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Abstract. Side-channel attacks are an important class of cryptanalytic tech-

niques against cryptographic implementations and masking is a frequently con-

sidered solution to improve the resistance of a cryptographic implementation

against side-channel attacks. In this paper, we consequently analyze the security

of higher-order Boolean masking schemes in various contexts. Our results are

twofold. First, we formalize the definitions of higher-order side-channel attacks

with the related security notions and put forward certain security weaknesses

in recently proposed masking schemes. Second, we investigate the conditions

upon which a substitution box in a block cipher can be perfectly masked by

boolean values in order to counteract side-channel attacks. That is, can the

leakages statistical distributions at a masked S-box output (over all possible

masks) be independent of the secret key targeted in the attacks? We study the

consequences of this requirement in two commonly considered leakage models,

namely the Hamming weight and distance models and derive conditions on the

substitution boxes. As a result of our analysis, it appears that these conditions

are not achievable as they lead to evident cryptanalytic weaknesses. Thus this

work formally confirms that masking cannot be used as a stand-alone counter-

measure and cannot offer provable security against side-channel attacks.
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1 Introduction

Side-channel attacks are an important class of cryptanalytic techniques in which an ad-

versary attempts to take advantage of some physical leakages obtained from a crypto-

graphic implementation in order to recover secret information. Power consumption and

electromagnetic radiation in smart cards are typical examples of such leakages. Since

their apparition in the late 1990s [KJJ99], they have been shown extremely efficient to

defeat a variety of implementations of secret and public key cryptosystems. Among var-

ious other proposals, the idea of masking the intermediate values inside a cryptographic

algorithm was consequently suggested in several papers, e.g. [GP99,AG03,OMPR05]

as a possible countermeasure to side-channel attacks. The technique is generally ap-

plicable if all the fundamental operations used in a given algorithm can be rewritten

in a masked domain. For example, in a Boolean masking scheme, one (or more) ran-

dom value(s) is (are) initially XORed to the plaintext and the encryption algorithm

is modified in such a way that the running data is always hidden by a known mask.

Masking can be applied at the gate level [FG05,PM05] or algorithmic level (we focus

on the latter one). Unfortunately, none of these solutions allow to perfectly protect

an implementation. For example, higher-order side-channel attacks that have been dis-

cussed in a number of articles are often capable to break these countermeasures, e.g.

in [Mes00b,WW04,SPQ05,PSDQ05,OMHT06]. As a consequence, this paper discusses

the conditions upon which one can prevent such higher-order techniques. We note that

higher-order attacks are not the only concern about masking but we believe they receive

a sufficient attention in the recent years to benefit from a more formal treatment.

For this purpose, we first describe two settings of masking schemes, respectively

denoted as the hardware and software approaches1. The first one keeps the cipher’s

S-box S unchanged, and uses a mask update function S’ to compute the output mask

from the masked input to the original S-box and the input mask. The drawback of

this solution is that S’ takes a 2n-bit input, which can make it costly to evaluate in

1 In present block ciphers, it is generally assumed that the most critical components to mask

are the non-linear S-boxes. For simplicity and without loss of generality (since we aim to

demonstrate an impossibility result), our investigations will be focused on the combination

of a key addition and the application of a layer of S-boxes.



some implementations. The second one initially picks up the S-boxes input and output

masks and re-computes a modified S-box S* from the original S-box and this pair of

random masks. The drawback of this solution is that S* has to be re-computed for

every new pair of masks and S-box which is a highly time-consuming process. Both

approaches are pictured in Figure 1. It is interesting to note that, from a security point

of view, these solutions differ by the mask dependencies. In the hardware approach,

the output mask is deterministically specified by its inputs. On the other hand, in the

software approach, the input and output masks are picked up independently. We note

that the names “hardware vs. software” approaches were chosen since the schemes in

Figure 1 will typically take advantage of hardware vs. software implementation facilities.

However, one could think about various other masking schemes. We believe these two

examples are representative of most countermeasures acting at the algorithmic level.
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Fig. 1. Masking schemes: the hardware and software approaches.

From a theoretical point of view, Prouff showed in [Pro05] the link between the

intrinsic resistance of unmasked S-boxes to power analysis and their cryptographic

properties. In this paper, we aim to complement this analysis and derive the conditions

upon which an S-box can be perfectly masked to counteract side-channel attacks. That

is, can the leakages statistical distributions (taken over all possible masks) at a masked

S-box output be independent of the secret key targeted in the attacks? As a first (but

practically meaningful) case study, we study the consequences of this condition in two

commonly considered leakage models: the Hamming weight and distance models.



Our following analysis first considers the hardware setting. Our results show that

(1) in the Hamming weight model, perfect masking requires the original S-box outputs

to have a constant Hamming weight; (2) in the Hamming distance model, perfect mask-

ing requires the S-boxes to be extremely weak with respect to linear and differential

cryptanalysis attacks. In both cases, these conditions are not achievable since they lead

to evident theoretical cryptanalytic weaknesses in the block ciphers structure.

Second, we investigate the software setting. We start by putting forward security

weaknesses, assuming that an adversary not only observes the computations in Figure

1 but also the re-computation procedure of the S-box S*. By combining both mea-

surements, we show that it is possible to build attacks based on the construction of

temporary templates corresponding to a re-computation leakage table. Then, we show

that, in the Hamming weight leakage model, perfect masking requires S-boxes with

constant outputs, which is not an acceptable condition for secure ciphers.

Finally, we briefly discuss attacks that do not take advantage of non-linear S-boxes

and directly target mask additions. We underline that, in certain contexts, such attacks

can be particularly powerful and have to be taken into account.

We note that the aim of this paper is mainly to derive theoretical conditions on the

block cipher components in order to reach perfect security. Therefore, the practical im-

plementation of higher-order attacks and their efficiency evaluation are not investigated.

We refer to the previously mentioned publications for these purposes. In addition, our

analysis is not based on particular flaws in the investigated schemes by contrast, e.g.

with the recent work in [CPR07]. They only show that masking cannot totally prevent

side-channel attacks in two reasonable leakage models. In addition, we do not claim

that actual implementations are uniquely protected with the schemes of Figure 1. As a

matter of fact, there is a large distance between perfect security and practical security.

We finally acknowledge that a part of the presented results have been intuitively put

forward in previous works. Beyond the work of Prouff [Pro05], Carlet et al. [Car05] and

Guilley et al. [GHP04] illustrated the relations between the cryptographic strength of

an S-box and its resistance against side-channel attacks. The analysis of ghost peaks can

also be seen as related to the same issues, e.g. in [BCO04,CC05]. We believe that the

analysis presented in the following of this paper (that extends this intuition to masking)

is useful since it allows deriving formal statements from these known intuitions.



The rest of the paper is structured as follows. Section 2 defines our model for

higher-order side-channel attacks as well as the notion of perfect masking. Section

3 describes higher-order masking schemes in the hardware approach and section 4

discusses the conditions of perfect masking in this setting. Section 5 evaluates the

security of a higher-order masking technique in the software approach and describes an

attack based on the combined observation of the encryption algorithm and the S-box

re-computation algorithm. The conditions of perfect masking against this latter attack

are also given. Attacks that directly target the mask additions are briefly discussed in

section 6. Finally, our conclusions are in section 7.

2 Model and definitions

We model our side-channel attacks following the principles introduced in [SMY06],

assuming that an adversary encrypts a number N of plaintext messages mi’s under

the same secret key k. For each of the encrypted messages, it measures the leakage

(e.g. power consumption) of a target device and obtains observations Oi = L(Σ,R)’s,

where L is a leakage function depending on some secret machine state Σ (typically, the

target of the attack) and randomness R. We note that our investigations only consider

simple leakage models. As a first (but practically meaningful) step in the analysis of

masking schemes, we consider the Hamming weight and distance leakage functions

that have been used in a number of practical attacks. By contrast, template attacks

[CRR02] are not considered in our analysis. Additionally, our proofs consider perfect

models in the sense that the leakages are not affected by random noise. Typically,

given some secret state Σ or pair of consecutive secret states Σ1, Σ2, the adversary

obtains either the Hamming weight of Σ or the Hamming distance between Σ1 and

Σ1. Since our results show that even these simple leakage models give rise to unrealistic

conditions of perfect masking, they constitute an interesting first step in the formal

understanding of higher-order side-channel attacks. Also, we initially only consider side-

channel attacks that target the S-box outputs in a block cipher. As frequently mentioned

in the literature (e.g. [BCO04]), side-channel attacks are usually performed after a

non linear component because they better discriminate the different key candidates.

However, it is worth noting that targeting the addition of the masks directly may be

feasible as well, depending on the leakage model considered (as discussed in Section 6).



We define a higher-order side-channel attack as follows:

Definition 1. A side-channel attack of order d against a n-bit target is a side-channel

attack based on the observation of the activity and leakage of at most n · d bits in at

most d different instants within an observable implementation.

Example: Let us consider the hardware (i.e. left) scheme of Figure 1 with bit size

n = 8 and target the key k. A first-order attack is an attack based on the observation

of the activity and leakage of only 8 bits. For example, one could observe the leakage

of S(m ⊕ k) ⊕ q or the one of q (that are both 8-bit wide). It is straightforward that

when used separately, those leakages do not reveal anything on k as long as the random

generation of r is not biased. Indeed, q is independent of k and S(m⊕k)⊕q is uniformly

distributed over the q values. By contrast, a second-order attack is an attack based on

the observation of the activity and leakage of 16 bits. For example, one could observe

the combined leakage of S(m⊕ k)⊕ q and of q to mount such an attack.

One important point of this definition is that an attack of order d is not defined

with respect to the product of d leakage traces (e.g. as in [WW04]) but with respect

to the size of the statistical distribution required to perform an attack. Indeed, it has

been shown in [PSDQ05] that the product of the leakage traces leads to a suboptimal

distinguisher. Similarly, [CKN00] argued that perfect security against side-channel at-

tacks requires the statistical independence between the target data and the physical

observations. Another straightforward point is that an attack of order d includes the

attacks of lower orders. However, in practice an adversary is only interested in the

attack of lowest possible degree since it determines an implementation security.

Definition 2. A masking scheme of order2 d is a masking scheme for which the lowest

degree of a successful side-channel attack is d+1.

Definition 3. An r-mask scheme on a n-bit target is a masking scheme using n · r
random bits to mask any set of n bits in an implementation.
2 [CPR07] use a slightly different terminology. They consider that a masking scheme is of

order d if every sensitive variable in the algorithm is split into d shares. Therefore, any

masking scheme of order d can be defeated by an attack of order d. For example, a single

mask countermeasure is of order 1 in our terminology and of order 2 in [CPR07]. But (most

importantly) our definitions for an attack of order d are similar.



Definition 4. A perfect masking scheme is a masking scheme secure against attacks

of any possible order, i.e. for which the leakages are statistically independent of the

data processed within the target physically observable device.

With respect to this latter definition, it is again important to have in mind that perfect

masking is a theoretically relevant notion. But not reaching this level of security (as it

will be shown in the next sections) does not involve that an implementation is insecure.

As a matter of fact, a masking scheme combined with a sufficient amount of noise in the

physical observations (or combined with other countermeasures) may lead to reasonable

levels of security. That is, the practical efficiency of an attack has to be measured too.

3 Higher-order masking in the HW approach

In this section we discuss d-mask schemes of order d (d ≥ 1) suitable for implementa-

tions in hardware. In its basic version, such a scheme first XORs the d masks with the

input; then the key is XORed as well before the application of S. So we have:

m1 = m⊕ r1

m2 = m1 ⊕ r2

. . .

md = md−1 ⊕ rd

m∗ = md ⊕ k

And finally:

m∗ = m⊕ k ⊕
d⊕

i=1

ri (1)

The output masks q1, ..., qd corresponding to r1, ..., rd are equal to:

q1 = S(m⊕ k)⊕ S(m⊕ k ⊕ r1),

qj = S

(
m⊕ k ⊕

j−1⊕

i=1

ri

)
⊕ S

(
m⊕ k ⊕

j⊕

i=1

ri

)
(j = 2 . . . d),

(2)

so that we have:

S(m∗)⊕ q1 ⊕ ...⊕ qd = S(m⊕ k) (3)

We denote the mask update functions as: qj = S[j](m∗, rj , ..., rd), (j = 1 . . . d). Figure 2

illustrates the whole circuit in the case d = 2. It is easy to see that such a d-mask scheme
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Fig. 2. Higher-order hardware masking scheme: basic version.

is indeed of order d, if only the S-box outputs are observed. Since the ri’s are chosen

to be independent random variables with uniform distribution,

(S(m⊕ k ⊕ r1),S(m⊕ k ⊕ r1 ⊕ r2), ...,S(m⊕ k ⊕ r1 ⊕ ...⊕ rd)) (4)

is uniformly random3, and so is (q1, ..., qd) as it is in bijection with (4). We can conclude

that observing the leakage of d n-bit words among:

(S(m⊕ k)⊕ q1 ⊕ ...⊕ qd, q1, ..., qd) (5)

in the Hamming weight model (resp. among (S(m ⊕ k) ⊕ S(m′ ⊕ k) ⊕ q1 ⊕ ... ⊕ qd ⊕
q′1⊕ ...⊕ q′d, q1⊕ q′1, ..., qd⊕ q′d) in the Hamming distance model, where the data m, m′

and the masks qi, q′i correspond to two consecutive clock cycles) does not provide any

information on the key. The drawback of this scheme (more precisely, of the way we

suggest to implement it) is that a d-mask scheme requires the computation of functions

with input space of size up to (d + 1) · n bits, which in some implementations becomes

rapidly infeasible as d grows. It is why another implementation is worth considering.

It relies on doing key addition after the first mask has been XORed:

3 provided S is surjective with all elements of the output space having the same number of

predecessors, which is usually the case for actual block ciphers.



m1 = m⊕ r1

m∗ = m1 ⊕ k

m2 = m∗ ⊕ r2

. . .

md = md−1 ⊕ rd

In this case, the output masks can be computed as:

q1 = S’(r1,m
∗),

qj = S’(rj , mj) (j = 2 . . . d),
(6)

1r

S S’

q2 q1

r2

2S(m  )

m2

S’

k

m*

m

Fig. 3. Higher-order hardware masking scheme: more efficient version.

where the same function S’(a, b) := S(b) ⊕ S(a ⊕ b) (with two inputs only) is used

for all masks. Figure 3 illustrates the circuit in the case d = 2. The drawback of this

approach is that if an attacker is able to observe the leakage relative to m∗ in addition

to the one of q1, it can deduce key information. For example, in the Hamming weight

model, the probability distribution (over r1) of:

WH[m⊕ k ⊕ r1] + WH[S(m⊕ k)⊕ S(m⊕ k ⊕ r1)] (7)

is key-dependent. However, in the context of a Hamming distance leakage model, this

is not true anymore since WH(m⊕ k ⊕ r1 ⊕m′ ⊕ k ⊕ r′1) does not depend on the key.

As in the hardware approach the latter leakage model is generally in use, this solution

may be relevant. In general, if we assume (due to our preliminary hypothesis) that the

only observable leakage is the one corresponding to the data after the S-box layer, then

the masking scheme is of order d (the output of this layer is actually the same as in



the first scheme). Attacks relaxing this hypothesis will be discussed in Section 6. We

note that in general, the Hamming weight model is typically applicable to pre-charged

data buses in microprocessors while the Hamming distance model is rather applicable

to attacks on registers in hardware implementations. However, this is not an absolute

statement, e.g. see [SMPQ06]. In the following and for theoretical completeness, we

consider both leakage models for our two masking schemes settings.

4 Conditions of perfect masking in the HW approach

4.1 Conditions of perfect 1-mask schemes

In this section, we consider the 1-mask scheme represented in the left part of Figure

1 and discuss the conditions upon which it could lead to perfect masking. For this

purpose, we will investigate the two previously mentioned leakage functions, i.e. the

Hamming weight and distance models. Perfect masking is achieved if the probability

distribution of the leakage function is independent of the key. The theorems of this

section will make use of the following technical lemma:

Lemma 1. Let Σ, q be n-bit words and assume the 2n-bit word V = (Σ ⊕ q, q) is

computed in a hardware device. We denote its Hamming weight as:

O(Σ, q) = WH[V ] = WH[Σ ⊕ q] + WH[q] (8)

Then the probability distribution of O, computed over q, only depends on WH[Σ].

Moreover, two different values for WH[Σ] always imply two different distributions.

Proof. For each Σ = σ, we are interested in the probability distribution (computed

over q) of the observation O, that is Prq[O|Σ = σ]. First, we note that:

WH[σ ⊕ q] = WH[σ] + WH[q]− 2WH[σ ∧ q] (9)

where ∧ denotes the logical and. Thus we have:

O(σ, q) = WH[σ] + 2WH[q]− 2WH[σ ∧ q] (10)

Let hσ = WH[σ]. We obtain:

Pr
q

[O = hσ + 2p|Σ = σ] = Pr
q

[WH[q]−WH[σ ∧ q] = p] (11)



We have to compute the number of values of q satisfying:

WH[q]−WH[σ ∧ q] = p (12)

The value of bit qi does not matter at the hσ bit positions i with σi = 1. Amongst the

n − hσ positions i with σi = 0, exactly p bits qi must satisfy qi = 1. Therefore there

are 2hσ · (n−hσ

p

)
values of q satisfying (12). So, we obtain:

Pr[O = hσ + 2p|Σ = σ] = 2hσ ·
(

n− hσ

p

)
/2n for p ∈ {0, 1, ..., n− hσ} (13)

We observe that this probability distribution only depends on the Hamming weight hσ,

and that two different Hamming weights imply two different distributions. ut

Perfect 1-mask schemes in the Hamming weight model

Theorem 1. In the Hamming weight model, the probability distribution of the Ham-

ming weight at the output of a masked S-box (S,S’) is independent of the key if and

only if (iff) all possible outputs of S have the same Hamming weight.

Proof. Let V = (V1, V2) = (S(b ⊕ k) ⊕ q, q) be the 2n-bit word considered in the

side-channel attack, where S(b ⊕ k) =: Σ is the secret state and q is the mask. The

corresponding Hamming weight is:

O(Σ, q) = WH[V ] = WH[Σ ⊕ q] + WH[q] (14)

We can apply lemma 1. We conclude that in order to obtain always the same distribu-

tion whatever the key, all the S-box’s outputs must have the same Hamming weight.

It is also straightforward that this condition is sufficient. ut

Perfect 1-mask schemes in the Hamming distance model

We prove that perfect masking is possible only for S-boxes of which the best linear

approximation has correlation 1, and the best differential has probability 1. Before

giving the proof, we recall the definitions of the λ-parameter and δ-parameter which

characterize the intrinsic resistance of the S-box to linear and differential cryptanalysis.

Definition 5. The λ-parameter of an S-box S:{0, 1}p → {0, 1}q is defined as:

λS = max
α∈{0,1}p

0 6=β∈{0,1}q

|21−p ·#{x ∈ {0, 1}p|α • x = β • S(x)} − 1|

where • denotes the scalar product.



Definition 6. The δ-parameter of an S-box S:{0, 1}p → {0, 1}q is defined as:

δS = 2−p · max
0 6=a∈{0,1}p

b∈{0,1}q

#{x ∈ {0, 1}p|S(x⊕ a)⊕ S(x) = b}

Regarding the linear parameter, our result is as follows:

Theorem 2. Consider an S-box S : {0, 1}p → {0, 1}t. In the Hamming distance model,

if the probability distribution of the leakages at the output of its masked implementation

(S,S’) is independent of the key, then λS = 1.

Proof. In this case, the leakage measurement corresponds to a 2t-bit word:

V = (S(m⊕ k)⊕ q ⊕ S(m′ ⊕ k)⊕ q′, q ⊕ q′), (15)

where the data m, m′ (resp. the masks q, q′) correspond to two consecutive clock cycles.

So we are interested in the probability distribution of:

WH[S(m⊕ k)⊕ S(m′ ⊕ k)⊕ q ⊕ q′] + WH[q ⊕ q′] (16)

Let q∆ := q ⊕ q′, S∆(k) := S(m⊕ k)⊕ S(m′ ⊕ k). Then (16) becomes:

WH[S∆(k)⊕ q∆] + WH[q∆] (17)

Again we can apply Lemma 1. Thus S must be such that:

∀m,m′, k : WH[S(m)⊕ S(m′)] = WH[S(m⊕ k)⊕ S(m′ ⊕ k)] (18)

Let us define WH2[x] := WH[x] mod 2. Moreover si(x) denotes the ith output bit of

S(x) (i = 1, ..., t). Then (18) implies:

∀m,m′, k : WH2[S(m)⊕ S(m′)] = WH2[S(m⊕ k)⊕ S(m′ ⊕ k)]

⇔∀m,m′, k :
t⊕

i=1

(si(m)⊕ si(m′)) =
t⊕

i=1

(si(m⊕ k)⊕ si(m′ ⊕ k))
(19)

If we define s∗(x) :=
⊕t

i=1 si(x), (19) can be rewritten as:

∀m,m′, k : s∗(m)⊕ s∗(m′) = s∗(m⊕ k)⊕ s∗(m′ ⊕ k) (20)

And by setting m′ = 0 we obtain:

s∗(m⊕ k) = s∗(m)⊕ s∗(k)⊕ s∗(0), (21)



which shows that s∗ is affine. Therefore ∃α = (α1, ..., αp) ∈ {0, 1}p such that

∀x ∈ {0, 1}p :
t⊕

i=1

si(x) = α • x⊕ s∗(0) (22)

This implies that λS = 1. ut

Its counterpart for the differential parameter is:

Theorem 3. Consider S : {0, 1}p → {0, 1}q with p ≥ q.4 In the Hamming distance

model, if the probability distribution of the leakages at the output of the masked imple-

mentation (S,S’) is independent of the key, then δS = 1.

Proof. The proof begins like the one of Theorem 2. We use Lemma 1 to obtain:

∀m,m′, k : WH[S(m)⊕ S(m′)] = WH[S(m⊕ k)⊕ S(m′ ⊕ k)] (18)

We consider two cases:

– First, we assume there exist m,m′ ∈ {0, 1}p such that S(m) ⊕ S(m′) = 2q − 1.

Therefore we have

WH[S(m)⊕ S(m′)] = q (23)

By using (18), we obtain:

∀k : WH[S(m⊕ k)⊕ S(m′ ⊕ k)] = q

⇔∀k : S(m⊕ k)⊕ S(m′ ⊕ k) = 2q − 1

⇔∀k : S(k)⊕ S(m⊕m′ ⊕ k) = 2q − 1

(24)

Therefore m⊕m′ → 2q − 1 is a differential of probability 1 and δS = 1.

– Now suppose there is no m,m′ ∈ {0, 1}p such that S(m)⊕S(m′) = 2q−1. It implies

that the function is not injective; as a matter of fact, such an injective function

should satisfy S(0) 6= S(a) 6= S(0) ⊕ 2q − 1 for all a 6= 0. But it would imply a

collision elsewhere, as #{0 6= a ∈ {0, 1}p} = 2p−1 > 2q−2. So there exist m 6= m′

with WH[S(m)⊕ S(m′)] = 0. Using (18), we have:

∀k : WH[S(m⊕ k)⊕ S(m′ ⊕ k)] = 0

⇔∀k : S(m⊕ k)⊕ S(m′ ⊕ k) = 0

⇔∀k : S(k)⊕ S(m⊕m′ ⊕ k) = 0

(25)

Therefore m⊕m′ → 0 is a differential of probability 1 and δS = 1. ut
4 We already made this hypothesis in section 3 (see footnote 3).



As a matter of fact, none of these conditions of perfect masking (in the Hamming

weight and distance leakage models) make sense from a cryptanalytic point of view.

4.2 Conditions for perfect n-mask schemes

In this section we extend our analysis to higher-order schemes presented in Section 3.

We show that necessary conditions on S in order to achieve perfect masking are actually

the same as in the 1-mask case.

Perfect n-mask schemes in the Hamming weight model

We consider the probability distribution of:

O(Σ, q1, ..., qd) = WH[Σ ⊕ q1 ⊕ . . .⊕ qd] + WH[q1] + . . . + WH[qd], (26)

with Σ := S(m⊕ k). That is, we are interested in Prq1,...,qd
[O|Σ = σ]. Let us consider

the smallest value of O having non-zero probability. It is easy to see that it is equal

to WH[σ]. Therefore if S(m⊕ k) and S(m⊕ k′) have different Hamming weights, the

corresponding probability distributions will be different. So a necessary condition on

S is that all its outputs have the same Hamming weight. It is a sufficient condition as

well, as permuting bits of σ obviously does not change the probability distribution.

Perfect n-mask schemes in the Hamming distance model

In this case we are interested in the probability distribution of:

WH[S(m1 ⊕ k)⊕ S(m2⊕k)⊕ (q1 ⊕ q′1)⊕ . . .⊕ (qd ⊕ q′d)]

+ WH[q1 ⊕ q′1] + . . . + WH[qd ⊕ q′d]
(27)

Let S∆(k) := S(m1 ⊕ k)⊕ S(m2 ⊕ k), q∆
i := qi ⊕ q′i (i = 1 . . . d).

Then (27) can be rewritten as:

WH[S∆(k)⊕ q∆
1 ⊕ . . .⊕ q∆

d ] + WH[q∆
1 ] + . . . + WH[q∆

d ] (28)

We showed in the previous paragraph that this distribution is independent of the key

only if all elements of Im(S∆) have the same Hamming weight.

So S must satisfy:

∀m1,m2, k : WH[S(m1)⊕ S(m2)] = WH[S(m1 ⊕ k)⊕ S(m2 ⊕ k)]. (29)

We already showed in the proofs of theorems 2 and 3 that this condition implies λS =

δS = 1. Therefore, our conclusions for 1-mask schemes hold.



Remark: Equation (18) does not imply that S is linear. A counterexample for p=t=4 is

(S(0),S(1), ..., S(15)) = (0, 12, 3, 15, 10, 9, 6, 5, 9, 10, 5, 6, 12, 0, 15, 3), for which S(2) ⊕
S(4) 6= S(6). There exist bijective counterexamples for S-boxes of larger dimensions.

5 Security of higher-order masking in the SW approach

The previous section demonstrated that perfect masking is only possible in the hard-

ware approach under very restrictive (and practically unrealistic) conditions for the

S-boxes. The reason behind these conditions is that there always remains a statistical

relation between the cipher inputs and outputs: given one input plaintext and mask,

the masked output and output mask are deterministically specified. Otherwise said, the

efficiency weakness (i.e. the need of an S-box S’ implemented in the circuit) is also the

source of a security weakness. As already mentioned, in the software approach, such

dependencies do not exist. Therefore, it is natural to investigate if similar weaknesses

can be found. In particular, does the efficiency weakness (i.e. the need to recompute S*

for every mask) affect the security of the countermeasure? For illustration, we take the
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Fig. 4. Masking schemes of order 1 and 2 in the software approach.

higher-order masking scheme of the AES described in [SP06] as our running example.

It is represented in Figure 4 for the cases of first and second-order masking. As such,

these schemes cannot be the target of any attack of degree lower than 2 (for the first-

order scheme) and 3 (for the second-order scheme), as predicted in the original paper.

However, our aim is now to analyze these schemes, under the reasonable assumption

that the adversary not only observes the computation of S(m ⊕ k) ⊕ q1 ⊕ ... but also



the re-computation procedure of S* that has to be performed before any new encryp-

tion. For illustration purposes, we first consider the following simple re-computation

algorithm that was originally proposed in [Mes00a], for an 8-bit S-box:

for i = 0 : 255

A = S(i);

S*(i⊕ r1) = A⊕ q1;

end

More complex re-computation solutions will be discussed later in the section.

5.1 Attack against the first-order masking scheme

Let us consider a leakage function L and the first-order masking scheme of Figure 4.

The attack proceeds as follows:

% initialization of the key candidates likelihoods:

L(kc)=1, ∀kc’s;

% attack:

for various messages mj ’s and random masks r1j ’s

% storage of a re-computation leakage table:

for i=0:255

kc = mj ⊕ i;

R(j, kc) = L(S*(i⊕ r1j));

end

% storage of the observed measurements:

M(j) = L(S*(mj ⊕ k ⊕ r1j));

% computation of the key candidates likelihoods:

for all kc’s

L(kc) = L(kc) ∗ Pr(M(j)|R(j, kc));

end

% normalize the likelihood vector L;

end

The attack is successful as soon as max(L(kc)) = L(k).



Roughly explained, we store the leakages corresponding to the S-box re-computation

for all possible inputs of the S-box and compare the leakage of a real message encryption

under an unknown key with these re-computations. The attack is possible because we

can compare the real output of the masked S-box S(m⊕k)⊕q1 and the re-computations

S(i) ⊕ q1. Therefore, we can identify m ⊕ k with the most likely i. Note that the

attack can be viewed as a first-order side-channel attack based on the construction of

temporary templates (i.e. the re-computation leakage table is then derived offline) or

as a second-order attack. This is because during the computation of the key candidates

likelihoods, we compare the measured leakage with only one re-computation table. A

very similar technique is applied in the collision-based attacks of [SLFP04]. Note also

that the use of Bayesian key recovery is of particular interest in this context since it

allows to limit the memory requirements of the attack. Indeed, it is not necessary to

keep the matrix R and vector M in memory for all messages but for the running one.

5.2 Attack against higher-order masking schemes

Let us now consider a second-order masking scheme with the naive S-box recomputation

procedure that follows:

for i = 0 : 255 for i = 0 : 255

A = S(i); A =S1(i);

S1(i⊕ r1) = A⊕ q1; S*(i⊕ r2) = A⊕ q2;

end end

The re-computation is sound since we have (see Figure 4):

S*(m⊕ k ⊕ r1 ⊕ r2) = S1(m⊕ k ⊕ r1)⊕ q2 = S(m⊕ k)⊕ q1 ⊕ q2

As a consequence, an attack similar to the previous one holds. That is, in a first

step, we identify S*(m ⊕ k ⊕ r1 ⊕ r2) = S1(m ⊕ k ⊕ r1) ⊕ q2 with the second re-

computation. It yields the likelihood vector corresponding to all the candidates for the

value S1(m⊕ k ⊕ r1) = S(m⊕ k)⊕ q1. Then, by computing the leakage corresponding

to these candidates, we identify S(m⊕ k)⊕ q1 with the first re-computation. It yields

the likelihood vector for the key candidates. It is important to remark that this attack

requires to evaluate the leakage L(S1(m ⊕ k ⊕ r1)) which requires either that the



adversary has access to a nearly perfect leakage model or that it can perform this

computation within a device under its control. This makes the technique less practical

than for the first-order masking. In addition, the likelihood of the keys is evaluated in

two steps: first by evaluating the likelihood of S1(m⊕ k ⊕ r1), then by evaluating the

one of the target key candidates:

L(kc) =
∑

S1(m⊕k⊕r1)

L(kc|S1(m⊕ k ⊕ r1)) · L(S1(m⊕ k ⊕ r1)) (30)

That is, the attack can now be viewed as combination of two first-order side-channel

attack based on the construction of two temporary templates or as a third order attack.

The generalization of this attack to higher-orders is straightforward: any d-mask scheme

is susceptible to an attack of order nr + 1, where nr is the number of re-computations

performed for the S-boxes. Or it can be viewed as a combination of first-order template

attacks based on the construction of nr temporary templates. Note that in practice, the

complete re-computation procedure is usually only done for the first S-box. Once a first

S-box is masked with respective input and output masks r1, r2, ... and q1, q2, ..., and a

second S-box has to be masked with u1, u2, ... and v1, v2, ..., one can simply re-compute

the first masked S-box once, with masks u1 ⊕ r1 ⊕ u2 ⊕ r2... and v1 ⊕ q1 ⊕ v2 ⊕ q2...

This allows improving the efficiency of the masked implementation.

Importantly, as far as the security of the countermeasure is concerned, these attacks

do not exhibit/exploit particular flaws in the masking countermeasure. The aim of

describing them is mainly to derive the conditions of perfect masking in the next

section. By contrast, the recent work of [CPR07] showed that the countermeasure

in [SP06] are the target of a 3rd-order side-channel attack, whatever the order of the

masking scheme. These attacks have been successfully experimented and raise the open

question of designing a higher-order side-channel resistant scheme.

Note that a straightforward improvement of the countermeasure would be to ran-

domize the re-computation of the S-boxes. That is, rather than using a regular loop

for i ∈ [0 : 255], use a loop for i ∈ perm[0 : 255] where perm is a random permutation

of the vector. Different fast re-computation algorithms are proposed in [SP06]. Such

solutions increase the order of a successful side-channel attack, but still in a limited

way with respect to the order of the masking scheme.



5.3 Perfect S-box masking in the software approach

For a n-bit S-box, let us consider the probability distributions of the leakages associated

with the 2n re-computation steps. If any two of these distributions were different,

an attacker would be able to guess the differences of leakages between two different

keys. On the contrary, if all leakages L(S*(i⊕ r1)) are equal, all measurements always

come from the same probability distribution, which prevents attacks. The following

theorem gives one condition to obtain such perfect masking. Once again, it makes

perfect masking practically impossible.

Theorem 4. Consider an S-box S, and its software-masked implementation S*. In the

Hamming weight model, the probability distribution of the leakages at the output of S*

is independent of its input iff all outputs of S are equal.

Proof. As S∗(i⊕ r1) = S(i)⊕ q1, the condition amounts to:

∀q1, i, i
′ : WH[S(i)⊕ q1] = WH[S(i′)⊕ q1] (31)

Assume that for some i, i′, S(i) and S(i′) differ in their bth bit (at least), with sb(i) = 0

and sb(i′) = 1 (their other bits can be either equal or different). Let q1 = δb which is

equal to 1 in its bth bit and to 0 in all the others. Then we have:

WH[S(i)] + 1 = WH[S(i)⊕ δb] = WH[S(i′)⊕ δb] = WH[S(i′)]− 1, (32)

where the second equality comes from (31). Because by considering q1 = 0 we also have

WH[S(i)] = WH[S(i′)], we obtain a contradiction. ut

6 Higher-order attacks before the S-boxes

As already mentioned, all our previous analysis rely on the assumption that one only ex-

ploits the leakages after the application of the non-linear S-boxes. However, depending

on the leakage functions considered, it may be possible to target the XOR of the masks

directly. For example, it is typically the case in the context of a Hamming weight-based

model. Importantly, in the latter context, the masks and masked values have to be ma-

nipulated with care. For example, in a naive implementation of the masking scheme of

Section 3, an attack of order 2 is possible: indeed, the distribution of (m⊕ r1⊕ r2⊕ ...,

m⊕ k ⊕ r1 ⊕ r2 ⊕ ...) is always key dependent.



As a consequence, it is finally worth noting that, if the degree of the masking scheme

increases, an attack that directly targets the mask addition may be more efficient than

if using the masked S-boxes, despite the fact that such an attack is usually more difficult

to mount (because they do not exploit the substitution non-linearities). Importantly,

even in the context of hardware implementations where the Hamming distance model

is prominent, Hamming weight dependencies may be exploited [SMPQ06].

7 Conclusion

This paper discusses the security of higher-order masking schemes for block ciphers. It

is shown that perfect masking implies unrealistic conditions on the block cipher com-

ponents (e.g. the constant Hamming weight of their outputs or weak linear/differential

parameters). Additionally, our results underline the similarities between different imple-

mentation approaches for masking. We demonstrate that the computation of a masked

S-box leads to weaknesses, no matter if it is done once and stored in memory (i.e. in

a hardware approach) or re-computed for every new encryption (i.e. in a software ap-

proach). In the context of the software approach, we also describe higher-order attacks

based on the monitoring of the re-computation process. We note that, with respect to

the presented results, increasing the degree of a masking scheme improves its security,

but such a trend has to be tempered by the possibility to carry out an attack directly

on the mask addition. In addition, particular flaws have been exhibited for a number

of masking schemes, e.g. in [CPR07]. The practical impact of higher-order masking

schemes consequently has to be quantified carefully for different side-channel adver-

saries, e.g. based on a difference-of-mean test [OMPR05], correlation analysis [SP06]

or Bayesian approach [PSDQ05]. Although a number of recent research work have tack-

led this question, certain contexts still require further investigation.
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