
FPGA Implementation of
SQUASH

François Gosset1 François-Xavier Standaert2

Jean-Jacques Quisquater
Université catholique de Louvain
Crypto Group, 3 Place du Levant
1348 Louvain-la-Neuve, Belgium

francois.gosset@uclouvain.be fstandae@uclouvain.be
jean-jacques.quisquater@uclouvain.be

Abstract

Passive RFID tags are devices with very poor computational capability. How-
ever an increasing number of applications require authentication of the tag. For
this purpose, a simple solution is to use a challenge-response protocol. For exam-
ple, the reader can send a random challenge R and the tag responds H(R⊕ S),
where S is a secret known by the reader and H is a hash function. Then, the
reader can check whether the tag knows S. SQUASH, introduced by Adi Shamir
in February 2008 [1], is a new hash function designed for this task. In this ar-
ticle, we describe an FPGA implementation of this algorithm minimizing the
resources.

SQUASH is based on the one-way function c = m2 mod n coming from the
Rabin cryptosystem [2]. To make it secure, the binary length of n must be at
least 1000 bits long [8]. In [1], the author suggests using a 64-bit non-linear
feedback shift register to generate m, a not yet factorized Mersenne’s number
(2x − 1) as modulus n, and to send out the bits of c without storing them.
This process avoids storing three 1000-bit long numbers. The multiplications are
achieved by on-the-fly convolutions, sending each bit as soon as it is computed.
Consequently, the only needed memory aims at storing the carry of the previous
steps in the convolution. For the output, a window of 32 or 64 (or more) bits
in c is used. It yields a hash function with inputs of 64 bits that is scalable in
output.

In this paper, we propose implementations designed in order to minimize the
resources, possibly at the cost of an increased execution time. The target device
is a Xilinx Virtex-4 XC4VLX200-10 FPGA. The algorithm recommended by Adi
Shamir has 64 bits in input and 32 in output, and n = 21277 − 1. To reduce
the hardware cost, we minimized the number of registers in the implementation
data and control part. On the XC4VLX200, the design results require 377 slices.
The full execution time to produce 32 bits is 63,250 clock cycles at 222 MHz,
so we reach a throughput of 112,300 bits per second. We also implemented the
algorithm with other size numbers. For 128 bits in input and 64 in output, we
get 619 slices and 104,114 clock cycles at 206 MHz. In general, the length of the
output influences the execution time while the length of the input influences the
number of registers and slices.

1Supported by the Walloon region (Project E.USER, Belgium)
2Supported by the FNRS (Belgium)

1 Introduction

In the last few years, RFID tags have been introduced in an increasing number of
applications. They can now be found in supermarket antithefts, warehouse inventory
control, public transportation passes, pet identification, secure passports, etc. With
the multiplication and specialization of their uses, RFID tags need to be secured.
Classical cryptography, however, is generally unsuitable for low-cost tags. Indeed,
their computational capability is weak (typically 1,000 to 10,000 gates shared between
their application and the security) and their memory does not exceed several hundreds
of bits [1]. In low cost applications, the storage of a single 1024-bit RSA key is already
a real challenge. As a consequence, the design of new cryptographic primitives facing
strong implementation constraints is an important research direction.

Classical RFID applications require the possibility for the tag to be able to interac-
tively authenticate itself securely to a reader. A simple challenge-response protocol can
be used for this purpose. This protocol implies that, when challenged by the reader,
the tag is able to prove that it knows a secret S without revealing it.

Namely, the reader first sends the challenge R to the tag. Then the tag computes
H(R ⊕ S) and sends it to the reader. Finally, the reader computes H(R ⊕ S) and
compares it with the response of the tag. The secret is not revealed if it is computa-
tionally hard to extract S knowing H(R ⊕ S) and R. Computationally hard means
that it is impossible to compute with current technologies. Such a scenario can be
performed with hash functions. Most of them (like SHA-1) are designed to be one-way
and collision resistant, although the collision resistant aspect is not important in the
present application. In February 2008, Adi Shamir introduced a new hash function,
called SQUASH, to perform this challenge-response protocol [1]. Due to its low-cost
objective, it was expected to provide an efficient alternative for lightweight hardware
implementations.

The goal of this work is to present an FPGA implementation of SQUASH, as a
first step in the assessment of the hardware cost of this new hash function. FPGA’s
were chosen because they make it possible to quickly implement a hardware design and
because they are comparison point, in terms of frequencies or hardware resources.

In this paper, we first describe the SQUASH algorithm. Then, we discuss the
selection of its parameters. Finally, we present its implementation results in a recent
FPGA family of devices.

2 The SQUASH algorithm

2.1 From Rabin’s scheme...

Rabin encryption scheme is a public-key cryptosystem [2]. The public key n is
generated from two prime numbers p and q. The couple p, q is the secret key. If m is
the message that must be encrypted, the ciphertext is c = m2 mod n. The security
of this scheme is related to the difficulty of factorization; so, to make it secure, the
binary length of n must be at least 1000 bits long [8]. The function c = m2 mod n is
a good one way function, but not a collision resistant one. Indeed, m, −m, m + n,...
have the same response c. Because it has been studied for more than 30 years, Rabin’s
scheme is a good candidate for the construction of a secure one way function. However,
it requires storing m, n and c, which means roughly 3000 bits in memory. Moreover,
a modular square must be computed, which is usually too expensive for small devices
like RFIDs. Therefore, the goal of SQUASH is to reduce these resources.

2.2 ... to SQUASH!

SQUASH simplifies Rabin’s scheme by reducing the size of the operands, and by
simplifying and approximating the modular square operation. In this section, we use
64-bit length input and 32-bit length output as suggested in [1]. However, it is not
a requirement of the algorithm and we implemented SQUASH with different sizes, as
described in section 3.1.

Do not store big numbers. Rabin’s scheme requires computing c = m2 mod n
where c, m and n are at least 1000 bit long. SQUASH avoids storing them.
First of all, m is not stored but generated from the 64-bit long input of SQUASH
(in the example of the challenge-response protocol explained in the introduction,
the input is simply R⊕S). The input is used as a seed for a reversible nonlinear
feedback shift register (NLFSR). It is easy to generate successive bits of m when
they are needed in the forward and backward direction: m = NLFSR(R ⊕ S).
To avoid storing n, SQUASH uses universal moduli, which have a simple and
efficient binary representation, i.e. the Mersenne numbers that have the from
2k−1. A good candidate is 21277−1, a composite number with no known factors.
Finally, the output of SQUASH is a 32-bit length number. So, SQUASH uses
only a short window in the Rabin ciphertext as output hash. This window is
computed in the center of c, starting at c616 with a length of 32 bits. This avoids
storing the 3000 bits for m, n and c.

Compute the multiplication by on-the-fly convolution. The multiplication is com-
puted by on-the-fly convolutions. They require only an 12-bit register for the
carry generated by the previous steps in the convolution, and a 12-bit adder.

Approximate the value of the window. The bits of the window are not computed
exactly, but approximated. To compute the exact least significant bit (LSB) of the
window, all the previous bits should have to be computed. However, SQUASH
extends the window with only 16 additional bits, called guard bits. SQUASH
computes the value of the extended window assuming that the carry into its
LSB was zero. It is sufficient because the carry into each bit position in the
computation of m2 can be at most 11-bit long. Then, if we add 16 guard bits
to the computed window, we have only a small probability of less than 1/32 of
computing an incorrect carry into the 17th bit we compute.

Modular reduction mod n = 2k − 1. The use of Mersenne number as a modulus
gives an advantage for the computation of the modular reduction. Let g1 be the
upper half of m2 and g0 the lower half of m2; so m2 = g12

k + g0. If the modulus
n is 2k − 1, the modular reduction is very easy and requires only an addition:
m2 = g1 + g0 = c mod n since 2k = 1 mod n. To compute the bit j in the lower
half of m2, we have to sum (over the integers, not modulo 2) all the products
mv.mj−v for v = 0, 1, ..., j and add to the carry from the computation of the
previous bit this sum. To compute the bit j + k in the upper half of m2, we
have to sum (over the integers, not modulo 2) all the products mv.mj−v+k for
v = j + 1, .., k − 1 and add the carry from the computation of the previous bit
to this sum. And to compute the bit j in c = m2 mod n, where n = 2k − 1, we
have to add bits j and j + k of m2, along with their carries.

The final SQUASH algorithm is:

Set c = 0, m = NLFSR(R⊕ S)
for j = 600 to j = 647

c =
∑1276

v=0 mv.m(j−v mod k) + c
cj = c0

c = b c
2
c

Output the 32 bits c616, ..., c647

3 Implementation

3.1 The parameters

In SQUASH, different parameters have to be fixed. They are the modulus n = 2k−1,
the nonlinear feedback shift register, the size of the inputs and the size of the outputs.

The modulus n. As described in section 2.2, we chose n = 21277 − 1, as suggested in
[1], but it is not the only interesting Mersenne number 2k − 1. Alternatives like
21061 − 1 and 21237 − 1, both composite numbers not yet factorized, could have
been used.

The NLFSR. Another important parameter to fix is the form of the nonlinear feed-
back shift register. A linear shift register cannot be used because a polynomial-
time attack exists3 when the short mixed value R ⊕ S is expanded by a linear
feedback shift register, and then squared modulo n = pq. For the implementa-
tions, we chose a nonlinear feedback shift register with a feedback function of this
form:

f(x1, ..., xn) = g(x1, ..., xn)⊕ x1.x2...xn−1,

where g(x1, ..., xn) is a feedback polynomial of the same-size maximum-length
linear shift register, and x is NOT(x). A NLFSR with this feedback function
f(x1, ..., xn) is a maximum-length NLFSR [3].

The size of the inputs and the outputs. In [1], Shamir suggests to use a 64 bit-
length input and a 32 bit-length output, but we chose to be more flexible on the
size of the inputs and the outputs. The scalable behavior of the output is very
simple to get. We just have to compute more bits in the window of c. It does not
require more hardware resources (except the size of the counter that counts the
number of bits in the window of c computed), just more computation time. We
implemented SQUASH with output sizes of 32, 64 and 128 bits. Smaller outputs
would result in a too weak security level and larger outputs are probably not
necessary for RFID applications.

Changing the size of the inputs implies more changes in the architecture. Indeed,
the construction of the nonlinear feedback shift register directly depends on the
size of the inputs. However, the remainder of the architecture is the same because
the goal of the nonlinear shift register is to produce the number to be squared.
We implemented SQUASH with two input sizes: 64 and 128 bits. This choice
was guided by the same considerations as the size of the outputs: smaller inputs
would give unacceptable security levels (in the case of a 32-bit length input, the
complete response of the hash function can be tabulated with only 4.3 × 109

entries) and bigger inputs would make no sense in the context of RFID.

3Developed by Serge Vaudenay in a private communication [1].

3.2 Architecture

The operative part of SQUASH includes on the one hand the nonlinear feedback
shift registers and on the other hand the 12-bit adder. The nonlinear feedback shift
registers provide the bits of m used for the multiplication, and the 12-bit adder com-
putes the sums used for the multiplication and the reduction (see section 2.2). The
1-bit multiplier is just the logic operator AND.

The multiplications are computed by convolution: cj =
∑1276

v=0 mv.m(j−v mod 1277) +
carry. To achieve this convolution, we use two nonlinear feedback shift registers. The
first NLFSR has to provide the bits of m in the forward direction, from m0 to m1276;
and the second NLFSR in the backward direction, from m1276 to m0. When the first
NLFSR delivers m1276, the next delivered bit must be m0. In the same way, when
the second NLFSR delivers m0, the next delivered bit must be m1276. To implement
this jump in the succession of the bits of m avoiding an unreasonable increase of the
execution time, we use a third register. It stores the state m0 or m1276 and provides
the state required by one or the other shift register. This is illustrated by Figure 1.

k-1

0

k-1

0

k-1

0

600

State of the

State of the

State kept in
auxiliary register

shift register 2

shift register 1

601 602

Time

Time

Time

Second
convolution

Third
convolution

First
convolution

Figure 1: The state of the registers during the convolutions.

Shift register 1 starts at m0. Shift register 2 starts at m600. The auxiliary register
is in the state m1276. When the computation of the convolution begins, the first shift
register increases and the second one decreases. When shift register 2 reaches m0, the
auxiliary register provides the state m1276 and stores the state m0 given by the second
shift register. This state m0 will be given at the first shift register, and so on.

For the first convolution, the first shift register must give m0, the second one m600

and the auxiliary register must be at m1276. However, at the beginning of the execution,
the only available state is m0 (remember that m is generated by the nonlinear feedback
shift register, whose seed is R⊕ S). An initialization phase is consequently required:

1. Load R⊕ S in the three registers.

2. Shift the first nonlinear feedback shift register 1276 times forward. Then, it will
be at the state m1276.

3. Load m1276 in the second nonlinear shift register, and swap the contents of the
first nonlinear feedback shift register and the auxiliary register. Now, the shift
register 1 has the state m0 and the two other registers the state m1276.

4. Shift the nonlinear feedback shift register 2 backward to get m600. Then, the first
shift register has m0, the second m600 and the auxiliary register m1276.

5. The initialization phase is finished. The second shift register can go on shifting
backward, and the first one starts shifting forward, as shown in figure 1.

To perform the addition, a 12-bit adder is used (Figure 2). The adder adds the
products mi.mj−v comming from the NLFSR’s. The counter counts the additions in the

convolution
∑1276

v=0 mv.m(j−v mod 1277) +carry. When a new convolution starts, the least
significant bit of the result of the previous convolution can be sent and the right-shifted
result of the previous convolution is the new carry into the new convolution.

Counter
0others

c0

mimj−v

>>>

Figure 2: Architecture of the adder.

Finally, the control part of the algorithm is based on counters. Each nonlinear
feedback shift register has a counter memorizing the state in which they are. Simple
tests on those counters give the load and the shift instructions for the registers.

4 Results

Implementation results were achieved for the XC4VLX200 Xilinx Virtex4 LX FPGA,
with the lowest speedgrade. ISE 9.1i was used for synthesis and place & route while
test/debug was performed with Modelsim SE 6.1d. SQUASH was implemented with
different parameters. The sizes of the inputs are 64 or 128 bits (it means that the secret
S and the challenge R have to be 64- or 128-bit long), and the sizes of the outputs are
32, 64 or 128 bits. Tables 1 and 2 present our implementation results from which the
following observations can be highlighted:

1. First, the size of the outputs only influences the execution time. Indeed, to get
one more bit in output, SQUASH just needs to compute one more convolution,
so 1277 clock cycles. Moreover, for each full execution of SQUASH, a fixed

initialization phase4 of 22,386 clock cycles is required, regardless of the size of
the inputs and the outputs. The bit rate in table 1 includes this initialization
phase.

2. By contrast, the size of the inputs influences the hardware cost. On a Xilinx
Virtex4 FPGA, SQUASH requires approximately 400 slices when the input is
64-bit long and 700 slices when it is 128-bit long. The difference comes from the
larger shift register used when the input is 128-bit long. Table 2 also mentions
the number of gates, but these numbers strongly relate to the target FPGA.
Therefore, they do not represent the number of gates needed to make an ASIC
like a real RFID tag. In such a device, we can reasonably expect that there will
be fewer gates. So, this number can be used as an upper bound of the number of
gates, to compare with other implementations. SQUASH requires between 6,000
and 7,000 gates for a 64-bit long input, and between 11,000 and 13,000 gates for
a 128-bit long input.

Input size Output size Frequency # clock cycles Execution time Bit rate
bits # bits MHz (full execution) ms bit/s

64 32 222 63,250 0.285 112,300
64 64 217 104,114 0.479 133,400
64 128 208 185,842 0.893 143,300
128 32 222 63,250 0.285 112,300
128 64 212 104,114 0.491 130,300
128 128 206 185,842 0.902 141,900

Table 1: Timing results.

Input size Output size # registers # slices # gates Frequency
bits # bits MHz

64 32 252 377 6,303 222
64 64 254 378 6,328 217
64 128 258 425 7,089 208
128 32 451 613 11,237 222
128 64 452 619 11,293 212
128 128 469 756 12,920 206

Table 2: Hardware resources needed.

Finally, these results can be compared with the hardware costs of standard cryp-
tographic algorithms. In [5], a very small hardware implementation of the Advanced
Encryption Standard AES is presented. It is optimized for low-resource requirements,
like RFID tags and requires 3400 gates. In [6], a strong symmetric authentication us-
ing AES is presented. This implementation requires 3600 gates. Compared with those
two implementations, SQUASH shows a higher implementation cost. But it is to be
traded with its interesting security properties. Additionally, ASIC implementations
of SQUASH would certainly give rise to lower gate counts. As a matter of fact, the
present FPGA implementation is a only first prototype purposed to obtain intuitions
on the performances of SQUASH.

4The initialization phase includes the initialization of the shift registers (section 3.2) and the
computation of the 16 guard bits (section 2.2).

5 Conclusion

This work presents an FPGA implementation of the SQUASH algorithm. The
motivation was to assess hardware cost of this algorithm designed for low-cost RFID
tags. This kind of device has between 1,000 and 10,000 gates. We can reasonably
devote one quarter of those resources to the security; it means 250 to 2,500 gates
for the biggest tags. Our implementation of SQUASH requires at most 6,000 gates.
It is an upper bound, because this number represents the gates used in the FPGA
(as discussed in section 4). Currently, it seems too much for low-cost RFIDs, but
it gives some encouraging perspectives. On the one hand, we can reasonably expect
doing better with an ASIC implementation. On the other hand, SQUASH relies on
a well investigated mathematical problem, which consequently gives better confidence
in its security. Indeed, although SQUASH itself is not provably secure, it is based
on a construction (SQUASH without the NLFSR) that is proved to be as secure as
Rabin’s scheme. In [1], Shamir argues that the NLFSR is probably a good choice to
complete the construction. We followed this suggestion. However, it should be noted
that another function could be used with limited impact on the hardware cost if the
NLFSR exhibits weaknesses.

References

[1] Adi Shamir, SQUASH - A New MAC With Provable Security Properties for Highly
Constrained Devices Sush As RFID Tags, Proc. Fast Software Encryption - FSE
2008, Lausanne, Switzerland, February 2008

[2] Michael Rabin, Digitalized Signatures and Public-Key Functions as Intractable as
Factorization, Massachusetts Intitute of Technology, Laboratory for Computer Sci-
ence, TR-212, January 1979

[3] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of
Applied Cryptography, CRC Press, August 2001, pp. 202-203.

[4] Xilinx, Inc., Virtex-4 User Guide, available at www.xilinx.com.

[5] Martin Feldhofer, Johannes Wolkerstorfer and Vincent Rijmen, AES Implementa-
tion on a Grain of Sand, IEE Proc., vol. 152, no. 1, Oct. 2005, pp. 13-20.

[6] Martin Feldhofer, Sandra Dominikus and Johannes Wolkerstorfer, Strong Authen-
tication for RFID Systems Using the AES Algorithm, Proc. Workshop on Crypto-
graphic Hardware and Embedded Systems - CHES 2004, Cambridge (Boston), Ma.,
USA, Springer, vol. 3156, August 2004, pp. 357-370.

[7] Thomas Eisenbarth, Sandeep Kumar, Christof Paar, Axel Poschmann and Leif
Uhsadel, A Survey of Lightweight-Cryptography Implementations, IEEE Design &
Test of Computers, vol. 24, no. 6, November 2007, pp. 522-533.

[8] Steve Babbage, Dario Catalano, Carlos Cid, Louis Granboulan, Tanja Lange, Arjen
Lenstra, Phong Nguyen, Christof Paar, Jan Pelzl, Thomas Pornin, Bart Preneel, Vin-
cent Rijmen, Matt Robshaw, Andy Rupp, Nigel Smart and Michael Ward, ECRYPT
Yearly Report on Algorithms and Keysizes (2006), D.SPA.21 Rev. 1.1, January 2007.

