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Abstract. Most side-channel attacks that have been published in the
open literature assume known- or chosen-message adversarial scenarios.
In this paper, we analyze the increase of the attacks’ efficiencies that can
be obtained by adaptively selecting the messages. For this purpose, we
first describe a generic strategy that allows an adversary to take advan-
tage of this capability. We show that it can be applied to any differential
power or electromagnetic analysis attack, against unprotected or pro-
tected devices and exploiting profiled or non-profiled leakage models.
Then, we provide various experiments to quantify these improvements.
Finally, we discuss the optimality of our strategy and its implications for
the security evaluation of leakage-resilient cryptographic hardware.

1 Introduction

In classical cryptanalysis, the adaptive selection of the inputs to a cryptographic
primitive is known to be a powerful ability for the adversaries. For example,
blockwise-adaptive chosen-message attacks have been used to show the insecurity
of different encryption modes in [9]. Similarly, Bleichenbacher has demonstrated
in [3] that chosen-ciphertext attacks can be used to attack the RSA Encryp-
tion Standard PKCS #1. And in the symmetric setting, boomerang attacks are
an example of how the adaptivity can be exploited to reduce the complexity
of certain categories of attacks [24]. Quite surprisingly, and although it is fre-
quently suggested as a possible improvement, very few related works have been
performed in the context of side-channel attacks. In [20], Schindler presented a
timing attack against RSA with the Chinese remainder theorem that requires
some form of adaptivity. And more recently, Köpf and Basin provided a careful
model and analysis of such an attack scenario. But the investigations in [12] are
carried out in a restricted context of noiseless leakage. This typically applies to
timing attacks such as [10], but is of limited interested in the case of power or
electromagnetic side-channel attacks, in which noise is a typical issue adversaries
have to deal with [1, 11, 19]. To the best of the authors’s knowledge, the gener-
alization of this previous work, from the context of deterministic leakages to the
one of probabilistic (or noisy) leakages was left as an open question.
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In this paper, we consequently tackle this problem and propose a careful
investigation of adaptive chosen-message side-channel attacks. We describe a
generic strategy that can be applied to improve the efficiency of any distin-
guisher. As an illustration, we detail its impact for correlation and template
attacks [4, 5], both from simulations and actual experiments. Our evaluations
show significant increases of the side-channel key-recovery success rates. We ad-
ditionally evaluate the application of adaptive strategies against implementations
protected with masking [8] and observe very similar improvements. Eventually,
we discuss the optimality of our approach and compare it with the one in [12].

These results imply direct consequences for the good security evaluations of
leaking cryptographic devices. They show that when applicable, adaptive strate-
gies require to take larger security margins than for random-message attacks. In
other words, the attacks described in this paper indicate how to best exploit the
physical information leakage, in the standard DPA setting formalized in [15].
Hence, they can be used to determine the worst-case number of measurements
required to performed a successful key-recovery in this context. We note that
considering key-recovery attacks in security evaluations can appear as too weak
from a theoretical point of view. But as demonstrated in [2], there is a strong
relationship between distinguishing attacks and key-recovery attacks in the con-
text of block ciphers. Hence, this situation is not very different than the one
in classical (e.g. linear, differential) cryptanalysis, in which one considers the
best available attacks in order to approximate the security of a cipher. And the
adaptive strategies presented in this paper are part of these evaluation tools.

Note also that our results have interesting connections with recent works in
the area of leakage resilient cryptography. Indeed, one of the assumptions in, e.g.
[6, 16], is that the leakage function can be adaptively selected by the adversary.
But as discussed in [23], this is a quite strong requirement that is rarely observed:
it would require that the adversary can change his measurement setup in a
constructive manner. In practice, most attacks rather rely on a fixed leakage
function and measure this function for different plaintexts. It is the combination
of several plaintexts that allows increasing the information leakage in such a way
that the key is eventually revealed. Hence, our adaptive selection of the messages
provides a more realistic counterpart of the adversarial capabilities.

2 Terminology & notations

In a side-channel attack, an adversary tries to recover some secret information
from a leaking implementation, e.g. a software program or an IC computing
a cryptographic algorithm. In this paper, we focus on the divide-and-conquer
strategies that are most frequently considered in the literature [14] and are for-
malized as “standard DPA attacks” in [15]. In the context of a block cipher
implementation (that will be our running example), one typically targets small
pieces of the master key - called subkeys in the following - one by one. The
attacks then follow the different steps illustrated in Figure 1.
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Namely, we consider a device performing several cryptographic computations
Ek(xi) on different plaintexts xi drawn from the text space X , using some fixed
key k drawn from the key space K. While computing Ek(xi), the device handles
some intermediate values that depend on the known input xi and the unknown
key k (defined as sensitive variables in [18]). In practice, the interesting sensitive
variables in a DPA attack are the ones that depend on an enumerable subkey s:
we denote them as vs

i , for a plaintext xi. Any time such a sensitive intermediate
value is computed, the device generates some physical leakage, denoted as lki
(where the k superscript indicates that the leakage potentially depend on all
the key k, including the subkey s). Hence, in order to perform a key-recovery,
an adversary first has to select a sensitive value. Given that this variable only
depends on a subkey s, he can then predict its result for the plaintexts xi that
generated lki and enumerate every possible subkey candidate s∗ ∈ S. This leads
to different hypothetical intermediate variables vs∗

i . Afterwards, the adversary
exploits a leakage model to map these values from their original space V towards
a modeled leakage space M. As a result, he obtains |S| different models, denoted

xi

s

vs
i lki

s∗

vs∗

i ms∗

i

T

T
′

compute leak

predict model

ds∗

i

Device
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Fig. 1. Schematic description of a side-channel key-recovery attack.

as ms∗

i , again corresponding to the different subkey candidates. Eventually, he
uses a statistical test T to compare the different models ms∗

i with the actual
leakages lki . If the attack is successful, the highest value for this test should
occur for the correct subkey candidate s∗ = s. This procedure can be repeated
for different subkeys in order to recover the complete key k.

In view of this description, there are several important parameters that de-
termine the efficiency of a DPA. First, the choice of an intermediate computation
and leakage model have a significant impact. For example, it is well known that
predicting the first round S-boxes’ outputs in a block cipher leads to a better
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discrimination of the subkeys than predicting their inputs [17]. As for the leakage
models, it mainly relates to the a-priori knowledge of the adversary about the
device he targets. One generally distinguishes profiled and non-profiled attacks.
In the first ones (e.g. template attacks [5]), the adversary can characterize the
leakage probability density functions (pdf for short) prior to the online attack.
In the second ones, he exploits simpler models (e.g. predicting only certain mo-
ments of the leakage pdf, as in correlation attacks [4]) or performs the profiling
“on-the-fly” [7]. Second, and closely related, the choice of a statistical test is
usually determined by the type of models available to the adversary.

Another parameter that is less frequently considered (and evaluated) in the
literature is the selection of the plaintexts. That is, in most experimental settings,
one generally considers attacks with random input messages. But as illustrated
in Figure 1, a more powerful scenario is to adaptively select the plaintexts, in
function of the prior knowledge about the secret subkey and an hypothetical
leakage model. In this paper, we consequently investigate the statistical tests T

′

that can be used in order to best exploit the available leakage.

3 Adaptive template attacks

In this section, we present the principles of our adaptive chosen-message strategy.
We first describe it in the (profiled) context of template attacks. Then, we discuss
how to generalize our solution to non-profiled distinguishers.

3.1 Template attacks

Template attacks, first published in [5], are usually considered as the most pow-
erful type of side-channel attacks, in an information theoretic sense. They work
in two main steps. In a first profiling phase, the adversary builds key-dependent
templates, i.e. he estimates the leakage pdf for different internal configurations
of his target device. Then, in a second (online attack) phase, he uses these tem-
plates to perform a maximum-likelihood key-recovery. In this paper, we focus on
the (most frequently considered) case of Gaussian templates.

Templates construction. Gaussian template attacks assign a Gaussian dis-
tribution to a number of different configurations of the target device. In their
most generic form, they perform this assignment exhaustively. For example, if an
adversary targets the 8 first bits of an AES master key, he will use one Gaussian
for any pair (xi, s

∗), out of the 216 possible ones. In practice, different tricks can
be used to reduce this number of templates, in order to increase the efficiency
of the profiling, e.g. by taking advantage of symmetry properties and stochas-
tic models [21]. In this section, we describe the generic approach for simplicity.
Suppose that the adversary is provided with Np traces to estimate the pdf corre-

sponding to a state (xi, s). He will then assume that the leakage traces {lk,j
i }

Np

j=1

are drawn from the multivariate normal distribution:
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where the mean µs
xi

and the covariance matrix Σs
xi

specify completely the noise
distribution associated to the leakage trace of each pair (xi, s). The templates
are built by estimating the sets of parameters µs

xi
and Σs

xi
for xi ∈ X and

s ∈ S. Maximum likelihood estimators can be used for this purpose: µ̂
s
xi

=
1

Np

∑Np

j=1 lk,j
i , and Σ̂

s

xi
= 1

Np

∑Np

j=1(l
k,j
i − µ̂xi,s

)(lk,j
i − µ̂xi,s

)T.

Online attack. Assume now that there are |S| possible subkeys. To determine
which one is the most likely to have generated a new trace lki , we compute:

s̃ = argmax
s∗

P̂r[s∗|lki ] = argmax
s∗

P̂r[lki |s
∗, xi] · P̂r

(0)
[s∗],

where P̂r[lki |s
∗, xi] = N (lki |µ̂

s∗

xi
, Σ̂

s∗

xi
) and P̂r

(0)
[s∗] is the a priori probability of

the subkey candidate s∗, that we assume to be uniform in the following (i.e. equal
to 1/|S|, ∀s∗). In other words, the classification rule assigns lki to the candidate
s∗ with the highest a posteriori probability. Since in practice, a single trace is
usually not enough to recover the subkey with high confidence, the adversary

finally combines several plaintexts and computes s̃ = argmax
k∗

P̂r
(q)

[s∗], with:

P̂r
(q)

[s∗] =

∏q

i=1 Pr[s∗|lki ]∑
s′∈S

∏q

i=1 Pr[s′|lki ]
,

and q the number of traces used in the online attack. Note that in the following
sections, we will denote as univariate (resp. multivariate) the attacks in which
the the traces lki contain one (resp. several) samples.

3.2 Adaptive selection of the plaintexts

Let us now assume that a template attack has been performed with i traces,
corresponding to different plaintexts x1 to xi, and giving rise to a certain knowl-

edge about the subkey candidates summarized as P̂r
(i)

[s∗]. The objective of this
paper, illustrated in Figure 1, is to select the next plaintext xi+1 in such a way
that it will best discriminate the correct subkey. Ideally, this plaintext could be
obtained by computing the success rate of the adversary in step i + 1 or, simi-
larly, by computing the residual entropy of this correct subkey s (i.e. one of the
metrics in [22]). But while running an attack, the adversary obviously does not
know the value of this correct subkey yet. As a consequence, the only applicable
strategy is to exploit a criteria that can be estimated “on-the-fly”.
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Following the previous section, it appears that a natural criteria is to look at
the entropy of the subkey candidates rather than the one of the correct subkey.
Indeed, in a successful attack, the entropy of these subkey candidates should
eventually be null (i.e. we should determine only the correct subkey with prob-
ability one). For example, at step i, this entropy can be estimated as:

Ĥ
(xi)

[S∗] = −
∑

s∗

P̂r
(i)

[s∗] · log2 P̂r
(i)

[s∗],

where xi = [x1, x2, . . . , xi] is the vector of plaintexts used in the attack. Using
this entropy as a criteria for our adaptive chosen-message attacks implies select-

ing the plaintext xi+1 as the one minimizing Ĥ
(xi+1)

[S∗]. This can be done as
follows. First, let us observe that for every plaintext candidate x∗

i+1 and subkey

candidate s∗, one can define a random variable L̂s∗

x∗

i+1
, corresponding to the sim-

ulated leakage trace that perfectly follows the leakage model obtained from the
templates construction phase (i.e. a normal curve with mean vector µ̂

s∗

xi+1
and

covariance matrix Σ̂
s∗

x∗

i+1
). We can then construct a random variable L̂S∗

x∗

i+1
, as a

mixture of L̂s∗

x∗

i+1
’s, for different plaintext candidates x∗

i+1, with probability:

Pr[L̂S∗

x∗

i+1
] =

∑

s∗

P̂r
(i)

[s∗] · Pr[L̂s∗

x∗

i+1
]. (1)

That is, we have one L̂S∗

x∗

i+1
per plaintext candidate x∗

i+1. Exemplary mixtures are

represented in Figure 2, for two different plaintexts and in a simple context with
only four possible subkeys. The definition of this variable is motivated by the
fact that at step i in an attack, the only available knowledge about the subkeys

is stored in P̂r
(i)

[s∗]. Hence, Equation (1) is the best available estimation of the
leakage pdf at this step. For a given mixture and a fixed (simulated) leakage

value l̂S
∗

x∗

i+1
, it is possible to compute the conditional entropy Ĥ

(x∗

i+1)
[S∗|l̂S

∗

x∗

i+1
],

as illustrated in Figure 2 for three exemplary leakage values l0, l1 and l2.
Integrating this entropy over the leakages yields the estimations:

Ĥ
(x∗

i+1)
[S∗] =

∫
Pr[l̂S

∗

x∗

i+1
] · Ĥ

(x∗

i+1)
[S∗|l̂S

∗

x∗

i+1
] dlS

∗

x∗

i+1
.

And since we have one such entropy value for every possible choice of x∗
i+1 in

|X |, we finally obtain the following rule to select the plaintexts:

x̃i+1 = argmin
x∗

i+1

Ĥ
x
∗

i+1
[S∗]

Summarizing, we use the available a-priori subkey information at step i and
the leakage model (i.e. the templates) to predict how the entropy of the subkey
candidates would evolve at step i + 1, for different plaintext candidates x∗

i+1.
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]
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i+1)[S∗|l2] ≈ 0.72

Fig. 2. Adaptive selection of the plaintexts in a simplified context with |S| = 4.

3.3 Generalization to non-profiled attacks

As detailed in the previous section, an important requirement when applying an
adaptive strategy (e.g. in the case of template attacks) is the availability of a
good leakage model. Therefore, an interesting question is to know if such strate-
gies can still help in the context of non-profiled side-channel attacks, where the
model is usually less precise. As an illustration, we discuss this problem for the
frequently considered correlation power analysis using Pearson’s coefficient.

Correlation attacks, as described in [4], use the following distinguisher:

ρ̂(Ms∗

q ,Lq) =
Ê

((
li − Ê(Lq)

)
·
(
ms∗

i − Ê(Ms∗

q )
))

σ̂(Lq) · σ̂(Ms∗

q )
,

where Ê and σ̂ denote the sample means and standard deviations of a ran-
dom variable, respectively. In this context, the models ms∗

i are not the complete
leakage pdf (as in template attacks) but only their mean values (i.e. the first-
order moments of the pdf). In general, these mean values are not estimated with
profiling, but rather taken from engineering intuition. For example, a usual as-
sumption is to use the so-called Hamming Weight or distance leakage models [14].

Adaptive correlation. When trying to apply the strategy of the previous sec-
tion to correlation attacks, two main problems arise, that we now detail. First,
the subkey probability estimation is not straightforward. Whereas template at-
tacks rate these subkey candidates using their probabilities, correlation attacks
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return a set of scores, corresponding to the value of Pearson’s coefficient. In order
to mount an adaptive attack, the adversary consequently needs to use heuristics

in order to estimate the subkey distribution P̂r
(i)

[s∗], e.g. by:

– using the absolute value of the estimated coefficient p̂s∗

i = |ρ̂(Ms∗

q ,Lq)|,
– applying Fisher’s transform on this correlation coefficient (in order to get a

normal distribution), i.e. computing p̂s∗

i = |arctanh(ρ̂(Ms∗

q ,Lq))|,
– computing the p-values associated with each correlation in a hypothesis test.

For example, one could estimate the p-value obtained when stating that the
subkey candidate in not correlated with the model.

In each case, we then need to normalize the p̂s∗

i ’s in order to get an estimated
probability distribution, as the values we obtain are not actual probabilities, and
some wrong subkeys may give a non-zero score (aka ghost peaks [4]):

P̂r
(i)

[s = s∗] =
p̂s∗

i∑
s′∈S

p̂s′

i

Second, and more critically, the selection procedure of Section 3.2 requires to
build a random variable L̂S∗

x∗

i+1
as a mixture of L̂s∗

x∗

i+1
, that estimates the leakage

distribution given the subkey probabilities at step i in an attack. This requires
an estimate of the leakage pdf that is given if the leakage model is probabilistic
(as in template attacks), but is not directly available in a correlation attack.
Again, a number of heuristics are possible. The simplest one, that we considered
in this work, is to combine the (Hamming weight or distance) power models with
a Gaussian assumption, i.e. to paste a Gaussian curve to the different Hamming
weights, of which the variance is estimated “on-the-fly” during the attack.

4 Simulated experiments

In order to validate our adaptive message selection, we first conducted software
simulations. These attacks target the output of a single AES S-box in the first
encryption round. Excepted if mentioned otherwise, physical leakages are simu-
lated as the Hamming weight of the S-box outputs, to which is added a normally
distributed noise with standard deviation σn. The efficiency of an attack is then
measured with the success rate, averaged over 1000 independent key recoveries.
The results of our experiments are in Figure 3 from which we observe:

1. In all cases, the adaptive strategy leads to increased success rates. It no-
ticeable that the impact of this adaptivity becomes significant as soon as
a slight a-priori knowledge is known about the target subkey. Also, and as
illustrated in Figure 3.(a), this improvement holds for different noise levels.

2. The same observation also holds for different leakage functions. For example,
Figure 3.(b) shows the success rates of attacks exploiting three different side-
channels of the form: L(x) =

∑
i αix[i] + n, where x[i] is the ith bit of the

target S-box output and n a Gaussian noise. Interestingly, these examples
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(a) Hamming weight leakage function, σn = 1 (left) and σn = 4 (right).
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(b) Different leakage functions with the same noise level σn = 1 and the conditional
entropy H[S|L1] = 7.7 (left), H[S|L1] = 7.4 (middle), H[S|L1] = 6.9 (right).
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(c) Masked S-box, Hamming weight leakages, σn = 0.5 (left) and σn = 1 (right).
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(d) Correlation attacks, Hamming weight leakages, σn = 0.5 (left) and σn = 1 (right).
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Fig. 3. Success rates of different simulated experiments.
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directly connect with the framework in [22]. They show that as in a non-
adaptive context, a more informative leakage function (measured with the
conditional entropy H[S|L1]) leads to more efficient attacks.

3. Although more computationally intensive (because they require to deal with
mixtures of probability distributions, e.g. as described in [13]), attacks against
masked implementations exhibit similar improvements (see Figure 3.(c)).

4. Eventually, the results of the heuristics proposed to exploit adaptivity in the
context of correlation power analysis are given in Figure 3.(d). As expected,
the imperfect approximations of the pdf imply smaller improvements.

This last point implies interesting scopes for further research. For example, it
would be interesting to apply adaptive strategies to other non-profiled tools such
as the MIA [7], in which an estimation of the leakage pdf is computed as part
of the attack. In the same line, it could also be possible to exploit stochastic
models in order to obtain a leakage model “on-the-fly”. In this respect, it is
worth recalling that such distinguishers can also be used for profiling a device,
without a-priori knowledge of the key (i.e. to obtain templates in a flexible way).

5 Experiments using actual measurements

In order to confirm the previous simulations, we additionally performed actual
experiments against an implementation of the AES Rijndael in an Atmel At-
mega 644p chip. Such actual measurements are interesting because they allow
exploiting the leakage of several time samples, contrary to the simulated case
where a single point of interest was considered. In other words, actual experi-
ments allow easily evaluating the impact of multivariate templates. In practice,
we compared attacks with up to three samples, for adaptive and random message
selection. The points of interest were selected as part of the profiling phase, two
of them corresponding to the S-box computation, and one to the first key addi-
tion. Again, we estimated the success rates over 1000 independent key recoveries,
excepted for the trivariate attack which was only launched against 50 different
keys. The smaller number of attacks in this case is due to their computational
cost, that grows exponentially with the number of dimensions, and makes the
exhaustive analysis of Section 3.2 too intensive to be performed.

The results of these experiments are in Figure 4. They show that the adaptive
strategy holds for real world implementations. That is, the leakage models built
during profiling can be precise enough1 so that the estimation of the “next-step

entropy” Ĥ
x
∗

i+1 [S∗] leads to a meaningful selection of the next plaintext xi+1. It
is worth noting the large difference between univariate random-message attacks
and trivariate chosen-message ones. It illustrates the variability that can be ob-
served between different attack scenarios in physically observable cryptography.

1 We used a 1000 traces to characterize each template.
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Fig. 4. Success rates of experiments carried out against an AES implementation.

6 Discussion and concluding remarks

Is our strategy optimal? Following the previous sections, a first natural
question is to know if the proposed strategy is optimal. For this purpose, it
is interesting to relate our work with the one of [12]. The authors estimate the
number of queries required for a key-recovery, in the context of deterministic side-
channel leakages. For each encryption step, the key candidates are partitioned in
r sets, and the side-channel leakage allows the adversary to discriminate one set
containing the correct key. The optimal strategy minimizes the number of steps
required to reduce the number of key candidates to one. The main limitation is
that its computational cost is doubly exponential in the number of attack steps.
This is because in this optimal strategy, it is in fact several next plaintexts (xi+1,
xi+2, . . . ) that have to be predicted in order to minimize the entropy of the key
candidates. Hence, this strategy is hardly applicable, even for small parameters
size. In order to get rid of this limitation, Köpf and Basin propose an alternative
greedy heuristic, which predicts only one next plaintext at a time.

The procedure presented in this paper can be seen as the extension of such a
greedy strategy, from the deterministic case towards the more general probabilis-
tic case. The main difference is that deterministic leakages allow the adversary
to effectively eliminate subkeys, whereas probabilistic leakages only help the ad-
versary to update the subkey candidates’ distribution. This extension allows an
application of adaptive strategies to a broader class of attacks, including power
and electromagnetic leakages, typically. But it comes at a computational cost,
since we had to turn deterministic sums into integrals (that are multidimensional
in the case of multivariate attacks). Summarizing, our strategy is not optimal.
But as indicated in [12], greedy heuristics can provide close to (or even equal to)
optimal results in practice. The exact evaluation of the greedy approach with re-
spect to the optimal one and the investigation of alternative solutions to reduce
the computational cost of adaptive attacks is a scope for further research.
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Implications. Next to optimality, another important question is to determine
whether the application of adaptive strategies may have practical impact in
certain applications. Looking at the figures in the previous sections indicates
that the improvements are not huge, but can be significant. For example, Table
1 shows that the number of measurements required to reach a certain success
rate is improved, in particular when combining adaptive attacks with trivariate
leakages. But in fact, the consequences of adaptivity are best observed with
respect to the global success rates of the attacks. That is, because standard DPA
attacks exploit a divide-and-conquer strategy, the overall success rate against the
full AES master key can be estimated by simply raising the success rate against
an 8-bit byte to the power 16. This assumes that all key bytes are equally difficult
to recover, which is reasonable in most applications, in particular software ones as
in Section 5. In the case of adaptive attacks, it also means that the selection of all
the plaintext bytes are performed concurrently. Table 2 shows these estimated
success rates in function of the number of messages in the attack. It clearly
illustrates the strong impact that adaptive strategies may have. For example,
one can imagine a re-keying scheme where the secret is updated every four
encryptions. Our results suggest that the resulting security level would differ
by a factor of 29 depending on the use or not of adaptive messages. This factor
increases to 226 if multivariate leakages are considered. And in the case of attacks
against the AES-256, these factors would additionally be squared.

Target success rate > 20% > 40% > 60% > 80% ≈ 100%

random messages - 1D 5 7 8 11 20
adaptive messages - 1D 4 5 7 8 16
adaptive strategy - 3D 3 4 5 6 8

Table 1. Approximated data complexities for different attacks against an 8-bit subkey.

Number of messages 2 3 4 5 6 7 8

random messages - 1D 2−69 2−55 2−42 2−29 2−21 2−15 2−10

adaptive messages - 1D 2−64 2−50 2−33 2−20 2−12 2−7 2−5

adaptive strategy - 3D 2−58 2−32 2−16 2−9 2−4 2−2 -

Table 2. Approximated success rates for different attacks against a 128-bit key.

It is worth mentioning that targeting hardware implementations, in which
all the subkeys are manipulated in parallel, would imply additional questions.
For example, in a context where a single key byte has to be recovered with
high efficiency, one could also take advantage of chosen plaintexts so that the
remaining input bits are constant, in order to reduce the algorithmic noise. But
an adaptive strategy would still apply to the target key byte. Extending the
experiments of this paper towards more devices and countermeasures against
side-channel attacks is anyway another interesting direction for further research.
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Eventually, and as discussed in [23], the success rates of adaptive attacks
can, when applicable, be used as rough (but only available ones) estimations of
the bounded leakage2 that is necessary to prove the security of certain leakage
resilient constructions. Our results can also be directly integrated in the evalua-
tion framework of Eurocrypt 2009 [22]: they exhibit a new type of distinguisher
that can take advantage of the information leakage in a close to optimal manner.
Summarizing, this paper brings an important contribution to the exploitation of
side-channel leakages in both theoretical and practical settings.
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