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Introduction

Since the publication of linear cryptanalysis in the early 1990s, the precise under-
standing of the statistical properties involved in such attacks has proven to be a
challenging and computationally intensive problem. As a consequence, a number
of strategies have been developed, in order to design block ciphers secure against
cryptanalysis, under reasonable assumptions. In this context, a good assessment
of the hypotheses used for the evaluation of linear cryptanalysis and a careful
measurement of the distance between actual constructions and theoretical ex-
pectations are of particular interest. In this chapter, we present a number of
illustrative experiments that allow discussing these issues. Based on a concrete
instance of block cipher with small block size, we first evaluate the distance
between the so-called practical and provable security approaches for designing
block ciphers. Then, we challenge the assumptions of key independence and key
equivalence that are frequently used in linear cryptanalysis. Third, we put for-
ward the difficulty of obtaining precise estimations of the distributions within a
secure block cipher when the number of rounds increases. We also discuss the
consequences of this observation for the key ranking strategies used in order to
extract information from actual statistical biases. Finally, we provide systematic
experiments of linear cryptanalysis using single and multiple approximations in
order to confirm a number of intuitive views that can be found in former papers.

Summarizing, this chapter provides an experimental survey of the basic as-
sumptions in linear cryptanalysis and its consequences for the design of modern
block ciphers. It is structured as follows. Section 1 contains background informa-
tion, including notations, definitions, related works, a specification of our target
cipher and a description of Matsui’s second algorithm for linear cryptanaly-
sis. Section 2 contains an empirical evaluation of different assumptions in linear
cryptanalysis. It discusses the linear hull effect, the pros and cons of the practical
security approach, and the key independence and key equivalence hypotheses.
Section 3 contains experiments on the test of key-dependent linear biases in dif-
ferent scenarios. Finally, Section 4 briefly browses though the consequences of
our experiments and observations for more advanced statistical attacks.
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1 Background

1.1 Notations & definitions

The following notations and definitions are standard in linear cryptanalysis. We
borrow them from Liam Keliher’s and Vincent Rijmen’s PhD theses [29, 47].

Definition 1. An iterated block cipher is an algorithm that transforms a plain-
text block of a fixed size n into a ciphertext of identical size, under the influence
of a key k, by a repeated application of an invertible transformation ρ, called the
round transformation. Denoting the plaintext with x0 and the ciphertext with
xR, the encryption operation can be written as:

xr+1 = ρkr (xr), r = 1, 2, . . . , R, (1)

where the different kr are the subkeys generated by a key scheduling algorithm.

For simplicity, we will consider n-bit keys and subkeys in the rest of the paper.

Definition 2. Let F : {0, 1}n → {0, 1}n be a bijection and a,b be two masks
∈ {0, 1}n. If X ∈ {0, 1}n is a uniformly distributed random variable, then the
linear approximation bias LB(a, b) is defined as:

LB(a, b) = Pr
X
{a •X = b • F (X)} − 1

2
, (2)

where • denotes the scalar product. If F is parametrized by a key K, we write
LB(a, b;K) and the expected linear bias ELB(a, b) is defined as:

ELB(a, b) = E
K

(LB(a, b;K)) . (3)

The linear bias can be computed for different transformations, e.g. a single S-
box, a round function or a complete block cipher. Quite naturally, computing it
precisely becomes computationally intensive as the transformation size increases.

Definition 3. A one-round characteristic for the round i of an iterated block
cipher is a pair of n-bit vectors 〈ai, bi〉 respectively corresponding to the input
and output masks for this round. An R-round characteristic for rounds 1 . . . R
is an (R + 1)-tuple of n-bit vectors Ω = 〈a1,a2, . . . ,aR+1〉, where 〈ai,ai+1〉
respectively correspond to the input and output masks for the round i.

Definition 4. A Markov cipher is a block cipher in which the linear (and dif-
ferential) biases of different rounds are independent of each other, assuming that
uniformly random subkeys are used in the different rounds [34].

Lemma 1 (Piling-up lemma). Given a vector of independent subkeys K̃ and
a Markov cipher, the linear characteristic bias of a characteristic Ω is defined as:

LCB(Ω, K̃) = 2R−1
R∏
i=1

LB(ai,ai+1; ki). (4)



This lemma was introduced and proved in Matsui’s Eurocrypt 1993 paper [36].
Note that in an iterated block cipher using a bitwise XOR key addition, the ab-
solute value of LCB(Ω, K̃) is independent of the subkey vector, but not its sign.

Definition 5. Given input and output masks a,b, the linear hull LH(a, b) is
the set of all R-round characteristics having a as input mask for round 1 and b
as output mask for round R. The approximated linear hull ALH(a, b, Nh) is the
subset of Nh characteristics in LH(a, b) having the largest bias LB(a, b).

Note that we slightly modified Nyberg’s definition of linear hull [44], in order to
take into account the possibility of using subsets of characteristics. Finally, the
following definition is introduced to reflect the need of estimating the linear bias
and expected linear bias from a subset of plaintexts (smaller than the codebook).

Definition 6. Let X be the set of all plaintexts of a block cipher (aka the code-
book) and Yi ⊂ X , with 1 ≤ i ≤ Ns, be different subsets of X containing Np
plaintexts chosen uniformly and independently. Then the linear bias sampled with
Ns sets of Np plaintexts SLB(a,b, Ns, Np) is defined as:

SLB(a,b, Ns, Np) =

Ns∑
i=1

Pr{i} ·
(

P̂r
Yi

{a •X = b • F (X)} − 1

2

)
. (5)

If F is parametrized by a key K, we write SLB(a, b, Ns, Np;K). If we addition-
ally denote a uniformly selected subset of keys of cardinality Nk by L ⊂ K, the
sampled expected linear bias SELB(a, b, Ns, Np, Nk) is defined as:

SELB(a, b, Ns, Np, Nk) =
∑
K∈L

Pr{K} · SLB(a, b, Ns, Np;K). (6)

The SLB is usually referred to as the experimental bias in the literature.

1.2 Related works

Design approaches to prevent linear cryptanalysis

Worst case security. Let K be a block cipher master key. In the worst case, an
adversary would perform linear cryptanalysis using masks (a,b) such that:

(a,b) = argmax
(x,y)

LB(x,y;K). (7)

Following [37], it directly yields the approximated data complexity of the attack1:

N ≈ c

max LB(a,b;K)2
, (8)

where c is a small constant value. However, as will be detailed next, this worst
case strategy cannot be directly exploited by actual adversaries. In practice, the

1 More sophisticated approximations are discussed in [6, 24, 25, 51].



direct computation of Equation (7) is generally infeasible, both because of an
unknown key and for computational reasons (estimating the bias of an n-bit
permutation requires n · 22n operations, i.e. more than exhaustive key search).

The key equivalence hypothesis. As a consequence of the previous limitations,
design strategies to prevent linear cryptanalysis usually start by assuming key
equivalence, as introduced by Harpes et al. in [18]. That is, they assume that
the linear bias will be close to its average value for the vast majority of keys:

LB(a,b; K̃) ≈ ELB(a,b). (9)

Practically secure block ciphers. Next to the key equivalence hypothesis, arguing
about security against linear cryptanalysis requires to find ways to evaluate the
linear biases in a computationally tractable manner. As shown by Lemma 1,
a simple solution for this purpose is to use the concept of characteristic. For
a Markov cipher and assuming independent round keys, the probability of an
R-round characteristic can be computed as a product of 1-round characteristic
probabilities. Hence, a designer can run an algorithm to search the characteristic
Ωmax such that LCB(Ωmax) is maximal and then assume:

ELB(a,b) ≈ LCB(Ωmax). (10)

Lars Knusden calls a block cipher practically secure if the data complexity de-
termined by this method is prohibitive [30]. Obviously, such an approach is only
valid up to a certain extent and it may give rise to false intuitions. For exam-
ple, increasing the number of rounds in a block cipher always reduces the linear
characteristic bias, while the actual expected linear bias of a cipher cannot be
decreased below a certain threshold, depending on its block size. Positively, the
practical security approach is a simple way to estimate the number of rounds
required for a block cipher to become hard to distinguish from a random permu-
tation. It is also the basis of the wide-trail strategy [14], that has been successful
for designing many modern block ciphers, most notably the AES Rijndael [15]. In
the wide-trail strategy, one essentially ensures that each characteristic involves
a large number of S-boxes in each of the block cipher rounds, and that these
S-boxes do not have highly probable linear approximations.

Provable security. In contrast with the practical security approach, the theory
of provable security against linear cryptanalysis attempts to compute expected
linear biases, i.e. to consider all the characteristics in a linear hull rather than
only the best one2. An example of design strategy based on such a theory was
proposed by Matsui in [39], and gave rise to the design of the block cipher Misty
[40]. A similar line of work was followed by Keliher et al. in [27] and applied
to the AES Rijndael in [28]. The main benefit of provable security is to provide
security guarantees that only rely on the key equivalence hypothesis, and assum-
ing independent round keys. Its main limitation is the computational difficulty
of finding tight bounds, when the number of block cipher rounds increases.

2 In a very similar way, provable security against differential cryptanalysis considers
the concept of differential rather than the one of differential characteristic [45].



Decorrelation theory. Vaudenay proposed an alternative solution for designing
block ciphers with provable security against a large class of attacks in [52]. It
essentially aims at preventing the use of the key equivalence hypothesis in an
attack. For this purpose, decorrelation modules are used, that are key-dependent
transformations making the linear bias (and differential probability) of a given
approximation highly key-dependent, so that any attack that chooses a priori
the input and output masks will fail. Examples of block ciphers based on the
decorrelation theory include the cipher C [2] and the Krazy Feistel Cipher [3].

Experimental evaluations of assumptions and attacks

Following Matsui’s experiments on the DES [37], various publications contain
empirical evaluations of the linear cryptanalysis and its underlying assumptions.
All these empirical works are tightly connected with our following analyzes. We
list a few of them for illustration. First, Junod reported new results on the
linear cryptanalysis of the DES in 2001 [23], together with a discussion of the
attack’s complexity. Rouvroy et al. performed similar experiments, exploiting
the computational power of reconfigurable hardware [49]. Extensions of these
works, considering the use of multiple linear approximations can be found, e.g.
in [5, 12, 21]. Second, the assumption of independent round keys is discussed
and tested experimentally by Knudsen and Mathiassen in [33]. They show that
the key scheduling algorithms used in practical block cipher constructions has
an impact on this assumption, but that the conclusions drawn when indepen-
dent round keys are used should still reasonably hold with a good key schedule.
Third, the relevance of the practical security approach is analyzed by Selçuk in
[50], with experiments conducted against reduced versions of RC5 and Feistel
ciphers. This paper also discusses the impossibility to accurately evaluate linear
approximations in block ciphers by means of statistical sampling. A very similar
approach was followed in [46], in which experiments are performed against small
scale block ciphers, in order to review the practical security approach and the
key equivalence hypothesis for various block sizes, S-boxes and diffusion layers.
A counterpart of these experiments in the context of differential cryptanalysis
can be found in [7]. Finally, Daemen and Rijmen investigated the statistical dis-
tributions of fixed-key linear probabilities, both theoretically and empirically, in
[16]. Their results allow replacing the key equivalence hypothesis by a precise
understanding of the fixed-key vs. average behavior in block ciphers.

1.3 Target cipher

The experiments in the next sections will be performed against the block cipher
SmallPresent-[16], with 16-bit block size, described in [35]. SmallPresent is
an iterated block cipher with R rounds, each of them made of a key addition
layer, a substitution layer and a permutation layer. The key addition layer is a
bitwise XOR, the substitution layer applies four 4-bit S-boxes to the state and
the permutation layer is a simple wire crossing (or bit permutation). The key
scheduling of SmallPresent shifts the key register, applies one S-box to the
left-most four bits and adds a round constant to the right-most bits.



1.4 Matsui’s second algorithm

Matsui’s original description of the linear cryptanalysis comes with two algo-
rithms that allow exploiting linear approximations in iterated block ciphers [36].
In this paper, we focus on the second one, that is intuitively pictured in Figure 1.

Fig. 1. Linear cryptanalysis with Matsui’s M2 algorithm.

In this setting, an adversary exploits an (R − 1)-round characteristic with
good LCB. This characteristic ideally connects to a limited number of active
S-boxes in the last block cipher round (e.g. the two dark grey boxes in Figure 1),
so that by guessing a few key bits of kr, it is possible to do a partial decryption of
the ciphertext for these S-boxes3. As a result, the adversary is able to sample the
linear bias of round (R− 1) under the various key hypotheses for kr. We denote
this sampled bias as SLB(a1,aR; kr). Eventually, the adversary selects the key
candidate that maximizes some function of this sampled bias. Summarizing, a
linear cryptanalysis using Matsui’s M2 algorithm requires: (1) a way to generate
good characteristics and (2) a way to test the key-dependent sampled biases.

1. Generation of characteristics. This step usually exploits a variety of heuristics,
starting with the inspection of the non-linear components in block ciphers (e.g.
S-boxes) and trying to extend partial approximations from one round to multiple
rounds. For example, a branch-and-bound algorithm can be used for this purpose
[38]. Intuitively, such an algorithm concatenates all possible 1-round approxi-
mations, and compares the resulting biases (estimated thanks to the piling-up

3 The complexity of such a partial decryption for a n-bit key guess is in O(n · 2n) [11].



lemma) with a lower bound, in order to reject “bad” approximations. For certain
ciphers, e.g. the DES, it allows to find the best characteristics. For other ones,
e.g. SERPENT, the amount of possible approximations grows in such a way that
maintaining a list of all possibly optimal characteristics becomes impossible as
the number of rounds increases, because of memory constraints [10]. The precise
description of these heuristics is out of the scope of this paper. Nevertheless,
we mention that, as we investigate a 16-bit cipher, it was always possible to
exhaustively find the best characteristics in the next sections.

2. Testing the key-dependent sampled biases. Again, various solutions are possi-
ble, of which the precise description is out of the scope of this paper. To keep
it short, we will refer to two general types of approaches. The first one requires
that a good estimation of the linear bias LB is available to the adversary, e.g.
using the linear characteristic bias LCB. In this case, it is possible to apply a
maximum likelihood approach. Under certain assumptions detailed in [25], this
leads to the simple rule to select the key candidate that minimizes the Euclidean
distance between the sampled and estimated bias values:

k̂r = argmin
k∗r ,P(Ω,K̃)

(
SLB(a1,aR; kr)− LCB(Ω, K̃)

)2
, (11)

where P(Ω, K̃) denotes the parity of the subkey bits used in the characteristic
Ω. The second type of approach is used if a good estimation of the bias is not
available. In this case, one can rely on different types of heuristics, of which a
classical one is simply to select the key that maximizes the sampled linear bias:

k̂r = argmax
k∗r

(SLB(a1,aR; kr)) . (12)

The next sections provide different experiments in order to illustrate these two
steps. Namely, Section 2 discusses the difference between the linear characteris-
tics that can be efficiently generated by actual adversaries and the corresponding
linear approximations. Then, Section 3 discusses the exploitation of these char-
acteristics and their test with the previously described maximum likelihood and
heuristic approaches, including experiments using multiple approximations.

2 Evaluation of characteristics and approximations

2.1 Computing linear hulls

The first experiments we performed relate to the notion of linear hull introduced
by Nyberg in [44]. Thanks to the limited block size of our target cipher, it was
possible to generate the entire linear hull for a given pair of input/output masks
(a,b), with a branch-and-bound algorithm. In addition, it was also possible to set
the lower bound of the branch-and-bound arbitrarily low, in order to generate all
characteristics with non-zero LCB. As expected, the number of characteristics
in the hull increased exponentially with the number of rounds.



In practice, we generated the linear hull for the 100 best characteristics of
the cipher. The size of the linear hull was between 2 and 77 after three rounds,
between 54 and 51,388 after four rounds and between 991 and 1,826,043 after
five rounds. For more than five rounds, we could not generate the complete
linear hull, because of limited computational resources. While far from being
exhaustive, these experiments suggest that, for a fixed number of rounds, the
number of characteristics in a linear hull varies considerably according to the
choice of the input/output masks (in particular, the number of active S-boxes
in these input/output masks has a significant impact in this respect).

Cheating with the full codebook. Considering small block ciphers allows to gener-
ate the full codebook. An interesting consequence of this possibility is that one
can consider the block cipher with a fixed master key as a large 16-bit S-box.
And for any pair of masks (a,b), we can then compute the exact linear bias
LB(a,b;K). There exists two equivalent ways allowing to perform this task.
The first one is to compute the FFT of the S-box directly, e.g. using the tech-
nique described in [48], which is possible for any number of rounds. The second
one is to exploit the knowledge of the linear hull, as long as it is available (i.e.
for a reduced number of rounds), and to compute:

LB(a,b;K) =
∑

Ω∈LH(a,b)

LCB(Ω, K̃). (13)

It is important to note that this equality does not straightforwardly lead to good
approximations of the linear bias for the adversaries, as it only holds if the parity
of all the subkey bits that are involved the characteristics (i.e. the bias signs)
are taken into account. As the number of such parities increases with the size of
the hull, it rapidly becomes intensive to guess by any practical adversary.

Also, Equation (13) is only tight if the linear bias is evaluated with the
full codebook and linear hull. In this respect, an interesting experiment is to
evaluate how the quality of the estimation for LB(a,b;K) degrades when the
number of plaintexts and characteristics in the hull decreases. For this purpose,
we generated the complete linear hull for the linear approximation (a,b) =
(0770hex, 0111hex), for 5 rounds of SmallPresent-[16]. We found 916,841 char-
acteristics corresponding to these masks. Their linear characteristic bias ranged
from 2−9 for the best approximation to 2−24 for the 69,632 worst ones4.

Figure 2 shows the impact of sampling with less plaintexts than the full
codebook: every line in the picture represents one random key. We see that
the distance between the exact linear bias LB(a,b;K) and its sampled value
SLB(a,b, 1, Np;K) only converges to zero when Np equals 216. Figure 3 shows
the impact of sampling with an approximated linear hull ALH(a,b, Nh): every
point in the picture represents a random key and its color scale indicates the
size of the approximated hull Nh. We see that the approximation only converges
towards the correct value of LB(a,b;K) when Nh gets close to 916, 841 ≈ 220.

4 That is, the approximations with the smallest non-zero bias.



Fig. 2. Estimation of LB(a,b;K) with the complete linear hull, in function of the
number of plaintexts used in the sampling (25 ≤ Np ≤ 216, Ns = 1), for different keys.

Fig. 3. Estimation of LB(a,b;K) with the complete codebook, in function of the
number of elements in the approximated linear hull ( 21 ≤ Nh ≤ 219), for different keys.



2.2 A note on Murphy’s technical report

Sean Murphy recently posted a technical report about the existence of the so-
called “linear hull effect” [42], first described by Nyberg in 1994. As this discus-
sion closely relates to the experiments in this paper, we briefly comment on it.
Summarizing, Murphy’s observation relates to the following equality from [44]:

E
K

(
LB(a,b;K)2

)
=

∑
Ω∈LH(a,b)

(
LCB(Ω, K̃)2

)
. (14)

This equation can be illustrated with a simple example. Let us define a pair
of masks (a,b), such that the linear hull for a given cipher equals LH(a,b) =
{Ω1, Ω2}. Let us also assume that LCB(Ω1, K̃) = ε1 or −ε1, depending on the
parity of K̃, and that LCB(Ω2, K̃) = ε2 or −ε2, depending on the parity of K̃.
In this case, and assuming uniformly random keys, there will be four possible
parities and the left part of Equation (14) can be simply evaluated as:

E
K

(
LB(a,b;K)2

)
=

1

4
·
(
(ε1 + ε2)2 + (ε1 − ε2)2 + (−ε1 + ε2)2 + (−ε1 − ε2)2

)
,

= ε21 + ε22,

=
∑

Ω∈LH(a,b)

(
LCB(Ω, K̃)2

)
.

Using this example as a case study, the issue raised by Murphy can be explained
as follows. While Equation (14) is correct, it cannot be used to evaluate the
average data complexity of a linear cryptanalysis. This is because the average
data complexity is proportional to the average over the keys of the inverse of the
squared linear bias. And this quantity is not equal to the inverse of the average
over the keys of the squared linear bias. That is, in our example:

1

EK (LB(a,b;K)2)
=

1

ε21 + ε22
, (15)

E
K

1

(LB(a,b;K)2)
=

ε21 + ε22
(ε1 + ε2)2 · (ε1 − ε2)2

. (16)

As these two values are related by Jensen’s inequality, Murphy correctly con-
cludes that Equation (15) can only provide a lower bound for the data require-
ments of a linear cryptanalysis. The practical impact of this observation can
easily be seen with the particular case in which ε1 = −ε2, leading to a zero value
for the bias LB(a,b;K). Clearly, such a situation is only interpreted correctly
by Equation (16), resulting in an infinite data complexity. A more intuitive view
of this result is that, by squaring the bias values, one looses the sign information
that is crucial in combining the different approximations constructively.

We note that, while the previous observation is sound, it does not contradict
the existence of a linear hull effect which, as will be discussed in the next section,
relates to a trivial difference between a linear characteristic bias, estimated with



the piling-up lemma, and the linear bias of its corresponding masks. Also, it
remains that Nyberg’s relation in Equation (14) can be used to compute a lower
bound for the data complexity of a linear cryptanalysis, in a less computationally
intensive manner than with the direct computation of the linear biases.

2.3 Pros & cons of the practical security approach: the linear hull effect

In our following experiment, we ran a branch-and-bound algorithm in order to
find the best characteristic Ωmax, for different number of block cipher rounds,
and denoted the corresponding pairs of input and output masks as amax,bmax.
Then, we evaluated the following quantities in Figure 4:

E
K
LB(amax,bmax;K),

var
K

LB(amax,bmax;K).

In this figure, the continuously decreasing line represents the linear character-
istic bias LCB(Ωmax, K̃), estimated with the piling-up lemma. The bounded
line represents the corresponding biases LB(amax,bmax;K), computed for dif-
ferent keys (dots representing the sample mean, crosses representing individual
experiments with different keys). These results clearly allow to give an informal
description of the linear hull effect. Namely, as soon as the number of characteris-
tics in the hull LH(amax,bmax) increases, the distance between LCB(Ωmax, K̃)
and LB(amax,bmax;K) also increases, resulting in an overestimation of the at-
tack data complexity with LCB(Ωmax, K̃). This clearly emphasizes the pros and

Fig. 4. Comparison between the linear characteristic bias LCB(Ω, K̃) estimated with
the piling-up lemma and the corresponding bias LB(amax,bmax;K), for different keys.



cons of the practical security approach. On the one hand, the relevance of single
characteristics trivially vanishes as the number of rounds increases. This “linear
hull effect” is in fact dominant as soon as the cipher is practically secure (accord-
ing to Knudsen’s definition). On the other hand, the pair of masks (amax,bmax)
generated with the branch-and-bound algorithm and exploited by the adversary
no longer corresponds to the best approximation in this case. After a sufficient
number of rounds, this best characteristic behaves like a random one: the mean
of LB(amax,bmax;K) is smaller than 2−

n
2 and its variance over the keys is large.

It prevents the application of successful attacks exploiting these characteristics.

2.4 Best, worst and average cases

The previous section investigated the practical security approach and an adver-
sary who can only find linear characteristics with a time complexity below the
one of exhaustive key search, e.g. with a branch-and-bound algorithm. We now
tackle the more theoretical situation in which the best linear approximations can
be found, for each key. For this purpose, we again considered SmallPresent-[16]
with various number of rounds and computed the maximum, minimum5 and
average values for LB(a,b;K), averaged over the keys. That is, we computed:

E
K

max
a,b

LB(a,b;K),

E
K

min
a,b

LB(a,b;K),

E
K

E
a,b

LB(a,b;K),

and the corresponding variances. The results are in Figure 5 and illustrate that:

– After a few first rounds for which the block cipher is practically insecure,
the value of the maximum, minimum and average linear biases stabilize.

– Contrary to the case where the masks are fixed and determined by a branch-
and-bound algorithm (as in the previous section), the variance of these quan-
tities over the keys is small (and decreases with the block size [46]).

– Most importantly, the maximum bias value is between 2−6 and 2−7.

This last point emphasizes that in theory, for a given cipher and key, a low data
complexity (i.e. lower than exhaustive key search) linear cryptanalysis is always
possible. However, this does not mean that the practical security approach is
not good for designing ciphers. The goal of the practical security approach is
not to prevent the existence of good linear approximations, but to make them
hard to actually find and exploit, for computational reasons. This is because, for
practically secure ciphers, the best approximations cannot be found anymore by
chaining small approximations. Finding these best approximations requires (1)
to enumerate the full linear hull and (2) to take the sign of each characteristic
bias into account. In both cases, this implies computationally intensive tasks.

5 That is, again, the approximations with the smallest non-zero bias.



Additionally, as far as Matsui’s second algorithm is concerned, it is also necessary
that these best approximations only imply a limited number of active S-boxes
in the first/last rounds, so that an efficient key guessing can be performed.

Fig. 5. Maximum, minimum and average values of the linear bias LB(a,b;K).

2.5 Key independence and key equivalence hypotheses

Before moving to the empirical evaluation of Matsui’s second algorithm, this
section briefly discusses the key independence and key equivalence hypotheses.
First, although we did not perform as intensive experiments as Knudsen and
Mathiassen in [33], we mention that considering independent round keys or the
key scheduling algorithm in [35] did not lead to significant differences in our
previous experiments and conclusions. In general, it seems that the assumption
of independent round keys is reasonably fulfilled by modern ciphers.

By contrast, our observations on the key equivalence hypothesis are con-
trasted. Clearly, Figure 4 shows that, given a fixed pair of masks (a,b), the key
equivalence hypothesis of Equation (9) is not respected as soon as the linear hull
effect increases. In other words, and independently of Murphy’s observation, av-
eraging the linear bias LB(a,b;K) over the keys is not very significant in this
case. On the other hand, Figure 5 shows that once a block cipher has a suffi-
cient number of rounds for this linear hull effect to be dominant, the best linear
approximations computed for each key have a minimum, maximum and average
bias that does not strongly depend on the keys. Intuitively, once the number of
rounds in the cipher is sufficient, changing the key is equivalent to adding one



round. In other words, the resulting cipher is hard to distinguish from a 16-bit
random S-box, of which the maximum, minimum and average biases essentially
depend on the block size. In order to confirm this intuition, we ran a last exper-
iment in which we directly computed the distribution of the biases LB(a,b;K)
for independent round keys. The results in Figure 6 show that after a few rounds,
the shape of this distribution does not change anymore, and is in fact hard to
distinguish from the one of a random 16-bit S-box, as theoretically expected.

Fig. 6. Distributions of the linear biases for different number of rounds.

3 Test of key dependent sampled biases

The previous section discussed experiments related to the best selection of linear
characteristics and their differences with linear approximations. In this section,
we complement this evaluation by looking at the exploitation of these character-
istics in a linear cryptanalysis. For this purpose, we will investigate how the two
procedures to test sampled linear biases described in Section 1.4 perform with
different linear characteristics and approximations. In addition, we will consider
an extension of linear cryptanalysis using multiple linear approximations, which
is a frequently considered solution to decrease the data complexity of the attack,
first introduced in [26]. For this purpose, we will assume an adversary who has
determined the set of m best characteristics of an (R − 1)-round cipher. Then,
we define the gain of a linear cryptanalysis attack as proposed in [5]:



Definition 7. If an attack is used to recover an n-bit key and is expected to
return the correct key after having checked on the average M candidates in the
sorted list, then the gain of the attack, expressed in bits, is defined as:

γ = −log2

2 ·M − 1

2n
. (17)

For any set of approximation, we also use Biryukov et al.’s definition of capacity:

C(a1:m,b1:m;K) = 4 ·
m∑
i=1

LB(ai,bi;K)2 (18)

In [5], the data complexity of a linear cryptanalysis using multiple linear ap-
proximations is estimated with6 1/C(a1:m,b1:m;K). Finally, when considering
multiple approximations, the test of key-dependent sampled biases is generalized
as follows. First, the maximum likelihood key testing of Equation (11) becomes:

k̃r = argmin
k∗r

m∑
i=1

(
|SLB(ai1,a

i
R; k∗r )| − |LCB(Ωi, K̃|)

)2
. (19)

It corresponds to a straightforward extension of Equation (11), where an absolute
difference operator is added, in order to remove the need to guess the parities for
multiple approximations (which becomes computationally hard as m increases).
Next, the heuristic key testing procedure of Equation (12) becomes:

k̃r = argmax
k∗r

(
m∑
i=1

∣∣SLB(ai1,a
i
R; k∗r )

∣∣) . (20)

In practice, we performed systematic experiments against 4-round, 6-round
and 8-round of SmallPresent, corresponding to contexts where the linear hull
effect is negligible, starts to play a role and is eventually dominant. For each of
these contexts, we computed the gain of different linear cryptanalysis attacks
using multiple approximations, with m = 2i and i ∈ [0; 13]. For clarity purpose,
the results of these experiments have been reported in Appendices A, B, C, D.
They correspond to four different scenarios that we now detail.

Best characteristics generated with a branch-and-bound algorithm.
This scenario, of which the results are given in Appendix A, Figure 9, is the
most realistic one, as it corresponds to the only strategy applicable by an actual
adversary who does not know the key and has limited computational power to
find good characteristics. The figure confirms two important intuitions. First,

6 As detailed in [43], this can lead to an overestimate of the attack gain, because of
an argument similar to the one discussed in Section 2.2. However, as will be detailed
next, the main limitation of this estimated data complexity is due to the unprecise
knowledge of the linear biases in actual linear cryptanalyses.



the maximum likelihood approach only works as long as the linear charac-
teristic bias LCB(Ω, K̃) is a good approximation of the sampled linear bias
SLB(a,b, 1, Np;K). But as soon as the linear hull effect appears (i.e. for 6
rounds in our experiments), it does not allow reaching high gains anymore. Sec-
ond, the heuristic approach is successful for a few more rounds than the max-
imum likelihood one (i.e. up to 6 rounds in our experiments), as it does not
require such a precise estimations of the bias. But when increasing the number
of rounds, the best characteristics eventually behave as random approximations,
as pointed out in Section 2.4, Figure 4. Hence, maximizing the sampled linear
bias does not allow recovering secret information anymore in this case.

Best (R − 1)-round approximations. First, let us mention again that this
(and the next) scenario(s) do not correspond to realistic adversaries, as finding
the best (R − 1)-round approximations and having precise estimations of their
biases is usually not possible for practically secure ciphers. However, as the
previous experiments suggest that having a good estimation of the linear biases
is critical for the success of a linear cryptanalysis, it is interesting to observe
the behavior of the key testing procedures in an artificial context, where the
adversary knows these best (R − 1) approximations and their exact bias, for
each key. The results of our experiments in this case are plotted in Appendix
B, Figure 10, and highlight the following facts. First, the gains of the two key
ranking procedures is higher than when using characteristics and remains high
even when increasing the number of rounds. Second, the impact of using multiple
approximations is stronger when applying the heuristic key ranking. This is in
fact directly related to the results of Section 2.1, Figure 2: for the sampled linear
bias SLB(a,b, 1, Np;K) to be close to the actual bias LB(a,b;K), we need to
sample with a number of plaintexts Np that is close to the full codebook. Hence,
the maximum likelihood key ranking strategy only starts to extract information
when Np is large enough, while a heuristic key ranking is less sensitive to this
need of good estimates for LB(a,b;K). Note that, as discussed in [12], this
last observation is particularly strong when using Matsui’s second algorithm,
because of the partial decryption process which maps the sampled biases at
round R towards sampled biases at round R − 1, with a non-linear S-box. It
would be partially relaxed if Matsui’s first algorithm was considered.

Random (R−1)-round approximations. The previous experiments suggest
that the main parameter allowing a successful linear cryptanalysis with a maxi-
mum likelihood key ranking is the knowledge of a good estimated bias. In order
to confirm this intuition, we launched another set of experiments, with randomly
selected input and output masks, for which the exact value of LB(a,b;K) was
provided to the adversary. As illustrated in Appendix C, Figure 11, this context
leads to gains for the maximum likelihood approach that are very close to the
ones obtained with the best approximations in the previous paragraph. By con-
trast, the heuristic key ranking is totally ineffective in this case as the random
masks selected do not correspond to maximum linear bias values.



(R − 1)-round approximations with null bias. Eventually and for com-
pleteness, we launched a set of experiments with approximations having null bias.
Figure 12 in Appendix D shows that this scenario can also lead to successful key
recoveries. Interestingly, it can even work with a modified heuristic approach,
provided that one selects the key candidate that minimizes the sampled linear
bias (rather than the one maximizing it). Hence, attacks exploiting such ap-
proximations could actually be mounted against actual ciphers and constitute a
counterpart to the use of impossible differentials in cryptanalysis [4]. They have
been recently and independently analyzed by Bogdanov and Rijmen [9].

We conclude this section with two additional observations.

A note on the estimated data complexity of linear cryptanalysis with
multiple approximations. As mentioned in footnote 4, the estimation of the
gain in function of the data complexity in a linear cryptanalysis using multiple
approximations is a difficult problem. One important issue is that most estimates
published in the literature, e.g. [5], are based on a maximum likelihood key rank-
ing procedure. But as witnessed by the previous experiments, such an approach
is hardly applicable as soon as the linear hull effect in the cipher increases. Un-
fortunately, this is also the context in which exploiting multiple approximations
would be useful in practice, in order to compensate the limited gain of a sin-
gle approximation. In order to quantify the impact of multiple approximations
in linear cryptanalysis, we additionally plotted the gain of attacks based on a
heuristic key ranking, using the best approximations (as in Appendix B), in
function of the product between the number of plaintexts used in the attack
Np and the capacity of the set of approximations C(a1:m,b1:m;K), in Figure 7.
If the data complexity was properly estimated with 1/C(a1:m,b1:m;K), the 14
curves in Figure 7 should be identical. For example, in cases where all the ap-
proximations have the same linear bias, it would imply that doubling the number
of approximations in the attack would be equivalent to doubling the number of
plaintexts, which is clearly not the case in our experiments. On the other hand,
the figure also shows that we need approximately 25/c plaintexts to reach the
maximum gain with the best approximation. And we need 210/c plaintexts to
reach this gain with all the 213 approximations. If the use of multiple approxi-
mations was completely ineffective, we would need 218/c plaintexts in this case
(i.e. we would have a factor 2 between each of the curves in Figure 7). Summariz-
ing, the improved data complexity of linear cryptanalysis attacks using multiple
approximations falls between these two extremes. In this respect, we note again
that these observations are mainly due to the use of Matsui’s second algorithm
with a heuristic key ranking procedure. But as discussed in [12], experiments
performed with Matsui’s first algorithm have a data complexity that is much
closer to their estimated value with 1/C(a1:m,b1:m;K).

A note on the stationary area for block ciphers. Let us finally shortly
comment on the notion of “stationary area” with respect to linear and differential
cryptanalysis, discussed in [46]. Intuitively, a block cipher is in its stationary area
if the distribution of its linear biases (and differential probabilities) do not vary



Fig. 7. Gain of linear cryptanalyses using multiple approximations with Matsui’s sec-
ond algorithm, in function of the number of texts Np multiplied by the capacity
C(a1:m,b1:m;K), using the 1st to 8192th best approximations generated from the
full codebook, for 8-round SmallPresent (maximum likelihood key ranking).

anymore with the number of rounds. This typically corresponds to the point
where adding more rounds to the block cipher is not useful anymore from the
point of view of statistical attacks. As pictured in Figure 6, SmallPresent-[16]
becomes stationary after 6 rounds. This should imply that targeting any number
of rounds larger than 6 with a given statistical attack should lead to similar
gains. For illustration, we plotted in Figure 8 the gains of attacks against 8 and
19 rounds of SmallPresent-[16], with the best linear approximations. It clearly
illustrates that attacks have very similar data complexities (experiments could
also be launched with the best characteristics, with random approximations or
approximations with zero bias and would lead to identical observations).

4 Beyond linear cryptanalysis

Many variations of linear cryptanalysis have been proposed in the literature.
While they essentially rely on the same principles, they introduce tweaks that
allow improving the effectiveness of the attack. In this section, we briefly survey
some important results and their relations with our previous experiments7.

7 A number of these advanced strategies are analyzed carefully in the rest of this book.



Fig. 8. Gain of linear cryptanalyses using multiple approximations with Matsui’s 2nd.
algorithm, in fct. of the number of texts Np, using the 1st to 8192th best approx.
generated from the full codebook, for 19-round SmallPresent (maximum likelihood
key ranking). Shadowed curves show the difference with the results against 8 rounds).

Next to the use of non-linear approximations [31] or chosen plaintexts attacks
[32], one of the most frequently investigated ways to extend linear cryptanalysis
is to take advantage of non-uniform distributions in the plaintexts or ciphertexts
(rather than simply biased linear approximations). This idea was first denoted as
partitioning cryptanalysis [19] and directly leads to the question of how to find
these non-uniform behaviors in a cipher. Hence, in practice, it usually relies on
some specificities that a cryptanalysis may find, e.g. [17, 41]. Partitioning crypt-
analysis has been analyzed by Baignères et al. in [1]. More recently, the idea of
multidimensional cryptanalysis [20] and its application to linear cryptanalysis
using multiple approximations [22] was based on very similar ideas. Quite nat-
urally, these extensions suffer from the same limitations as linear cryptanalysis
regarding the difficulty of obtaining precise estimates of the target distributions.
In fact, the problem of estimating multidimensional distributions is generally
more difficult than the one of estimating linear biases. Hence, these optimal at-
tacks also need to be modified with heuristics when statistical hull effects appear.
In this respect, we finally mention statistical saturation attacks as a typical ex-
ample of such heuristics [13]. This attack exploits the non-uniform behavior of
the diffusion layer in the block cipher PRESENT [8], in a chosen plaintext sce-
nario. It can be viewed as a particular case of partitioning (or multidimensional)
cryptanalysis in which one simply selects the key candidate that maximizes the
distance with a uniform distribution over the m bits targeted in the attack, in
order to avoid the need of precise estimated distributions in the key ranking.



5 Conclusion & open problems

This chapter mainly focused on the experimental review of a number of impor-
tant assumptions used in linear cryptanalysis and its extensions. It highlights
the difficulty of predicting the statistical behavior of a block cipher as its number
of rounds increases, both for adversaries trying to exploit key-dependent biases,
and for designers trying to accurately predict security bounds. As a consequence,
our experiments confirm a tension between the practical and provable security
approaches for designing block ciphers. They recall that security against linear
cryptanalysis attacks is mainly due to the difficulty to find good approxima-
tions, and to their key dependency. On the positive side, this makes a case for
the practical security approach, as such a key-dependency of the best approxi-
mations typically appears when no single characteristic can be used to predict
the experimental biases (hence, when the data complexity estimated with single
characteristics becomes prohibitive). On the negative side, it also limits our un-
derstanding of linear cryptanalysis, e.g. when determining the number of rounds
needed for secure block ciphers. In this respect, one central scope for further
research is to find efficient solutions for estimating the target distributions in
statistical cryptanalyses. Also, and in view of the importance of key dependen-
cies when studying the linear hull effect, it would be interesting to investigate
whether there exist classes of keys for which a given approximation would allow
successful attacks with high probability and large number of rounds. In other
words, are there classes of keys that are weak for a given linear hull? From an
adversarial point of view, the counterpart of this tension between theory and
practice can be found in the key ranking procedures. Our experiments showed
that in a number of contexts, attacks based on heuristics can perform better
than maximum likelihood ones, because of imperfect bias estimations. Hence,
finding the best heuristics to use in a given scenario is another interesting scope
for further research. Let us finally mention that these questions have interesting
concrete consequences. They typically relate to the extent to which one can trade
data for time in statistical attacks (e.g. using multiple approximations). Hence,
they relate to the question of the maximum key size for a fixed block cipher size.
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A Best characteristics

Fig. 9. Gain of linear cryptanalyses using multiple approximations with Matsui’s sec-
ond algorithm, in function of the number of texts Np, using 1 to 8192 characteris-
tics generated with a branch-and-bound algorithm, for 4-round, 6-round and 8-round
SmallPresent. Left: maximum likelihood key ranking. Right: heuristic key ranking.



B Best approximations

Fig. 10. Gain of linear cryptanalyses using multiple approximations with Matsui’s
second algorithm, in function of the number of texts Np, using the 1st to 8192th best
approximations generated from the full codebook, for 4-round, 6-round and 8-round
SmallPresent. Left: maximum likelihood key ranking. Right: heuristic key ranking.



C Random approximations

Fig. 11. Gain of linear cryptanalyses using multiple approximations with Matsui’s
second algorithm, in function of the number of texts Np, using 1 to 8192 random
approximations with biases estimated from the full codebook, for 4-, 6- and 8-round
SmallPresent. Left: maximum likelihood key ranking. Right: heuristic key ranking.



D Approximations with null bias

Fig. 12. Gain of linear cryptanalyses using multiple approximations with Matsui’s
second algorithm, in function of the number of texts Np, using 1 to 8192 approximations
with null bias estimated from the full codebook, for 4-round, 6-round and 8-round
SmallPresent. Left: maximum likelihood key ranking. Right: heuristic key ranking.


