
Improved and Multiple Linear Cryptanalysis
of Reduced Round Serpent

B. Collard, F.-X. Standaert?, J.-J. Quisquater

UCL Crypto Group, Microelectronics Laboratory, Louvain-la-Neuve, Belgium

Abstract. This paper reports on the improved and multiple linear crypt-
analysis of reduced round Serpent by mean of a branch-and-bound char-
acteristic search within the algorithm. We first present a 9-round linear
characteristic with probability 1

2
+ 2−50 that involves a reduction of the

estimated data complexity of the best reported attack by a factor of
16. Then, we investigate the possibility to take advantage of multiple
linear approximations for improving the linear cryptanalysis of Serpent.
According to the framework of Biryukov et al. from Crypto 2004, we
provide estimations of the improved data complexity of such attacks and
derive practical cryptanalysis scenarios. For computational reasons, the
branch-and-bound search is not guaranteed to be optimal. However, these
are the best reported complexities of a linear attack against Serpent.

Keywords: linear cryptanalysis, multiple linear cryptanalysis, Advanced
Encryption Standard, Serpent, linear approximations, branch-and-bound.

1 Introduction

The linear cryptanalysis [8] is one of the most powerful attacks against modern
block ciphers in which an adversary exploits a linear approximation of the type:

P [χP ]⊕ C[χC ] = K[χK ] (1)

In this expression, P , C and K respectively denote the plaintext, ciphertext and
the secret key while A[χ] stands for Aa1 ⊕ Aa2 ⊕ ... ⊕ Aan ,with Aa1 , ..., Aan

representing particular bits of A in positions a1, ..., an (χ is usually denoted as
a mask). In practice, linear approximations of block ciphers can be obtained by
the concatenation of one-round approximations and such concatenations (also
called characteristics) are mainly interesting if they maximize the deviation (or
bias) ε = p− 1

2 (where p is the probability of a given linear approximation).

In its original paper, Matsui described two methods for exploiting the linear
approximations of a block cipher, respectively denoted as algorithm 1 and algo-
rithm 2. In the first one, given an r-round linear approximation with sufficient
bias, the algorithm simply counts the number of times the left side of Equation 1
is equal to zero for N pairs (plaintext, ciphertext). If T > N/2, then it assumes

? Postdoctoral researcher of the Belgian Fund for Scientific Research (FNRS).



either K[χK ] = 0 if ε > 0 or K[χK ] = 1 if ε < 0 so that the experimental value
(T − N/2)/N matches the theoretical bias. If T > N/2, an opposite reasoning
holds. For the attack to be successful, it is shown in [8] that the number of
available (plaintext, ciphertext)-pairs must be proportional to 1

ε2 .

In the second method, an r-1-round characteristic is used and a partial de-
cryption of the last round is performed by guessing the key bits involved in the
approximation. As a consequence, all the guessed key bits can be recovered rather
than the parity K[χK ] which yields much more efficient attacks in practice.

Among the various proposals to improve the linear cryptanalysis of block
ciphers, Kaliski and Robshaw proposed in 1994 an algorithm using several linear
approximations [6]. However, their method imposed a strict constraint as it re-
quires to use only approximations implying the same bits of subkeys K[χK ]. This
restricted at the same time the number and the quality of the approximations
available. As a consequence, an approach removing this constraint was proposed
in 2004 [4] that can be explained as follows. Let us suppose that one has access
to m approximations on r block cipher rounds of the form:

P [χi
P ]⊕ C[χi

C ] = K[χi
K ] (1 ≤ i ≤ m), (2)

and wishes to determine the value of the binary vector:

Z = (z1, z2, ..., zm) = (K[χ1
K ],K[χ2

K ], ...,K[χm
K ]) (3)

The improved algorithm associates a counter Ti with each approximation, that
is incremented each time the corresponding linear approximation is verified for
a particular pair (plaintext-ciphertext). As for algorithm 1, the values of K[χi

K ]
are determined from the experimental bias (T i − N/2)/N and the theoretical
bias εi by means of a maximum likelihood rule. The extension of algorithm 2 to
multiple approximations is similarly described in [4].

An important consequence of this work is that the theoretical data complexity
of the generalized multiple linear cryptanalysis is decreased compared to the
original attack. According to the authors of [4], the attack requires a number of
texts inversely proportional to the capacity of the system of equations used by
the adversary that is defined as: c2 = 4 ·

∑n
i=1 ε2i . Therefore, by increasing this

quantity by using more approximations, one can decrease the number of texts
necessary to perform a successful key recovery.

In this paper, we aim to apply the previously described cryptanalytic tools
to the AES candidate Serpent [1]. For this purpose, we first apply a branch-
and-bound algorithm to derive an improved single linear characteristic for the
cipher. It allows us to reduce the expected complexity of a linear cryptanalysis
by a factor of 16. Due to the structure of the Serpent algorithm components
(in particular its S-boxes and diffusion layer), the Matsui’s branch-and-bound
method could not be applied as such and we proposed a modified algorithm,
based on the minimization of the number of active S-boxes in the linear trans-
form. Then, in the second part of the paper, we take advantage of our modified



algorithm in order to investigate multiple linear approximations. We show that
a large number of linear approximations with significant biases can be derived
and evaluate the resulting capacities of the obtained systems. As result of these
experiments, the theoretical complexity against 10-rounds Serpent can be as low
as 280. We mention that these conclusions have to be tempered by the possibility
to perform practical attacks dealing with large number of equations and by the
possibility that a significant part of these equations give rise to dependent infor-
mation, as discussed at the end of this paper. Therefore, practical experiments
of multiple linear cryptanalysis against actual ciphers appear to be a necessary
step for the better understanding of these theoretical improvements.

2 The Serpent algorithm

The Serpent block cipher was designed by Ross Anderson, Elie Biham and Lars
Knudsen [1]. It was an Advanced Encryption Standard candidate, finally rated
just behind the AES Rijndael. Serpent has a classical SPN structure with 32
rounds and a block width of 128 bits. It accepts keys of 128, 192 or 256 bits and
is composed of the following operations:

– an initial permutation IP ,
– 32 rounds, each of them built upon a subkey addition, a passage through 32

S-boxes and a linear transformation L (excepted the last round, where the
linear transformation is not applied),

– a final permutation FP .

In each round Ri, only one S-box is used 32 times in parallel. The cipher uses 8
distinct S-boxes Si (0 ≤ i ≤ 7) successively along the rounds and consequently,
each S-box is used in exactly four different rounds. Finally, the linear diffusion
transform is entirely defined by XORs (⊕), rotations (≪) and left shifts (�).
Its main purpose is to maximize the avalanche effect within the cipher. If one in-
dicates by X0, X1, X2, X3 the 4 ·32 bits at the input of the linear transformation,
it can be defined by the following operations:

input = X0, X1, X2, X3

X0 = X0 ≪ 13
X2 = X2 ≪ 3
X1 = X1 ⊕X0 ⊕X2

X3 = X3 ⊕X2 ⊕ (X0 � 3)
X1 = X1 ≪ 1
X3 = X3 ≪ 7
X0 = X0 ⊕X1 ⊕X3

X2 = X2 ⊕X3 ⊕ (X1 � 7)
X0 = X0 ≪ 5
X2 = X2 ≪ 22

output = X0, X1, X2, X3



3 Matsui’s branch-and-bound approximation search

The first step in a linear cryptanalysis consists in finding linear approximations
with biases as high as possible. In practice, the adversary usually starts by
investigating the non-linear components in the cipher (e.g. the S-boxes) and
tries to extrapolate partial approximations through the whole. A first problem
is then to compute the probability of the concatenated linear approximations,
that is usually estimated thanks to the following piling-up lemma. Let the bias
of a linear approximation on the block cipher ith round be defined as:

(χIi
, χOi

) = εi = Pr {Ii[χIi
]⊕Oi[χOi

] = 0} − 1/2 (4)

The total bias εtot on r rounds is then given by:

εtot = [ε1, ε2, ..., εr] = 2r−1
r∏

i=1

εi, (5)

and the best r rounds linear approximation is defined as:

Br = max
χIi

=χOi−1
(2≤i≤r)

[(χI1 , χO1), (χI2 , χO2), ..., (χIr , χOr )] (6)

Next to the pilling up lemma, the problem of searching the best r-round ap-
proximation is not trivial. Il consists of finding r + 1 binary masks (one for
each output round plus one mask for the input of the cipher), which define a
linear approximation of maximum bias for a particular encryption algorithm.
The difficulty of the problem mainly comes from the great cardinality of the set
of candidates. In 1994, Matsui proposed a branch-and-bound algorithm making
possible to effectively find the best linear approximation of the DES [9]. The
algorithm works by induction: knowing the value of maximum bias on the r-1
first rounds, it manages to find the maximum bias on r rounds as well as the
corresponding input and output masks. For this purpose, it constantly requires
to know a lower bound Br. This bound must imperatively be lower or equal to
the exact Br and the closer it is from Br, the faster the algorithm converges.

In practice, the set of all the possible characteristics through the cipher can
be seen as a large tree. At the roots stand the input masks of the cipher approx-
imations, at each branch stand the output masks of a round and at the leaves
stand the output masks of the cipher. Each branch of the tree is divided in as
many new branches as there are possible approximations for the next round.
In this tree, a linear approximation on i rounds forms a path starting from a
root up to the i-th level. The number of leaves of the tree growing exponentially
with the number of rounds, it quickly becomes unthinkable to evaluate all the
approximations by exhaustive search. The principle of the branch-and-bound
therefore consists in cutting whole branches of the tree as soon as it becomes
obvious that all the corresponding linear approximations will have a bias lower
than the bound Br. Being given an approximation on i rounds and its bias εi, a



linear approximation on r rounds generated by concatenating an approximation
on r−i rounds with this approximation cannot have a bias better than [Br−i, εi].
Consequently, if [εi, Br−i] is strictly lower than Br, it is useless to prospect this
part of the tree more in detail. Matsui’s technique is obtained by the systematic
application of this reasoning and is described in more details in [9], Appendix A.

The branch-and-bound strategy can be applied as such to many ciphers. How-
ever, its efficiency and time complexity varies, notably depending on the initial
estimation Br. Small estimations increase the size of the search tree. If the es-
timation is too large, the algorithm may not return any characteristic at all [5].
For DES, good estimations could be found by first performing a restricted search
over all characteristics which only cross a single S-box in each round. Unfortu-
nately, the algorithm may perform poorly for other ciphers and in particular,
could hardly be applied as such to Serpent, as the next section underlines.

4 Linear approximations search for Serpent

4.1 Observations on the S-boxes and single round approximations

The Serpent S-boxes have only four (non-trivial) different biases: ±2−2 and
±2−3. Consequently, by the piling-up lemma, the bias of any approximation is
a power of 2. The S-boxes S0, S1, S2 and S6 have 36 biases ε = ±0.25 and 96
biases ε = ±0.125. The S-boxes S3, S4, S5 and S7 have 32 biases ε = ±0.25
and 112 biases ε = ±0.125. In Table 1, we summarized the distributions of the
approximations biases for one round of Serpent and compared them with similar
results obtained in [10] for the DES and FEAL.

ε 2−1 2−2 2−3 2−4 2−5 2−6 2−7

DES 1 13 195 3803 40035 371507 ...

FEAL 16 1808 98576 3.45 · 106 7.74 · 108 1.22 · 109 ...

Serpent: S0,1,2,6 1 1153 647041 2.35 · 108 6.25 · 1010 1.29 · 1013 2.15 · 1015

Serpent: S3,4,5,7 1 1025 512513 1.67 · 108 3.96 · 1010 7.33 · 1012 1.10 · 1015

Table 1: Number of 1-round linear approximations with bias ≥ ε for some ciphers

This table clearly illustrates that the number of approximations on a round of
Serpent is several orders superior to those of DES and FEAL. We consequently
expected practical problems in the linear approximations search due to an explo-
sion of the number of candidates to be explored within the branch-and-bound.
This was experimentally confirmed: a classical implementation of Matsui’s algo-
rithm appeared unable to determine the best approximation on as low as three
rounds. One reason for this phenomenon is the good diffusion provided by the
linear transform, causing a significant increase in the number of active S-boxes
at each round, with an exponential increase in the number of approximation-
candidates being tested. Even by arbitrarily limiting the number of candidates
to be explored, the algorithm was stuck after 5 to 6 rounds.



4.2 Modified search algorithm

Matsui’s branch-and-bound method is primarily concerned with the analysis of
the S-boxes in order to obtain linear approximations with high biases. However,
the previously described failure suggests that in Serpent, the search for optimal
linear characteristics is severely slowed down by the avalanche effect. Therefore,
limiting the number of active S-boxes in the linear approximations could help to
improve the search efficiency. This observation led us to modify the branch-and-
bound algorithm. In our modified method, we start by exhaustively counting all
the couples (input, output) of the linear transform for which the number of active
S-boxes is arbitrarily low. Such couples are called transform candidates and are
entirely defined by the number of active input/output S-boxes, the position of
these S-boxes and their corresponding mask value. The transform candidates are
then stored in a database (e.g. a hash table) so that all the candidates having
the same active output S-boxes are stored in the same list.

Once the database is created, we launch the actual approximation search:
a linear approximation on r rounds can be obtained by the concatenation of
r transform candidates, if the positions of the active S-boxes at the exit of a
transform candidate correspond to those of the active S-boxes at the input of
the next transform candidate (i.e. we have to fulfill boundary conditions, as in
the original method). These constraints are easily checked, as the candidates are
picked up in the database according to the position of their active output S-boxes.
To calculate the bias of an approximation, we simply apply the piling up lemma
to the S-boxes approximations generated between the transform candidates. We
can then determine the best approximations by means of a traditional branch-
and-bound, where the only difference is that we pile up the transform candidates
instead of piling up round approximations. Note that we pile up the candidates
starting with the last round, then going down gradually until the first round, in
order to benefit from the knowledge of best bias in the branch-and-bound.

In order to improve the flexibility of the approximation search, the input
mask in the first round and the output mask in the last round are chosen in
order to maximize the biases of these rounds. Therefore, in a r rounds approx-
imation, transform candidates are only picked up for the r − 1 inner rounds,
which speeds up the research. Additionally, the first round input mask and last
round output mask can be replaced by any other mask, provided that the bi-
ases are left unchanged. Due to the properties of the Serpent S-boxes, for any
approximation found by the algorithm, many more similar approximations can
be generated by the modification of the outer masks.



4.3 Performance and hardware constraints

The number of possible transform candidates that one can pile up in each round
is limited by the boundary conditions and the size of the lists. Moreover, among
these candidates, a majority leads to a zero bias and is thus directly rejected.
Indeed, a significant proportion of the Serpent S-boxes linear approximations is
null: the proportion varies between 93/225 = 0.4131 for the S-boxes S0, S1, S2, S6
and 81/225 = 0.36 for the others. If there are q active S-boxes at the exit of the
transform candidates, then only a fraction of roughly (1− 0.413)q or (1− 0.36)q

of these candidates will lead to a non-zero bias. As this proportion falls when q
increases, there is no exponential increase of the number of candidates anymore.

Nevertheless, the major drawback of the proposed method remains in the
consequent size of the database used. Even if the proportion of useful transform
candidates is weak, the number of candidates stored can easily reach several
millions. In an optimized structure, a transform candidate with q active S-boxes
requires (10 + 9 ∗ q) bits of memory2. If one considers a reasonable average of
16 active S-boxes per candidate, it yields 154 bits, i.e. 54400 candidates per
megabyte, or approximately 55 · 106 candidates per gigabyte. Additionally, it
is of course possible that the algorithm does not find any linear approximation
beyond a certain number of rounds, either because the list of candidates checking
the boundary conditions is empty, or because all these candidates lead to a zero
bias. The higher the number of transform candidates, the lower the risk.

On the positive side, this database can be precomputed before the execution
of the branch-and-bound. Once it is created, the execution of the algorithm is
very fast since in each stage of the branch-and-bound, we only consult tables and
calculate biases. In our experimentations, we generated the database as follows:
we exhaustively generated all the possible transform candidates with maximum
i (1 ≤ i ≤ 5) active input S-boxes and stored only those with maximum (15− i)
active output S-boxes. This required the analysis of approximately 3 ·1011 linear
transformations3 among which only about 130·106 were stored/kept. With about
106 analyzes per second, this search took roughly 4 days on a 2GHz processor4.
The exhaustive search of all the transform candidates with i = 6 would require
the analysis of approximately 21 · 1012 transformations, i.e. roughly 250 days of
computation on the same processor. Better strategies could probably be inves-
tigated, taking advantage of the linearity of the diffusion layer, and are a scope
for further research. Note that the database would not be the same if differential
approximations were to be found [2, 9] although it would be strongly correlated.

1 As ∃ 132 approximations with non-zero biases among the 15*15 non-trivial ones.
2 Namely 2*5 bits to store the number of input/output active S-boxes (1...32) and 9

bits to store the 5-bit position (1...32) and 4-bit mask (0...15) of each active S-box.
3 That is 2 ·

P5
k=1 15k ∗ Ck

32.
4 Note that the task can be parallelized.



5 Practical results

5.1 Best approximation found

Since the best 9-round characteristic found by Biham et al. involves at most
15 active S-boxes at the extremity of the linear transform [3], our previously
described database ensures us to find an approximation with a bias at least as
high. Table 2 summarizes the results of our approximations search, in function
of the starting S-box (and therefore round). The best biases are given in the
penultimate column and the values of Biham et al. are in the last column. As a
first result of our investigations, we found an improved approximation starting
with S3. Our improved characteristic is very similar to the one in [3], excepted
for the three first rounds. It involves a reduction of the linear cryptanalysis data
complexity by a factor of 16. Due to a lack of room, the description of the linear
approximations used in our attacks are not given in this paper. It is available at:
http://www.dice.ucl.ac.be/crypto/publications/2007/inscrypt appendix.pdf.

r S0 S1 S2 S3 S4 S5 S6 S7 Max Br

3 − 2−8 2−8 2−8 2−8 2−7 2−8 2−7 2−7 2−7

4 − 2−14 2−13 2−16 2−12 2−12 2−12 2−12 2−12 2−12

5 − 2−23 2−21 2−23 2−17 2−18 2−18 2−18 2−17 2−18

6 − − − 2−30 2−23 2−25 2−24 2−33 2−23 2−25

7 − − − 2−36 2−30 2−32 − − 2−30 2−32

8 − − − 2−43 2−37 − − − 2−37 2−39

9 − − − 2−50 − − − − 2−50 2−52

Table 2: Biases of the best 9-round approximations for different starting S-boxes.

Note that we also tried to find iterative approximations, i.e. approximations
of which the input masks fulfill the boundary conditions of their own output.
Such approximations are useful in practice because they can be straightforwardly
extended to an arbitrary number of rounds [7]. However, our restricted database
did not allow us to find any such approximation on 8 rounds. Searching over
larger databases would therefore be necessary to further investigate the existence
of good iterative characteristics.

5.2 Multiple linear approximations found

In addition to the previously reported characteristic, we ran our search algorithm
in order to generate a list of useful approximations for a multiple linear crypt-
analysis of Serpent. As for the previous section, this generation is very fast due
to the properties of the branch-and-bound that allows an effective limitation of
the candidates to explore. Table 3 reports the bias distribution of the 150 best
9-rounds linear approximations of Serpent found with our database (starting
with S3). Additionally, since each of these approximations can generate several
others by simply replacing its input and output masks (as discussed in Section
4.2), we straightforwardly obtained the distribution in table 4.



bias # of approx. bias # of approx.

2−50 3 2−53 42
2−51 12 2−54 66
2−52 27 2−55

Table 3: Bias distribution of the 150 best approximations found.

bias # of approx. capacity bias # of approx. capacity

2−50 786432 2.482 · 10−24 2−55 1.208 · 1013 5.184 · 10−20

2−51 6.134 · 107 5.087 · 10−23 2−56 1.250 · 1014 1.481 · 10−19

2−52 2.290 · 109 5.024 · 10−22 2−57 1.059 · 1015 3.520 · 10−19

2−53 5.447 · 1010 3.188 · 10−21 2−58 7.513 · 1015 7.138 · 10−19

2−54 9.281 · 1011 1.463 · 10−20 2−59 4.553 · 1016 1.262 · 10−18

Table 4: Bias distribution and cumulative capacities of the extended approximations.

5.3 Resulting capacity and discussion of the results

According to the framework in [4], the use of multiple approximations in linear
cryptanalysis allows decreasing the number of plaintexts needed for a successful
key recovery proportionally to the capacity of the obtained system (given in
Table 4). It involves the following observations:

– The data complexity of the simple linear cryptanalysis of 10-rounds Serpent
is approximately 2100 (using the best 9-round approximation with bias 2−50).

– If the 786432 approximations with bias 2−50 are used, the resulting capacity
equals 2.482 · 10−24, which yields a theoretical data complexity of 278.4.

– Cumulatively using all the 2.29 · 109 approximations of bias higher than
2−52, we could theoretically reach a capacity of 5.024 · 10−22, which would
correspond to 270.8 plaintext-ciphertext pairs.

– The more realistic use of 2048 (resp. 1.802 · 106) approximations with bias
250 (resp. greater than 252) involving the same target subkey would result
in a theoretical data complexity of 287 (resp. 281).

As a matter of fact, these results do not take the size of the target subkey
(and therefore the time complexity) into account but only consider the data
complexity. In the next section, we propose more realistic attacks presenting a
better trade-off between data and time complexities. Let us also mention that
a possibly more powerful way to exploit multiple approximations would be to
consider Matsui’s algorithm 1 and therefore avoid the time complexity problems
related to key guesses, e.g. using the three 2−50 bias approximations and their
derivatives. Since each approximation reveals up to one bit of information on
the secret key and m � 128, the resulting linear system is strongly overdefined.

In general, the previous results have to be tempered by the possible influ-
ences of dependencies between the various linear approximations exploited in
an attack. This is specially true in our context since our approximations are all
generated from an initial set of 150 characteristics and the number of derivatives
is much larger than 2 · 128. As discussed in [4], it is actually hard to determine



the consequence of these dependencies on the capacity of the multiples approx-
imations. Because 2 · m · ε � 1 (for any reasonable choice for the number m
of approximations), the dependencies between the text masks (χi

P , χi
C) should

have a negligible influence on the capacity. Therefore, the major question relates
to the dependencies between the linear trails. As a matter of fact, the estimated
data complexities in our analysis (as well as in Biryukov et al.’s) are fairly opti-
mistic and an important next step in the understanding of linear cryptanalysis
would be to experiment these predictions with a real life cipher.

6 Realistic attack scenarios against Serpent

In this section, we present realistic attack scenarios on reduced round Serpent
using (multiple) linear cryptanalysis. The reduced version is just like Serpent,
excepted for its reduced number of rounds. After the last S-box, the linear trans-
formation is omitted as it has no cryptographic significance. The linear approx-
imations used were generated with the algorithm presented before.

Using an approximation on r − 1 rounds, one can recover bits of the subkey
in round r. In Matsui’s original method, a partial decryption of the last round
is performed for every ciphertext by guessing the key bits involved in the ap-
proximation. The parity of the approximation for the plaintext and the partially
decrypted ciphertext is then evaluated and a counter corresponding to each key
guess is incremented if the relation holds or decremented otherwise. The key
candidate with the highest counter in absolute value is then assumed to be the
correct key. However, as we only consider a limited number of bits k (in the ac-
tive S-boxes) during the partial decryption of the ciphertexts, the same pattern
for these k bits possibly appear several times during the attack. In order to avoid
doing the same partial decryption work several times, Biham et al. proposed in
[3] an improvement which considerably reduces the time complexity of an attack:

– Initialize an array of 2k counters (k is the size of the target subkey).
– For each generated ciphertext: extract the k-bit value corresponding to the

active S-boxes and evaluate the parity of the plaintext subset defined by
the approximation. Increment or decrement a counter corresponding to the
extracted k-bit value according to the obtained parity.

– Once all the ciphertexts have been generated: for each k-bit ciphertext and
for each k-bit subkey, partialy decrypt the k-bit ciphertext under the k-bit
subkey and evaluate the parity of the output subset (as defined by the linear
approximation). Keep this value in a table of size 2k · 2k.

– For each k-bit subkey, evaluate its experimental bias by checking, for each
k-bit ciphertext, the parity of the approximation and the value of the corre-
sponding counter. Then output the subkey with maximal bias.

This method reduces the attack time complexity from O(N · 2k) to O(2k · 2k).



6.1 Attack on 7 rounds Serpent

The attack uses a 6-round approximation starting with S-box 4 and ending with
S-box 1. This approximation is derived from the best 6-round approximation
found in section 5 except a small change in the last round that reduces the num-
ber of active S-boxes from 13 to 5. The bias of the approximation falls from 2−23

to 2−25. Using only one approximation, the data complexity is approximately 252

known plaintexts. The attack requires 220 counters and a time complexity of ap-
proximately 240 decryptions of 1-round Serpent. Several similar approximations
can be obtained by changing the input mask of the relation. We found up to 8
approximations with bias 2−25 and up to 96 approximations with bias 2−26. This
would lead to a capacity of respectively 2−45, 2−43, reducing the data complexity
to 247 or 245 at the cost of a slight increase of the time/memory complexities.

6.2 Attack on 8 rounds Serpent

Similarly, we can attack 8-round Serpent using a 7-round approximation starting
with S-box 4 and ending with S-box 2. The approximation is the one found in
section 5. It has a bias of 2−30 and 7 active S-boxes. Consequently, an attack using
only one approximation requires 256 1-round decryptions, 228 counters and ' 262

known plaintexts. We can again reduce the data complexity by taking advantage
of multiple approximations. We found 8 approximations with the same bias
and the same active S-boxes giving a capacity of 2−55, thus a data complexity
of approximately 257 plaintexts. Adding 96 approximations with bias 2−31, we
obtain a capacity of 2−53 and therefore a data complexity of 255 plaintexts (see
Table 6). Again, this effect can be increased at the cost of more memory and
computation. For example, there are 384 approximations with bias 2−32 and 512
approximations with bias 2−33, that gives rise to data complexities of respectively
254.1 or 254, but requires 228 counters and 256 memory access for each counter.

6.3 Attack on 9 rounds Serpent

The best approximation found on 8 rounds has a bias of 2−37 but it has 23 actives
input S-boxes. We can slightly modify its input in order to lower this number
to 11 active S-boxes. This way, the bias of the approximation is 2−39 instead
of 2−37. This approximation starts with S-box 4 and ends with S-box 3. The
complexity of an attack based on this approximation is 288 1-round decryptions,
244 counters and about 280 known plaintexts. Multiples approximations allow us
to decrease the number of texts needed. We found 128 approximations with bias
2−39, 3584 approximations with bias 2−40, 43008 approximations with bias 2−41

and 286720 approximations with bias 2−42. The corresponding capacities are
2−69, 2−66, 2−64.1, 2−63, thus requiring 271, 268, 266.1, 265 generated plaintexts.



6.4 Attack on 10 rounds Serpent

We finally ran our search algorithm to generate a list of 150 9-round approxima-
tions with high bias and a reasonable number of active S-boxes. Among the the
huge number of candidates (see table 4), we found the three following approxi-
mations starting and finishing with S-box 3:

– Approximation 1 with bias 2−55 and 11 active S-boxes,
– Approximation 2 with bias 2−58 and 10 active S-boxes,
– Approximation 3 with bias 2−59 and 8 active S-boxes.

Using the first approximation, we obtain an attack requiring 2112 texts, 244

counters and 288 decryptions. Using the second approximation, we obtain an
attack requiring 2118 texts, 240 counters and 280 decryptions. Using the third
approximation, we obtain an attack requiring 2120 texts, 232 counters and 264

decryptions. Multiple linear cryptanalysis based on the first approximation leads
to capacities equal to 2−97, 2−93.42 or 2−90.93 according to bias of the approxima-
tions. Using the second approximation, the capacities decrease to 2−103, 2−99.42

or 2−96.93 . With the third approximation the capacities then become 2−105,
2−101.42 or 2−98.93. All the presented attack results are summarized in Table 6
and Table 5 remembers the previously known attacks against Serpent.

6.5 Attack on 11 rounds Serpent

We can attack 11 round Serpent with a 9-rounds linear approximation. Such an
attack requires a partial encryption before the first round of the approximation
and a partial decryption after the last round. In this context, it becomes essential
to minimize the total number of active S-boxes, both in input and in output.

Our algorithm provided a 9-rounds approximation with a bias of 2−58 and
only 27 active S-boxes (15 in input and 12 in output). Using the trick proposed
in [3], section6, we obtain a time complexity of 2120 ·15/352+248 ·(2118 ·12/352+
260) = 2166 11-round Serpent encryptions and a memory complexity of 2121. Inci-
dentally, if we perform a partial encryption of the first round in the external loop
(instead of a partial decryption of the last round), the time complexity becomes
296 · 12/352 + 260 · (2118 · 15/352 + 248) = 2173.5 11-round Serpent encryptions
and a memory complexity of 297. The data complexity is left unchanged, that is
2118 known plaintext.

In this case, it is practically not possible to use multiples approximations,
as they should have at least the same active S-boxes, both in their input and
output.



6.6 Summary

Rounds Type of attack complexity
data time memory

6 differential [13] 283CP 290 244

differential [13] 271CP 2103 279

differential [13] 241CP 2163 249

7 differential [11] 284CP 278.9 256

8 Amp.Boomerang [13] 2128CP 2163 2137

Amp.Boomerang [13] 2110CP 2175 2119

differential [11] 284CP 2206.7 289

9 Amp.Boomerang [13] 2110CP 2252 2212

10 Rectangle [14] 2126.3CP 2165 2131.8

Boomerang [14] 2126.3ACPC 2165 289

Lin.Cryptanalysis [3] 2116KP 292 245

Diff.Lin.Cryptanalysis [15] 2105.2CP 2123.2 240

11 Lin.Cryptanalysis [3] 2118CP 2187 2193

Diff.Lin.Cryptanalysis [15] 2125.3CP 2172.4 230

Diff.Lin.Cryptanalysis [15] 2125.3CP 2139.2 260

Complexity is measured in encryption units.
Memory is mesured in Bytes.
CP - Chosen Plaintexts, KP - Known Plaintexts,
ACPC - Adaptive Chosen Plaintexts and Ciphertext.

Table 5: Summary of previous attacks on Reduced-rounds Serpent (see [15]).

Rounds Type of attack complexity
data time memory

7 Lin.cryptanalysis 252KP 240 220

Mult.Lin.Cryptanalysis (8 appr.) 247KP 243 223

8 Lin.cryptanalysis 262KP 256 228

Mult.Lin.Cryptanalysis (8 appr.) 257KP 259 231

Mult.Lin.Cryptanalysis (104 appr.) 255KP 262.7 234.7

9 Lin.cryptanalysis 280KP 288 244

Mult.Lin.Cryptanalysis (128 appr.) 271KP 295 251

Mult.Lin.Cryptanalysis (3712 appr.) 268KP 299.9 255.9

10 Lin.cryptanalysis (ε = 2−55) 2112KP 288 244

Mult.Lin.Cryptanalysis (2048 appr.) 299KP 299 255

Lin.cryptanalysis (ε = 2−59) 2120KP 264 232

Mult.Lin.Cryptanalysis (2048 appr.) 2107KP 275 243

11 Lin.cryptanalysis (ε = 2−58) 2118KP 2166 2121

Lin.cryptanalysis (ε = 2−58) 2118KP 2173.5 297

Table 6: Summary of attacks on Serpent presented in this paper.



7 Conclusion and further works

This paper first presents a modification of Matsui’s branch-and-bound algorithm
for the linear approximation search in a block cipher. It enabled us to find the
best reported 9-round approximation for the AES candidate Serpent. The algo-
rithm allows speeding up the search of linear approximations at the cost of larger
memory requirements. It is generic and especially well suited for ciphers where
the linear transformation involves an important avalanche effect (as the AES
candidates and most recent ciphers). Moreover, it could be straightforwardly
adapted for the research of differential characteristics.

In a second part of the paper, we take advantage of this modified branch-
and-bound algorithm in order to investigate the possible use of multiple linear
approximations against Serpent. According to the framework of Biryukov et al.
[4], we provided estimations of the improved data complexity of such attacks
against 10-round Serpent that can be down to approximately 280. Since these
results are mainly theoretical (due to an unrealistic time complexity), we also
presented several attacks against 7- to 10-round Serpent using reasonable attack
parameters that outperform previously known results.

As an important scope for further research, these results should be experi-
mented against real-life ciphers of tractable size in order to determine the actual
influence of dependencies between the different approximations used in an at-
tack. That is, to figure out the extend to which the information provided by
multiple linear approximations can lead to efficient attack strategies.

Acknowledgements

The authors thank Orr Dunkelman for his helpful answers and advices. We also
thank anonymous reviewers from FSE and Inscrypt for their useful comments.



References

1. R. Anderson, E. Biham, L. Knudsen, Serpent: A Proposal for the Advanced En-
cryption Standard, in the proceedings of the First Advanced Encryption Standard
(AES) Conference, Ventura, CA, 1998.

2. E. Biham, On Matsui’s Linear Cryptanalysis, in the proceedings of Eurocrypt 1994,
Lecture Notes in Computer Science, vol. 950, pp. 341-355, Perugia, Italy, May 1994.

3. E. Biham, O. Dunkelman, N. Keller, Linear Cryptanalysis of Reduced Round Ser-
pent, in the Proceedings of FSE 2001, Lecture Notes in Computer Science, vol. 2355,
pp. 16-27, Yokohama, Japan, April 2001.

4. A. Biryukov, C. De Cannière, M. Quisquater, On Multiple Linear Approximations,
in the proceedings of CRYPTO 2004, Lecture Notes in Computer Science, vol. 3152,
pp.1-22, Santa Barbara, California, USA, August 2004.

5. A. Biryukov, Linear Cryptanalysis, in the Encyclopedia of Cryptography and Secu-
rity, Kluwer Academic Publishers, 2005.

6. B.S. Kaliski, M.J.B. Robshaw, Linear Cryptanalysis using Multiple Approximations,
in the proceedings of CRYPTO 1994, Lecture Notes in Computer Sciences, vol. 839,
pp. 26-39, Santa Barbara, California, USA, August 1994.

7. L.R. Knudsen, Iterative characteristics of DES and s2-DES, in the proceedings of
CRYPTO 1992, Lecture Notes in Computer Science, vol. 746, pp. 497-511, Santa
Barbara, California, USA, AUgust 1992.

8. M. Matsui, Linear cryptanalysis method for DES cipher, in the proceedings of Eu-
rocrypt 1993, Lecture Notes in Computer Science, vol. 765, pp. 386–397, Lofthus,
Norway, May 1993.

9. M. Matsui, On Correlation Between the Order of S-boxes and the Strength of DES,
in the proceedings of Eurocrypt 1994, Lecture Notes in Computer Science, vol. 950,
pp. 366-375, Perugia, Italy, May 1994.

10. K. Ohta, S. Moriai, K. Aoki, Improving the Search Algorithm for the Best Lin-
ear Expression, in the proceedings of CRYPTO 1995, Lecture Notes in Computer
Science, vol. 963, pp. 157-170, Santa Barbara, California, USA, August 1995.

11. E. Biham, O.Dunkelman, N.Keller, The Rectangle Attack - Rectangling the Ser-
pent, Advances in Cryptology - Eurocrypt’01 (Lecture Notes in Computer Science
no.2045), pp. 340-357, Springer-Verlag, 2001.

12. T. Kohno, J.Kelsey, B.Schneier, Preliminary Cryptanalysis of Reduced-Round Ser-
pent, AES Candidate Conference, pp. 195-211, 2000

13. J.Kelsey, T. Kohno, B.Schneier, Amplified Boomerang Attacks Against Reduced-
Round MARS and Serpent, proceedings of Fast Software Encryption 7, Lecture
Notes in Computer Science, vol. 1978, pp. 75-93, Springer-Verlag, 1999.

14. E. Biham, O. Dunkelman, N. Keller, New Results on Boomerang and Rectangle At-
tacks, in the Proceedings of Fast Software Encryption 9, Lecture Notes in Computer
Science, vol. 2501, pp. 254-266, Springer-Verlag, 2002.

15. E. Biham, O. Dunkelman, N. Keller, Differential-linear Cryptanalysis of Serpent,
in the Proceedings of Fast Software Encryption 2003, Lecture Notes in Computer
Science, vol. 2887, pp. 9-21, Springer, 2004.



A Matsui’s Branch-and-bound for SPN

The following pseudo-code implements Matsui’s branch-and-bound algorithm.
It can be interpreted as a Depth-First Search algorithm which decides, for each
node of the tree (as described in section 3), if it is convenient to continue the
descent on the child nodes. The program updates Br each time a better ap-
proximation is discovered (in procedure Round-1). As the algorithm virtually
goes through the whole tree, Br reaches the optimal value Br at the end of
the execution. Note also that if the worst case complexity of the algorithm is
still exponential, it can be much less in practice (depending on the choice of the
initial values {B1, B2, B3, ..., Br−1} and Br).

Algorithme 1 branch-and-bound
1 input: {B1, B2, B3, ..., Br−1} and Br

2
3 procedure Round-r:
4 for each candidate for χIr do
5 let εr = maxχOr

(χIr , χOr )

6 if [Br−1, εr] ≥ Br then
7 call procedure Round-(r-1)
8 end if
9 end for

10 return Br

11 exit the program
12
13 procedure Round-i (2 ≤ i ≤ r − 1):
14 for each candidate for χIi do
15 let χOi = χIi+1 and εi = (χIi , χOi)

16 if [Bi−1, εi, ..., εr] ≥ Br then
17 call procedure Round-(i-1)
18 end if
19 end for
20 return to the upper procedure
21
22 procedure Round-1:
23 let χO1 = χI2 and ε1 = maxχI1

(χI1 , χO1)

24 if [ε1, ε2, ..., εr] ≥ Br then
25 Br = [ε1, ε2, ..., εr]
26 end if
27 return to the upper procedure


