconfigurable
architectures. Unfortunately, there is no straightforward answer to these ques-
tions and the fair evaluation (or comparison) of a given FPGA implementa-
tion is often a matter of taste. This section aims to illustrate some important
questions to consider in such a performance assessment. For this purpose, we
restrict ourselves to the implementation of the AES Rijndael. We start by
considering the design goals. Then we discuss the performance evaluation.
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3.1 Design goals

A list of design goals for the FPGA implementation of the AES Rijndael would
typically include (but is not limited to) the following eight questions:

1. Does the application require to develop an Encryption/Decryption core
or just an Encryption only, Decryption only core?

2. Is the key scheduling algorithm required to be performed “on-the-fly” or
can the round keys be computed once and stored in memory?

3. Is the block cipher design supposed to run in a specific encryption mode
(e.g. feedback) that would prevent the use of pipelining?

4. What kind of interface has to be provided to the outside world?
5. Are there specific constraints to be fulfilled by the implementation (e.g.

in terms of hardware cost or throughput)?
6. What is the target FPGA device? With which speedgrade?
7. Are there available embedded blocks in the device (aren’t they required

for running other applications than cryptographic ones)?
8. What is the datapath size planned for the design (128-bit, 32-bit, . . . )?
9. Are multiple clocks allowed within the re-configurable system?

3.2 Performance evaluation

Assuming a hardware designer has implemented the AES Rijndael follow-
ing some of the design goals in the previous section, its performances could
then be measured with the following metrics: hardware cost (in LUTs, regis-
ters, slices, . . . ), operating frequency (in MHz), throughput (in Mbit/sec) and
possibly some efficiency measurement, e.g. throughput/hardware cost. For il-
lustration, Table 1 lists some exemplary AES Rijndael implementations with
selected design goals and Table 2 summarizes their performances according to
selected metrics. These tables typically illustrate the difficulty of performing
fair comparisons between different FPGA designs. First, different architec-
tures generally have different design goals. Second, the evaluation metrics can
be misleading since they highly depend on the target device. Comparing the
performances of different algorithms raises similar questions.

Table 1. Exemplary AES Rijndael designs with selected design goals.

Index E,D? Key Sched. Feedback? Device Architecture

1. E only on-the-fly no Virtex-E 128-bit unrolled

2. E only on-the-fly no Virtex-E 128-bit loop

3. E/D precomputed yes Virtex-II 32-bit loop

4. E/D precomputed yes Spartan-II 8-bit loop

5. E/D precomputed yes Spartan-II PicoBlaze
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Table 2. Exemplary AES Rijndael designs with selected performance metrics.

Index Ref. LUTs Regs. Slices RAMBs Freq. Throughput

1. [28] 3516 3840 2784 100 92 MHz 11.7 Gbit/sec

2. [28] 3846 2517 2257 0 169 MHz 2 Gbit/sec

3. [24] 288 113 146 3 123 MHz 358 Mbit/sec

4. [14] - - 124 2 67 MHz 2.2 Mbit/sec

5. [14] - - 119 2 90 MHz 710 Kbit/sec

Note that an efficiency metrics (e.g. throughput/hardware cost) can be
specially misleading since the hardware cost in FPGAs can be expressed in
LUTs, slices, RAMBs, . . . Some metrics consequently attempt to unify these
different resources, e.g. by expressing the cost of the RAM blocks as dis-
tributed RAMS in LUTs, but this is still device dependent. General observa-
tions can nevertheless be highlighted. For example, looking at the dependen-
cies between the architecture size and the throughput in the previous tables,
one could state that applications in the multi-Gbit/sec range should con-
sider 128-bit unrolled architectures, applications in the Gbit/sec range should
consider 128-bit loop architectures, applications in the hundreds of Mbit/sec
range should consider 32-bit loop architectures and so on. As previously men-
tioned, these tables are far from being a complete survey of existing imple-
mentations of the AES Rijndael nor do they contain the best available results.
For a more detailed list of such implementations, we refer to [15].

4 Security of FPGAs against side-channel attacks

The previous sections mainly cared about efficient FPGA implementations.
However, as far as cryptographic algorithms are concerned, not only their
hardware cost, throughput, . . . are important to a designer but also their
security against various types of physical attacks. Physical attacks on crypto-
graphic devices take advantage of implementation-specific characteristics to
recover the secret parameters involved in the computations. They are there-
fore much less general - since specific to a given implementation - but often
much more powerful than classical cryptanalysis, and are considered very se-
riously by cryptographic devices manufacturers. Examples of physical attacks
include the probing of devices [2], the insertion of faults [5] or the monitoring
of side-channel information leakages such as the power consumption [17] or
electromagnetic radiation [1]. Due to the important amount of public work
that has been dedicated to the analysis of side-channel attacks against FP-
GAs, this section discusses their specificities. In Section 5, we consider other
aspects related to the tamper resistance of reconfigurable devices, including
fault attacks and bitstream security issues. As for the previously discussed
efficiency concerns, we do not aim to present an exhaustive survey of physical
attacks on FPGAs but to put forward a number of their meaningful features.
We re-direct the reader towards further readings when needed.
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4.1 Applicability of the attack & FPGA specificities

Side-channel attacks are based on the hypothesis that an exploitable amount
of secret information is leaked by an implementation through a physical chan-
nel. For example, in power analysis attacks, an attacker uses a hypothetical
model of the device under attack to predict its power consumption. These
predictions are then compared to the real measured power consumption in or-
der to recover secret information (i.e. secret key bits of block ciphers). In this
first subsection, we aim to illustrate that such physical information is indeed
leaked by FPGA devices and can be exploited, using simple attack models.
For this purposes, we focus on static-RAM-based reconfigurable devices (like
the previously considered Xilinx Virtex family) since they are the most pop-
ular technology in use. In these devices, the storage cells, the logic blocks and
the connection blocks are made of CMOS gates.

CL

VDD

Gnd

Rmeas

Rmeas

CL

VDD

Gnd

Rmeas

Rmeas

Fig. 4. Charge vs. discharge of a CMOS inverter.

A simple leakage model applicable to FPGAs

Static CMOS gates have three distinct dissipation sources [21]. The first one
is due to the leakage currents in transistors. The second one is due to the so-
called “short-circuit currents”: there exists a short period during the switching
of a gate while NMOS and PMOS transistors are conducting simultaneously.
Finally, the dynamic power consumption is due to the charge and discharge
of the load capacitance CL represented by the dotted paths in Figure 4. The
respective importance of these dissipation sources typically depends on tech-
nology scalings. But the dynamic power consumption is particularly relevant
from a side-channel point of view since it determines a simple relationship
between a device’s internal data and its externally observable power con-
sumption. It can be written as:

Pdyn = CLV 2

DDP0→1f, (1)

where P0→1 is the probability of a 0 → 1 bit transition, f is the operating
frequency of the device and VDD is the voltage of the power supply. Therefore
in practice, a simple way to model the power consumption of an FPGA is to
predict its switching activity. Let S1 be a large bit register containing the state
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of all the FPGA cells at some moment in time t1 and S2 be another register
containing the FPGA state one clock cycle later. The number of bit switches
(including both 0 → 1 and 1 → 0 transitions) in the device when moving from
state S1 to S2 equals the Hamming distance between these states, namely
HD(S1, S2) = HW (S1 ⊕ S2), where HW is the Hamming weight operator.

Exploiting the leakages

We illustrate the attack principle with the simple encryption network of Figure
5, which contains the same basic elements as most present block ciphers e.g.

the AES Rijndael. That is, the plaintext is XORed with a secret key, then
goes through a layer of relatively small substitution boxes and is finally sent
to a larger permutation (e.g. a linear diffusion layer for the AES Rijndael).
The same operations are iterated a number of times. For the purposes of this
paper, it is not necessary to know more details on these algorithms. The attack
proceeds as follows. Let the adversary target the 4 key bits entering the left

Target
S-box

S-box S-box S-box S-box S-box

Permutation

S-box S-box S-box S-box S-box S-box

Permutation

K0[0..23]

K1[0..23]

Fig. 5. A simple encryption network.

S-box of Figure 1, denoted as K0[0..3]. Then, for N different plaintexts, he
first predicts the number of transitions at the S-box output, for every possible
value of K0[0..3]. The result of this prediction is a N × 24 prediction matrix
P, containing numbers between 0 and 4. In the second part of the attack,
the adversary lets the circuit encrypt the same N plaintexts with a fixed
secret key and he measures the power consumption of the device while the
chip is operating the targeted operation. For each plaintext, he stores a single
value for the power consumption (e.g. the average or maximum value of the
target clock cycle). This results in a N × 1 measurement vector M. Finally,
the attacker computes the correlation2 between the measurement vector and

2

C(M,P) =
µ(M.P) − µ(M).µ(P)

√

σ2(M).σ2(P)
, (2)

where µ(M) denotes the mean of the set of measurements and σ2(M) its variance.
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all the columns of the prediction matrix (corresponding to all the possible
key guesses). If the attack is successful, it is expected that only one value,
corresponding to the correct key bits, leads to a high correlation.

Such attacks have been successfully applied to different algorithms imple-
mented on a variety of FPGA devices. For example, an attack against the
simple design of Figure 5 has been implemented against a Xilinx Spartan-
II device and its results are illustrated in Figure 6 in which the correct key
candidate is clearly distinguishable. We note that different statistical tools
could be considered to mount power analysis attacks and the use of the cor-
relation coefficient is not optimal with this respect. For example, maximum
likelihood techniques [9] may yield better results. However, with the simple
power consumption models considered here, correlation attacks provide good
results and are extremely easy to manipulate (e.g. they do not require any
estimation of the noise in the target devices). Note finally that the same set
of measurements can be used to recover all parts of the key, by changing the
prediction matrix (i.e. by applying a divide and conquer strategy).
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Fig. 6. Exploitation of the side-channel leakages.

Exemplary FPGA specificities

To summarize the previous paragraphs, there are two important aspects to
take into account in the analysis of side-channel attacks. First, the target im-
plementation has to leak some information. With this respect, recent FPGAs
are made of CMOS transistors, just as smart cards and controllers. They con-
sequently leak information, just as smart cards and controllers. Second, this
information has to be exploitable by the adversary. With this respect, FPGA
implementations offer opportunities to perform parallel computing and are
based on a specific array of logic and routing cells. These features (among
others) lead to specificities in the exploitation of side-channel leakages.
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• Parallel computing and target leakage. In power analysis attacks, the leak-
age provides an adversary with an image of the computation performed
within a target device. Depending on the implementation context (e.g. see
the different architectures in Table 1), this information relates to 8-bit,
32-bit, 128-bit (or more) computations. But looking at Figure 5, a side-
channel adversary typically targets small parts of the computation one
by one, corresponding to small (e.g. 4-bit) parts of the key. Therefore,
the power consumption due to the un-targeted parts of the computation
generate what is usually denoted as algorithmic noise. Compared to smart
cards and controllers, FPGAs offer the specific opportunity to design large
architectures, with a significant amount of such noise.

• FPGA structures and leakage models. Even more specific of FPGAs is the
array structure of Figure 1. In this structure, the different computational
elements are connected through different types of wires. A consequence is
that the different bits in an implementations contribute differently to the
overall power consumption, due to different effective capacitances. These
different capacitances have been highlighted, e.g. in [26] for the Virtex-
II family of devices. A consequence is that the simple Hamming distance
model for the prediction of the power consumption in reconfigurable de-
vices can be improved according to these effective capacitances, e.g. by
assigning different weights to the switches of different bits within a de-
sign. As an illustration, the left part of Figure 7 depicts the correlation
of four parts of a computation in an FPGA and their contribution to the
overall power consumption (measured with a correlation coefficient). The
right part of the figure illustrates that assigning different weights to these
computations allows a better prediction of the overall power consumption
[31], which results in a more efficient side-channel attack.
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Fig. 7. Resource dependent correlations in Xilinx FPGAs.
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To conclude this subsection, the state-of-the-art side-channel attacks against
FPGA devices, e.g. as surveyed in [30], typically illustrate the following three
facts. (1) Side-channel are a threat for FPGAs, as for any microelectronic
cryptographic device. (2) Just as FPGAs offer nice opportunities for efficient
implementations, they have interesting features for secure implementations as
well (e.g. the parallel computing opportunity or the ability to design datap-
aths including the countermeasures of the following subsection). (3) Just as
the optimal exploitation of the FPGA structure is useful for efficiency (as de-
tailed in Section 2), exploiting the architectural specificities of a given target
device (e.g. the effective capacitance of the different computational parts in a
design) is useful for improving the efficiency of an attack.

4.2 Countermeasures

Countermeasures against side-channel attacks range among a large variety
of solutions. However, in the present state-of-the-art, no single technique al-
lows to provide perfect security. Protecting implementations against physical
attacks consequently intends to make the adversary’s task harder. In this con-
text, the implementation cost of a countermeasure is of primary importance
and must be evaluated with respect to the additional security obtained. The
exhaustive list of all possible solutions to protect cryptographic devices from
side-channel opponents would deserve a long survey in itself. In the follow-
ing, we list four illustrative solutions to improve the resistance against power
analysis that are applicable to FPGAs. Obtaining practical security usually
requires to combine them (possibly with others) in a clever way.

• Noise addition. Adding noise to the side-channel measurements is a very
common technique to reduce the amount of information in the leakages.
This can be achieved in a variety of ways, at different abstraction levels,
e.g. physical, technological, algorithmic. As previously mentioned, the use
of large architectures producing a significant amount of algorithmic noise
is interesting with this respect and easy to apply to FPGA designs [29].

• Data randomizations intend to make all the cryptographic computations
within the FPGA dependent on some unknown random values generated
on-chip. It makes the prediction of the power consumption more difficult.
Masking is a typical example of such countermeasures that has been in-
tensively studied in the literature and applied to FPGAs, e.g. in [20, 32].

• Random pre-charges are another solution to make the side-channel leakage
harder to exploit. If one every two inputs to an encryption design is a
random number generated on chip, an adversary will not be able to predict
the transitions within the implementation anymore (of course, the random
ciphertexts should not be outputted from the device). As suggested in [31],
a solution for the adversary is then to distinguish between 0 → 1 and 1 → 0
bit transitions in the leakages. But it results in worse leakage models and
less efficient attacks than in the un-protected Hamming distance model.
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• Dynamic and differential logic styles finally intend to make the power con-
sumption within the FPGA independent of the computed data. A logic
style is denoted as differential if the complementary data inputs and out-
puts are available in the circuit. The notion of dynamic logic gates refers to
the fact that the gate operation is divided into two phases [21]. First, the
output capacitance is charged. Then, during the evaluation, it is discharged
according to the input values. When combining dynamic and differential
logic styles, there are always two capacitances loaded during the precharge
and one of them is discharged during the evaluation, regardless of the input
sequences. In [34], such a circuit behavior is proposed for FPGAs.

4.3 Measuring side-channel resistance

Countermeasures against side-channel attacks as listed in the previous sub-
section usually involve a significant performance overhead for the encryption
algorithms. Therefore, just as hardware efficiency is a design goal that has
to be evaluated with (hopefully) fair metrics, physical security also has to be
evaluated properly. In this section, we briefly refer to the proposed evalua-
tion methodology introduced in [33] for these purposes. We use the intuitive
picture of Figure 8 in which side-channel attacks are viewed as a communi-
cation problem. In summary, there are two important aspects to consider in
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the analysis of side-channel attacks. First, the amount of information leaked
by a target device can be measured with the conditional entropy (or mutual
information). Second, the extent to which an adversary can exploit this infor-
mation can be measured with its success rate, just as the Bit-Error-Rate does
in communication problems. By combining both measurements, one can eval-
uate both the quality of an implementation and the strength of a side-channel
adversary. Trading efficiency for security consequently requires to evaluate
how the addition of a countermeasure in a design affects these two metrics.
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5 Other security issues

Side-channels attacks are only a part of the concerns related to the implemen-
tation of cryptographic algorithms within reconfigurable devices. Readback at-

tacks, cloning of the devices, bitstream reverse-engineering and fault attacks

are other concerns that could be considered [36]. In this section, we review
some issues related to the insertion of faults in FPGAs and to their bitstream
security. They both constitute research challenges for future applications.

5.1 Fault attacks

Similarly to side-channel attacks, fault attacks are an intensively studied ad-
versarial model for cryptographic implementations. However, only a small
number of experiments can be found in the literature on the actual possibility
to apply such attacks to FPGAs. Preliminary results as in [8] suggest that
fault insertion is feasible (as for any other SRAM-based device), but could be
more difficult to exploit than in the context of smaller devices like smart cards.
The large number of memory cells present in the logic arrays, determining in
the same time the computational state of a cryptographic algorithm and the
configuration of the device (including logic and routing) implies that different
types of faults can occur. “How efficiently can these faults be exploited?” or
“Can they hurt the FPGAs permanently?” are exemplary open questions. As
for side-channel attacks, it is reasonable to expect that security against such
attacks will require to add countermeasures (some of them surveyed in [19] for
block ciphers) and therefore to trade some of a design’s efficiency for security.

5.2 Bitstream security

Bitstream security is a critical issue for SRAM-based FPGAs. The recovery
of bitstreams (e.g. by applying readback attacks in which the configuration
file is read out of the FPGA) in order to clone an FPGA or their reverse-
engineering, but also the Digital Rights Management (DRM) of the Intellec-
tual Property (IP) cores are important concerns for the electronic industry. In
this subsection, we survey some of these questions and describe the (partial)
solutions that have been proposed by the industry. We start with a (simpli-
fied) description of the different parties in the game. Then, we discuss the
interactions between these parties and the related security problems.

Parties in the FPGA business

In order to keep our descriptions as simple and straightforward as possible, we
limit our discussions to a 3-players game, namely the “end user”, the “system
designer” and the “IP provider”. A more detailed descriptions of the FPGA
IP transactions can be found in [16]. The IP provider delivers the Hardware
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Description Language (HDL) files (or any other suitable file format such as the
netlist for a particular FPGA) for some specific algorithms, e.g. encryption,
image processing, . . . The system designer creates a complete design for an
FPGA chip, making use of one or more IP cores purchased from IP providers,
e.g. a hardware decoder for the digital cinema [25]. Finally, the end user takes
advantage of equipment containing FPGAs.

Bitstream security: system designer vs. end user

In this interaction, the main goal for the system designer is to prevent read-
back attacks, cloning of the FPGAs and reverse-engineering of the bitstream.
Otherwise said, the FPGA should appear as as black box to the end user. Since
the bitstream is generally stored in an EPROM, an additional issue is to se-
curely connect this external memory and the FPGA. For all these purposes,
the most frequently considered solution is the bitstream encryption illustrated
in Figure 9. In this solution, the bitstream is encrypted by the CAD tool with
user-defined symmetric (secret) keys. The same keys are stored on the FPGA,
e.g. in a volatile memory with an external battery. During configuration, an
on-chip decryption circuit is used to recover the original configuration file.
Readback is not allowed when encrypted bitstreams are used.

CAD tool

bitstream generator

encryption software

EPROM

encrypted

bitstream

FPGA

configuration 

memory

decryption circuit

key storage

external battery

secret keys secret keys

Fig. 9. Bitstream encryption in Virtex-II FPGAs.

Although this or similar methods are used in several commercial devices,
they suffer from a number of drawbacks. First, it requires an external battery
to store the key. Second, it requires an on-chip decryption circuitry. But most
importantly, the key management of such a solution is tricky. For example, if a
single key is used for all the boards, then a system designer has no opportunity
to update the configuration files for only a part of them. Ideally, it should be
possible to update the symmetric keys remotely. This could be achieved either
by the use of a symmetric master key (but the system security would then
depend on this single key) or a public-key mechanism in which each FPGA
would come with a private/public key pair stored in a non-volatile memory.
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IP cores DRM: IP provider vs. system designer

In this interaction, the situation is even more difficult. First, the IP provider
does not have the FPGA devices in hand which prevents him to store sym-
metric keys as in the previous section. Second, the system designer would like
to be able to integrate the IPs in a larger design and to simulate it.

In present devices, a solution for the IP provider to deal with these issues
is to send the system designer an encrypted netlist and simulation model.
Xilinx development tools allow dealing with such files by embedding a secret
key in its software. But the security of this solution entirely relies on this single
key which may consequently be the target of reverse-engineering attempts. In
addition, this model only allows a “per IP core license” business model.

A proposal to allow a “per device license” business model is described in
[38]. For this purpose, and for every unit to be built, the IP provider feeds the
system designer with both an IP core and a pre-programmed external security
chip. A secret key (chosen by the IP provider) is stored in the encrypted netlist
of the IP and the same key is embedded in the security chip. Before the IP
can run on a board, it checks that the security chip embedding the correct key
is properly connected to the FPGA. The hardware to do this security check is
part of the IP core. This solution allows the IP provider to monitor the number
of devices running its design but suffers from several drawbacks. First, the key
management is not easy since the key is embedded in the netlist. As for the
bitfile encryption, key updates could be made easier by using either a master
key or a public-key mechanism in the FPGAs. Second, the system security
does still rely on netlist encryption in the Xilinx software. If an adversary can
decrypt the netlist, he can also disable the security check.

There is consequently a tradeoff to face in the DRM of IP cores. For
flexibility reasons, it is desirable that the security relates to the netlists so
that IPs can be easily simulated and integrated in larger designs (as in the
previous proposal). But for security reasons, the best solution would be to deal
directly with bitstreams. For example, if a non-volatile private key Ks and the
corresponding public key Kp was available in an FPGA, an IP provider could
sell a pair [EK(bitstream), EKp

(K)] to protect its design, in a “per device
license” business model. But present development tools do not allow to easily
combine different bitstreams which makes this solution quite unpractical for
the system designer’s point of view. Improved solutions (e.g. taking advantage
of partial reconfiguration techniques) are consequently required to improve
this setting. Note finally that, whatever the DRM and bitstream security
mechanisms involved, the underlying cryptographic algorithms may still be
the target of side-channel or fault attacks. It is therefore important to quantify
the reliability of these solutions with an appropriate security level.
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6 Conclusions and Open Questions

This paper discussed some aspects in the secure and efficient implementation
of symmetric encryption schemes in recent FPGAs. It aims to illustrate both
how the specificities of these reconfigurable devices can be exploited to im-
prove the performances of an implementation and how the same specificities
can be exploited by malicious adversaries. Our discussions suggest different
tradeoffs for cryptographic designers. First, the flexibility of a design can be
traded for performances. That is, by carefully taking advantage of all the ar-
chitectural details of a given device, one can improve performance at the cost
of a less portable hardware code. Second, the performances of a design can
be traded for physical security. That is, resisting against fault or side-channel
attacks usually involves overheads in the designs efficiency.

From a technological point of view, open questions in the field relate to
the effect of technology scalings in the future generations of FPGAs, both
in terms of performances and security against physical adversaries. From an
application point of view, and as the capacity of FPGAs increases to millions
of equivalent gates, the protection of IP cores with secure DRM solutions be-
comes increasingly important. The development of IP protection schemes that
do not harm the flexibility of the development tools is therefore an important
requirement. It should allow IP providers, FPGA system designers and end
user to interact in a fair and secure business model. The integration of a pub-
lic key mechanism by FPGA manufacturers or the exploitation of physically
unclonable functions within FPGAs, e.g. as suggested in [27, 35] appear as
promising approaches with this respect.
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7 Exercises

Khazad [3] is an iterated 64-bit block cipher with 128-bit keys. It comprises
8 rounds; each round consists of eight 8-bit to 8-bit S-box parallel lookups,
a linear transformation (multiplication by a constant MDS diffusion matrix)
and round key addition. For efficient hardware implementations, the 8-bit to
8-bit substitution is made of 6 smaller 4-bit to 4-bit substitutions.

1. Assume an FPGA with 4-bit LUTs and dual-ported 4096-bit synchronous
RAM blocks. What is the cost of the complete Khazad substitution layer,
in LUTs and RAMBs? What are the respective memory requirements (in
bits) of the LUT-based and RAMB-based solutions for the S-box?

2. Consider the 64-bit loop architecture for a (simplified) round of Khazad
in Figure 10. Assume that each layer (NL1, NL2, NL3, L) has a cost of
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64 LUTs (fully utilized). What is the total cost of such a design in LUTs
(including the key addition and the input multiplexor)?

3. Assume a very simple key scheduling that can be implemented as a single
layer of 128 LUTs. How much LUTs and registers are required to pipeline
such a key scheduling in five levels in the best manner if a slice structure
similar to the one of Figure 3 is used?

4. Assume that the delay of a LUT equals 5 ns and that only these de-
lays determine the operating frequency of the design. What maximum
throughput can be obtained with a 2 (resp. 5) pipeline stage strategy if
eight rounds have to be iterated (in Mbits/sec)?

5. Same question if the delay of a LUT equals 3 ns but there is a fixed de-
lay due to routing constraints in the design of 10 ns. What is the best
throughput that can be obtained in a feedback mode in this context?

6. Consider a side-channel adversary trying to recover a n-bit random value k

who obtains the Hamming weight of this value: HW (k). Assuming noise-
less measurements, how much information does he gain ? Now assume
n = 64 as for the Khazad cipher and an adversary who would obtain the
Hamming weight of first round S-box layer’s output for different plain-
texts. Can an adversary exploit all the information on k in a correlation
attack? (hint: think both about information and computation).

7. Consider a side-channel adversary targeting part of the key in the design
of Figure 10. Assume that the NL layers do not provide cryptographic
diffusion and the the L layer does provide perfect diffusion. Assume a 5
pipeline stage implementation in which the overall power consumption of
the design is only caused by the registers. Assume that the correlation
between the predictions of the adversary and the real measurements (de-
noted as ρ) equals the square root of the number of predicted registers in
an attack divided by the total number of registers in the design. Assume
finally that the number of plaintexts required for a successful attacks can
be approximated with Nsucc ≃ c ·

1

ρ2 . How many plaintext are required
for a successful attack against an 8-bit part of the key for which c = 10?

8. Consider now an implementation in which two rounds of Khazad are un-
rolled. How much would the security against the previous side-channel ad-
versary be increased? Consider finally the same implementation protected
by a countermeasure such that the correlation coefficient is reduced by a
factor of 5. What number of plaintexts would then be required to attack?

9. Evaluate the hardware cost and throughput of the previous 2-round un-
rolled implementation of Khazad (∆lut = 5 ns). Then assume that the
previous countermeasure against side-channel attacks (reducing the corre-
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lation coefficient by a factor of 5) is applied to a single round architecture,
divides the throughput by two and uses 250 additional LUTs in the design
(e.g. it could be a design with random pre-charges). Can you comment
the efficiency vs. security against correlation attacks tradeoff for these
designs? Which metrics can be used for these purposes?

L

NL1

NL2

NL3

Fig. 10. Loop architecture for a (simplified) round of Khazad.

8 Implementation Project

Select a target symmetric cryptographic algorithm and a list of design goals,
e.g. from Section 3.1. Design a reconfigurable hardware architecture for this
algorithm, simulate it and implement it for a target device from any FPGA
manufacturer. Evaluate the resulting efficiency of your design according to
the metrics of Section 3.2. Compare it with the existing literature and put
forward the weaknesses of your design. What specific features of your FPGA
did you exploit? Then, think about hardware security from general point of
view. Select a physical attack that you want to prevent and add one or sev-
eral countermeasure(s) to your design. Comment on the efficiency vs. security
tradeoff. Does your countermeasure adds new physical weaknesses?
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