
A Methodology to Implement Block Ciphers in
Reconfigurable Hardware and its

Application to Fast and Compact AES RIJNDAEL

François-Xavier Standaert, Gael Rouvroy,
Jean-Jacques Quisquater, Jean-Didier Legat
{standaert,rouvroy,quisquater,legatg@dice.ucl.ac.be

UCL Crypto Group
Laboratoire de Microélectronique
Université Catholique de Louvain

Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium

ABSTRACT

Reprogrammable devices such as Field Programmable Gate
Arrays (FPGA’s) are highly attractive options for hardware
implementations of encryption algorithms and this report
investigates a methodology to efficiently implement block
ciphers in CLB-based FPGA’s. Our methodology is applied
to the new Advanced Encryption Standard RIJNDAEL and
the resulting designs offer better performances than previ-
ously published in literature. We propose designs that unroll
the 10 AES rounds and pipeline them in order to optimize
the frequency and throughput results. In addition, we imple-
mented solutions that allow to change the plaintext and the
key on a cycle-by-cycle basis with no dead cycles. Another
strong focus is placed on low area circuits and we propose
sequential designs with very low area requirements. Finally
we demonstrate that RAM-based implementations implies
different constraints but our methodology still holds.

Categories and Subject Descriptors
B.7.1 [Algorithms implemented in Hardware]; E.3 [Data
encryption]

General Terms
Algorithms, Security, Design, Performance

Keywords
AES RIJNDAEL, Reconfigurable hardware, FPGA, Cryp-
tography, High encryption rates

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’03,February 23–25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002 ...$5.00.

1. INTRODUCTION

In September 1997, the NIST 1 issued a request for pos-
sible candidates for a new Advanced Encryption Standard
(AES) to replace the Data Encryption Standard (DES). In
August 1998, 15 candidates algorithms were selected and a
year later, in August 1999, five finalists were announced:
MARS, RC6, SERPENT, RIJNDAEL and TWOFISH. On
2 October 2000, the RIJNDAEL algorithm, developed by
Joan Daemen and Vincent Rijmen was selected as the win-
ner of the AES development race. In performance com-
parison studies carried out on all five finalists, RIJNDAEL
proved to be one of the fastest and most efficient algorithms.
It is also implemented on a wide range of platforms and is
extendable to different key and block lengths.

As opposed to custom hardware or software implementa-
tions, little work exists in the area of block cipher imple-
mentations within existing FPGA’s. Results available in the
public literature sometimes mention encryption rates com-
parable with software ones. We believe that these perfor-
mances can be greatly improved using today’s technology
as soon as inherent constraints of FPGA’s are taken into
account.

In this paper, we propose a methodology to efficiently imple-
ment block ciphers within commercially available FPGA’s,
based on similarities between configurable logic blocks avail-
able in FPGA’s and encryption algorithms. It actually con-
sists in simple digital design rules adapted to FPGA con-
straints. It is applied to RIJNDAEL and allows to im-
prove previously reported results in terms of hardware cost,
throughput or efficiency. We also suggest that different con-
straints have to be considered if some parts of the algorithm
are implemented into the RAM blocks available in present
FPGA’s. Improved RAM-based implementations of RIJN-
DAEL are proposed in order to confirm this assumption.

This paper is organized as follows. The description of the
hardware, synthesis tools and implementation tools is in sec-

1NIST : National Institute of Standards and Technology.

tion 2. Section 3 gives a short mathematical description of
RIJNDAEL and we propose an efficient representation of
the key scheduling algorithm by means of a key round. Our
design methodology is proposed in section 4 and applied to
RIJNDAEL in section 5. Comparisons between our imple-
mentation results and other published designs are in section
6 and conclusions are in section 7.

2. HARDWARE DESCRIPTION

All our implementations were carried out on XILINX VIRT-
EX1000BG560-6 and XILINX VIRTEX3200ECG1156-8 FP-
GA’s. We chose these technologies in order to allow relevant
comparisons with the best-known FPGA implementations of
RIJNDAEL. In this section, we briefly describe the structure
of a VIRTEX FPGA as well as the synthesis and implemen-
tation tools that were used to obtain our results.

Configurable Logic Blocks (CLB’s): The basic build-
ing block of the VIRTEX logic block is the logic cell (LC).
A LC includes a 4-input function generator, carry logic and
a storage element. The output from the function generator
in each LC drives both the CLB output and the D input of
the flip-flop. Each VIRTEX CLB contains four LC’s, orga-
nized in two similar slices. Figure 1, shows a detailed view
of a single slice. Virtex function generators are implemented
as 4-input look-up tables (LUT’s). In addition to operate
as a function generator, each LUT can provide a 16×1-bit
synchronous RAM. Furthermore, the two LUT’s within a
slice can be combined to create a 16×2-bit or 32×1-bit syn-
chronous RAM or a 16×1-bit dual port synchronous RAM.
The VIRTEX LUT can also provide a 16-bit shift register.

The storage elements in the VIRTEX slice can be configured
either as edge-triggered D-type flip-flops or as level-sensitive
latches. The D inputs can be driven either by the function
generators within the slice or directly from slice inputs, by-
passing function generators.

The F5 multiplexer in each slice combines the function gen-
erator outputs. This combination provides either a function
generator that can implement any 5-input function, a 4:1
multiplexer, or selected functions of up to nine bits. Sim-
ilarly, the F6 multiplexer combines the outputs of all four
function generators in the CLB by selecting one of the F5-
multiplexer outputs. This permits the implementation of
any 6-input function, an 8:1 multiplexer, or selected func-
tions up to 19 bits. The arithmetic logic also includes a
XOR gate that allows a 1-bit full adder to be implemented
within an LC. In addition, a dedicated AND gate improves
the efficiency of multiplier implementations.

Finally, VIRTEX FPGA’s incorporate several large RAM
blocks. These complement the distributed LUT implemen-
tations of RAM’s. Every block is a fully synchronous dual-
ported 4096-bit RAM with independent control signals for
each port. The data widths of the two ports can be config-
ured independently.

Our hardware: A VIRTEX1000BG560-6 FPGA contains
12288 slices and 32 RAM blocks, which means 24576 LUT’s
and 24576 flip-flops. A VIRTEX3200ECG1156-8 FPGA con-
tains 32448 slices and 208 RAM blocks, which means 64896

LUT’s and 64896 flip-flops. In the next sections, we com-
pare the number of LUT’s, registers and slices. We also
evaluate the delays and frequencies thanks to our synthesis
tool. The synthesis was performed with FPGA Express 3.6.1
(SYNOPSYS) and the implementation with XILINX ISE-4.
Finally, our circuit models were described using VHDL.

3. BLOCK CIPHER DESCRIPTION

RIJNDAEL is an iterated block cipher that operates on a
128-bit cipher state and uses a 128-bit key2. It consists of a
serie of 10 applications of a key-dependent round transfor-
mation to the cipher state. In the following, we will indi-
vidually define the component mappings and constants that
build up RIJNDAEL, then specify the complete cipher in
terms of these components.

Representation: The state and key are represented as
a square array of 16 bytes. This array has 4 rows and 4
columns. It can also be seen as a vector in GF (28)16. Let
s be a cipher state or a key ∈ GF (28)16, then si is the i-th
byte of the state s and si(j) is the j-th bit of this byte.

Bytesub, the non-linear layer γ: The Bytesub trans-
formation is a non-linear byte substitution, operating on
each byte independently. The substitution table (or s-box)
is invertible and is constructed by the composition of two
operations:

1. The multiplicative inverse in GF (28).

2. An affine transform over GF (2).

Every byte is therefore considered as a polynomial with co-
efficients in GF (2): b(x) = b7x

7+b6x
6+b5x

5+b4x
4+b3x

3+
b2x

2 + b1x
1 + b0x

0.

b7b6b5b4b3b2b1b0 → b(x) (1)

Then bytesub consists of the parallel application of this s-
box S:

γ(a) = b ⇔ bi = S[ai], 0 ≤ i ≤ 15 (2)

The Shiftrow transformation δ: In Shiftrow, the rows
of the state are cyclically shifted over different offsets. Row
0 is not shifted, row 1 is shifted over 1 byte, row 2 over 2
bytes and row 3 over 3 bytes.

The Mixcolumn transformation θ: In Mixcolumn, the
columns of the state are considered as polynomials over
GF (28) and multiplied modulo x4 + 1 with a fixed poly-
nomial c(x), given by:

c(x) =′ 03′x3 +′ 01′x2 +′ 01′x +′ 02′ (3)

The polynomial is coprime to x4 +1 and therefore is invert-
ible. This can be written as a matrix multiplication:2664 b0

b1

b2

b3

3775 =

2664 02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

3775×
2664 a0

a1

a2

a3

3775
2Actually, there exist several versions of RIJNDAEL with
different block and key lengths, but we focus on this one.

Figure 1: The VIRTEX slice.

Where (b3, b2, b1, b0) is a four-byte column of the state. An
output byte of mixcolumn (for example b0) can be expressed
as3:

b0 =′ 02′ × a0 +′ 03′ × a1 +′ 01′ × a2 +′ 01′ × a3

(4)

We also define a function X, corresponding to the multipli-
cation with ’02’ modulo the irreductible polynomial m(x) =
x8 + x4 + x3 + x + 1: X : GF (28) → GF (28) : X(a) = b ⇔

b(7) = a(6)

b(6) = a(5)

b(5) = a(4)

b(4) = a(3)⊕ a(7)

b(3) = a(2)⊕ a(7)

b(2) = a(1)⊕ a(7)

b(1) = a(0)

b(0) = 0⊕ a(7)

The round key addition σ[K]: In this operation, a
round key is applied to the state by a simple bitwise EXOR.
The round key is derived from the cipher key by means of
the key schedule. The round key length is equal to the block
length.

σ[k](a) = b ⇔ bi = ai ⊕ ki, 0 ≤ i ≤ 15 (5)

3⊕ is the bitwise EXOR operation.

The round transformation ρ[K]: The round transforma-
tion can be written as a composition of the four precedent
transformations4:

ρ[K] = σ[K] ◦ θ ◦ δ ◦ γ (6)

The key schedule: The round keys are derived from
the cipher key by means of the key schedule. This consists
of two transformations: the key expansion and the round
key selection. In our description, Subsyte (SB) is a function
that takes a 4-byte word in which each byte is the result of
applying the RIJNDAEL s-box. The function Rotbyte (RB)
returns a word in which the bytes are a cyclic permutation
of those in its inputs such that the input word (a, b, c, d) pro-
duces the output word (b, c, d, a). Finally, RC(i) is a 8-bit
round constant for the round i.

The key schedule can be easily described by the use of a
key round β that takes four 4-byte input words, correspond-
ing to a 128-bit key, and produces four 4-byte output words.
The first round key K0 is the cipher key, then, we have:

Ki+1 = β(Ki), i = 0, ..., 10 (7)

Figure 2 illustrates the key round of Rijndael where registers
needed for efficiency purposes are already mentioned.

The complete cipher: Rijndael is defined for the cipher
key K as the transformation Rijndael[K]= α[K0, K1, ..., K10]
applied to the plaintext where:

α[K0, K1, ..., K10] = σ[K10]◦δ◦γ◦(©9
r=1ρ[Kr])◦σ[K0] (8)

4Read σ[K]
�
θ(δ(γ))

�
.

0,iK R
B

S
B

⊕

⊕

⊕

⊕
⊕

1,iK

2,iK

3,iK

0,1+iK

1,1+iK

2,1+iK

3,1+iK

)(iRC

Figure 2: The key round β.

Our implementations are based on this description of AES
Rijndael.

4. DESIGN METHODOLOGY:

FPGA’s are very efficient devices and they are suitable
for high work frequencies. However the CLB structure de-
scribed in section 2 involves constraints to take into account
if an optimal design is wanted. As the slice of Figure 1 is
divided into logic elements and storage elements, an efficient
implementation will be the result of a better compromise be-
tween logic used, storage used and resulting performances.
Typically, the designer tries to limit its critical path inside
one CLB slice without consuming slices for register usage
only.

Most modern block ciphers are iterated5 and their round
function usually consists of very simple algebraic or logic
operations. As a consequence, they are suitable for effi-
cient FPGA implementations by nature and the following
methodology is a relevant tool to obtain good circuits. It
actually consists in simple digital design rules applied to
FPGA’s.

1. Implement every basic component of the block cipher.
Synthetise them and compute their LUT cost and crit-
ical path.

2. Insert registers in the basic components in order to
limit the critical path inside one slice. The number
of registers needed should never exceed the number of
LUT’s computed in step 1. An efficient usage of the
slice implies to take advantage of additional EXOR
gates and multiplexors available in the slice.

3. Combine basic components if they offer possible opti-
mizations. Registers do not need to be placed between
components only.

4. Build the round and the key round and adapt their
number of pipeline stages if different. Use shift regis-

5The block cipher is defined as the application of a number
of key-dependant transformations called round function.

ters if needed because they allow more efficient imple-
mentations than repeated registers.

5. Build the complete cipher from these optimal compo-
nents and implement the resulting design.

At every step, efficiency can be checked by computing the
ratio Nbr of LUT ′s/Nbr of registers. It always should be
close to one. Let the efficiency of a block cipher be the ratio
Area (slices)/Throughput (Mbits/s). This methodology
allows to get very efficient designs after synthesis. However,
the implementation (specially the place and route step) of
large designs is often difficult and sometimes implies addi-
tional constraints that can be overcome by modifying some
parts of the design. This explain the frequently large differ-
ence between estimated frequency after synthesis and work
frequency after implementation.

In the next section, we illustrate this methodology and apply
it to the block cipher RIJNDAEL.

5. IMPLEMENTATION:

In order to allow relevant comparisons with existing FPGA
implementations of RIJNDAEL, we performed different ex-
periments with different technologies, depending on the use
of RAM blocks to implement the substitution box or on the
FPGA used: VIRTEX or VIRTEX-E. In the next section,
the delay is estimated after synthesis6, with a VIRTEX1000-
BG560-6.

5.1 Components:

Bytesub, the non-linear layer γ: We implemented
Bytesub as a large multiplexor, and took advantage of FPGA
configurations to implement these ones. The upper part of
Figure 6 illustrates the implementation of the Rijndael s-
box. We pipelined γ by inserting two registers so that the
critical path corresponds to one 4-input LUT, one multi-
plexor F5 and one multiplexor F6. Table 1 summarizes the
synthesis results for the non-linear transform γ where the

6FPGA Express (SYNOPSYS).

Component Nbr of LUT Nbr of registers Estimated delay (ns)
γ 144× 16 = 2304 42× 16 = 672 5.8

Table 1: Synthesis of the non-linear layer γ.

0a1a2a3a4a5a6a7a

0b1b2b3b4b
5b6b7b

⊕ ⊕ ⊕

Figure 3: The function X.

s-box is repeated 16 times.

Another possibility is to use the RAM blocks available inside
the VIRTEX to implement substitution boxes. The result-
ing bytesub transform uses 8 RAM blocks and is performed
in one clock cycle. We discuss the RAM-based implementa-
tions of RIJNDAEL in section 6.

The shiftrow transformation δ: This is just routing
information and takes no place in the design.

The Mixcolumn transformation θ: Mixcolum oper-
ates on a 4-byte column and corresponds to multiplications
and additions in GF (28). For example, for the output byte
b0, we have:

b0 =′ 02′a0 +′ 03′a1 +′ 01′a2 +′ 01′a3 (9)

We implemented multiplications with a function X that cor-
responds with the multiplication with ’02’, modulo the irre-
ducible polynomial m(x) = x8 +x4 +x3 +x+1. Figure 3 il-
lustrates the function X. Note that output bits 0,2,5,6,7 just
correspond to input bits shifted. Only 3 bits are modified
by an EXOR operation. From this, we can easily represent
an output byte of θ as shown in Figure 4:

b0 = X(a0)⊕X(a1)⊕ a1 ⊕ a2 ⊕ a3 (10)

Interesting combinations between Mixcolumn and the key
addition can be performed when observing the structure of
the Virtex slice (see Figure 1). Indeed, we observe that a
slice offers the possibility to perform an EXOR between 5
bits: four bits are managed by the LUT and the last one by
an EXOR gate next to the LUT. We will take advantage of
this and try to keep our critical path inside one Virtex slice.

Combining Mixcolumn and Addroundkey: The Mix-
add transform ε. On Figure 4, we observe that an output
byte of θ is obtained by a bitwise EXOR between 5 bytes: 3
are input bytes and the remaining ones are output bytes of
X. However, looking at the bit level, we know that 5 output
bits of X are just shifted input bits. For these ones, only
one register is needed to pipeline the diffusion layer.

For the 3 remaining bits, there is an additional EXOR inside

0a1a2a3a4a5a6a7a

0b1b2b3b4b
5b6b7b

⊕ ⊕ ⊕

0a2a3a

⊕⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

iK ⊕ ⊕ ⊕ ⊕ ⊕
⊕

⊕
⊕

7c 5c6c 4c 3c 2c 1c 0c

Figure 5: The Mixadd transform ε at the bit level.

the function X. Therefore, for these bits, we compute the
bitwise EXOR between the 3 left bytes of Figure 4 and the
output bits of X independently. Then we insert a register.
A bitwise EXOR operation remains to be carried out and
we combine it with the key addition. The resulting Mixadd
transformation only needs two register levels to keep a crit-
ical path inside one slice.

Figure 5 illustrates the combination of Mixcolumn and Ad-
droundkey at the bit level. Finally, Table 2 summarizes the
synthesis results for the Mixadd transformation.

5.2 The round and key round functions:

Based on the above components, we can build the round
and key round functions and evaluate their hardware cost.
Figure 6 illustrates the round function of Rijndael. Figure
2 illustrates its key round. Both contain 4 registers levels.
Note that Subbyte has the same inner structure as Bytesub
and therefore the same number of register levels. The syn-
thesis results for the round ρ and key round β functions are
given in table 3.

6. COMPARISONS:

6.1 LUT-based implementations:

In [3, 4, 5, 6, 7], different LUT-based FPGA implementa-
tions of RIJNDAEL encryption are proposed within a VIR-
TEX1000. In the next section, we propose designs imple-
mented on the same technology and compare them with ex-
isting results.

0a 1a 2a 3a

X X X X

⊕

0a 1a 2a 3a

0b

Figure 4: Output byte b0 of the Mixcolumn transform θ.

Component Nbr of LUT Nbr of registers Estimated delay (ns)
ε 304 304 4.8

Table 2: Synthesis of the Mixadd transform ε.

Component Nbr of LUT Nbr of registers Estimated delay (ns)
LUT-based round 2608 976 5.8

LUT-based key round 768 488 5.8

Table 3: Synthesis of the round and key round.

Type Nbr Nbr Nbr RAM Latency Output Freq. after Freq. after
of of of blocks (cycles) every Synt. Impl.

LUT reg. slices (cycles) (Mhz) (Mhz)
Pipeline RIJNDAEL 33712 14592 17984 0 42 1 172 /

Sequential RIJNDAEL 3916 2132 2257 0 52 5/52 172 127

Table 4: RIJNDAEL encryption implementations on VIRTEX1000.

Type Nbr of Device Throughput Throughput/Area

slices (Mbits/s) (Mbits/s
slices

)
Gaj et al. 2900 VIRTEX1000 331.5 0.11

Dandalis et al. 5673 VIRTEX1000 353 0.06
Elbirt et al. 9004 VIRTEX1000 1940 0.22
Our design 2257 VIRTEX1000 1563 0.69

Table 5: Comparisons with other LUT-based implementations.

F5

F6

LUT

F5

LUT

γ

128

ε

δ

128

Figure 6: The round function ρ.

Our implementations of AES Rijndael directly results from
the component descriptions. We decided to implement a
pipeline version that unrolls the 10 RIJNDAEL rounds (il-
lustrated on Figure 7) and a sequential version with only
one unrolled round (illustrated on Figure 8 where the grey
functions are actually included in the round ρ). We observed
the hardware cost in terms of LUT’s, registers and slices as
well as the frequency results. In this section, the frequency
is estimated after synthesis7 and implementation8.

On Table 4, we observe very high frequencies after syn-
thesis. However, critical delays mainly occur when trying
to place and route these synthesis results. The resulting
implemented designs have surprising critical paths includ-
ing 20% of logic and 80% of routes. We conclude that the
real bottleneck of such large ciphers is the difficulty of hav-
ing an efficient place and route. Actually, constraints come
from shift registers and high fanout. Implementation could
probably be improved by inserting registers but this addi-
tional degree of freedom for the routes would be balanced
with additional ressources . We conclude that in case of
critical routing delays, designs having logic paths over two
(or more) slices can be considered. However, if our design
methodology is applied, no slice should be used for register
usage only and therefore this should not change the area
requirements. Anyway, the resulting designs are very effi-
cient as shown in Table 5 where we list the most efficient
implementations within VIRTEX1000 FPGA’s. Note that
our pipeline design would be even more efficient but cannot
fit into a VIRTEX1000.

7FPGA Express (SYNOPSYS).
8Xilinx ISE4.

txt key

σ ⊕ key(1)

state(1)

ρ
β

state(2)

key(2)

ρ
β

state(3)

key(3)

...
...

state(9)

ρ
β

state(10)

key(9)

β
γ
δ

σ ⊕

cipher

key(10)

Figure 7: Pipeline AES Rijndael.

txt key

σ ⊕ key(1)

state(1)

β
ρ

γ
δ

σ ⊕

cipher

key(10)

key(r)

Figure 8: Sequential AES Rijndael.

6.2 RAM-based implementations:

In [9, 10, 11], RAM-based FPGA implementations of RI-
JNDAEL encryption are proposed within a VIRTEX-E FPGA.
In the next section, we propose designs implemented on the
same technology and compare them with existing results.

As we previously mentioned, it is possible to implement the
substitution boxes of RIJNDAEL in the RAM blocks avail-
able in present VIRTEX-E. Although this could result in
very efficient implementations, it also involves different de-
sign constraints. When RAM blocks are used, a strong bot-
tleneck arises when trying to place and route large designs.
This make the optimal pipelining of CLB’s completely inef-
fective. In order to illustrate this assumption, we decided to
implement different RAM-based solutions, where only the
number of pipeline stages differs:

1. A 42-cycle pipeline or 52-cycle sequential version with
a 4-cycle round: a register is added after the RAM-
based substitution box.

2. A 32-cycle pipeline or 42-cycle sequential version with
a 3-cycle round: the register after the RAM-based sub-
stitution box is removed.

3. A 21-cycle pipeline or 31-cycle sequential version with
a 2-cycle round: the register inside the mixadd trans-
form ε is also removed.

4. A 21-cycle sequential version with a 2-cycle round: the
register after the multiplexor is removed.

Table 6 summarizes the implementation results of our differ-
ent RAM-based RIJNDAEL encryption modules. It clearly
illustrates that the high pipelining used in CLB-based im-
plementations do not lead to optimal circuits. Actually,
the most efficient solutions correspond to situations where
logic paths cover two slices. The key difference with CLB-
dominated designs is the lower area requirements of the de-
sign that causes slices to be used for register usage only if
high pipelining is performed. However, our methodology
still holds: step 2 mentioned that the number of registers
of components should never exceed the number of LUT’s
needed. Optimal designs have well balanced logic and regis-
ter requirements. Our 21-cycle solutions have this interest-
ing property: their ratio Nbr of LUT ′s/Nbr of registers
is close to one.

Note that in case of sequential circuits, as high pipelining
is no more wanted, it is also possible to modify the round
structure so that initial and final key additions can be man-
aged by the round function. This leads to very low area
circuits as pictured on Figure 9.

The resulting designs improves the previously reported
RAM-based implementations as shown in Table 7.

txt key

key(1)

βγ

δ

σ ⊕

cipher

key(r)

θ
LAST

ROUND

Figure 9: Modified sequential AES Rijndael.

7. CONCLUSIONS

We propose a methodology to implement block ciphers
in reconfigurable hardware and applied it to RIJNDAEL.
Inherent constraints of FPGA’s are taken into account in
order to get very efficient circuits. We investigated different
possible implementations: CLB-dominated or RAM-based,
pipeline or sequential. These implementations involve differ-
ent constraints but the design methodology holds as long as
we keep the ratio Nbr of LUT ′s/Nbr of registers close to
one. Efficiency is measured as the ratio Area (slices)/Throughput
(Mbits/s) and we obtain very efficient designs. A strong
focus is placed on high throughput and low area and we im-
plemented solutions for both criteria.

Upon comparison, our designs offer better results than pre-
viously reported in literature. Compact and high speed ar-
chitectures are proposed and implemented on VIRTEX and
VIRTEX-E technologies. Throughput is up to 14 Gbits/s
and area requirements can be limited to 405 slices and 10
RAM blocks. Bottlenecks arises in the routing of our syn-
thesis results. This could certainly be improved and this
last point could deserve further analysis.

8. REFERENCES

[1] Xilinx: Virtex 2.5V Field Programmable Gate
Arrays Data Sheet, http://www.xilinx.com.

[2] J.Daemen and V.Rijmen, The Block Cipher
RIJNDAEL, NIST’s AES home page,
http : //www.nist.gov/aes.

[3] A.J.Elbirt et Al, An FPGA Implementation and
Performance Evaluation of the AES Block
Cipher Candidate Algorithm Finalists, The
Third Advanced Encryption Standard (AES3)
Candidate Conference, April 13-14 2000, New
York, USA.

[4] K.Gaj and P.Chodowiec, Comparison of the
Hardware Performance of the AES Candidates
using Reconfigurable Hardware, The Third
Advanced Encryption Standard (AES3)

Type Nbr Nbr Nbr RAM Latency Output Freq. after Freq. after
of of of blocks (cycles) every Synt. Impl.

LUT reg. slices (cycles) (Mhz) (Mhz)
Pipeline RIJNDAEL 4912 7792 5144 100 42 1 285 112
Pipeline RIJNDAEL 4272 6832 4032 100 32 1 232 92
Pipeline RIJNDAEL 3516 3840 2784 100 21 1 208 92

Sequential RIJNDAEL 1036 1452 866 10 52 5/52 285 147
Sequential RIJNDAEL 965 1372 739 10 42 4/42 232 135
Sequential RIJNDAEL 877 932 550 10 31 3/31 208 117
Sequential RIJNDAEL 877 668 542 10 21 2/21 208 119

Modified sequential 709 413 405 10 20 2/20 192 87

Table 6: RIJNDAEL encryption implementations on VIRTEX3200E.

Type Nbr of Nbr of RAM Device Throughput Throughput/Area

LUT’s slices blocks (Mbits/s) (Mbits/s
slices,LUT ′s)

McLoone et al. / 2222 100 VIRTEX810E 6956 3.1
Our design 3516 2784 100 VIRTEX3200E 11776 4.2
Helion tech. 899 / 10 VIRTEX3200E 1187 1.32
Our design 877 542 10 VIRTEX3200E 1450 1.65

Table 7: Comparisons with other RAM-based implementations.

Candidate Conference, April 13-14 2000, New
York, USA.

[5] P.Chodowiec et al, Experimental Testing of the
Gigabit IPSec-Compliant Implementations of
RIJNDAEL and Triple-DES Using SLAAC-1V
FPGA Accelerator Board, in the proceedings of
ISC 2001: Information Security Workshop,
LNCS 2200, pp.220-234, Springer-Verlag.

[6] A.Dandalis et al, A Comparative Study of
Performance of AES Candidates Using FPGA’s,
The Third Advanced Encryption Standard
(AES3) Candidate Conference, April 13-14 2000,
New York, USA.

[7] T.Ichikawa et al, Hardware Evaluation of the
AES Finalists, The Third Advanced Encryption
Standard (AES3) Candidate Conference, April
13-14 2000, New York, USA.

[8] O.Kwon et al, Implementation of AES and
Triple-DES Cryptography using a PCI-based
FPGA Board, in the proceedings of ITC-CSCC
2002: The International Technical Conference
On Circuits/Systems, Computers and
Communications.

[9] M.McLoone and J.V.McCanny, High
Performance Single Ship FPGA RIJNDAEL
Algorithm Implementations, in the proceedings
of CHES 2001: The Third International CHES
Workshop, Lecture Notes In Computer Science,
LNCS2162, pp 65-76, Springer-Verlag.

[10] M.McLoone and J.V.McCanny, Single-Chip
FPGA Implementation of the Advanced
Encryption Standard Algorithm, in the
proceedings of FPL 2002: The Field
Programmable Logic Conference, Lecture Notes
in Computer Science, LNCS 2147, p.152ff.

[11] Helion Technology, High Performance AES
(Rijndael) Cores for XILINX FPGA,
http : //www.heliontech.com.

[12] V.Fischer and M.Drutarovsky, Two Methods of
RIJNDAEL Implementation in Reconfigurable

Hardware, in the proceedings of CHES 2001:
The Third International CHES Workshop,
Lecture Notes In Computer Science, LNCS2162,
pp 65-76, Springer-Verlag.

[13] A.Rudra et al, Efficient RIJNDAEL Encryption
Implementation with Composite Field
Arithmetic, in the proceedings of CHES 2001:
The Third International CHES Workshop,
Lecture Notes In Computer Science, LNCS2162,
pp 65-76, Springer-Verlag.

[14] A.Satoh et al, A Compact RIJNDAEL Hardware
Architecture with S-Box Optimization, Advances
in Cryptology - ASIACRYPT 2001, LNCS 2248,
pp239-254, Springer-Verlag.

[15] CAST, AES Encryption Cores,

http : //www.cast− inc.com.

	1: * This work has been funded by the Walloon region (Belgium) through the research project TACTILS.

