
Time-Memory Tradeoffs

François-Xavier Standaert & Jean-Jacques Quisquater

UCL Crypto Group
Laboratoire de Microélectronique
Université catholique de Louvain

Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium
fstandae;jjq@uclouvain.be

Many searching problems allow time-memory tradeoffs. That is, if there are K possible
solutions to search over, the time-memory tradeoff allows the solution to be found with
high probability, in T operations (time) with M words of memory, provided the time-
memory product T × M is larger than K. Cryptanalytic attacks based on exhaustive
key search are the typical context where time-memory tradeoffs are applicable.

Due to large key sizes, exhaustive key search usually needs unrealistic computing pow-
ers and corresponds to a situation where T = K and M = 1. However, if the same
attack has to be carried out numerous times, it may be possible to execute the exhaus-
tive search in advance and store all the results in a memory. Once this precomputation
is done, the attack could be performed almost instantaneously, although in practice,
the method is not realistic because of the huge amount of memory needed: T = 1,
M = K. The aim of a time-memory tradeoff is to mount an attack that has a lower
online processing complexity than exhaustive key search and lower memory complexity
than a table lookup, neglecting the precomputations (hence, it only makes sense if the
attack has to be performed multiple times). The method can be used to invert any
one-way function and was originally presented by Hellman in [3].

1 The original method

Let EK(X) : 2n × 2k → 2n denote an encryption function of a n-bit plaintext X under
a k-bit secret key K. The time-memory tradeoff method needs to define a function g

that maps ciphertexts to keys: g : 2n → 2k. If n > k, g it is a simple reduction function
that drops some bits from the ciphertexts (e.g. in the DES, n = 64, k = 56). If n < k,
g adds some constant bits. Then we define

f(K) = g(EK(P)), (1)

where P is a fixed chosen plaintext. Computing f(K) is almost as simple as encrypting,
but computing K from f(K) is equivalent to cryptanalysis. The time-memory tradeoff
method is composed of a precomputation task and an online attack that we describe
as follows.

Precomputation task: The cryptanalyst first chooses m different start points: SP1,
SP2,..., SPm from the key space. Then he computes encryption chains where Xi,0 = SPi

and Xi,j+1 = f(Xi,j), for 0 ≤ j < t:

X1,0
f
→ X1,1

f
→ X1,2

f
→

f
→ X1,t

X2,0
f
→ X2,1

f
→ X2,2

f
→

f
→ X2,t

X3,0
f
→ X3,1

f
→ X3,2

f
→

f
→ X3,t

.......

Xm,0
f
→ Xm,1

f
→ Xm,2

f
→

f
→ Xm,t (2)

To reduce the memory requirements, the cryptanalyst only stores start and end points
(SPi = Xi,0, EPi = Xi,t) and sorts the {SPi, EPi}

m
i=1 on the end points. The sorted

table is stored as the result of this precomputation.

Online attack: Now we assume that someone has chosen a key K and the crypt-
analyst intercepts or is provided with C = EK(P). Then he can apply the function g

to obtain Y = g(C) = f(K) and follow the algorithm:

Algorithm 1 Online attack

1. If Y = EPi, then either K = Xi,t−1 or EPi has more than one inverse image. We refer to

this latter event as a false alarm. If Y = EPi, the cryptanalyst therefore computes Xi,t−1, by

reconstructing the chain from the start points, and checks if it is the key, for example by seeing if

it deciphers C into P .

2. If Y is not an end point or a false alarm occurred, the cryptanalyst computes Y = f(Y) and

restarts step 1.

Remark that the cryptanalyst needs to access the table lookup every time a new Y is
computed. If all m × t elements of the table (removing the first column that cannot
be reached) were different, the probability of success PS would be m×t

2k . The actual
probability of success depends on how the precomputed chains cover the key space. Un-
fortunately, there is a chance that chains starting at different keys collide and merge.
The larger a table, the higher the probability that a new chain merges with a previous
one. Each merge reduces the number of distinct keys that are actually covered by the
table. If f is a random function, then the probability of success is bounded by:

PStable ≥
1

N

m∑

i=1

t−1∑

j=0

(1 −
it

N
)j+1. (3)

Equation 3 indicates that, for a fixed value of N , there is not much to be gained by
increasing m or t beyond the point at which mt2 = N . To obtain a high probability of
success, a more efficient method is to generate multiple tables using a different function
g for each table. The probability of success with r tables is:

PStot ≥ 1 − (1 − PStable)
r. (4)

Chains of different tables can collide, but not merge since the function g is different for
every table.

2 Distinguished points and rainbow tables

The idea of using distinguished points (DPs) in time-memory tradeoffs is due to Rivest
in [4]. If {0, 1}k is the key space, a DP property of order d is usually defined as an
easily checked property that holds for 2k−d different elements of {0, 1}k, e.g. having d

bits of the key equal to zero. In a time-memory tradeoff using DPs, the start and end
points of the precomputed chains fulfill a DP property. As a consequence, the chains
have variable length but detectable extreme points. This greatly reduces the number
of table lookups during the online attack from t to 1.

A remarkable property of the DP method is that merges can be easily detected and,
therefore, can possibly be rejected during the precomputation in order to build perfect
tables [5]. The major drawback of DPs is that they introduce variable chain lengths and
they are more difficult to analyze [6]. DP methods can also be used to detect collisions
(e.g. of hash function) as suggested in [8, 9].

An alternative solution to reduce the number of table lookups is to use the rainbow
tables presented in [7]. That is, to use a different function g for each point in a chain:

X0,0
f1

→ X0,1
f2

→ X0,2
f3

→
ft

→ X0,t

X1,0
f1

→ X1,1
f2

→ X1,2
f3

→
ft

→ X1,t

X2,0
f1

→ X2,1
f2

→ X2,2
f3

→
ft

→ X2,t

.......

Xm,0
f1

→ Xm,1
f2

→ Xm,2
f3

→
ft

→ Xm,t (5)

Two rainbow chains can only merge if they collide at the same position. Other collisions
do not trigger a merge. As a consequence, rainbow tables are an elegant alternative
to perform a time-memory tradeoff. As further reading, [1] provides a careful analysis
of different cryptanalytic time-memory tradeoffs and discusses the technique of check-
points that can be used to improve the detection of false alarms. Another analysis of
cryptanalytic time-memory tradeoffs is provided in [2].

References

1. G. Avoine, P. Junod, P. Oeschlin, Characterization and Improvement of Time-Memory
Trade-Off Based on Perfect Tables, ACM Transactions on Information and System Security,
vol 11, num 4, July 2008.

2. E. Barkan, E. Biham, A. Shamir, Rigorous Bounds on Cryptanalytic Time/Memory Trade-
offs, in the proceedings of CRYPTO 2006, LNCS, vol 4117, pp 1-21.

3. M. Hellman, A Cryptanalytic Time-Memory Tradeoff, IEEE Transactions on Information
Theory, vol 26, pp 401-406, 1980.

4. D. Denning, Cryptography and Data Security, pp 100, Addison-Wesley, 1982.
5. J. Borst, Block Ciphers: Design, Analysis and Side-Channel Analysis, Phd Thesis, Departe-

ment of Electrical Engineering, Katholieke Universiteit Leuven, 2001.
6. F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, J.-D. Legat, A Time-Memory Tradeoff

Using Distinguished Points: New Analysis and FPGA Results, in the proceedings of CHES
2002, LNCS, vol 2523, pp 593-609.

7. P. Oechslin, Making a faster Cryptanalytic Time-Memory Trade-Off, in the proceedings of
CRYPTO 2003, LNCS, vol 2729, pp 617-630.

8. J.J. Quisquater, J.P. Delescaille, How easy is collision search? Application to DES, in the
proceedings of EUROCRYPT’89, LNCS, vol 434, pp. 429-434.

9. P.C. van Oorschot, M.J. Wiener, Parallel collision search with cryptanalytic applications,
Journal of Cryptology, 12(1), pp 1-28, Winter 1999.

