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Abstract. The power consumption and electromagnetic radiation are
among the most extensively used side-channels for analyzing physically
observable cryptographic devices. This paper tackles three important
questions in this respect. First, we compare the effectiveness of these
two side-channels. We investigate the common belief that electromag-
netic leakages lead to more powerful attacks than their power consump-
tion counterpart. Second we study the best combination of the power
and electromagnetic leakages. A quantified analysis based on sound in-
formation theoretic and security metrics is provided for these purposes.
Third, we evaluate the effectiveness of two data dimensionality reduction
techniques for constructing subspace-based template attacks. Selecting
automatically the meaningful time samples in side-channel leakage traces
is an important problem in the application of template attacks and it usu-
ally relies on heuristics. We show how classical statistical tools such as
Principal Component Analysis and Fisher Linear Discriminant Analysis
can be used for efficiently preprocessing the leakage traces.

1 Introduction

Power Analysis Attacks have been introduced in the late nineties as a power-
ful cryptanalytic technique to extract secret data from cryptographic hardware
devices [12, 13]. Shortly after, the ElectroMagnetic (EM) radiation of a chip ap-
peared as an alternative source of physical leakages [8, 16]. Since the publication
of these seminal papers, different lines of research have been followed, mainly
ranging between attempts to prevent and counteract side-channel attacks and
attempts to develop their understanding and discuss their optimality.

For example, Template Attacks (TAs) were introduced in [7] as the most pow-
erful type of side-channel attack from an information theoretic point of view. TAs
assume a probabilistic noise model for the leakages and use maximum likelihood
as a similarity measure between actual leakage traces and their key-dependent
predictions. Because of computational restrictions, TAs usually rely on heuristics
in order to determine the leakage samples for which a model will be estimated.
A more systematic approach is to use dimensionality reduction techniques for
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this purpose. Assuming that the information content of a leakage trace resides
mainly at the time instants of maximum variability, Principal Subspace Tem-
plate Attacks (PSTAs) have been introduced in [4]. Principal Component Anal-
ysis (PCA) [11] is then used to find the linear transformation that maximizes the
inter-class distance when projecting the data into a low-dimensional subspace.
Finally, Multi-Channel Attacks (MCAs) [2] exploit similar statistical techniques
as TAs, but utilize simultaneously several side-channels like power and EM.

In parallel to these algorithmic advances, a number of practical experiments
have been conducted and underlined the advantages of EM attacks compared
to power analysis. For example, the ability to carefully position a small probe
in the near field of a chip and to defeat certain countermeasures against power
analysis attacks has been exhibited [1]. More recently, the exploitation of better
leakage models than the usual Hamming weight/distance ones by monitoring
the EM field sign has been detailed in [14]. Such improved models involve the
improvement of non-profiled side-channel attacks, e.g. using the correlation co-
efficient [6]. They suggest that the EM leakage of a chip generally provides the
adversary with more information than the power consumption of the same chip.

In this paper, we first intend to take both the comparison of the power and
EM leakages and their combination one step further. For this purpose, we use
different types of template attacks to evaluate the information theoretic and
security metrics introduced in [18]. We apply these tools and metrics to an
exemplary leaking implementation and bring a quantified confirmation of the
previous intuitions: when accessible, near-field EM measurements provide more
information than power leakages. Our results also demonstrate that the real
power and EM channels are significantly more informative than their idealized
models based on Hamming weights/distances (or even signed distances [14]).
Similarly, we confirm the advantages of a multi-channel approach in which one
channel is used to correct/improve the weaknesses of the other one.

In addition, we take advantage of the available power and EM measurements
to compare different data dimensionality reduction techniques. PSTAs are very
powerful in practice since a “small sample size” PCA can be applied in cases
where there are much more time samples in the traces than key classes in the
attack. But PSTAs only maximize the variance between average traces (each
trace corresponding to a key class candidate) without considering the intra-class
scatter. Hence, the resulting subspace might be suboptimal. Fisher’s Linear Dis-
criminant Analysis (LDA) [10] is more appropriate with this respect. LDA seeks
the subspace that maximizes the ratio between inter-class and intra-class scatter.
It finds the subpace in which the average traces are maximally separated, while
minimizing the spread of the individual traces within their respective classes.

The rest of this paper is structured as follows. Section 2 describes our target
implementation. Section 3 defines the evaluation metrics for the analysis of our
experiments. Section 4 describes the PCA- and LDA-based template attacks.
Experimental results are presented in Section 5 and conclusions are in Section 6.
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2 Target implementation

Our target device for the following experiments is a PIC 16F877 8-bit RISC-
based microprocessor. Our measurements exploit the setup described in [14].
The microchip was clocked at a frequency around 4 MHz. We monitored the
power consumption by inserting a small resistor at the ground pin of the device.
The value of the resistor was chosen so that it disrupts the voltage supply by at
most 5% of its reference. In order to get accurate near field EM measurements,
the chip was depackaged following the guidelines given in [3]. We monitored the
EM leakages with a small hand-made loop probe that was soldered on a coax
mounted on a SMA connector. The signal was then amplified with a large band,
low noise pre-amplifier and sampled with a 1 GHz bandwidth oscilloscope.

Since the primary goal of this paper is to evaluate the effectiveness of the
power consumption and EM side-channels and to discuss their relation with
different leakage models, we did not directly target a cryptographic algorithm.
Rather, we programmed the microchip so that it processed all the possible 4-bit
transitions in order to determine the extent to which these transitions could be
recovered through physical observations. That is, we targeted the 256 possible
transitions between two 4-bit values x1 and x2 on the bus. Considering 4-bit
(rather than 8-bit) transitions was justified by the need to keep a reasonable
number of transitions (hence, templates) under investigation. In practice, recov-
ering a transition through side-channel measurements can be straightforwardly
exploited e.g. to recover the secret key of a block cipher. This is similar to re-
covering, e.g. the Hamming weight of a key dependent intermediate value after
the application of a substitution box. Consequently and for simplicity, we will
denote each 4-bit transition as a a key class s in the rest of the paper.

3 Evaluation metrics

Following the framework introduced in [18], we will evaluate our different exper-
iments with a combination of information theoretic and security metrics.

Information theoretic metric. Let S be a discrete random variable indicating
the target key class associated to a side-channel attack and s be a realization of
this variable corresponding to one particular transition x1 → x2 on the bus. Let
Lq be a random vector denoting the side-channel observations generated with q

queries to the target physical computer and lq = [l1, l2, . . . , lq] be a realization
of this random vector. Let finally Pr[s|lq] be the conditional probability of a key
class s given a leakage lq. We first define a conditional entropy matrix as:

H
q
s,s∗ = −

∑

lq

Pr[lq|s] · log2 Pr[s∗|lq], (1)

where s∗ denotes a possible key class candidate in the attack. Second, we derive
Shannon’s conditional entropy as follows:

H[S|Lq] = −
∑

s

Pr[s]
∑

lq

Pr[lq|s] · log
2
Pr[s|lq] = E

s
Hq

s,s,
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where E denotes the mathematical expectation and Pr[s|lq] is derived from the
Bayes law. We note that this definition is equivalent to the classical one since:

H[S|Lq] = −
∑

lq

Pr[lq]
∑

s

Pr[s|lq] · log2 Pr[s|lq]

= −
∑

s

Pr[s]
∑

lq

Pr[lq|s] · log2 Pr[s|lq]

Then, we define an entropy reduction matrix: H̃
q

s,s∗ = H[S]−H
q
s,s∗ , where H[S]

is the entropy of the key class variable S before any side-channel attack has been
performed: H[S] = Es − log

2
Pr[s]. It directly yields the mutual information:

I(S;Lq) = H[S] − H[S|Lq] = E
s

H̃
q

s,s (2)

Security metric. We consider a side-channel key recovery adversary of which
the aim is to guess a key class s with non negligible probability. For this purpose
and for each candidate s∗, he compares the actual observation of a leaking device
lq with some key dependent model for these leakages M(s∗, .). The construction
of these models (otherwise said templates) will be detailed in the next section.
Let T(lq, M(s∗, .)) be the statistical test used in the comparison. We assume that
the highest value of the statistic corresponds to the most likely key candidate. For
each observation lq, we store the result of the statistical test T in a vector gq =
T(lq, M(s∗, .)) containing the key candidates sorted according to their likelihood:
gq := [g1, g2, . . . , g|S|] (e.g. in our present context |S|=256). Then, for any side-
channel attack exploiting a leakage vector lq and giving rise to a result gq, we
define the success function of order o against a key class s as: S

o
s(gq) = 1 if

s ∈ [g1, . . . , go], else S
o
s(gq) = 0. It directly leads to the oth-order success rate:

Succo
S = E

s
E
lq

S
o
s(gq) (3)

Intuitively, a success rate of order 1 (resp. 2, . . . ) relates to the probability that
the correct key is sorted first (resp. among the two first ones, . . . ) by the ad-
versary. From a theoretical point of view, the information theoretic metric is
purposed for the comparison of different implementations. It is therefore conve-
nient to compare different side-channels and is central in the present analysis. A
security metric is additionally provided for discussion (but we do not consider
all the success rate orders and the guessing entropy defined in [18]).

4 Statistical tools

In this section, we present the different tools that will be used to extract the
side-channel information from the actual observations of our target device. We
first describe a classical template attack as it is the strongest form of side-channel
attack from an information theoretic point of view. Hence, it provides the best
way to evaluate the information theoretic metric of the previous section. Then
we discuss how to solve the main practical problem that arises in the application
of template attacks, namely the automatic selection of meaningful samples in a
leakage trace. For this purpose, we propose to use PCA or LDA.
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4.1 Template attacks

Templates construction. Suppose that an adversary is provided with Nt leak-
age vectors for a given operation, e.g. the transition between two values x1 → x2

on the bus of a microchip represented by a key class s. In template attacks, a mul-
tivariate Gaussian noise model is generally considered, which means that these
vectors {ls,i

q }Nt

i=1
are assumed to be drawn from the multivariate distribution:

N (ls,i
q |µs, Σs) =

1

(2π)
N
2 |Σs|

1

2

exp

{
−

1

2
(ls,i

q − µs)
⊤

Σ
−1

s (ls,i
q − µs)

}
,

where the mean µs and the covariance matrix Σs specify completely the noise
distribution associated to each key class s. Constructing the templates consists

then in estimating the sets of parameters {µs}
|S|
s=1

and {Σs}
|S|
s=1

. A standard
approach is to use the empirical mean and covariance matrix associated to the
observations {ls,i

q }Nt

i=1
: µ̂s = 1

Nt

∑Nt

i=1
ls,i
q , Σ̂s = 1

Nt

∑Nt

i=1
(ls,i

q − µ̂s)(l
s,i
q − µ̂s)

⊤.

Attack. Assume now that there are |S| possible secret key classes. In order
to determine by which secret signal a new vector lnew was generated, we apply
Bayes’ rule. This leads to the following classification rule:

s̃ = argmax
s∗

P̂r[s∗|lnew] = argmax
s∗

P̂r[lnew|s
∗] Pr[s∗], (4)

where P̂r[lnew|s∗] = N (lnew|µ̂s∗ , Σ̂s∗) and Pr[s∗] is the prior probability of the
class candidate s∗. The classification rule assigns lnew to the candidate s∗ with
the highest posterior probability. In general, we have Pr[s∗] = 1

|S| .

Limitations. Although template attacks are theoretically the strongest ones,
computational issues arise in their application. Mainly, the number of samples
N per leakage trace can be very large which prevents the direct computation of a
leakage covariance matrix. As a consequence, a number of heuristics are usually
deployed in order to reduce the dimensions of the traces before the construction
of the templates. In summary, the first template attacks (e.g. in [7]) selected the

time samples showing the largest difference between the mean traces {µ̂s}
|S|
s=1

as-
sociated to the classes [1, 2, . . . , s]. The PCA-based attacks [4] that are described
below were suggested as a way to improve and automatize this process.

4.2 PCA-based template attacks

Consider the 256 mean (power and EM) traces associated to the 256 possible
transitions x1 → x2 on the microchip bus that are represented in Figure 1. PCA
can be applied in order to find a single linear transform that maximizes the inter-

class variance between these different empirical mean traces {µ̂s}
|S|
s=1

associated
to the classes [1, 2, . . . , s]. PCA looks for the first principal directions {wm}Nc

m=1

such that N ≥ Nc and which form an orthonormal basis of the Nc-dimensional
subspace capturing maximal variance of {µ̂s}

|S|
s=1

. It can be shown [11] that the
principal directions are the eigenvectors U of the empirical covariance matrix:
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Fig. 1: Average power and EM traces.

S̄ =
1

|S|

|S|∑

s=1

(µ̂s − µ̄)(µ̂s − µ̄)⊤, S̄ = U∆U⊤.

The quantity µ̄ = 1

|S|

∑|S|
s=1

µ̂s is the average of the mean traces. The principal

directions {wm}Nc

m=1
are the columns of U corresponding to the Nc largest eigen-

values of ∆. We denote these eigenvalues by the diagonal matrix Λ ∈ IRNc×Nc

and the corresponding matrix of principal directions by W ∈ IRN×Nc .

In order to built principal subspace templates, we simply estimate the pro-

jected means {νs}
|S|
s=1

and the covariance matrices of the projected traces along

the (retained) principal directions {Λs}
|S|
s=1

. These parameters are given by:

νs = W⊤µ̂s, Λs = W⊤Σ̂sW.

As in standard template attacks, the noise model is a multivariate Gaussian
distribution. However, the number of principal directions Nc is much smaller
than N . In practice, a direction can be considered as not being principal if the
associated eigenvalue is small compared to the largest one.

Then, in order to classify a new trace lnew, we apply Bayes theorem in the
principal subspace of the empirical means which leads to the following rule:

s̃ = argmax
s∗

P̂r[W⊤lnew|s
∗] Pr[s∗], (5)

with (as in classical template attacks) P̂r(W⊤lnew|s∗) = N (W⊤lnew|νs∗ , Λs∗).

Properties and Limitations. PSTAs improve simple heuristics selecting time

samples according to the variance between the mean traces {µ̂s}
|S|
s=1

because
they first project the traces in a subspace where these variances are maximized.
Additionally, they have the significant advantage of having a “small sample size”
variant (see [4] for details), which is particularly useful in contexts where there
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are much more time samples in the traces than key classes in the attack. How-
ever, PSTAs do not consider the intra-classes variance which may theoretically
result in poor classification performances. A natural extension (described in the
next section) is to exploit LDA [5, 10], which allows projecting the traces in a
subspace that maximizes the ratio between the inter- and intra-class variance.

4.3 LDA-based template attacks

Instead of seeking the directions maximizing the variance of the mean traces, it is
intuitively more appropriate to seek for the directions {w̃m}Nc

m=1
that maximize

the ratio between the inter-class scatter SB and the total intra-class scatter SW

after projection. That is, to maximize the objective: w̃
⊤
SBw̃

w̃⊤SW w̃
, where:

SB =

|S|∑

s=1

Nt(µ̂s − µ̄)(µ̂s − µ̄)⊤,

SW =

|S|∑

s=1

Nt∑

i=1

(ls,i
q − µ̂s)(l

s,i
q − µ̂s)

⊤.

Note that these quantities are equal to covariances up to multiplicative constants
that do not play a role in the subsequent derivation. Since SB is positive definite
and symmetric and since w̃ is scale invariant, the maximization problem can be
replaced by the following eigendecomposition:

S
1/2

B S−1

W S
1/2

B = Ũ∆̃Ũ⊤,

where SB = UB∆BU⊤
B → S

1/2

B = UB∆
1/2

B U⊤
B. The projection directions are

subsequently given by Ṽ = S
−1/2

B Ũ. We denote the directions corresponding to

the Nc largest eigenvalues of ∆̃ as {w̃m}Nc

m=1
and stack them in a projection

matrix W̃ ∈ IRN×Nc . The templates are then constructed as in PSTAs, but in
the subspace obtained by LDA. Therefore and as previously, the parameters of
the multivariate Gaussian noise model are given by:

ν̃s = W̃⊤µ̂s, Λ̃s = W̃⊤Σ̂sW̃.

Finally, the attack is also performed in the same way as in PSTAs, i.e. by

applying (5), but using the projection matrix W̃ found by LDA, as well as the

projected means {ν̃s}
|S|
s=1

and the projected covariances {Λ̃s}
|S|
s=1

.

Properties and Limitations. While PSTAs can perform well in practice,
LDA-based TAs (LDTAs for short) optimize an objective function which is more
meaningful. Its limitation arises from the fact that we have to compute the (total)
intra-class scatter matrix, which becomes singular when the number of traces Nt

is smaller than the number of time samples in the traces N . Hence, for very long
traces, one needs to take a lot of measures which may be a practical issue. Also,
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the resulting matrices have to be computed and stored which may be another
issue. In other words, LDA is not suitable in the “small sample size” case in
contrast to PCA. But this is not always a problem since side-channel traces can
be reasonably short (as in the next section). And when they are not, they can
always be divided into several pieces or preliminarily reduced by heuristics or
PCA. In summary, LDTAs bring another tradeoff to the side-channel toolbox:
they optimize a more meaningful criteria at the cost of more constraints on the
size and amount of measurements performed by the adversary.

5 Experimental results

In this section, we present our experimental results for which we used the follow-
ing parameters. For each of the 256 possible transitions on the bus, we generated
simultaneously 1000 traces (such as those illustrated in Figure 1). Among those
traces, Nt=500 were used for the construction of the PCA-based and LDA-based
templates. The remaining 500 traces were used for testing the templates and eval-
uate the information and security metrics of Section 3. From these experiments,
we detail both the comparison of the PCA and LDA dimensionality reductions
and the comparison/combination of the power and EM side-channels. Note that
for the combination of the power and EM leakages, we simply use straightfor-
wardly concatenated traces containing an EM leakage followed by a power one,
as initially suggested in [2]. This leads to 800-sample traces that are illustrated
in Figure 2. In order to keep N < Nt, we simply rejected one every two samples.

5.1 PCA versus LDA

Selection of the time samples. Before detailing the information theoretic
and security metrics, an intuitive way to analyze the behavior of the PCA and
LDA is to observe how they select the meaningful time samples in the traces.
For this purpose, it is convenient to plot the eigenvectors of the transforms, as
in Figures 3 and 4 for the power + EM combination.

It yields the following observations:

1. In Figure 3, the eigenvectors corresponding to the first three components of
the PCA and LDA are pictured. They clearly show that the EM leakage is
dominating in the first component while the power one comes as a backup
in the second component. The same figure shows that PCA and LDA select
time samples in a similar (and intuitive) way. Namely, they select the points
where most of the variability occurs in the curves.

2. In Figure 4, the same eigenvectors are pictured for the last three compo-
nents of the PCA and LDA. They confirm the expectation that these last
components mainly (only) contain noise and therefore can be discarded. In-
terestingly, these figures show a clear difference between the PCA and LDA.
While the noise is uniformly distributed in the PCA eigenvectors, there is a
significant absence of noise in the (intuitive) regions of interest for the LDA.
This suggest a possibly better information extraction for LDTAs.
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Fig. 2: Average combined power and EM traces.
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Fig. 3: Eigenvectors for the combined power and EM leakage, first three components.
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Fig. 4: Eigenvectors for the combined power and EM leakage, last three components.
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Figures 6 and 7 in appendix represent the same eigenvectors for the power and
EM channels taken independently. They highlight similar intuitions. Note that
the dominance of the EM channel in the first component of the combined power
and EM eigenvectors already suggest that EM leakages are the most informative.

Entropy scores. Let H1

s,s∗ be the entropy matrix defined in Section 3, Equa-
tion (1), where the superscript 1 comes from the fact that we classify the different
transitions on the bus based on single traces (or queries). From the estimated
probability distributions P̂r[l1|s] that are provided by the PCA- or LDA-based
templates and the set of 500 traces to test these templates, one can derive an

estimation Ĥ
1

s,s∗ of this matrix. We say that a leakage model is (i.e. that our
templates are) sound if for each line of the estimated entropy matrix (corre-
sponding to a key class or transition s), the minimum value occurs for s∗ = s.
The entropy score is simply the fraction of key classes for which this condition is
respected. As demonstrated in [18], it corresponds to the faction of key classes
for which a Bayesian side-channel attack will be be asymptotically successful.

The entropy scores of the power, EM and power + EM template attacks
exploiting both the PCA and LDA are represented in Figure 5. A first observa-
tion from these pictures is that none of these channels leads to a 100% entropy
score. This is natural since we do not aim to perform a real attack but to eval-
uate the effectiveness of different side-channels. Similarly, e.g. in the Hamming
weight leakage model, some key classes will remain undistinguishable (i.e. those
corresponding to the same Hamming weight values). But since in a real attack,
each actual key class (that are not transitions as in this paper but real parts of
e.g. a block cipher key) can be identified thanks to all the transitions possibly
generated by different input plaintexts, a practical attack will be successful.

More importantly, these pictures exhibit (as expected) that the best entropy
score occurs for the power + EM channel, followed by the EM and the power
channels. They also highlight that LDTAs lead to (slightly) better results than
PSTAs, in particular for the combination of the power and EM channels.
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Fig. 5: Entropy scores for the PCA and LDA.
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Figure 8 in appendix shows a similar evaluation of the success rates. Inter-
estingly, they do not reach as high values as the entropy scores. This follows
the theoretical expectation that success rates do not measure the quality of an
implementation (nor the information leakage of a side-channel) but the effec-
tiveness of an adversary. Again, the combination of several leakages would lead
to higher success rates. Under the conditions discussed in [18], the more infor-
mation leaked (measured with the conditional entropy defined in Section 3), the
faster a Bayesian adversary exploiting a sound leakage model will converge to-
wards a 100% success rate. Note that even if the success rates are lower than
the entropy scores, they underline that the EM side-channel leads to extremely
powerful attacks. Indeed, even the leakage of a single clock cycle leads to a non
negligible success rate in the recovery of the transitions on the bus.

Entropy values. Since as previously mentioned, less entropy in the traces in-
volves (under certain conditions) a more efficient Bayesian side-channel attack,
this section finally provides the conditional entropy values extracted from the
leakage traces for both the PCA- and LDA-based templates and different num-
ber of components. They are summarized in Table 1.

It yields the following observations:

1. This table confirms all the previous conclusions. Namely, LDA leads to a
better information extraction than PCA; the EM channel is significantly
more informative than the power one; and the combination of both channels
(i.e. power + EM) leads to the most powerful type of attack.

2. The lowest conditional entropy values and the maximum entropy scores do
not occur for the same number of components (although they are strongly
correlated). This highlights that there exist situations where more key classes
can be asymptotically recovered, but reaching a 100% success rate will be
slower than in a context where less classes can be asymptotically recovered.

3. Compared to previous works on multi-channel or template attacks, this quan-
tified comparison is justified by theoretical statements on the evaluation
metrics. Therefore, it is expected that Table 1 provides the best possible
comparison of the information leakages for the different channels.

Table 1: Conditional entropy of the power, EM and power + EM traces.

Number of components 3 5 7

power (PCA) 4.62 4.49 4.57
power (LDA) 4.41 4.48 4.62

EM (PCA) 3.92 3.65 3.55
EM (LDA) 3.21 3.15 3.24

power + EM (PCA) 3.57 3.36 3.20
power + EM (LDA) 2.92 2.80 2.87
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5.2 Power versus EM, Power + EM

While comparing LDA and PCA in the previous section, most important quan-
titative analyzes and conclusions on the respective effectiveness of the power and
EM channels have already been drawn. However, one question that has not yet
been tackled is: “how far as these real leakages from the idealized (e.g. Hamming
weight) models that are frequently considered in the side-channel literature?”.

In order to answer this question, we can fortunately use the same framework
again. Let us start with the power channel for which a usual assumption is
to correlate it with the Hamming distances of the transitions on the bus. In
our present example, 5 possible Hamming distances can be observed (i.e. hd ∈
[0 . . . 4]) which leads to the following conditional entropy:

H[S|L1] = −
4∑

hd=0

24 ·

(
4
hd

)

28
· log2




1

24 ·

(
4
hd

)


 = 5.9694

This indicates that such a model is significantly less informative than a real
power consumption channel which would reduce the conditional entropy down to
4.41 in exactly the same context. Looking back at Figure 1, this simply means
that traces corresponding to the same Hamming distance HW (x1 ⊕ x2) can
actually be distinguished by a carefully profiled template adversary. Such traces
can be seen as included in one of the packets of curves in the figure.

A very similar analysis can be performed for the EM channel. Let us for ex-
ample take the signed distance model proposed in [14]. Such a model is purposed
to better incorporate the specificities of the EM channel since it allows to dis-
tinguish between x1 → x2 and x2 → x1 transitions. In practice, it means that 9
possible signed distances can be observed by the adversary (i.e. sd ∈ [−4, . . . , 4])
which leads to the following conditional entropy:

H[S|L1] = −
4∑

sd=−4

(
8

sd + 4

)

28
· log2

1(
8

sd + 4

) = 5.4558

While such a model is slightly more informative than the standard Hamming
distance model, it is again by far less informative than the real EM channel that
would reduce the entropy down to 3.15 in exactly the same context.

6 Conclusions

Following recent developments in physically observable cryptography, this paper
provides theoretical and practical insights in the analysis of the power and EM
side-channels and their efficient exploitation with powerful statistical tools.
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First, we use fair information theoretic and security metrics to evaluate and
compare these two side-channels. The resulting analysis demonstrates the sig-
nificantly higher information leakages of the EM channel when near field mea-
surements of a cryptographic chip are available.

Second, we propose the Linear Discriminant Analysis as an alternative to
the Principal Component Analysis for the best selection of the meaningful leak-
age samples in template attacks. We apply these tools to both the power and
EM channels as well as to their comparison in a multi-channel attack context.
The results show that Linear Discriminant Analysis is an interesting alternative,
bringing a better information extraction at the cost of more constraints in the
size and amount of measurements performed by a side-channel adversary. It is
therefore a very interesting tool to combine with Principal Component Analysis
in any practical application of the template attacks.

Finally, we compare the information leakages of the power and EM channels
with some idealized (e.g. Hamming weight) models used to predict these leak-
ages. Our results confirm that not only the distinguishers that usually exploit
these models (e.g. the correlation coefficient) are suboptimal, but also that the
models themselves are far less informative than the actual power and EM obser-
vations. This highlights the importance of template attacks when the provable
(or arguable) security of cryptographic implementations is discussed and the rel-
evance of strong models such as the noisy identity leakages introduced in [15] in
this context. In summary, if you are an adversary trying to recover the key of a
cryptographic device, Hamming weight (or similar) models can be useful. But if
you are a designer trying to convince that your cryptographic implementation
is secure against side-channel attacks, they are definitely not sufficient.

We note that these results only considered the application of PCA and LDA
to the original template attacks of [7]. However, these techniques could be simi-
larly applied to the stochastic models of [9, 17]. The direct use of templates in our
experiments was reasonable since we were not limited in the number of samples
to build the templates (due to our evaluation goal). But stochastic models could
be very efficient in more constrained contexts. Combining data dimensionality
reduction techniques with stochastic models is a scope for further research.
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Fig. 6: Eigenvectors for the power leakage, first three components.
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Fig. 7: Eigenvectors for the EM leakage, first three components.
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Fig. 8: Success rates for the PCA and LDA.
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