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Abstract. In this paper, we are concerned with the security of block
ciphers against linear cryptanalysis and discuss the distance between the
so-called practical security approach and the actual theoretical security
provided by a given cipher. For this purpose, we present a number of
illustrative experiments performed against small (i.e. computationally
tractable) ciphers. We compare the linear probability of the best linear
characteristic and the actual best linear probability (averaged over all
keys). We also test the key equivalence hypothesis. Our experiments
illustrate both that provable security against linear cryptanalysis is not
achieved by present design strategies and the relevance of the practical
security approach. Finally, we discuss the (im)possibility to derive actual
design criteria from the intuitions underlined in these experiments.
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1 Introduction

The linear cryptanalysis [15, 22] is one of the most powerful attacks against block
ciphers. However, although a number of commonly accepted strategies have been
developed to provide practical security against such adversaries (most famously,
the wide-trail strategy [6] that has been used for the design of the AES Rijn-
dael [7]), the foundations of these important techniques are mainly based on
a number of practically acceptable but theoretically disputable hypotheses. In
addition, actual solutions to counteract linear cryptanalysis are frequently based
on heuristics rather than on a sound theoretical framework allowing provable se-
curity. A significant reason for these practice-oriented approaches is the difficulty
of analyzing and understanding the statistical properties of linear approxima-
tions within actual block ciphers, which frequently results in computationally
intensive tasks. Another reason is the need of flexible and efficient solutions
for the practical instances of block ciphers targeted for real applications, which
does not always fit with elegant theoretical constructions. As a consequence, the
present state-of-the art in block cipher design is mainly based on a combination
of engineering principles led by reasonable theoretical guidelines.
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In this context, a good assessment of the hypotheses used for the evalua-
tion of linear cryptanalysis as well as a measurement of the distance between
actual constructions and theoretical expectations are of particular interest. For
this purpose, this paper intends to discuss certain important tools in present
block cipher design, in function of the traditional parameters : block cipher size
and number of rounds. Because of the previously mentioned theoretical difficul-
ties, we considered a number of experimental investigations, built upon small
ciphers (i.e. we considered computationally tractable block sizes). Then, from
these empirical observations, we aim to underline certain useful intuitions for
the understanding (and possibly the design) of block ciphers.

First, we designed experiments to evaluate the relevance of the use of charac-
teristics for arguing the security of a construction, i.e. we measured the distance
between theoretical and practical security (as defined by Knudsen in [17]). We
show experimental evidence that the theoretical security limits of a cipher essen-
tially depend on its block size. We also put forward that the practical security
approach does not relate to the existence of a linear attack with low data com-
plexity but to the difficulty of finding it. Second, we consider the key equivalence
hypothesis [13] and confirm that it is better fulfilled for large key sizes, as long
as the block cipher is reasonably designed. These experiments highlight another
aspect of the practical security approach: if the best linear approximation of a
given cipher is key-dependent, it can hardly be exploited by an actual adversary
(this fact is typically used in the decorrelation theory [33]). We finally illustrate
that the theoretical security bound of a block cipher is obtained when its linear
approximations are reaching a stationary area, in which adding a round to the
cipher is equivalent to changing the key. We discuss the (im)possibility to derive
practical design criteria for block ciphers from these observations.

Note that the authors of the paper do not claim the novelty of their conclu-
sions and acknowledge the tutorial nature of this work. As a matter of fact, our
experiments confirm a number of intuitive views that can be found in former
papers. However, we believe that such an experimental approach is useful for
the understanding of the complex mechanisms involved in linear cryptanalysis
and raises questions about the design criteria to counteract such attacks.

2 Target Ciphers and Notations

Typical (key alternating) block ciphers are the Substitution Permutation Net-
work (SPN) and the Feistel structure that are represented in Figure 1. According
to the usual terminology in use for block ciphers, their block size is n and number
of rounds is R. The SPN round is divided into a key addition (bitwise XOR) with
a round key Ki, ns substitution boxes (S-boxes) of size b and a linear diffusion
layer. The same round structure is used in the Feistel cipher as a non-linear func-
tion F . In the following, our experiments will only consider SPNs, but similar
investigations could be carried on with Feistel ciphers. The exact specifications of
the S-boxes and diffusion layer used in our experiments are given in appendix A.
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Fig. 1: Exemplary SPN and Feistel structures.

In general, the resistance of a cipher against linear cryptanalysis depends on
its non-linearity and thus the one of its components (e.g. the S-boxes). Several
definitions exist that capture the extent to which a Boolean mapping is non-
linear. We will use the linear probability [32].

Definition 1. Let F : {0, 1}n → {0, 1}n be a bijection and a,b be two masks
∈ {0, 1}n. If X ∈ {0, 1}n is a uniformly distributed random variable, then the
linear probability LP(a,b) is defined as

LP (a, b) = (2 · Pr
X
{a • X = b • F (X)} − 1)2, (1)

where • denotes the usual scalar product. If F is parametrized by a key K, we
write LP (a, b; K) and the expected linear probability ELP (a, b) is defined as:

ELP (a, b) = E
K

[LP (a, b; K)] (2)

3 Related Works

As a number of research papers on iterative block ciphers, our following results
assume independent round keys. We did not include the verification of this as-
sumption in our experiments since it has already been experimentally tested
by Knudsen and Mathiassen in [19]. They showed that the key schedule actu-
ally matters, but the conclusions drawn when independent round keys are used
should still reasonably hold with a good complex key schedule. Also, we only con-
sidered the Markov ciphers defined in [21]: a Markov cipher is a cipher for which
the linear (and differential) probabilities of different rounds are independent of
each other, assuming uniformly random keys.



In this section, we briefly summarize existing works related to the provable
and practical security of block ciphers against linear cryptanalysis. Let K̃ denote
the vector of subkeys {K1, K2, . . . , KR} used in the R rounds of a target block
cipher. Ideally, evaluating the security of the cipher against linear cryptanalysis
would require to compute the value:

max
a,b

LP (a,b; K̃) (3)

It directly yields the approximated data complexity of the attack [22], namely:

NL ≈
c

max LP (a,b; K̃)
, (4)

where c is a small constant value. Unfortunately, the direct computation of (3) is
generally infeasible, both for computational reasons and because of an unknown
key. As a consequence, research works on linear cryptanalysis are usually based
on two important assumptions. First, a common approximation to solve the
key dependencies problem is to compute the expected value ELP (a,b) and to
assume that for almost all values K̃, we have:

LP (a,b; K̃) ≈ ELP (a,b) (5)

Harpes et al. called this assumption the key equivalence hypothesis [13]. Us-
ing this hypothesis, a theory of provable security against linear cryptanalysis
has been developed. It notably gave rise to the design principles used in the
MISTY1 algorithm [23] or the CS cipher [32]. The main contribution of this
approach is to provide bounds on the expected linear probabilities of a cipher.
Its main limitation is the computational difficulty of finding tight bounds when
the number of block cipher rounds increases. As a consequence, a more practical
view of the security against linear cryptanalysis was developed in parallel, based
on a second assumption using the concept of characteristic.

Definition 2. A one-round characteristic for the round i is a pair of n-bit vec-
tors 〈ai, bi〉 respectively corresponding to the input and output masks for this
round. A R-round characteristic for rounds 1 . . . R is a (R + 1)-tuple of n-bit
vectors Ω = 〈a1,a2, . . . ,aR+1〉, where 〈ai,ai+1〉 respectively correspond to the
input and output masks for the round i.

Definition 3. Given a vector of independent subkeys K̃, the linear character-
istic probability and expected linear characteristic probability of a R-round char-
acteristic Ω are defined as1:

LCP (Ω, K̃) =

R
∏

i=1

LP (ai,ai+1, Ki) (6)

ELCP (Ω) =

R
∏

i=1

ELP (ai,ai+1) (7)



These definitions essentially state that for a Markov cipher and assuming inde-
pendent round keys, the probability of a R-round characteristic can be computed
as a product of 1-round characteristics probabilities. In order to ensure practical
security, a designer typically runs an algorithm to search the characteristic Ω̃
such that ELCP (Ω̃) is maximal and then assumes:

ELP (a,b) ≈ ELCP (Ω̃) (8)

Knudsen calls a block cipher practically secure if the data complexity deter-
mined by this method is prohibitive2 [17]. Obviously, such an approximation is
only valid to a certain extent and it may give rise to false intuitions. For ex-
ample, increasing the number of rounds always reduces the linear characteristic
probabilities while the actual expected linear probability of a cipher cannot be
decreased below a certain threshold, depending on its block size. In order to
avoid such an overestimation of the attack complexities, Nyberg consequently
introduced the concept of linear hull [24] that is defined as follows.

Definition 4. Given input and output masks a,b, the approximated linear hull
ALH(a, b) is the set of all R-round characteristics having a as input mask for
round 1 and b as output mask for round R.

Evaluating the linear hull effect was then another direction to derive provably
secure Markov ciphers against linear cryptanalysis, since :

ELP (a,b) =
∑

Ω∈ALH(a,b)

ELCP (Ω) (9)

However, similarly to other theories of provable security, the estimation of the
linear hulls hardly results on tight bounds when the number of ciphers rounds
increases [16]. In addition, Equation (9) still assumes the key equivalence.

Based on this short state-of-the art, the following sections aim to experimen-
tally and intuitively evaluate (1) the distance between practical and provable
security and (2) the validity of the key equivalence hypothesis. Thereafter, we
discuss the possibility to derive actual design criteria from empirical measure-
ments of the linear characteristics within block ciphers.

Note that various other works can be related to this line of research. For
example, Selçuk [31] tried to assess the pertinence of the practical security ap-
proach, with experiments similar to ours. However his work only deals with poor
diffusion layers and characteristics with few active S-boxes in the context of
Feistel networks. He also considers reduced versions of RC5, which is a totally
different cipher: it has no S-boxes, non-linearity comes from data-dependent ro-
tations. On the contrary, our experiments consider SPNs of various sizes with
good and bad diffusion layers. Selçuk also shows that trying to evaluate the lin-
ear probability of a linear approximation by means of statistical sampling (i.e.
by measuring the LP on a few plaintexts only) is not going to succeed.



The recent report of Daemen and Rijmen [8] investigates the statistical dis-
tributions of the fixed key linear probabilities LP (a,b, K̃) and notably show
that they have a Gamma distribution over the keys, with mean ELP (a,b). We
similarly focus on the key equivalence hypothesis and most of our experimental
results can be related to this framework. However, we put a stronger focus on
the distributions of maxa,b LP (a,b, K̃) (i.e. we don’t fix the input and output
masks but select the worst cases). In addition, our aim is to evaluate the in-
fluence of the block cipher parameters (i.e. block size, number of rounds) onto
these distributions. Finally, decorrelation theory [33] aims at preventing the use
of the key equivalence hypothesis in an attack. As a matter of fact, a decorrela-
tion module is a key-dependent transformation that makes the linear probability
(and differential probability) of a given approximation highly key-dependent, so
that any attack that chooses the input and output masks a priori will fail...
However, it does not prevent all kinds of linear and differential attacks [20] [34].

4 Specification of the Cipher Components

We use bijective S-boxes of sizes ranging from b = 4 to 8, with linear probabilities:

b 4 6 8
LP (2 · 1

4 )2 (2 · 3
16 )2 (2 · 1

8 )2

We use two types of diffusion layers: (1) an optimized transform with maximum
branch number [7] ns +1 denoted as M ; (2) a simpler wire crossing layer balanc-
ing the S-box output bits, denoted as C. From these definitions, we denote an
n-bit SPN using b-bit S-boxes and a diffusion layer D as SPND

n,b. In particular,
we consider the following sizes: SPN8,4, SPN12,4, SPN12,6, SPN16,4, SPN16,8.

5 Limitations of the Practical Security Approach

In order to evaluate the extent to which the practical security approach is mean-
ingful for actual block ciphers, we first computed the following quantities:

max
char

:= max
Ω

ELCP (Ω), (10)

max
hull

:= E
K̃

max
a,b

LP (a,b; K̃), (11)

for various SPNs. The results of these computations are summarized in Tables
1, 2 in which we can observe the following facts:

1. After a sufficient number of rounds, the average best approximation of a
given cipher (i.e. EK̃ maxLP ) only depends on its block size n (as long as
the cipher does not contain obvious weaknesses, e.g. does not contain any
linear approximation with probability one). Illustratively, our experiments
suggest that the average best linear probability of a 16-bit (resp. 12-bit)
cipher is 6.30 · 10−4 (resp. 7.44 · 10−3).



2. By contrast (and under the same conditions of “good cipher”) the probability
of the best characteristic goes on decreasing with the number of rounds R.

3. The number of rounds necessary for a given cipher to reach its minimum
EK̃ maxLP value depend on its S-boxes and diffusion properties. For ex-
ample, this limit value for EK̃ maxLP is faster achieved with 8-bit S-boxes
(resp. a good diffusion layer) than 4-bit ones (resp. a bad one).

4. We note that in some cases, the expected best linear probability becomes
greater when one more round is added. This effect is due to the important
linear hull effect, and is observable only for a small number of rounds.

Table 1: Comparison between the best expected linear characteristic probability and
the expected best linear probability for various SPNs with a bad diffusion layer.

2 × 4 3 × 4 2 × 6 4 × 4 2 × 8

# rounds maxchar maxhull maxchar maxhull maxchar maxhull maxchar maxhull maxchar maxhull

1 2.50 · 10−1 2.50 · 10−1 2.50 · 10−1 2.50 · 10−1 1.40 · 10−1 1.40 · 10−1 2.50 · 10−1 2.50 · 10−2 6.25 · 10−2 6.25 · 10−3

2 6.25 · 10−2 1.95 · 10−1 6.25 · 10−2 1.94 · 10−1 1.97 · 10−2 3.98 · 10−2 6.25 · 10−2 6.25 · 10−2 2.26 · 10−3 7.15 · 10−4

3 1.56 · 10−2 1.09 · 10−1 1.56 · 10−2 5.79 · 10−2 1.34 · 10−3 1.42 · 10−2 1.56 · 10−2 7.09 · 10−2 7.72 · 10−5 9.54 · 10−4

4 3.90 · 10−3 7.93 · 10−2 3.90 · 10−3 3.04 · 10−2 9.09 · 10−5 7.48 · 10−3 3.90 · 10−3 3.05 · 10−2 2.10 · 10−6 6.29 · 10−4

5 9.76 · 10−4 7.66 · 10−2 9.76 · 10−4 1.47 · 10−2 8.18 · 10−6 7.45 · 10−3 9.76 · 10−4 1.28 · 10−2 6.30 · 10−8 6.30 · 10−4

6 2.44 · 10−4 7.64 · 10−2 2.44 · 10−4 8.50 · 10−3 7.99 · 10−7 7.42 · 10−3 2.44 · 10−4 5.10 · 10−3 7.54 · 10−10 6.31 · 10−4

7 6.10 · 10−5 7.64 · 10−2 6.10 · 10−5 7.48 · 10−3 7.80 · 10−8 7.44 · 10−3 6.10 · 10−5 2.38 · 10−3 1.94 · 10−11 6.30 · 10−4

8 1.52 · 10−5 7.64 · 10−2 1.52 · 10−5 7.44 · 10−3 3.95 · 10−9 7.43 · 10−3 1.52 · 10−5 1.13 · 10−3 4.60 · 10−13 6.30 · 10−4

Intuitively, these experiments suggest that the linear hull effect increases with
the number of rounds R and is finally dominant as soon as the cipher is practi-
cally secure (according to Knudsen’s definition). Otherwise said, for practically
secure ciphers, the security bound (i.e. data complexity for a successful attack)
approximated with the best linear characteristic is no longer meaningful. These
experiments also underline that in theory and for a given cipher and key (i.e.
considering the cipher as an n-bit S-box), a low data complexity linear crypt-
analysis is always possible (i.e. a data complexity lower than 2n). For example,
our 16-bit ciphers include (on average) an approximation with linear probability
6.30 · 10−4 that would give rise to an attack of approximated data complexity
210.6. However, this does not mean that the practical security approach is not
good for designing ciphers. As a matter of fact, the practical security approach
is not aimed to prevent the existence of a linear attack, but makes it difficult
to actually find and exploit the best linear approximations, for computational
reasons. This is because, for practically secure ciphers, they cannot be found
by chaining small approximations anymore. And searching them exhaustively in
a cipher for large n values has a complexity in O(23n). Additionally, as far as
Matsui’s second algorithm is concerned [22] and for practically secure ciphers, it
is unlikely that such a best approximation can give rise to a guess on a few key
bits and therefore to a practical attack with low time complexity.

Note that the third observation typically relates to the quality of the key
scheduling algorithm too. That is, ciphers with well-designed, complex key sched-
ules will reach the minimum EK̃ maxLP value faster than ciphers with poorly
designed key schedules. This was experimentally confirmed in the previously
mentioned paper of Knudsen and Mathiassen [19].



Table 2: Comparison between the best expected linear characteristic probability and
the expected best linear probability for various SPNs with a good diffusion layer.

2 × 4 3 × 4 2 × 6 4 × 4 2 × 8

# rounds maxchar maxhull maxchar maxhull maxchar maxhull maxchar maxhull maxchar maxhull

1 2.50 · 10−1 2.50 · 10−1 2.50 · 10−1 2.50 · 10−1 1.40 · 10−1 1.40 · 10−1 2.50 · 10−1 2.50 · 10−3 6.25 · 10−2 6.25 · 10−4

2 1.56 · 10−2 6.88 · 10−2 3.90 · 10−3 1.89 · 10−2 2.78 · 10−3 8.84 · 10−3 9.76 · 10−4 3.80 · 10−4 1.86 · 10−4 8.05 · 10−4

3 3.90 · 10−3 7.62 · 10−2 9.76 · 10−4 7.48 · 10−3 2.71 · 10−4 7.44 · 10−3 2.44 · 10−4 6.43 · 10−4 3.23 · 10−6 6.31 · 10−4

4 2.44 · 10−4 7.63 · 10−2 1.52 · 10−5 7.45 · 10−3 3.72 · 10−6 7.43 · 10−3 9.53 · 10−7 6.32 · 10−4 1.00 · 10−8 6.32 · 10−4

5 6.10 · 10−5 7.64 · 10−2 3.81 · 10−6 7.44 · 10−3 1.49 · 10−7 7.44 · 10−3 5.96 · 10−8 6.31 · 10−4 8.71 · 10−11 6.29 · 10−4

6 3.81 · 10−6 7.64 · 10−2 5.96 · 10−8 7.43 · 10−3 3.47 · 10−9 7.44 · 10−3 9.31 · 10−10 6.31 · 10−4 3.55 · 10−13 6.30 · 10−4

7 9.53 · 10−7 7.64 · 10−2 3.72 · 10−9 7.43 · 10−3 1.28 · 10−10 7.44 · 10−3 5.82 · 10−11 6.30 · 10−4 2.71 · 10−15 6.30 · 10−4

8 5.96 · 10−8 7.64 · 10−2 2.32 · 10−10 7.44 · 10−3 2.07 · 10−12 7.43 · 10−3 9.09 · 10−13 6.32 · 10−4 1.05 · 10−17 6.31 · 10−4

6 Testing the Key Equivalence Hypothesis

Next to the practical security approach, a second important issue for the evalu-
ation of linear cryptanalysis is the key equivalence hypothesis. We consequently
decided to investigate the variances of the best linear approximations of a cipher:

var
K̃

max
a,b

LP (a,b; K̃) (12)

The results of these experiments are summarized in Tables 3 and 4 for various
SPNs. As for the previously computed mean values, we observed that these
variances decrease with the block size n. A similar observation holds for the
variation coefficients (i.e. standard deviation over mean). This suggests that the
key equivalence hypothesis is reasonable and should not be an issue for SPNs
of large (i.e. practical) block sizes. We note that it is not necessarily the case
for block ciphers with a more “exotic” structure, as illustrated in the case of
RC5 and RC6 in [4, 30, 31]. On the other hand, experiments by Selçuk [31] on
SP-structured Feistel ciphers seem to match ours.

Table 3: Standard deviation of the best linear probability with a bad diffusion layer.

# rounds 2 × 4 3 × 4 2 × 6 4 × 4 2 × 8

1 0 0 0 0 0

2 5.44 · 10−2 5.47 · 10−2 5.69 · 10−3 0 8.82 · 10−4

3 2.39 · 10−2 8.23 · 10−3 2.54 · 10−3 1.15 · 10−2 1.25 · 10−4

4 1.14 · 10−2 7.05 · 10−3 6.34 · 10−4 7.77 · 10−3 4.04 · 10−5

5 9.71 · 10−3 3.52 · 10−3 5.88 · 10−4 3.61 · 10−3 3.88 · 10−5

6 9.65 · 10−3 1.51 · 10−3 6.06 · 10−4 1.55 · 10−3 3.87 · 10−5

7 9.69 · 10−3 6.48 · 10−4 6.11 · 10−4 7.38 · 10−4 3.79 · 10−5

8 9.66 · 10−3 6.10 · 10−4 6.05 · 10−4 3.47 · 10−4 3.67 · 10−5

Importantly, these key dependencies highlight another limitation of the prov-
able security approach. Namely, the best linear approximations of a given cipher
are not only computationally hard to find, they also only work for one key. It
makes them hard to exploit by an actual adversary. This fact is typically used
in the decorrelation theory [33]. Otherwise said, these best approximations are
generally not relevant to the practical security of ciphers.



Table 4: Standard deviation of the best linear probability with a good diffusion layer.

# rounds 2 × 4 3 × 4 2 × 6 4 × 4 2 × 8

1 0 0 0 0 0

2 8.68 · 10−3 3.81 · 10−3 1.08 · 10−3 3.51 · 10−4 9.56 · 10−5

3 9.56 · 10−3 6.42 · 10−4 6.16 · 10−4 5.21 · 10−5 3.80 · 10−5

4 9.64 · 10−3 6.15 · 10−4 5.81 · 10−4 3.88 · 10−5 4.09 · 10−5

5 9.67 · 10−3 6.13 · 10−4 6.09 · 10−4 3.72 · 10−5 3.50 · 10−5

6 9.66 · 10−3 6.05 · 10−4 6.10 · 10−4 4.10 · 10−5 4.07 · 10−5

7 9.64 · 10−3 6.10 · 10−4 6.14 · 10−4 3.50 · 10−5 3.92 · 10−5

8 9.71 · 10−3 6.11 · 10−4 6.19 · 10−4 3.91 · 10−5 3.67 · 10−5

7 Towards actual design criteria

As previously mentioned, proving the security against linear cryptanalysis would
ideally require to relax the practical security approach and to investigate the
best linear probability values for any given cipher. Because of computational
complexity and key-dependencies, this is hardly achievable in practice. In this
section, we aim to take advantage of our computationally tractable block cipher
sizes to put forward how theoretical aspects in linear cryptanalysis could possibly
lead to practical design criteria. In particular, we aim to determine the number
of rounds required for a given cipher to reach its minimum EK̃ maxLP value
and to illustrate the intuitive consequences of reaching it. For these purposes,
we computed the mean and variances of the best linear probabilities for different
ciphers, over the keys (as previously done) and over the number of rounds:

E
K̃

max
a,b

LP (a,b; K̃) (13)

E
R

max
a,b

LP (a,b; K̃) (14)

var
K̃

max
a,b

LP (a,b; K̃) (15)

var
R

max
a,b

LP (a,b; K̃) (16)

The variance over the rounds was obtained by implementing our ciphers with R
varying between 20 (where it is assumed that the cipher is practically secure)
and 10020. The results of these experiments are summarized in our previous
tables (for means and variances over the key values) and in the upper part of
Table 5 (for means and variances over the number of rounds). They yield the
interesting intuition that after a sufficient number of rounds, adding a round and
changing the key are statistically undistinguishable, at least from the mean and
variance points of view. We consequently derived the following definition:

Definition 5. A block cipher is in its stationary area with respect to linear ap-
proximations if the mean and variance of its average maximum linear probability
(over the keys) do not vary in function of the number of rounds R.



In the lower part of Table 5, we computed the number of rounds for reaching
this stationary area, by means of statistical tests for the equality of the mean
and variance3 [5], i.e. the number of rounds after which the provable security
of a cipher does not evolve anymore. From a designer’s point of view, detecting
this stationary area is of particular interest since it allows determining precisely
the number of rounds that are useful in a block cipher to behave as a “good”
n-bit S-box. It would consequently lead to an alternative design criteria for block
ciphers to combine, e.g. with the wide-trail strategy. But again, from a practical
point of view, finding the stationary area is computationally unfeasible for large
block sizes. A open question is therefore to determine the number of rounds
required to reach this stationary region with tractable heuristics, e.g. using the
concept of characteristics and/or statistical sampling.

Table 5: Mean and standard deviation of the best linear characteristic for various SPNs
over the number of rounds and number of rounds for reaching the “stationary area”.

2 × 4 3 × 4 2 × 6 4 × 4 2 × 8

ER max(LP ) 7.64 · 10−2 7.44 · 10−3 7.43 · 10−4 6.30 · 10−4 6.30 · 10−4

varR max(LP ) 9.68 · 10−3 6.09 · 10−4 6.08 · 10−4 3.75 · 10−5 3.79 · 10−5

Diffusion bad good bad good bad good bad good bad good

Stationary area 5 4 8 4 6 5 > 8 4 4 3

8 Conclusion

Present strategies to prevent the linear cryptanalysis against block ciphers are
based upon important hypotheses that we review in this paper. We first illus-
trate the large distance between the practical security provided by the best linear
characteristic in a cipher and its provable security, determined by the best linear
approximation of the cipher. Second, we consider the key equivalence hypothesis
and experimentally confirm its validity for reasonably designed ciphers. These
results highlight the relevance of a practical approach in block cipher design that
does not prevent the existence of good linear approximations but makes them
hard to find/exploit. They put forward the interest of better understanding the-
oretical aspects in linear cryptanalysis and the importance of properly assessing
the meaning of design techniques such as the wide-trail strategy.

The distance between theoretical and practical aspects in linear cryptanal-
ysis also motivates the research for powerful tools to exploit the existence of
linear approximations within actual ciphers. As a matter of fact, the best known
methodology allowing to take advantage of the linear hull effect within a cipher
is based on multiple linear approximations. This question therefore relates to the
recent work of Biryukov et al. [3] in which optimistic bounds were provided for
linear attacks using multiple approximations. Experimenting with these attacks
to clearly evaluate the actual data complexity of a successful linear cryptanalysis
therefore appears as a next important step in the study of block ciphers.
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Notes

1 Note that in our target key alternating ciphers using a bitwise XOR key addition,
LCP (Ω, K̃) is independent of the key vector.

2 A typical illustration of this practical approach is the wide-trail strategy [6] in
which the block cipher designers ensure that (1) non-linear components within the
cipher (e.g. S-boxes) have low linear probabilities and (2) any characteristic involves a
high number of active non-linear components.

3 To compare variances, we used the Levene test, which seemed the most appropriate
in our case (unknown non-normal distributions).
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A Detailed Specification of the Cipher Component Used

A.1 The Optimal Diffusion Layers

The optimal diffusion layers we use are based on MDS linear codes constructed
from a Vandermonde Matrix (see for example [27] for details). The output of
each n×n S-box is considered as an element of GF(2n). Applying the linear layer
is equivalent to perform a matrix multiplication with the Vandermonde matrix.
Arithmetics is performed in GF(2n). We construct the finite field GF(2n) as
GF(2)[α]/(p(α)), where GF(2)[α] is the ring of polynomials in one variable α
with coefficients in GF(2), and p is a primitive polynomial of degree n, which is:

– α4 ⊕ α ⊕ 1 for n = 4.
– α6 ⊕ α ⊕ 1 for n = 6.
– α8 ⊕ α4 ⊕ α3 ⊕ α2 ⊕ 1 for n = 8.

The Vandermonde matrices are:

– If 2 S-boxes are used in each round:
(

1 α
1 α2

)

– If 3 S-boxes are used in each round:




1 α α2

1 α2 α4

1 α3 α6







– If 4 S-boxes are used in each round:








1 α α2 α3

1 α2 α4 α6

1 α3 α6 α9

1 α4 α8 α12









A.2 The “Wire Crossing” Diffusion Layers

We also used poor diffusion layers in our experiments, made of simple bit per-
mutations. These layers are (numbers refer to bit positions, from left to right):

Poor diffusion layer: Two 4 × 4 S-boxes
Input 0 1 2 3 4 5 6 7

Output 0 1 4 5 2 3 6 7

Poor diffusion layer: Two 6 × 6 S-boxes
Input 0 1 2 3 4 5 6 7 8 9 a b

Output 0 1 2 6 7 8 3 4 5 9 a b

Poor diffusion layer: Three 4 × 4 S-boxes
Input 0 1 2 3 4 5 6 7 8 9 a b

Output 0 1 4 8 2 5 6 9 3 7 a b

Poor diffusion layer: Two 8 × 8 S-boxes
Input 0 1 2 3 4 5 6 7 8 9 a b c d e f

Output 0 1 2 3 8 9 a b 4 5 6 7 c d e f

Poor diffusion layer: Four 4 × 4 S-boxes
Input 0 1 2 3 4 5 6 7 8 9 a b c d e f

Output 0 4 8 c 1 5 9 d 2 6 a e 3 7 b f

A.3 The S-boxes

We used three different S-boxes, of respective size 4 × 4, 6 × 6, 8 × 8.

The 4 × 4 S-box.
Input 0 1 2 3 4 5 6 7 8 9 a b c d e f

Output b 9 1 d 8 f 0 6 4 c 2 3 e 5 a 7

The 6 × 6 S-box.
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 24 20 21 35 3e 37 d 26 9 33 0 28 27 a 23 31
10 14 3f 13 2e 30 2a 3b 12 34 16 17 18 8 1b e 1f
20 3c 2 b 32 2d 3 7 1e 2f 1c 10 1d 11 f 25 c
30 6 1 39 15 4 3d 3a 19 1a 36 2b 5 38 2c 29 22



The 8 × 8 S-box.
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 5c 11 85 da 95 c4 f8 49 b2 db 94 c6 1c c0 22 9
10 b8 24 7c 3a ad 13 89 7f c2 84 2e 74 e0 83 c e
20 eb ec 6c ac 57 a 79 3e 41 ce 1a 68 69 16 f7 8c
30 b3 6b 7e a4 ae 1f 77 ff 5a 65 25 bb fa b6 c1 6d
40 8f d 56 2a 3b 29 6e ee 19 88 15 d2 9a 98 dd 72
50 1e 9d 32 a0 fb fc 80 a8 54 ba 51 f6 20 f9 ca d5
60 d8 f5 78 5d e9 1 92 5 cb bf be 40 2f f2 a7 df
70 63 48 70 9f 82 b1 8a 35 52 a2 e6 f 76 c3 bc b7
80 17 d3 af ab 53 75 3d de ed 1b 9e e8 c9 e2 86 0
90 91 37 fe 64 5f 59 cd e3 39 a1 7 61 8e 90 7b 23
a0 c5 a5 e7 38 71 8 4b 7d 1d 67 8b e5 4c f1 44 a3
b0 f4 55 87 62 d4 46 a9 4a 97 c7 e4 d1 12 81 b4 2b
c0 42 3f 9c 50 4d aa 6 3 31 58 d0 14 21 b9 d7 6a
d0 30 4 a6 f3 9b cf 93 96 2 3c 4f 28 4e 27 2c b0
e0 47 d6 60 ea 5e 26 10 e1 45 cc 2d 7a 6f 33 66 34
f0 f0 8d fd c8 5b 36 bd ef b5 43 dc d9 b 73 99 18


