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ABSTRACT
Cryptographic systems and protocols are the core of many
Internet security procedures (such as SSL, SSH, IPSEC,
DNSSEC, secure mail, etc.). At the heart of all crypto-
graphic functions is a good source of randomness, and for
efficiency, the primitive of pseudorandom generator (PRG).
PRG can also be used in the design of stream ciphers, for
secure communications. The Internet is nowadays composed
of many types of devices with very different hardware and
software characteristics. Hence, one of the concerns in such
open environments is the information “leakage” and its ex-
ploitation via the so-called “side channel attacks”.

A very extensive and current research direction is designing
basic cryptographic operations that are resistant to such at-
tacks. Recent works on leakage-resilient PRG and stream
ciphers did significant progresses in providing tools for the
analysis of side-channel attacks in the standard cryptographic
setting. But in the absence of a completely sound model for
the leakages, the only constructions that can be proven se-
cure require tweaks that do not correspond to the physical
intuition. For example, constructions using an alternating
structure, in which a key bit-size of 2n can only guarantee a
security of at most 2n, have been designed for this purpose.

In this paper, we provide two methodological contributions,
allowing to get rid of these tweaks, or to reduce their im-
pact towards negligible performance overheads. First, we
show that the leakage-resilience of a natural, i.e. conform
to engineering experience, stateful PRG can be proven un-
der a random oracle based assumption. We then discuss the
relevance of this assumption, and argue that it nicely cap-
tures the reality of actual side-channel attacks. Second, we
provide the first construction of a PRG without alternat-
ing structure, that exploits the keying material to its full
length and that can be proven leakage-resilient in the stan-
dard model. For this purpose, we only need to assume a
non adaptive leakage function and a small public memory.
We also argue that such an assumption is not only realistic,
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but necessary for any leakage-resilient primitive that grants
adversaries with a (stateless) reinitialization capability. To-
gether with weaker requirements for practical implementa-
tions, these contributions further reduce the gap between the
theory and practice of physically observable cryptography.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Design, Security

1. INTRODUCTION
Side-channel attacks are one of the most dangerous threats
against cryptographic algorithm implementations: these at-
tacks circumvent traditional security proofs by going out-
side the model in which these proofs are realized, and are
generally much more effective than traditional cryptanaly-
sis. As a consequence, resilience to these attacks has in-
tensively been studied during the last fifteen years, through
the design of countermeasures at low abstraction implemen-
tation levels, using gate masking and randomization tech-
niques or specific logic styles for instance, and assessing the
effectiveness of these countermeasures through experimen-
tal evidence. More recently, an important body of works
addressed this issue at a higher abstraction level, proposing
models capturing physical attacks and designing new primi-
tives of which the security can be proven within these models
[1, 3, 4, 7, 9, 10, 11, 12, 19, 23, 25, 28, 29, 33, 35, 37].

These new models adopt a point of view that is complemen-
tary to the traditional one: while the traditional approaches
aim at limiting the amount of information leaked by a device,
the recent works cited above aim at limiting the impact of
information leakage. In the bounded retrieval model [5, 8],
one considers an attacker who is not able to get more than a
certain amount of information through leakages, this amount
of information being bounded for the whole lifetime of the
system. Such a model appears to be particularly suitable for
mitigating the risks of memory attacks such as [13], for in-
stance. In another line of work, introduced by Dziembowski
and Pietrzak [23], the computation performed by a leaking
device is partitioned into rounds, and it is assumed that in-
formation leakages occur independently in each round, and
are a function of the part of the system state that is ac-
tive during the corresponding round. In this setting, the
amount of information leaked per round is still expected to
be bounded, but the total amount of information leaked can



be much larger than in the bounded retrieval model. This
second approach, which we adopt here, is particularly suit-
able for the analysis of cryptographic primitives that are
attacked through power or electromagnetic analysis for in-
stance [21, 30], and are inherently executed iteratively, which
is most common for the symmetric cryptography primitives
that we are studying in this paper. The advantage of such an
approach is that it simplifies the (arguably difficult) task of
hardware designers. Rather than asking them to protect an
implementation against an adversary who can monitor the
leakages corresponding to an arbitrary number of iterations
of the primitive, we only require to protect a single itera-
tion, and rely on sound mathematical tools to ensure that
the security of one round can be extended to the security
of multiple rounds. In other words, we still rely on low ab-
straction level countermeasures to protect the cryptographic
implementations, but in a less demanding way.

The main ingredient for resilience to bounded leakages per
round is key update: One designs schemes in such a way
that, in each round, leakages occur on different keys (or se-
cret data). This, in turn, ensures that repeated measure-
ments occurring during different rounds cannot be easily
combined in order to recover a complete key. The intu-
ition behind needing key update is demonstrated by looking
at the side-channel attack resilience of the two pseudoran-
dom generators depicted in Fig. 1. Running the ANSI X9.17
PRG, which is shown in high-level principle in Fig. 1a, re-
quires, in each iteration, the encryption of some values with
the key k. As a result, the leakage of even one single bit of k
per iteration might be enough to fully compromise this gen-
erator after a few iterations. On the other hand, the stateful
PRG shown in Fig. 1b involves computation with updated
keys in each round, which is expected to make this type of
construction much more resilient to side-channel attacks.
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Figure 1: (a) ANSI X9.17 PRG, (b) Stateful PRG.

Related work. In fact, the intuitive idea of combining a
bounded leakage per iteration with regular key updates, e.g.
for block ciphers, is not new. Shortly after the publication of
the first power analysis attack [21], Paul Kocher listed pos-
sible countermeasures in which similar principles are found
(see [20] for instance). Therefore, the novelty in these previ-
ous works mainly lies in the advanced techniques that they
provide for evaluating and analyzing physical attacks. But,
as extensively discussed in [35], none of these solutions com-
bines all the features that one can wish for a leakage-resilient
construction. That is, the proposals that are most satisfying
from a theoretical point of view fail to convey some impor-
tant engineering intuition. And the proposals that are most
satisfying from a practical point of view could not be proven
secure with general cryptographic techniques.

Let us elaborate on this, focusing on the case of stream
ciphers, which are often implemented in small embedded
circuits and are a target of choice for side-channel attacks.
The construction of Dziembowski and Pietrzak [9], which is
proven secure in the standard model, exploits an alternat-
ing structure in which the secret key size is doubled, and
a combination of extractor and PRG is used to process the
iterations. By assuming that the leakages occurring when
computing in one part of the alternating structure are in-
dependent of the variables manipulated in the other part
(i.e., independent computations result in independent leak-
ages), the authors are able to prove the security of their
construction, against a very wide class of leakage functions.
Namely, a class that includes any polynomial time function
of the device’s manipulated (i.e., active) state and that can
be adaptively chosen by the adversary, provided it satisfies
some bounds on the amount of leaked information.

The construction of Pietrzak [29] relies on similar principles,
but replaces the extractor and PRG by a single wPRF (weak
pseudorandom function), which can be easily instantiated
with block ciphers such as the AES Rijndael, at the cost of
worse security bounds in the proofs. Finally, a third stream
cipher construction was proposed in [37], together with an
instance of low complexity extractor, aiming at better prac-
tical security and stronger leakage-resilience. This last pa-
per shows that the parallel computation of the two branches
in an alternating structure can be exploited for these pur-
poses. It also brings tools that better connect the results of
theoretical analysis with the practice of side-channel attacks
(e.g., by introducing more realistic assumptions that can be
empirically verified by cryptographic engineers).

From an engineering point of view, the main limitation of the
three aforementioned papers relates to the difficulty of prop-
erly modeling the leakage function. That is, by consider-
ing any polynomial time leakage functions in their analysis,
the resulting constructions need to face (unrealistic) “future
computation attacks”, in which parts of a state that will only
be reached after dozens of computation rounds can be leaked
during the current computation round. Consequently, and
in order to incorporate these (admittedly overly strong) at-
tacks, these constructions require an alternating structure
which does not seem to be motivated by physical intuition.

In contrast, the earlier forward secure PRG secure against
side-channel key recovery attacks presented at ASIACCS
2008 [28] was not limited by such considerations. But it
only provides a security analysis for restricted classes of leak-
age functions which, although representative of the current
state-of-the-art attacks, does not imply the generic security
that one can hope for in modern cryptographic designs.

Contributions. With respect to the previous related works,
this paper contains two contributions to the analysis and de-
sign of leakage-resilient stream ciphers. First, we show the
leakage resilience of a natural (i.e., conform to engineering
experience) block-cipher based stateful PRG, under a ran-
dom oracle based assumption. More precisely, in the proof of
leakage resilience, we model the length-doubling PRG 2PRG,
that is the core of the construction, by a random oracle that
cannot be queried by the leakage function. This guarantees
that the leakage function, while being allowed to leak about



the current inputs and outputs of 2PRG, cannot leak about
previous or future invocations of 2PRG. Admittedly, this
corresponds to a strong black box assumption. However, we
argue that it reasonably captures the reality of actual leak-
ages, which do not provide sophisticated functions that are
not present in a circuit state (e.g. a future output of the
PRG). We also note that, in the absence of leakages, our
stream cipher construction is secure in the standard model.

Second, we show that it is actually possible to prove the
security of a leakage-resilient stream cipher in the standard
model, without alternating structure, and with a marginal
construction complexity increase compared to the construc-
tion discussed in the previous paragraph. For this purpose,
we only need to rely on the additional assumption that the
leakage function is not chosen adaptively by the adversary,
but is fixed prior to the attack. We describe two designs
of leakage-resilient stream ciphers in this new setting, either
based on the combination of an extractor and a PRG, or
based on a single wPRF, as in previous works.

To summarize, this work addresses the leakage resilience of
some of the most natural PRG / stream cipher construc-
tions, either under a non standard assumption, or in the
standard model, at the cost of a slight memory overhead.

2. NON ADAPTIVE LEAKAGES
As a starting point, let us clarify the slightly confusing ter-
minology used in previous works on leakage resilience. Most
proposed stream ciphers build on an arbitrary length PRG,
of which the outputs are used as a keystream. But in prac-
tical applications, a stream cipher additionally requires a
reinitialization process, i.e. the ability to re-synchronize
with a remote device, without sharing a new secret seed.
For example, all candidates to the eStream competition have
a public Initialization Vector (IV) as input, in addition to
the secret seed [27]. And the constructions in [9, 29, 37]
miss such a feature. Efficient solutions exist to complement
these designs with a secure reinitialization process, as first
proposed in [28] and further detailed in [35]. But these solu-
tions and, in fact, any leakage-resilient reinitialization pro-
cess in a stateless device (i.e., a device that does not save
any part of its state between two reinitializations), would
be incompatible with an adaptive selection of the leakage
function. Indeed, if the adversary is allowed to obtain a dif-
ferent leakage function of the first round internal state after
every reinitialization of the cipher, then leakage functions
that output one single bit of the key are again sufficient to
get the full secret key after a few dozen of reinitializations.

Therefore, at least, one should require that when reinitializ-
ing a device to the same state (e.g., with the same IV), the
leakage function cannot be modified adaptively. But from
an operational point of view, the adaptivity of the leakage
function relates to the ability to change the measurement
conditions during a side-channel attack (e.g., the antenna’s
position in an electromagnetic analysis). Hence, whatever
modification of the setup that an adversary can do when
reinitilizing to a new state can also be done when reinitial-
izing to a constant state. These observations suggest that
considering adaptively selected leakage functions provides an
overly strong model. We will therefore consider static leak-
ages functions determined before an execution starts, which

are reused after each resynchronization. This will provide
the important benefit of making it possible to avoid the al-
ternating structure in our construction of Section 4.

We note that this assumption corresponds to the way side-
channel attacks are often conducted in practice, i.e. in a
setting where the leakage function is determined in advance
by the analyzed device and measurement equipment, and
not adaptively chosen by the adversary during the measure-
ments. It is also done without loss of generality. In order
to reflect the possible adaptivity of the measurement condi-
tions, we can include it in the adversary’s abilities and quan-
tify it directly in the bounded leakage assumption (i.e., adap-
tive leakage functions imply slightly more leakage). This is,
in fact, how an actual security evaluation would proceed, i.e.
by finding the best probe(s) position(s) and evaluating the
resulting leakage as a function of the data complexity.

3. STATEFUL STREAM CIPHERS
3.1 Motivation
Generating pseudorandom streams by following the general
idea of a stateful scheme, as pictured in Figure 1b, is intu-
itively appealing: such a construction guarantees that each
key is only used in the system for a very limited amount of
rounds – two, actually: in the round where the key is pro-
duced and in the round where it is used. This appears to be
fairly minimal, and suggests that the implementation of this
construction should only guarantee the secrecy of keys that
are involved in the measurements that could be performed
during only two rounds. Such a construction can however
not be proven secure in the model proposed by Dziembowski
and Pietrzak (which we will refer to as the DP model) [9].
Indeed, the DP model states that, in each round, a leak-
age occurs that can be any adversarially chosen polynomial
time function that does not decreases too much the (HILL
pseudo-) entropy of the output (say, the leakage cannot make
the entropy of the key decrease by more than λ bits). There-
fore, the adversary might perform a so-called “future com-
putation attack”, by requiring the leakage at round i to be
the i-th bit of the key that will be used in the (n + 1)-th
round: the full information on that bit is already part of the
state at round i. As a result, even though the leakage func-
tions only provides one single bit of information, the full key
of the (n+ 1)-th round is obtained by the adversary at the
end of the n-th round, and the adversary can, from then on,
compute the outputs of all future rounds of this construction

The use of an alternating structure, of the kind depicted in
Figure 2, provides a solution to this problem: if one assumes
that each of the boxes depicted leak independently, no leak-
age occurring in one box can be used to compute bits that
will be manipulated in future boxes. For instance, following
the notations of Fig. 2, leaking about k0 and x0 will not
allow computing bits of k4, because k4 depends on k1 too.
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Figure 2: A stream cipher based on an alternating structure.



It however appears unrealistic that such a “future computa-
tion attack” has any relation to practice: a circuit will leak
about its current state, but will not leak something related
to what it will only compute in a dozen of rounds. Besides,
the use of this alternating structure has several side effects:

1. The key size is doubled (one needs to initialize the gen-
erator with k0 and k1) but, independently of leakages,
the quality of the randomness produced by the gener-
ator corresponds to the use of only one of the keys.

2. It is assumed that the upper and lower parts of the
alternating structure leak independently. Still, while
one side of the structure is active, the state of the
other part must be saved for future use. While it is
probably possible to design circuits in such a way that
this assumption is satisfied, this would require special
care, e.g. splitting the circuit into two insulated parts
to avoid coupling effects discussed, e.g. in [2, 35].

The concerns above provide motivation for paying attention
to the simple stateful construction that we discussed above:

1. Such constructions should provide randomness of qual-
ity directly related to the length of the keys.

2. The requirement about independent leakages can be
strongly mitigated: while one would still need to as-
sume that the different rounds leak independently, this
appears to be much more natural since the state of past
rounds can be erased (explicitly, if needed), and future
rounds are not computed nor stored yet.

3. Finally, the insecurity of these constructions in the DP
model appears to be the result of an overly strong se-
curity model (allowing “future computation attacks”)
rather than of realistic physical concerns.

3.2 Model and construction
We consider an experiment PredA,L(n) to define the security
of our stateful PRG. It has three parameters: an adversary
A, a vector of leakage functions L that contains one leakage
function per PRG round, and a security parameter n. The
goal of the adversary in this experiment is to distinguish the
output of the stateful PRG at round q+ 1 from a uniformly
distributed random value, while given the outputs and leak-
ages of the first q rounds. We then say that a stateful PRG
is physically unpredictable if the probability of success of
any PPT adversary in this experiment is negligible.

Note that, contrary to what is proposed in the DP model for
instance, the leakage functions are a parameter of the exper-
iment: these functions are determined before the experiment
starts rather than being determined by the adversary during
the experiment – this is what we call non adaptive leakages
(see discussion in Section 2). In the following definition, we
denote the computation occurring in each box of Figure 1b
by the 2PRG function. More precisely, we have:

Experiment PredA,L(n):

1. A key k0 is selected uniformly at random in the set
{0, 1}n, and a counter i is set to 0.

2. On input 1n, adversary A starts sending request queries.
On each request query, the counter i is incremented,

the pair (ki, xi) is computed as 2PRG(ki−1), and the
leakage Li(ki−1) is returned to A, together with xi.

3. When A outputs a test query, a bit b ∈ {0, 1} and a
value r ∈ {0, 1}n are chosen uniformly at random, and
r is given to A if b = 0 or xi+1 is given otherwise,
computed as (ki+1, xi+1) := 2PRG(ki).

4. A outputs a bit b′, and PredA,L(n) is set to 1 iff b = b′.

Definition 1. A stateful PRG is physically unpredictable
for the family of leakage functions L if, for every PPT ad-
versary A, there is a negligible function negl such that:

PredA,L(n) =
1

2
+ negl(n).

Obviously, no PRG can be physically unpredictable if we
do not place any restriction on the leakage functions: these
could simply leak the full key, or be used to perform a“future
computation attack”. Therefore, we introduce two restric-
tions: the first one prevents “future computation attacks”,
while the second one ensures that the leakages occurring in
two consecutive rounds do not leak information that would
allow a full recovery of the key involved in these rounds.

Preventing future computation attacks. In order to pre-
vent leakage functions from providing unrealistic informa-
tion on future computations, we model 2PRG : ki → (ki+1,
xi+1) as a random oracle that cannot be queried by the
leakage function (note however that we do not prevent the
adversary from querying the oracle). This ensures that the
leakage functions will be able to leak information about the
round input and output, but not about values that will
be computed in further (or have been computed in past)
rounds, since computing this information would require ora-
cle queries. More precisely, we consider leakage functions of
the following form: Li(ki−1) := (Lii(ki−1), Loi (ki, xi)).

1 The
function Lii leaks about the input of round i, while the func-
tion Loi leaks about the output of that round, none of these
two functions being allowed to query the random oracle.

Importantly, the use we make of this random oracle sub-
stantially differs from the “standard” random oracle model.
While we restrict the leakages functions by preventing them
to include random oracle queries, we also make a very mild
use of this oracle in our proof. Namely, we do not use the
programmability of the oracle, which is known to provide
a strictly weaker model that the random oracle model [26].
So, it is not clear how our model compares with the random
oracle model (nor whether the two models are comparable).

Besides, our model appears to have a natural correspondence
to attacks on circuits implementing block ciphers (i.e., for
block cipher based PRGs in our case), where the measured
leakages can be interpreted as a simple function of the block
cipher input and key during the first few rounds of the com-
putation, and/or as a simple function of the block cipher
output and key during the last few rounds of the computa-
tion, but where any useful function of the block cipher input
and output remains elusive (or is the sign of a completely
broken implementation, as shown, e.g. in [31, 32]).
1ki and xi are computed through an oracle call. Considering
this single call is however important, since it corresponds to
the computation performed in the currently leaking round.



Note that, as the third section of this paper will be devoted
to the security analysis of a construction that can be proven
leakage-resilient in the standard model, one can wonder why
a security analysis using random oracles still makes sense.
As previously mentioned, we believe that this is a useful
methodological contribution because it directly corresponds
to the engineering intuition that a stateful PRG should have
good resistance against side-channel attacks. And although
the constructions in the next section do not suffer of the
need of an alternating structure anymore, it remains that the
small performance overheads that they imply are caused by
proof technicalities. In other words, while the constructions
in Section 4 may be perfectly convenient to use in a practical
setting, and bring the security guarantees of a proof in the
standard model, it remains that the modeling of the leak-
age function is imperfect. Namely, we still need to rule out
the “future computation attacks” by design rather than by
a sound restriction of the physical leakage (e.g., taking into
account the fact that they only compute “simple” functions
of a devices’ state). It is also worth mentioning that making
our security analysis rely on random oracles does not simply
lead to trivial results. For example, it allows discriminating
the two PRGs of Fig. 1, which confirms that it captures at
least a part of the intuition about leakage-resilience. Besides,
our random oracle-based approach can be used to analyze
the physical security of a construction that is secure in the
standard model when side-channel attacks are left out of
the analysis. Therefore, we believe that the proof technique
proposed in this section could be applied to other construc-
tions, either as a preliminary step in the analysis of their
leakage resilience, or in the absence of better solutions, e.g.
if implementation efficiency is a critical concern.

Eventually, we observe that more standard variants of our
random oracle approach could be considered, that could
probably provide similar results. For instance, one could
model 2PRG as a PRF F with a perfectly secret key k:
in this case, 2PRG(ki−1) could be computed as (ki, xi) :=
(Fk(ki−1),Fk(ki−1⊕1)) and the leakage functions would still
only take ki−1, ki and xi as inputs. The locality of the leak-
ages would then be guaranteed by the fact that k is not part
of the leakage function inputs. We will however use this
random oracle based model for now, for simplicity.

Bounded leakage per iteration. We require that the leak-
ages given to the adversary preserve the secrecy of the PRG
seed in the following sense: the probability that an adversary
recovers the seed used as input or provided as output during
two iterations of the PRG construction should be small. Con-
sidering two iterations is minimal since half of the output of
an iteration is the input of the next iteration, and there are
therefore two leakages taken on each secret variable.

This is formalized through the following definition.

Definition 2. Let (Lo, Li) be a pair of functions, A2PRG

an algorithm representing the side-channel adversary with
oracle access to 2PRG, n a fixed integer, and PrGuess(n) the
following probability: Pr[A2PRG(Lo(k1, x1), x1, L

i(k1)) = k1 :
k0 ← {0, 1}n; (k1, x1) := 2PRG(k0)]. The pair (Lo, Li) is
said to be ε-seed-preserving for security parameter n and
A2PRG if PrGuess(n) ≤ ε.

A pair of functions (Lo, Li) is said to be seed-preserving if,
for every PPT A2PRG, there is a negligible function ε such
that (Lo, Li) is ε(n)-seed-preserving for every security param-
eter n and A2PRG running on input 1n.
A sequence of pairs of functions (Lo1, L

i
1), . . . , (Lol , L

i
l) is said

to be uniformly seed-preserving if, for every PPT A2PRG,
there is a negligible function ε such that each pair of this se-
quence is ε(n)-seed-preserving for every security parameter
n and A2PRG running on input 1n.

Assuming that adversaries only receive outputs of seed-pre-
serving functions is reminiscent of the assumptions in the
cryptography with auxiliary input setting [6]. It is a weaker
assumption than requiring a high HILL pseudoentropy [16],
as in the DP model. We believe it captures physical leakages
particularly well in the sense that we do not put constraint
on the form of the leakage (e.g., in terms of length or entropy
left): it can be a simple computation time, a huge sequence
of power consumption measurements, a map of electromag-
netic radiations, or anything else. Moreover, it does not rule
out the possibility that the adversary would be able to rec-
ognize the correct key if given to him. We only require that
the leakage functions cannot be inverted efficiently.

Stronger versions of these notions of seed preservation would
allow the adversary to recognize whether a candidate key k1

is the correct one. This can happen in different contexts
in practice: it might be the case that half of 2PRG(k1) is
available as public output of a next round, enabling the ad-
versary to perform some comparisons; it might also be the
case that the adversary is able to reinitialize the circuit to
a value of his choice, and to compare the leakages observed
in the targeted execution to the leakage occurring in an ex-
ecution triggered after reinitialization. The security of the
PRG construction, as claimed next in Theorem 1, could be
rephrased in terms of this strengthened notion of seed preser-
vation. Proofs would remain the same, but reductions would
become tighter by a factor corresponding to the number of
random oracle queries made by the adversary.

3.3 Security analysis
We show that, as long as the pairs of leakage functions that
are evaluated on the same keys are uniformly seed-preserving
and can be evaluated efficiently, the stateful PRG construc-
tion of Fig. 1b is physically unpredictable in our model.

Theorem 1. Let A2PRG be a PPT adversary playing the
PredA2PRG,L(n) experiment with a sequence of leakage func-

tions L = ((Li1, L
o
1), . . . ). Then, we have Pr[PredA2PRG,L(n) =

1] = 1
2

+ negl(n), provided that the family of pairs of leakage

functions (⊥, Li1), (Lo1, L
i
2), . . . is uniformly seed-preserving

and that all leakage functions can be evaluated in probabilis-
tic polynomial time.

Here, negl(n) ≤ p(n)2

2n
+q(n)(p(n)+1)ε(n), where p is an up-

per bound on the number of request queries made by A2PRG,
q is the number of random oracles queries made by A2PRG,
and ε is the uniform bound coming from the uniform seed-
preserving property of the leakage functions.

A proof is given in Appendix A.



3.4 Practical security analysis
First note that, in order to turn the previous analysis into
concrete security bounds, it is essential to propose an in-
stance of 2PRG to implement. For convenience, and fol-
lowing the suggestion of Pietrzak in [29], an easy solution
for this purpose is to use a block cipher based construc-
tion. As an illustration, assume BCk(x) denotes the en-
cryption of a plaintext x under a key k, e.g. with the AES
Rijndael. Then, a length-doubling PRG can be instantiated
as: 2PRG(k) = (BCk(0n),BCk(1||0n−1)). From such an in-
stance, the practical security analysis to be performed by
hardware designers is straightforward: they need to bound
the leakage of an adversary who can only encrypt two known
plaintexts, i.e. a 2-limited adversary as defined by Vaudenay
in his decorrelation theory [36]. This gives a simple tradeoff
between the efficiency and the security of a leakage-resilient
stream cipher. That is, by turning the 2PRG of our con-
struction into a 3PRG, 4PRG, . . . , the amount of keystream
generated per PRG iteration increases, at the cost of more
input plaintexts that can be monitored by the adversary. So,
depending on the quality and trust of the lower level, one
can easily adapt the performances of the construction.

It is interesting to mention that, depending on the block ci-
pher used in the PRG, these instantiations may introduce a
gap with the assumptions in the previous section. Just ob-
serve that we consider the leakage on the output of a 2PRG
Lo(ki, xi) and the one on its input Li(ki−1) as independent.
But if a block cipher with an invertible key scheduling algo-
rithm (e.g., the AES Rijndael) is used, the output leakage
may potentially leak on the key that was used to produce
this output. This observation is not expected to modify
the practical security of the resulting PRG, but suggests
that carefully instantiating block cipher based constructions
may be important to prevent side-channel attacks. It also
recalls that non-invertible key scheduling algorithms (as in
the FOX block cipher [18], for instance) are desirable in the
context of leaking devices. Alternatively, one may also con-
sider slightly more expensive instantiations, e.g. by replac-
ing 2PRG(k) :=

(
BCk(0n),BCk(1||0n−1)

)
by the following

one: 2PRG(k) :=
(
BCBCk(0)(0

n),BCBCk(0)(1||0n−1)
)
.

4. SECURITY IN THE STANDARD MODEL
We now propose two constructions with essentially the same
structure and efficiency as the one in Section 3 but with two
differences: the security holds in the standard model, and
the leakage functions are now restricted to have a range lim-
ited to λ < n bits (instead of simply being hard to invert
as in the previous section). For the rest, we again consider
non adaptive leakages, which will play a crucial role in the
our security proofs. The main ingredient of these construc-
tions is the use of two public random values p0 and p1 that
will be used in turn in each round of the constructions. The
box of the stateful PRG is then instantiated with a weak
pseudorandom function in the first construction, and as a
combination of PRG and two-source extractor in the second
one. Concrete instances of these functions are proposed too.

4.1 wPRF based construction
In this construction, we will replace the 2PRG that was used
in the previous section with a weak pseudorandom function
(wPRF) F(k, p) : {0, 1}κ × {0, 1}n → {0, 1}m, which is a

function with the following property: for a random key k ∈
{0, 1}κ no efficient adversary can distinguish F(k,·) from a
random function (with the same range) when queried on
random inputs. This is a weaker requirement than what is
expected from a standard pseudorandom function (namely,
security against adversarially chosen queries).

Definition 3 (wPRF). An efficient function F:{0, 1}κ
× {0, 1}n → {0, 1}m is an (ε, s, q)-secure weak pseudo-random
function (wPRF) if for all A of size s, for random variables

k
R←−{0, 1}κ, p1, · · · , pq

R←− {0, 1}n, and for random function

R
R←− {f : {0, 1}n → {0, 1}m} we have:

|Pr[A(~p,F(k, ~p))]− Pr[A(~p,R(~p))]| ≤ ε,

where ~p
def
= (p1, · · · , pq),F(k, ~p)

def
= (F(k, p1), · · · ,F(k, pq)), and

R(~p)
def
= (R(p1), · · · ,R(pq)), and the probability is taken over

the randomness of k, ~p, and R.

For m > κ and for any public randomness p, F(·, p) is a
PRG. So a straightforward construction is to produce pseu-
dorandom streams by simply iterating this PRG. But this
construction would be insecure as, even with non-adaptive
leakages (with the same input as F), “future computation at-
tacks”are still possible. This motivates the use of two public
random values p0 and p1 in our construction, that we will
use in alternation (without refreshing) for the pseudorandom
stream generation. This is where the non-adaptive selection
of the leakage functions is crucial: it guarantees that the
leakage functions are independent of p0 and p1, even if these
values are public. Since either p0 or p1 will be part of the
leakage function inputs, but not both at the same time, this
ensures that no leakage can provide a function of the full
system state, preventing “future computation attacks”.

As depicted in Figure 3, the initial state of the stream cipher

is (p0, p1, k0) for public randomness (p0, p1)
R←− ({0, 1}n)2

and secret key k0
R←− {0, 1}κ. The i-th round of our stream

cipher is then computed as: (ki, xi) := F(ki−1, pρ(i−1)), where
ρ(i) := i mod 2. The security experiment is essentially
identical to PredA,L(n), except that the triple (p0, p1, k0) is
selected at step 1, that 2PRG is instantiated with the wPRF
and public inputs as described above, and that the leakage
corresponding to round i is computed as Li(ki−1, pρ(i−1)).

This pseudorandom generator can be instantiated with any
length-expanding wPRF (m > κ), which in turn can be re-
alized from any secure block cipher BC: {0, 1}κ × {0, 1}n
→ {0, 1}κ. That is, if BC is an (ε, s, 2q)-secure wPRF, then

F(k, pl‖pr)
def
= BCk(pl) ‖ BCk(pr) is an (ε, s, q)-secure wPRF

(another instantiation technique that does not double the
amount of public randomness, but requires BC to be a PRF,
can be found in [29]). Thus, compared with the construction
in Section 3, the only performance penalty we have to pay
is the storage of two public random values, that are used
alternatively as inputs to our wPRF. Note that the practi-
cal security analysis given in Section 3.4 applies similarly,
e.g. we can make a trade-off between security and perfor-
mance by choosing m = 2κ, m = 3κ, and so on. Finally,
it is worth mentioning that the requirement of independent
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Figure 3: A leakage-resilient stream cipher based on any
weak pseudorandom function F:{0, 1}κ × {0, 1}n→ {0, 1}2κ.

leakages that is found in [9, 29] can also be relaxed here, al-
though not as strongly as for the construction of Section 3.
Precisely, our following proofs rely on the fact that, e.g.
when computing F(ki, p0), nothing is leaked about p1. But
this is made easier than in [9, 29] for two reasons. First,
p0 and p1 are public. Hence, they can be manipulated on
leaky buses between the round computations, e.g. in order
to read them from a part of the chip that does not interfere
with the computations. Second, they can be saved once for
all, prior to the computations, e.g. in a non-volatile mem-
ory. This can be used to reduce possible coupling effects,
since non volatile memories do not need to be supplied with
energy. The implementation of a similar idea with the con-
structions of Dziembowski and Pietrzak would be less con-
venient, since p0 and p1 are replaced by secret keys that are
modified during the iterations of their stream ciphers. This
implies regularly writing in a non volatile memory, which is
a highly consuming (and potentially leaking) task.

4.2 Security analysis

Notations. We denote by Λi = (xi, Li(ki−1, pρ(i−1))) the in-
formation an adversary obtains during the i-th computation

round, and let viewj(p0, p1, k0)
def
= {p0, p1}∪{Λi|i≤j} be the

view of the adversary for all rounds up to j based on initial
state p0, p1, k0. We will simply write viewj when this initial
state is clear. We use upper-case letters X, Y to denote ran-
dom variables, and lower-case x, y to denote the values they
take. Let |X| denotes the length of X, let Un denote uni-
form distribution over {0, 1}n, and let X ∼ Y denote that
X and Y are identically distributed. We write δ(X;Y ) for
the statistical distance between two distributions X and Y ,
which is defined as the maximum distinguishing advantage
between these distributions with respect to all adversaries.
We also use size(f) to denote the circuit-size complexity of
the function f . Finally, we denote the computational ana-
logue of statistical distance by δs(X;Y ), which is defined
as the maximum distinguishing advantage with respect to
all adversaries of size s. If distribution X is over {0, 1}n,

we have: d(X)
def
= δ(X;Un), ds(X)

def
= δs(X;Un), d(X|Y )

def
= δ((X,Y ); (Un, Y )), ds(X|Y )

def
= δs((X,Y ); (Un, Y )). The

min-entropy of a random variable X, denoted by H∞(X), is
given by − log maxx Pr[X = x]. A random variable X has
HILL pseudoentropy k, denoted HHILL

ε,s (X), if there is a dis-
tribution Y with min-entropy k such that δs(X;Y ) ≤ ε.

Security statement. We express the leakage-resilience of
the proposed stream cipher in the theorem below. It states
that, given the outputs of the stream cipher and the cor-
responding non-adaptive leakages for any ` (polynomial in
n) rounds, the (`+ 1)-th round output X`+1 is still pseudo-

random with a leakage tolerance of log(ε−
1
6 ) bits per round.

This means that for many block ciphers (which are believed
to be exponentially secure) the leakage can be a constant
portion of the key size κ (see [9] for a discussion). We refer
to the appendix for a detailed proof, and outline it below.

Theorem 2 (Leakage-Resilient Security). Consi-
der the stream cipher introduced in Section 4.1. Let F :
{0, 1}κ ×{0, 1}n → {0, 1}2κ be any (ε, s, n/ε)-secure wPRF,
and let L0, L1, · · · ,:{0, 1}κ × {0, 1}n → {0, 1}λ be any se-
quence of efficient leakage functions. Then for uniform (P0,

P1, K0), for any ` ∈ N, sf,F
def
= size(F)+max{size(Li)|i ≤ `}

and λ ≤ log(ε−
1
6 ), it holds that:

d ε2·s
2λ+2·n2κ

−(`+1)·sf,F
(X`+1|view`(P0, P1,K0)) ≤ (24`+10)ε

1
12 .

Note that, in the above, the output is roughly (keeping only

dominating factors) `·ε
1
12 -secure against adversaries of much

weakened complexity ε2 ·s−`·sf,F , which is due to the heav-
ily involved computational reductions. We will discuss in
Section 4.3 possible ways to obtain tighter results.

Proof outline. Our proof essentially exploit tools that have
been introduced in the previous works [9] and [29].

We first note in Lemma 1 (given in [29]) that a wPRF can
be seen as a combination of a strong 2-source pseudoran-
domness extractor and a PRG, where a two-source pseudo-
randomness extractor is a function whose output is pseu-
dorandom, even if the two inputs are only weakly random,
as long as they are independent and have high min-entropy,
and “strong” refers to the additional property that one of its
inputs can be public (i.e., p0 or p1 in our case).

Besides, even though an arbitrary leakage, say Li(ki−1, p0),
will certainly destroy the pseudo-randomness of the wPRF
output (ki, xi) := F(ki−1, p0), it can be shown that, given a
bounded leakage, ki can still keep a high amount of HILL
pseudoentropy (see Lemma 2 from [9] for the details).

Therefore, as we use independent randomness p0 and p1 in
an alternating manner, we can output a pseudorandom ki+1

by performing two-source extraction between ki and p1, pro-
vided that they are independent given the leakages, which
is fulfilled by enforcing non-adaptive leakages. That is, Li
takes only (ki−1, p0) as input and thus, conditioned on it, ki



and p1 are independent. Note that ki+1 will again lose its
pseudorandomness when taking into account the next round
leakage, but we can then repeat the proof as above.

Finally, it is important that the security only degrades lin-
early with the number of rounds, which is confirmed by
Lemma 3. It shows that, for every `, the output K` of the
`-th round has high HILL pseudo-entropy given the outputs
and leakages up to that round, and that the computating
F(K`, Pρ(`)) can be seen as a 2-source pseudo-randomness
extraction, which completes the proof of Theorem 2.

Lemma 1 (2-source Extraction [29]). Let F : {0, 1}κ
×{0, 1}n → {0, 1}m be an (ε, s, n/ε) secure wPRF for uni-
form K and X, then for independent random variables K′

and X ′ with H∞(K′) ≥ κ − ∆ and H∞(X ′) ≥ n − ∆, it
holds that dsa(F(K′, X ′)|X ′) ≤ εa, where εa = ε·22∆+4 and
sa = s·ε2/2n2.

Lemma 2 (Pseudo-entropy of PRG outputs [9]).
For joint random variable (X,L) with dsa(X) ≤ εa and L
in the range of {0, 1}λ, for any εb and ∆ > 0 satisfying
εa + 2−∆ ≤ ε2b · 2−λ, there exists a joint random variable
(X ′, L) such that:

1. δε2
b
·sa/8κ((X,L); (X ′, L)) ≤ εb.

2. Pr
L

[H∞(X ′|L) ≥ |X| −∆] ≥ 1− εb.

Lemma 3. For F, L0, L1, · · · , and sf,F defined as in The-
orem 2, for uniform (P0, P1,K0) and for all ` ∈ N>0, it holds

that {view`(P0, P1,K0), K`} is ((12` + 2) · ε
1
12 , ε2·s

2λ+2·n2κ
−

`·sf,F )-close to a fake distribution {ṽiew`(P0, P1, K0), K̃`}
where, conditioned on T̃`

def
= {Pρ(`−1),

L`(K̃`−1, Pρ(`−1))} we have that (K̃`,X̃`) and ṽiew` \ X̃` are
independent, and:

Pr
ṽiew`

[H∞(K̃`|ṽiew`) ≥ κ−
log(ε−1)

3
] ≥ 1− 2 · ε

1
12 , (1)

Pr
T̃`

[H∞(Pρ(`)|T̃`) ≥ n−
log(ε−1)

3
] ≥ 1− 2 · ε

1
12 . (2)

Note that we use Lemma 1 in an extended scenario since
K̃` and Pρ(`) may not be completely independent. But it al-

ready suffices to have that (i) (K̃`,X̃`) and ṽiew` \X̃` (which

contains Pρ(`)) are independent conditioned on some T̃`; (ii)

the secret input K̃` has high min-entropy conditioned on the
whole view (Equation (1)); and (iii) the public input Pρ(`)
has high min-entropy conditioned on T̃` (Equation (2)).

4.3 Alternative construction with extractors
One limitation of the analysis in the previous section is the
loose security bound. A simple way to improve this limita-
tion is to replace the wPRF in Figure 3 by a combination of
PRG and a strong 2-source extractor, i.e. to use the func-

tion: F′(K,P )
def
= prg(ext(K,P )). As first detailed in [9], F′

is not a wPRF, but is actually sufficient for the stream cipher
in Figure 3 to be proven leakage-resilient. This extractor-
based construction has tighter (but still not tight) bounds

than the O(ε
1
12 ) obtained in Theorem 2, since it involves less

computational reductions. Namely, by using a 2-source ex-
tractor, we avoid using Lemma 1 at the cost of introducing
a gap term εext in an additive manner, which can be made
exponentially small. As discussed in [37], it is additionally
possible to improve the tightness of the security bounds fur-
ther, in particular when using parameters of practical size
(e.g., a 128-bit key), by relying on an assumption of seed-
incompressible PRG, originally introduced in [15].

Note that relying on seed incompressibility and/or bounded
leakages also raises practical issues, since these assumptions
appear to be difficult to fulfill by hardware designers. In
order to get rid of this other type of limitation, [37] intro-
duces empirically verifiable assumptions (namely, the next-
block-unpredictability of the 2PRG with simulatable leak-
ages), under which security proofs can be obtained in the
standard model. But this again comes at the price of worse
security bounds. Determining whether it is possible to ob-
tain tight bounds, under assumptions that can be quantified
in practice, is an interesting scope for further research.

We finally mention that these improvements come at the
price of implementing an extractor on a leaking device. As
pointed out in [34], the use of extractors in physically ob-
servable cryptography can be paradoxical. On the one hand,
they allow recovering (pseudo) entropy losses if their im-
plementation does not leak too much. On the other hand,
the implementation of the extractor can become a good tar-
get for standard DPA attacks, because it involves repeated
arithmetic operations between its public and private inputs.
This illustrates the interesting tradeoff between practical se-
curity and tight bounds in the proofs. Finding the best
compromise will require better knowledge on the implemen-
tation of extractors with low abstraction level countermea-
sures, which is another scope for further investigations.

5. CONCLUSION
Designing leakage-resilient cryptographic primitives implies
intricate tradeoffs between meaningful physical assumptions
and sound mathematical proofs. It results in an ongoing
discussion about how to best combine these two goals, in
order to obtain general proofs under minimum assumptions.
Taking the example of pseudorandom generators, this paper
first analyzes the security of a simple stateful construction,
with minimum physical requirements. We show that this
construction can be proven secure under a random oracle
based assumption. Then, we show that the price to pay for
relaxing the random oracle assumption, and have a proof
in the standard model, is actually small. That is, one just
needs to assume a small public memory and non adaptive
leakage functions. More precisely, we reflect the adaptivity
of the measurement conditions in the leakage bounds pro-
vided by cryptographic engineers, rather than in the adver-
sarial experiment in our proofs, which is conform to the prac-
tice of side-channel attacks. Previous discussions in leakage-
resilient cryptography also apply to our new constructions.
For example, replacing a wPRF by a combination of PRG
and extractor allows obtaining better security bounds, at
the cost of implementing a (potentially leaky) extractor.



Avenues for further research could be in two main directions.
On the one hand, the design of dedicated solutions that ef-
ficiently withstand side-channel attacks could be extended
towards other cryptographic primitives. Such advances are
necessary for the application of leakage-resilient construc-
tions in real-world applications, where good implementation
performances are required. On the other hand, and more
generally, the introduction of alternative restrictions of the
leakage function would also be useful, e.g. in order to rule
out unrealistic “future computation attacks” from the model
rather than by design tweaks. Such improvements could
open the way towards a more generic treatment of physi-
cally observable cryptographic implementations.
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[3] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs.
Leakage-resilient public-key cryptography in the
bounded-retrieval model. In Halevi [14], pages 36–54.

[4] Frederik Armknecht, Roel Maes, Ahmad-Reza
Sadeghi, Berk Sunar, and Pim Tuyls. Memory
leakage-resilient encryption based on physically
unclonable functions. In Matsui [22], pages 685–702.

[5] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi
Walfish. Perfectly secure password protocols in the
bounded retrieval model. In Shai Halevi and Tal
Rabin, editors, Third Theory of Cryptography
Conference, TCC 2006, volume 3876 of Lecture Notes
in Computer Science, pages 225–244. Springer, 2006.

[6] Y. Dodis, Y. Tauman Kalai, and S. Lovett. On
cryptography with auxiliary input. In Proceedings of
STOC 2009, pages 621–630, Bethesda, Maryland, jun
2009. ACM.

[7] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman
Kalai, Chris Peikert, and Vinod Vaikuntanathan.
Public-key encryption schemes with auxiliary inputs.
In Micciancio [24], pages 361–381.

[8] Stefan Dziembowski. Intrusion-resilience via the
bounded-storage model. In Shai Halevi and Tal Rabin,
editors, Third Theory of Cryptography Conference,
TCC 2006, volume 3876 of Lecture Notes in Computer
Science, pages 207–224. Springer, 2006.

[9] Stefan Dziembowski and Krzysztof Pietrzak.
Leakage-resilient cryptography. In FOCS, pages
293–302. IEEE Computer Society, 2008.

[10] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and

Guy N. Rothblum. Leakage-resilient signatures. In
Micciancio [24], pages 343–360.

[11] Sebastian Faust, Leonid Reyzin, and Eran Tromer.
Protecting circuits from computationally-bounded
leakage. Cryptology ePrint Archive, Report 2009/379,
2009. http://eprint.iacr.org/.

[12] Shafi Goldwasser, Yael Tauman Kalai, and Guy N.
Rothblum. One-time programs. In David Wagner,
editor, CRYPTO, volume 5157 of Lecture Notes in
Computer Science, pages 39–56. Springer, 2008.

[13] J. Alex Halderman, Seth D. Schoen, Nadia Heninger,
William Clarkson, William Paul, Joseph A.
Calandrino, Ariel J. Feldman, Jacob Appelbaum, and
Edward W. Felten. Lest we remember: Cold boot
attacks on encryption keys. In Paul C. van Oorschot,
editor, USENIX Security Symposium, pages 45–60.
USENIX Association, 2008.

[14] Shai Halevi, editor. Advances in Cryptology -
CRYPTO 2009, 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20,
2009. Proceedings, volume 5677 of Lecture Notes in
Computer Science. Springer, 2009.

[15] Shai Halevi, Steven Myers, and Charles Rackoff. On
seed-incompressible functions. In Ran Canetti, editor,
TCC, volume 4948 of Lecture Notes in Computer
Science, pages 19–36. Springer, 2008.

[16] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin,
and Michael Luby. A pseudorandom generator from
any one-way function. SIAM J. Comput.,
28(4):1364–1396, 1999.

[17] Antoine Joux, editor. Advances in Cryptology -
EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, Cologne, Germany, April
26-30, 2009. Proceedings, volume 5479 of Lecture
Notes in Computer Science. Springer, 2009.

[18] Pascal Junod and Serge Vaudenay. Fox : A new family
of block ciphers. In Helena Handschuh and M. Anwar
Hasan, editors, Selected Areas in Cryptography,
volume 3357 of Lecture Notes in Computer Science,
pages 114–129. Springer, 2004.

[19] Jonathan Katz and Vinod Vaikuntanathan. Signature
schemes with bounded leakage resilience. In Matsui
[22], pages 703–720.

[20] P. Kocher. Leak resistant cryptographic indexed key
update. US Patent 6539092.

[21] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun.
Differential power analysis. In Michael J. Wiener,
editor, CRYPTO, volume 1666 of Lecture Notes in
Computer Science, pages 388–397. Springer, 1999.

[22] Mitsuru Matsui, editor. Advances in Cryptology -
ASIACRYPT 2009, 15th International Conference on
the Theory and Application of Cryptology and
Information Security, Tokyo, Japan, December 6-10,
2009. Proceedings, volume 5912 of Lecture Notes in
Computer Science. Springer, 2009.

[23] Silvio Micali and Leonid Reyzin. Physically observable
cryptography (extended abstract). In Moni Naor,
editor, TCC, volume 2951 of Lecture Notes in
Computer Science, pages 278–296. Springer, 2004.

[24] Daniele Micciancio, editor. Theory of Cryptography,
7th Theory of Cryptography Conference, TCC 2010,



Zurich, Switzerland, February 9-11, 2010. Proceedings,
volume 5978 of Lecture Notes in Computer Science.
Springer, 2010.

[25] Moni Naor and Gil Segev. Public-key cryptosystems
resilient to key leakage. In Halevi [14], pages 18–35.

[26] Jesper Buus Nielsen. Separating random oracle proofs
from complexity theoretic proofs: The non-committing
encryption case. In Advances in Cryptology -
CRYPTO 2002, volume 2442 of Lecture Notes in
Computer Science, pages 111–126. Springer, 2002.

[27] ECRYPT Networck of Excellence in Cryptology. The
estream project. http://www.ecrypt.eu.org/stream/,
2008.

[28] Christophe Petit, François-Xavier Standaert, Olivier
Pereira, Tal Malkin, and Moti Yung. A block cipher
based pseudo random number generator secure against
side-channel key recovery. In Masayuki Abe and
Virgil D. Gligor, editors, ASIACCS, pages 56–65.
ACM, 2008.

[29] Krzysztof Pietrzak. A leakage-resilient mode of
operation. In Joux [17], pages 462–482.

[30] Jean-Jacques Quisquater and David Samyde. Eddy
current for Magnetic Analysis with Active Sensor. In
Esmart 2002, Nice, France, 2002.

[31] M. Renauld and F.-X. Standaert. Algebraic
side-channel attacks. to appear in the proceedings of
Inscrypt 2009, Lecture Notes in Computer Science,
Behing, China, December 2009, Springer, Cryptology
ePrint Archive, Report 2009/279.
http://eprint.iacr.org/2009/279.

[32] M. Renauld, F.-X. Standaert, and
N. Veyrat-Charvillon. Algebraic side-channel attacks
on the aes: Why time also matters in dpa. In
Proceedings of CHES 2009, volume 5746 of LNCS,
pages 97–111, Lausanne, Switzerland, sep 2009.
Springer.

[33] François-Xavier Standaert, Tal Malkin, and Moti
Yung. A unified framework for the analysis of
side-channel key recovery attacks. In Joux [17], pages
443–461.

[34] Francois-Xavier Standaert. How leaky is an extractor?
in the proceedings of LatinCrypt 2010, Lecture Notes
in Computer Science, vol 6212, Puebla, Mexico,
August 2010.

[35] Francois-Xavier Standaert, Olivier Pereira, Yu Yu,
Jean-Jacques Quisquater, Moti Yung, and Elisabeth
Oswald. Leakage resilient cryptography in practice. in
“Towards Hardware Intrinsic Security: Foundation
and Practice”, pp 105- 139, Springer, 2010, Cryptology
ePrint Archive, Report 2009/341, 2009.
http://eprint.iacr.org/.

[36] Serge Vaudenay. Decorrelation: A theory for block
cipher security. J. Cryptology, 16(4):249–286, 2003.

[37] Yu Yu, Olivier Pereira, and Francois-Xavier
Standaert. Leakage-resilient stream ciphers: Bridge
the gap. UCL Crypto Group Technical Report, 2010.

APPENDIX
A. PROOF OF THEOREM 1

Proof of Theorem 1. Let A2PRG(1n) be an adversary
who wins the PredA2PRG,L(n) game with probability 1

2
+η(n),

and let p be a polynomial such that p(n) is an upper bound
on the number of request queries made by A2PRG(1n). Let
Queryl (resp. Querya) be the event that A2PRG(1n) makes a
query to 2PRG on the last key ki (resp. any key) computed
by the challenger before the test query is made.

We distinguish between the cases where the Queryl event
happens or not: Pr[PredA2PRG,L(n) = 1] ≤ Pr[PredA2PRG,L(n) =
1 ∧ ¬Queryl] + Pr[Queryl].

The probability Pr[PredA2PRG,L(n) = 1∧¬Queryl] is bounded

by 1
2

+ p(n)2

2n
, which is the sum of the probability of a pure

guess and an upper bound on the probability that a colli-
sion happens between PRG’s last output and an output of a
previous round.

We now show that Pr[Queryl] is negligible. To this purpose
we build an adversary A′2PRG as follows.:

Adversary A′2PRG:

1. On input 1n, start an instance of A2PRG with input 1n,
and record all interactions between A2PRG and the 2PRG
oracle.

2. Pick j ← [0, p(n)] and r0 ← {0, 1}n uniformly at ran-
dom, and set a counter i to 0.

3. Ask a challenger to pick k0 ∈ {0, 1}n uniformly at ran-
dom, to compute (k1, x1) := 2PRG(k0) and to provide
(Loj (k1, x1), x1, Lij+1(x1)).

4. On each request query from A2PRG, proceed as follows:
increment the counter i, select (ri, yi)← ({0, 1}n)2 uni-
formly at random, and submit Lii(ri−1), yi and Loi (ri, yi)
to A2PRG, unless i = j in which case Loj (k1, x1), x1 and

Lij+1(x1) are submitted instead.

5. On the test query from A2PRG, pick yi+1 ← {0, 1}n uni-
formly at random and submit that value to A2PRG.

6. Let {z1, . . . , zq} be the set of requests made by A2PRG

to 2PRG until it halts. Output an element z selected
uniformly at random into that set.

The strategy of adversary A′2PRG is based on the assumption
that, in a normal run of the PredA2PRG,L(n) experiment, A2PRG

would make a query on (at least) one of the keys involved
in the experiment. So, A′2PRG makes a uniform guess on the
index of the first key on which such a query is made; guessing
the first queried key ensuring that that key will only be
correlated to one thing: the corresponding leakages (and not
any previous call on 2PRG). This guess will be correct with
probability 1

p(n)+1
. Then, A′2PRG provides leakages to A2PRG

computed from random values of its own choice, except for
the j index, for which the leakages and PRG output are
replaced by those obtained from a challenger for the seed-
preserving property. A′2PRG also provides a random value
yl+1 as final input to A2PRG. If the guess on the index j is
correct, all the inputs sent to A2PRG are distributed exactly
as in the PredA2PRG,L(n) experiment, as long as A2PRG does not
make a query on the value k1 computed by the challenger.
Therefore, when A2PRG halts, A′2PRG can select one of the



inputs of the q queries made by A2PRG and, if A2PRG made a
query on k1, that guess will be correct with probability 1

q
.

So, eventually, we have that Pr[z = k1|Querya] = 1
q(p(n)+1)

.

Now, we observe that Pr[z = k1|Querya] ≤ Pr[z=k1]
Pr[Querya]

, and

that Pr[Queryl] ≤ Pr[Querya], which implies that Pr[Queryl] ≤
q(p(n) + 1) Pr[z = k1].

Eventually, we observe that A′2PRG runs in PPT: A2PRG runs
in PPT, and the leakage functions can be evaluated in PPT
too. Therefore, since the leakage function family L is uni-
formly seed-preserving, there is a negligible function ε such
that Pr[z = k1] ≤ ε(n). As a result, Pr[Queryl] ≤ q(p(n) +
1)ε(n), which is negligible.

So, we have that Pr[PredA2PRG,L(n) = 1] ≤ 1
2
+ p(n)2

2n
+q(p(n)+

1)ε(n), as desired.

B. PROOFS OMITTED IN SECTION 4.2
We will use the following well-known lemmas in the proofs.

Lemma 4 (Triangle inequality). If δs1(X;Y ) ≤ ε1,
and δs2(Y ;Z) ≤ ε2, then δmin{s1,s2}(X;Z) ≤ ε1 + ε2.

Lemma 5 (Replacement lemma). For δs(X;Y ) ≤ ε,
and for function f with circuit-size complexity size(f), it
holds that δs−size(f)(f(X); f(Y )) ≤ ε.

Proof of Theorem 2. First, by applying two 2-source
extraction on K̃` and Pρ(`) (see the parameter settings in
the proof of Lemma 3), we have:

d ε2·s
2λ+2·n2κ

(X̃`+1|ṽiew`) ≤ 6 · ε
1
12 .

We have also by Lemma 3 and the replacement lemma that:

δ ε2·s
2λ+2·n2κ

−`·sf,F
((X̃`+1, ṽiew`); (X`+1, view`)) ≤ (12`+2)·ε

1
12 ,

which also implies that:

δ ε2·s
2λ+2·n2κ

−`·sf,F
((Uκ, ṽiew`); (Uκ, view`)) ≤ (12`+ 2) · ε

1
12 .

Therefore, we complete the proof by applying triangle in-
equalities to the above.

Proof of Lemma 3. We denote by simi+1 the algorithm
that on input (viewi,Ki), simulates the physical implemen-
tation of the stream cipher for round i + 1 and outputs
the updated view viewi+1. The case for ` = 1 holds by
Lemma 2 (we will deal with the parameters at the end of
the proof). It then remains to show by induction on ` that
if the above statement holds for ` = i with computational
distance (εi, si) then it must hold for ` = i+ 1 with distance

(εi + 12 · ε
1
12 ,si − sf,F ). Assume without loss of generality

that i is even, and hence the case for ` = i (by applying
simi+1) implies:

δsi−sF,f ( (viewi+1(P0, P1,K0),Ki+1),

(ṽiewi(P0, P1,K0), Li+1(K̃i, P0), X̃i+1,Ki+1︸ ︷︷ ︸
F(K̃i,P0)

) ) ≤ εi. (3)

By hypothesis (K̃i,X̃i) and ṽiewi \ X̃i are independent given

T̃i, and that (1) and (2) hold for ` = i, it thus follows by
Lemma 1 that with probability 1− 2εb:

dsa((X̃i+1,Ki+1)|ṽiewi(P0, P1,K0)) ≤ εa, (4)

which in turn implies that:

δsa( ṽiewi(P0, P1,K0); ṽiewi(P0, Un,K0)

| (X̃i+1,Ki+1, P0) ) ≤ 2·εa.
(5)

Then, by Lemma 2 when (5) is additionally conditioned on

Li+1(K̃i, P0) it yields:

δε2
b
·sa/8κ( ṽiewi(P0, P1,K0); ṽiewi(P0, P

′
1,K0)

| (Ki+1, X̃i+1, P0, Li+1(K̃i, P0)) ) ≤ 2·εb,
(6)

where with probability 1− εb (taken over (ṽiewi, K̃i)):

H∞(P ′1| (Ki+1, X̃i+1, P0, Li+1(K̃i, P0))) ≥ n−∆, (7)

and ṽiewi(P0, P
′
1,K0) is independent of (Ki+1, X̃i+1) condi-

tioned on (P0, Li+1(K̃i, P0)) since Li+1 takes only K̃i and P0

(i.e., not P1) as input. Again by applying Lemma 2 to (4)

with ṽiewi(P0, P1,K0) replaced with independent ṽiewi(P0,
P ′1, K0), we have:

δε2
b
·sa/8κ(Ki+1; K̃i+1| ṽiewi(P0, P

′
1,K0), X̃i+1, Li+1(K̃i, P0)︸ ︷︷ ︸
ṽiewi+1(P0,P

′
1,K0)

)

≤ 2·εb,
(8)

where with probability 1− εb over: ṽiewi+1(P0, P
′
1,K0)

H∞(K̃i+1|ṽiewi+1(P0, P
′
1,K0)) ≥ κ−∆, (9)

and ṽiewi+1(P0, P
′
1,K0) \ X̃i+1 and (K̃i+1, X̃i+1) are inde-

pendent conditioned on T̃i+1
def
= (P0, Li+1(K̃i, P0)). We thus

prove the case for ` = i + 1 by applying triangle inequali-
ties to (3), (6) and (8), and the min entropy conditions for
` = i+ 1 hold by (7) and (9).
Parameter settings. Following [29], set ∆ = 2λ, εb =

2−λ+1, and thus εb≤2ε
1
12 , and λ = log(ε−1)/6.


