
Time-Memory Tradeoffs

François-Xavier Standaert & Jean-Jacques Quisquater

UCL Crypto Group
Laboratoire de Microélectronique
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Many searching problems allow time-memory tradeoffs. That is, if there are K possible
solutions to search over, the time-memory tradeoff allows the solution to be found with
high probability, in T operations (time) with M words of memory, provided the time-
memory product T × M is larger than K. Cryptanalytic attacks based on exhaustive
key search are the typical context where time-memory tradeoffs are applicable.

Due to large key sizes, exhaustive key search usually needs unrealistic computing pow-
ers and corresponds to a situation where T = K and M = 1. However, if the same
attack has to be carried out numerous times, it may be possible to execute the exhaus-
tive search in advance and store all the results in a memory. Once this precomputation
is done, the attack could be performed almost instantaneously, although in practice,
the method is not realistic because of the huge amount of memory needed: T = 1,
M = K. The aim of a time-memory tradeoff is to mount an attack that has a lower
online processing complexity than exhaustive key search and lower memory complexity
than a table lookup, neglecting the precomputations (hence, it only makes sense if the
attack has to be performed multiple times). The method can be used to invert any
one-way function and was originally presented by Hellman in [3].

1 The original method

Let EK(X) : 2n × 2k → 2n denote an encryption function of a n-bit plaintext X under
a k-bit secret key K. The time-memory tradeoff method needs to define a function g

that maps ciphertexts to keys: g : 2n → 2k. If n > k, g it is a simple reduction function
that drops some bits from the ciphertexts (e.g. in the DES, n = 64, k = 56). If n < k,
g adds some constant bits. Then we define

f(K) = g(EK(P )), (1)

where P is a fixed chosen plaintext. Computing f(K) is almost as simple as encrypting,
but computing K from f(K) is equivalent to cryptanalysis. The time-memory tradeoff
method is composed of a precomputation task and an online attack that we describe
as follows.

Precomputation task: The cryptanalyst first chooses m different start points: SP1,
SP2,..., SPm from the key space. Then he computes encryption chains where Xi,0 = SPi

and Xi,j+1 = f(Xi,j), for 0 ≤ j < t:
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To reduce the memory requirements, the cryptanalyst only stores start and end points
(SPi = Xi,0, EPi = Xi,t) and sorts the {SPi, EPi}

m
i=1 on the end points. The sorted

table is stored as the result of this precomputation.

Online attack: Now we assume that someone has chosen a key K and the crypt-
analyst intercepts or is provided with C = EK(P ). Then he can apply the function g

to obtain Y = g(C) = f(K) and follow the algorithm:

Algorithm 1 Online attack

1. If Y = EPi, then either K = Xi,t−1 or EPi has more than one inverse image. We refer to

this latter event as a false alarm. If Y = EPi, the cryptanalyst therefore computes Xi,t−1, by

reconstructing the chain from the start points, and checks if it is the key, for example by seeing if

it deciphers C into P .

2. If Y is not an end point or a false alarm occurred, the cryptanalyst computes Y = f(Y ) and

restarts step 1.

Remark that the cryptanalyst needs to access the table lookup every time a new Y is
computed. If all m × t elements of the table (removing the first column that cannot
be reached) were different, the probability of success PS would be m×t

2k . The actual
probability of success depends on how the precomputed chains cover the key space. Un-
fortunately, there is a chance that chains starting at different keys collide and merge.
The larger a table, the higher the probability that a new chain merges with a previous
one. Each merge reduces the number of distinct keys that are actually covered by the
table. If f is a random function, then the probability of success is bounded by:
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1

N
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j=0

(1 −
it

N
)j+1. (3)

Equation 3 indicates that, for a fixed value of N , there is not much to be gained by
increasing m or t beyond the point at which mt2 = N . To obtain a high probability of
success, a more efficient method is to generate multiple tables using a different function
g for each table. The probability of success with r tables is:

PStot ≥ 1 − (1 − PStable)
r. (4)

Chains of different tables can collide, but not merge since the function g is different for
every table.



2 Distinguished points and rainbow tables

The idea of using distinguished points (DPs) in time-memory tradeoffs is due to Rivest
in [4]. If {0, 1}k is the key space, a DP property of order d is usually defined as an
easily checked property that holds for 2k−d different elements of {0, 1}k, e.g. having d

bits of the key equal to zero. In a time-memory tradeoff using DPs, the start and end
points of the precomputed chains fulfill a DP property. As a consequence, the chains
have variable length but detectable extreme points. This greatly reduces the number
of table lookups during the online attack from t to 1.

A remarkable property of the DP method is that merges can be easily detected and,
therefore, can possibly be rejected during the precomputation in order to build perfect
tables [5]. The major drawback of DPs is that they introduce variable chain lengths and
they are more difficult to analyze [6]. DP methods can also be used to detect collisions
(e.g. of hash function) as suggested in [8, 9].

An alternative solution to reduce the number of table lookups is to use the rainbow
tables presented in [7]. That is, to use a different function g for each point in a chain:
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Two rainbow chains can only merge if they collide at the same position. Other collisions
do not trigger a merge. As a consequence, rainbow tables are an elegant alternative
to perform a time-memory tradeoff. As further reading, [1] provides a careful analysis
of different cryptanalytic time-memory tradeoffs and discusses the technique of check-
points that can be used to improve the detection of false alarms. Another analysis of
cryptanalytic time-memory tradeoffs is provided in [2].
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