
Univariate Side Channel Attacks and Leakage Modeling

Julien Doget1,2,3, Emmanuel Prouff1, Matthieu Rivain4, and François-Xavier Standaert2 ∗

1 Oberthur Technologies,
71-73 rue des Hautes Pâtures, F-92 726 Nanterre, France

{j.doget, e.prouff}@oberthur.com
2 Université Catholique de Louvain-la-Neuve, UCL Crypto Group,

B-1348 Louvain-la-Neuve, Belgium
fstandae@uclouvain.be

3 Université Paris 8, Département de Mathématiques,
2, rue de la Liberté, F-93 526 Saint-Denis, France

4 CryptoExperts,
Paris, France

matthieu.rivain@cryptoexperts.com

Abstract. Differential power analysis is a powerful cryptanalytic technique that exploits
information leaking from physical implementations of cryptographic algorithms. During the
two last decades numerous variations of the original principle have been published. In par-
ticular, the univariate case, where a single instantaneous leakage is exploited, has attracted
much research effort. In this paper, we argue that several univariate attacks among the most
frequently used by the community are not only asymptotically equivalent, but can also be
rewritten one in function of the other, only by changing the leakage model used by the adver-
sary. In particular, we prove that most univariate attacks proposed in the literature can be
expressed as correlation power analyses with different leakage models. This result emphasizes
the major role plays by the model choice on the attack efficiency. In a second point of this
paper we hence also discuss and evaluate side channel attacks that involve no leakage model
but rely on some general assumptions about the leakage. Our experiments show that such
attacks, named robust, are a valuable alternative to the univariate differential power analyses.
They only loose bit of efficiency in case a perfect model is available to the adversary, and
gain a lot in case such information is not available.

Introduction

The goal of a Differential Power Analysis (DPA) is to take advantage of the key-dependent physical
leakages provided by a cryptographic device, in order to recover secret information (key bytes,
typically). Most of these attacks exploit the leakages by comparing them with key-dependent models
that are available for the target device. Since the seminal work of Kocher et al. in the late 1990’s [1],
a large variety of statistical tests, also called distinguishers, have been introduced for this purpose.
Namely, the original attack (that we will always refer to as DPA for convenience) was described using
a Difference-of-Means test. Following works, including the all-or-nothing multiple-bit DPA [2], the
generalized multiple-bit DPA [2], the Correlation Power Analysis (CPA) [3], the Partitioning Power
Analysis (PPA) [4] and the enhanced DPA of Knudsen and Bévan [5], systematically proposed
ways to enhance the Difference-of-Means test. Their goal was to better take advantage of the
available information, e.g. by allowing the adversary to incorporate more precise leakage models in
the statistics. Hence, and in view of the large variety of distinguishers available in the literature, a
natural question is to determine the exact relations between them and the conditions upon which
one of them would be more efficient.

Closely related to this question, Mangard et al. showed in [6] that for a category of attacks,
denoted as standard univariate DPA, a number of distinguishers (namely, thoses using a Difference-
of-Means test or a Pearson’s correlation coefficient or Gaussian templates) are in fact asymptotically
equivalent, given that they are provided with the same a priori information about the leakages
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(i.e. if they use the same model). More precisely, [6] shows that these distinguishers only differ in
terms that become key-independent once properly estimated. While this result is limited to first-
order (aka univariate) attacks, it clearly underlines that the selection (or construction) of a proper
leakage model in Side Channel Attacks (SCA) is at least as important as the selection of a good
distinguisher.

A natural extension of Mangard et al. ’s work is to study wether their statement holds in non-
asymptotic contexts (i.e. when the number of measurements is reasonably small). Such a study
is of particular importance since it corresponds to a practical issue from both the attacker and
the security designer side. Indeed the latter ones often need to precisely determine which of the
numerous existing attacks is the most suitable one in a given context, or reciprocally which context
is the most appropriate one for a given attack.

The results in this paper can be seen as a complement to the previous analyses and are in two
parts. We first focus on the aforementioned list of non-profiled side channel distinguishers. We prove
that they not only are asymptotically equivalent but also, that they can be explicitly re-written
one in function of another, by only changing the leakage model. In other words, we show that all
these distinguishers exploit essentially the same statistics and that any difference can be expressed
as a change of model. This provides us with a unified framework to study and compare the attacks.
Moreover, this emphasizes how strong is the impact of the model choice on the attack efficiency.
Since a good leakage model is not always available to the attacker, we study in a second part of
this paper, side channel attacks introduced in [7] which do not relate on a model choice and can
be performed with a few general assumptions about the leakage. Those attacks are presented and
analysed in the unified framework introduced in the first two sections of the paper. Our results
show that such robust side channel attacks∗ are only slightly less efficient than a correlation power
analysis performed with a perfect leakage model (which is a very favourable context for the CPA).
At the opposite when no perfect leakage model is available, robust side channel attacks are more
efficient than a correlation power analysis. Moreover in this case, they can deal with situations in
which a correlation power analysis would fail.

1 Background

Let EK(p) denote the output of the encryption of a plaintext p parameterized by a master key K.
Let vk be an intermediate result occurring during the processing of EK(p) which can be expressed
as a deterministic function of the plaintext p and a guessable part k of the secret key K (e.g. an S-
box output in an Subsitution-Permutation Network (SPN) cipher). We shall refer to vk as sensitive
variable in the following. We consider an adversary who has access to a physical implementation
of EK(·) and who observes the side channel leakage of N successive encryptions of plaintexts pi.
Each encryption EK(pi) gives rise to a value vk,i of the sensitive variable. The computation of this
intermediate result by the device generates some physical leakage `k,i. We denote by Vk and L the
random variables over the sample (vk,i)i and (`k,i)i respectively. We assume the leakage L to be
composed of two parts: a deterministic part δ (·) and an independent noise B such that

L = δ (Vk) +B , (1)

which implies
`k,i = δ (vk,i) + bi ,

where bi denotes the leakage noise value in the ith leakage measurement.

Assumption 1 (Independent Noise Assumption). The noise B is independent of the sensitive
variable Vk.

To mount an attack, the adversary measures leakages (`k,i)i from the targeted device using a
sample (pi)i of plaintexts. Then, he computes the hypothetic value vk̂,i of the sensitive variable
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vk,i for every pi and for every possible k̂. A leakage model function m is subsequently applied to
map the hypothetic sensitive values toward estimated leakage values mk̂,i = m(vk̂,i). Eventually,
the adversary uses a distinguisher to compare the different model samples (mk̂,i)i

with the actual
leakage sample (`k,i)i. If the attack is successful, the best comparison result (i.e. the highest – or
lowest – value of the distinguisher) should be obtained for the model sample corresponding to the
correct subkey candidate k̂ = k. This procedure can then be repeated for different subkeys in order
to eventually recover the full master key.

We sum-up hereafter the different steps of a standard univariate SCA:

1. Perform N measurements (`k,i)i on the cryptographic system using a sample (pi)i of N plain-
texts.

2. Choose a function m to model the deterministic part of the leakage.
3. For every key hypothesis k̂, compute the model values mk̂,i from the plaintexts pi’s and the

model function m.
4. Choose a statistical distinguisher ∆.
5. For every key hypothesis k̂, compute the distinguishing value ∆k̂ defined by:

∆k̂ = ∆
(
(`k,i)i, (mk̂,i)i

)
.

This results in a score vector (∆k̂)k̂.
6. Output as the o most likely key candidates the o key hypotheses that maximize – or minimize

– ∆k̂.

As it can be seen in the previous list, a standard univariate SCA on a given sensitive variable
vk is only characterized by the model function m and the distinguisher ∆. For this reason we shall
use in the following the notation (m, ∆)-SCA to differentiate one such an attack from another.

In the rest of the paper we aim to compare different distinguishers targeting the same interme-
diate variable. For this purpose, we introduce hereafter the notion of reduction between two SCAs:

Definition 1 (SCA-reduction). A (m, ∆)-SCA is said to be SCA-reducible to a (m′, ∆′)-SCA
if there exists a function f such that m = f ◦m′ and for every pair (k, k̂) and every samples (`k,i)i
and (vk̂,i)i, there exists a strictly monotonous function g such that:

∆
(
(`k,i)i, (mk̂,i)i

)
= g ◦∆′

(
(`k,i)i, (m

′
k̂,i

)
i

)
,

where mk̂,i = m(vk̂,i) and m
′
k̂,i

= m′(vk̂,i).

Definition 2 (SCA-equivalence). Let A be a (m, ∆)-SCA and let B be a (m′, ∆′)-SCA. A is
said to be SCA-equivalent to B if and only if A is SCA-reducible to B and B is SCA-reducible to
A.

It is clear from the general attack description recalled above that two major choices are left to
the adversary when the latter one wishes to perform a standard SCA attack on a given sensitive
variable computed on some device:

– the choice of the distinguisher,
– the choice of the model.

In this paper, we will study both questions and will show that they are linked. We will first show
that most of univariate SCA distinguishers that have been proposed in the literature give rise to
attacks reducible to CPA under Definition 1. Namely, they lead to similar results up to a change
of model. We will then discuss the importance of the model for the attack soundness and we will
investigate attacks that do not require any a priori choice of a model.



1.1 Notations

Let X be a random variable and let x and Ω be respectively an element and a subset of the domain
X of X. In the rest of the paper, we shall denote by Pr (X = x) and Pr (X ∈ Ω) the probabilities
associated with the events (X = x) and (X ∈ Ω) respectively. We shall moreover denote by E (X)
the expectation of X. Estimations of the expectation and of the probability over a sample (xi)i
of values taken by X shall be denoted by Ê (X) and P̂r (X = x) respectively. For instance, if N
denotes the size of the sample (`k,i)i, notations Ê (L) and P̂r (L = `) shall refer to the mean value
1
N

∑
i `k,i of the leakage sample and to ratio #{i;`k,i=`}

N . Eventually, we shall say that a sample (xi)i
of a random variable X is a balanced sample if it contains each value of X a same number of times.
Clearly, the size N of such a sample is a multiple of the cardinality of X .

The random variable related to the observations vk̂,i and mk̂,i will be denoted by Vk̂ and Mk̂

respectively. Throughout this paper we will hence have Mk̂ = m(Vk̂).

2 Reduction Between Various Side Channel Attacks

In this section, we first describe the focused distinguishers and then we give reduction relations
between them.

2.1 Distinguisher Descriptions

The first (m, ∆)-SCA was introduced by Kocher et al. in [1], and was called Differential Power
Analysis. It targets a single bit of the sensitive variable vk and shall be therefore referred to as
single-bit DPA in the rest of the paper. Since this bit usually depends on all bits of the subkey,
the single-bit DPA may allow to unambiguously discriminate the correct subkey. However, for
some kinds of algebraic relationships between the manipulated data and the subkey, several key
candidates (including the correct one) may result in a same distinguishing value and the attack fails
(this phenomenon is referred to as ghost peaks in [3]). To exploit more information from the leakage
related to the manipulation of vk and to succeed when single-bit DPA does not, the attack was
extended to several bits by Messerges in [8] in two ways: the all-or-nothing DPA and the generalized
DPA. The original single-bit DPA of Kocher and its extensions by Messerges can all be defined in
a similar way as follows:

Definition 3 (Differential Power Analysis (DPA)). A DPA is a (m, ∆)-SCA which involves
a distinguisher ∆ defined as a Difference of Means (DoM) between two leakage partitions defined
according to the image set Im(m).

Depending on the definition of the leakage model function m, we recognize the classical presen-
tations of the three DPA attacks listed above:

– In a single-bit DPA, the image set Im(m) is reduced to two elements w0 and w1 and for every
k̂ we have:

∆k̂ = Ê
(
L | Mk̂ = w0

)
− Ê

(
L | Mk̂ = w1

)
. (2)

– In an all-or-nothing DPA, the image set Im(m) can have a cardinality greater than 2. Two
elements ω0 and ω1 are chosen in Im(m) and for every k̂ we have:

∆k̂ = Ê
(
L | Mk̂ = ω0

)
− Ê

(
L | Mk̂ = ω1

)
. (3)

– In a generalized DPA, two subsets Ω0 and Ω1 of Im(m) are chosen and for every k̂ we have:

∆k̂ = Ê
(
L | Mk̂ ∈ Ω0

)
− Ê

(
L | Mk̂ ∈ Ω1

)
. (4)



Distinguishers∆k̂ defined in (2) - (4) shall be denoted by SB-DPA(k̂), AON-DPA(k̂) and G-DPA(k̂)
respectively, where k̂ is the key hypothesis.

After Messerges’works, two extensions of the DPA have been proposed respectively by Le et al.
in [4] and by Brier et al. in [3].

The generalization proposed in [4] starts from (4) and enables to involve more than 2 subsets
to eventually compute a weighted sum of means instead of a simple DoM. We recall hereafter its
definition:

Definition 4 (Partition Power Analysis (PPA)). A PPA is a (m, ∆)-SCA which involves a
distinguisher ∆ defined for every k̂ by:

∆k̂ =
∑

ωi∈Im(m)

αi · Ê
(
L | Mk̂ = ωi

)
, (5)

where the αi’s are constant coefficients in R.

A distinguisher ∆k̂ defined such as in (5) shall be denoted PPA(αi)i
(k̂). Moreover, when we shall

need to exhibit the model m used in the PPA, we shall use the notation PPA(αi)i,m
(k̂) for the

distinguisher.
As discussed in [4], the tricky part when specifying a PPA attack is the choice of the most

suitable coefficients αi’s.
The generalization of the DPA proposed in [9] involves the linear correlation coefficient. We

recall hereafter the definition of this attack:

Definition 5 (Correlation Power Analysis (CPA)). A CPA is a (m, ∆)-SCA which involves
the Pearson’s correlation coefficient ρ as distinguisher. Namely, for every k̂, we have:

∆k̂ = ρ̂
(
L , Mk̂

)
=

ĉov
(
L , Mk̂

)
σ̂ (L) · σ̂

(
Mk̂

) , (6)

where σ̂ (L) and σ̂
(
Mk̂

)
denote the standard deviations of the samples (`k,i)i and (mk̂,i)i

respectively

and where ĉov
(
L , Mk̂

)
denotes their covariance which equals Ê

(
LMk̂

)
− Ê (L)Ê

(
Mk̂

)
.

A distinguisher ∆k̂ defined such as in (6) shall be denoted by CPA(k̂). Moreover, when we
shall need to exhibit the model m used in the CPA, we shall use the notation CPAm(k̂) for the
distinguisher.

The attacks listed above have been applied in many papers e.g. [8, 10, 11] and have even been
sometimes experimentally compared one to another [6, 12]. However, none of those works have
enabled to draw definitive conclusions about the similarities and the differences of the attacks. Next
sections aim to overcome this lack. The study shall be conducted under the following assumption:

Assumption 2 (Target Uniformity). The predicted variable sample (vk̂,i)i
is balanced for every

key hypothesis k̂.

In what follows, we state the SCA-reductions between DPA, PPA and CPA (Sections 2.2 and
2.3). We show that all those attacks can be reformulated to reveal a correlation coefficient com-
putation and that they only differ in the involved model function. A direct consequence of this
statement is that comparing those attacks simply amounts to compare the accuracy/soundness of
the underlying models. These results emphasize the importance of making a good choice for the
model according to the attack context specificities, which is eventually discussed (Section 2.4).

2.2 From DPA to PPA

As the PPA is a generalization of the DPA that is based on the same statistical tool (namely a
DoM test), we can reasonably expect that all the DPA presented in Section 2.1 can be rewritten in
terms of a PPA. We give in the following proposition a formal proof for this intuition. Note that
our proof is constructive and we exhibit how to reformulate any DPA in terms of a PPA.



Proposition 1. Let DPA(k̂) be one of the DPA defined in (2) - (4). There exist coefficients (αi)i
such that DPA(k̂) = PPA(αi)i

(k̂).

Proof. Let us first focus on the SB-DPA(k̂) distinguisher and let us denote by α0 and α1 respectively
the coefficients 1 and −1. Relation (2) can be rewritten:

SB-DPA(k̂) = α0Ê
(
L | Mk̂ = w0

)
+ α1Ê

(
L | Mk̂ = w1

)
. (7)

The same reasoning holds for an all-or-nothing DPA by stating α0 = 1, α1 = −1 and αi = 0 for
every ωi ∈ Im(m)\{ω0, ω1}.

Let us now focus on the generalized DPA and its distinguisher G-DPA(k̂). It can be easily checked
that it can be rewritten as a PPA distinguisher PPA(αi)i

(k̂) by stating:

αi =


P̂r(Mk̂=ωi)
P̂r(Mk̂∈Ω0)

if ωi ∈ Ω0,

− P̂r(Mk̂=ωi)
P̂r(Mk̂∈Ω1)

if ωi ∈ Ω1,

0 otherwise .

Under Assumption 2, coefficients αi are constant (namely independent of the sample size and
of the key hypothesis). �

As a direct consequence of Proposition 1, we get the following corollary:

Corollary 1. Under Assumption 2, a DPA is SCA-reducible to a PPA.

In the next section, we compare the PPA with the CPA.

2.3 From PPA to CPA

It is already well known in statistics that a linear correlation coefficient can be written as a weighted
sum of means over a partition of a probability space. As a straightforward consequence and as
mentioned by Le et al. in [4], a CPA can be viewed as a particular case of a PPA (i.e. a CPA is
SCA-reducible to a PPA). What we prove in this section is that a PPA can be re-stated as a CPA.
Eventually, we argue that both attacks are SCA-equivalent under Assumption 2.

Proposition 2. Let PPA(αi)i
(k̂) be a PPA distinguisher defined with respect to a family of coeffi-

cients (αi)i and a model function m. Then, there exists a function f and two constant coefficients
a and b such that PPA(αi)i

(k̂) = a · CPA(k̂) + b, where CPA(k̂) is a CPA distinguisher involving the
model function f ◦m.

Proof. We recall that, in the definition of PPA(αi)i
(k̂) (see (5)), every ωi ∈ Im(m) is associated

with the coefficient αi. From those ωi’s and αi’s we define a function f on Im(m) by:

f(ωi) =
αi

P̂r

(
Mk̂ = ωi

) . (8)

Under Assumption 2, probabilities P̂r

(
Mk̂ = ωi

)
, and thus coefficients f(ωi), are constant (namely

independent of the sample size and of the key hypothesis k̂). With those new notations, (5) can be
rewritten:

PPA(αi)i,m
(k̂) =

∑
ωi∈Im(m)

f(ωi) · P̂r

(
Mk̂ = ωi

)
· Ê
(
L | Mk̂ = ωi

)
.

After denoting by M ′
k̂
the random variable f(Mk̂) and thanks to the law of total expectation, we

eventually deduce:
PPA(αi)i,m

(k̂) = Ê
(
LM ′

k̂

)
. (9)



On the other hand under Assumption 2, Ê (L), σ̂ (L), Ê
(
Mk̂

)
and σ̂

(
Mk̂

)
are constant with respect

to k̂. This implies that the CPA distinguisher CPA(k̂) associated with the model function f ◦ m
satisfies the following equality:

Ê
(
LM ′

k̂

)
= a · CPAf◦m(k̂) + b , (10)

�

As a straightforward consequence of Proposition 2 we get the following corollary:

Corollary 2. Under Assumption 2, a PPA is SCA-equivalent to a CPA.

Proposition 2 implies that a PPA and a CPA only differ in the model which is involved to
correlate the leakage signal. As a consequence, if a PPA with model m and coefficients αi’s is more
efficient than a CPA with model m′, this simply means that the model f ◦m (for f defined as in Prop.
2) is more linearly related to the deterministic leakage function δ (·) than m′. In such a case, the
CPA must be performed with the most accurate model between both, namely f ◦m. In other terms,
the problem of finding the most pertinent coefficients αi’s for the PPA is equivalent to the problem
of finding the model with maximum linear correlation with the deterministic leakage function.

2.4 On the Choice of the Model

In previous sections we argued that most of existing linear power analysis attacks are reducible to
CPAs that only differ in the model they involve. As a first important consequence, one of those
attacks is more efficient than another if and only if the corresponding SCA-reduced CPA involves
a better model. This naturally raises the question of defining the model which optimizes the CPA
efficiency. It has been proven in [13] that the model function m : v 7→ E

(
L | Vk̂ = v

)
maximizes

the amplitude of the correlation coefficient (6) when the good key is tested and hence optimizes
the attack efficiency (as argued in [14]). In the context of univariate SCA with leakage satisfying
(1), this function is the deterministic leakage function δ (·). Note that any model m(·) = a δ (·) + b
where a 6= 0, b are constants will also maximize the amplitude of the correlation. As a particular
observation, when all the bits of the targeted variable vk impact the leakage expectation, the
result in [13] implies that the model must take into account all the bits of vk and that attacks
exploiting only a limited number of bits (such as e.g. the single-bit DPA) are sub-optimal. It is
worth noticing that if the model is perfect (i.e. if m(·) = δ (·)), then under the Gaussian Noise
Assumption (i.e. the noise B in (1) is drawn from a gaussian distribution), the CPA is equivalent to
a maximum likelihood attack [6], which is known to be optimal for key-recovery. However, computing
m : v 7→ E

(
L | Vk̂ = v

)
with no a priori knowledge about L is not possible when no profiling stage

is enabled. This implies that the adversary model is often not perfect and the resulting attacks
are thus most of the time sub-optimal. In the next section, we investigate a family of side channel
attacks that make weaker assumptions on the device behavior than the CPA-like attacks do. To
succeed, those attacks, termed robust, do not require a good affine estimation of the deterministic
part δ () of the device leakage. Actually, they only require some general assumptions on the algebraic
properties of δ () (e.g. the output value of the function is any linear combination of the bits of the
input value).

3 Robust Side Channel Attacks

In this section, we investigate robust side channel attacks that are able to succeed with only a very
limited knowledge on how the device leaks information. The starting point is to replace the require-
ment that the deterministic part of the leakage δ () is greatly correlated to the attack model m, by
the weaker requirement that δ () belongs to a set of functions sharing some algebraic properties.

Before presenting the attacks and in order to determine the kind of algebraic properties of δ ()
they focus on, let us have a closer look at this function. As any real function defined over F2n , it can



be represented by a polynomial in R[x0, . . . , xn−1], where the degree of every xi in every monomial
is at most 1 (because xim = xi for every xi ∈ F2 and m ∈ N∗). Namely, there exists a multivariate
degree (or a degree for short) d ≤ n and a set of real coefficients (αu)u⊆{0,...,n−1} such that for every
x ∈ F2n we have:

δ (x) = α−1 +

n−1∑
i=0

αixi +

n−1∑
i1,i2=0

αi1,i2xi1xi2 + · · · +
n−1∑

i1,...,id=0

αi1,...,idxi1xi2 · · ·xid . (11)

In view of (11), a side channel adversary could use his knowledge of the device technology to
make an assumption on the degree d of δ() viewed as a polynomial with coefficients in R. This
amounts to make the following assumption on the device.

Assumption 3 (Leakage Interpolation Degree). The multivariate degree of the deterministic
part δ () of the leakage is upper bound by d, for some d lower than or equal to n.

In practice and for most of devices such as smart cards, the coefficients α−1, α0, ..., αn−1 are
significantly greater than the others. This implies that the value of δ(x) is very close to the value of
the linear part in (11), the other non-linear terms playing a minor role [15]. In this case, it makes
sense for the adversary to make Assumption 3 for d = 1. It is sometimes referred as the Independent
Bit Leakage (IBL) Hypothesis in the literature since it amounts to assume that the leakages related
to the manipulation of two different bit-coordinates of Vk are independent. This assumption fits
well with the physical reality of numerous electronic devices. Indeed, the power consumption and
electromagnetic emissions both result from logical transitions occurring on the circuit wires. Thus
assume that every bit of a processed variable contributes independently to the overall instantaneous
leakage is therefore realistic.

From an attacker point of view, assuming the IBL hypothesis is often a good strategy in prac-
tice since it enables to define an attack which, without being optimal, has an adequate efficiency.
However, from the security designer perspective the IBL hypothesis may be considered as too re-
strictive. In this case indeed, the security analysis must encompass the largest class of adversaries
as possible and proving resistance under the IBL hypothesis is therefore no longer sufficient. This is
all the more true that for some new devices (e.g. based on architectures using 65 nm manufacturing
technology), it has been observed ( [16,17]) that the coefficients of the quadratic terms in (11) are
not negligible compared to those of the linear terms: the leakages related to the manipulation of
two different bit-coordinates of Vk are no longer independent. In this case, Assumption 3 for d = 2
shall yield a better representation of the reality.

To sum up our discussion, even if making the Assumption 3 for d = 1 may be sufficient for an
attacker to perform a succesfull attack, one (typically a device designer) must choose d as large as
possible if the purpose is to test a device resistance in the worst case scenario.

In the next sections we present a side channel attack that is able to successfully recover the
expected k with no other assumption on the deterministic part of the leakage than Assumption 3
for some limited value of d. In particular, its efficiency does not rest on the adversary ability to find
a model m which is a good affine approximation of δ () as it was the case for CPA-like attacks. The
attack is described in the particular case where Assumption 3 is done for d = 1. This situation is
indeed sufficient for most of practical attack contexts and it has the advantage to allow for a simple
description of the attack outlines. Eventually, in Section 3.2 we briefly explain how it can be simply
extended to deal with Assumption 3 for d > 1 (i.e. when neglecting the terms of degree greater
than 1 leads to attack failure).

3.1 Linear Regression

In [7], Schindler et al. describe an efficient profiling method for SCA. Assuming that the attacker
knows the subkey k, they explain how to recover the leakage function δ (i.e. the αj coefficients
under the IBL assumption) using linear regression. As mentioned by the authors, their approach



could also allow for the recovering of k (but no details nor experiments are provided). We develop
hereafter the ideas introduced in [7] to get a robust SCA. Let (vk[n − 1], . . . , vk[0]) be the binary
decomposition of the variable vk targeted by the attack and let (`k,i)i and (vk̂,i)i be respectively a
family of N leakage measurements and the corresponding hypotheses on the leakage deterministic
part. The core idea is to compute, for each key candidate k̂, a set of coefficients α̂−1, α̂0, ..., α̂n−1
such that the families (`k,i)i and (α̂−1 +

∑n
j=0 α̂jvk̂,i[j])i are as close as possible for a well-chosen

distance. Under Assumption 2, this process should result in a minimal distance when the good
key candidate k̂ = k is tested. As pointed out in [7], the Euclidean distance (or equivalently the
least-square distance) is a sound distance choice and it is actually optimal when the noise in (1) has
a Gaussian distribution [18]. Moreover, in this case the coefficients α̂j can be efficiently computed
by performing a linear regression.

Let L be the N × 1 matrix
(
`k,1, `k,2, . . . , `k,N

)
composed of the N leakage measurements.

To proceed the linear regression for a key candidate k̂, the following N × (n + 1) matrix is first
constructed:

M =



1 vk̂,1 [0] · · · vk̂,1 [n− 1]

1 vk̂,2 [0] · · · vk̂,2 [n− 1]
...

...
. . .

...
1 vk̂,i [0] · · · vk̂,i [n− 1]
...

...
. . .

...
1 vk̂,N [0] · · · vk̂,N [n− 1]


.

Notation. In the linear regression terminology, the Boolean coordinate functions vk̂ [j] : i 7→ vk̂,i [j]

(j being coordinate index) play the role of basis functions.
In a second time, the ordinary least square method is applied, resulting in the construction of

the coefficients α̂j of the column vector αk̂ defined such that:

αk̂ =
t(
α̂−1, α̂0, . . . , α̂n−1

)
=
(
tM ·M

)−1 · tM · L .

Eventually, the Euclidean distance denoted by ‖ · ‖2, between the hypotheses M · αk̂ and the
leakage vector L is computed. This results in the construction of a distinguishing value ∆k̂ defined
such that:

∆k̂ = ‖L−M ·αk̂‖
2 .

Under Assumption 3, the distinguishing value ∆k̂ is expected to be minimal for the good hy-
pothesis k̂ = k.
Remark 1. In the literature, the common way to describe how well a model fits a set of observations
is called goodness of fit. Different measures of goodness of fit can be used depending on the context.
The coefficient of determination or the Akaike information criterion are examples of such a measure.
In this paper, we privileged the coefficient of determination:

R2 =
‖L−M ·αk̂‖

2

var (L)
.

It first permits to have a value in the range [0, 1]. Note that in your specific case, all models result
from a linear regression with the same basis functions set and with the same observations. This
implies that in this particular case the main known estimators are equivalent to the Euclidian
distance estimator.

3.2 Extension of the Attacks to Non-linear Contexts

The choice of the coordinate functions vk̂ [j] as a basis for the linear regression is a consequence of
Assumption 3 assuming d = 1. If we relax our assumption and assume that the leakage also depends
on some monomials vk[j1]vk[j2] · · · vk[jr], with d > r > 2, then the corresponding hypothesis-related
monomials vk̂[j1]vk̂[j2] · · · vk̂[jr] can be added to the initial basis (vk̂ [j])j . In this case, the regression
detailed in previous section can be straightforwardly adapted to apply on the new (extended) basis.
The new regression is still a linear one, but with a polynomial (and not simply linear) basis.



4 Attack Simulations and Experiments

In previous sections, we have shown that common univariate SCAs based on a restrictive model
are equivalent to a CPA. At the opposite, we have exhibited one pertinent way of attacking where
some constraints on the model can be relaxed. In the following we aim to confront our theoretical
analyses with simulations in realistic scenarios. Simulation parameters are described below.

Attacks Target. The 8-bit output of the AES s-box, denoted by S, is targeted: namely the variable
Vk in (1) satisfies:

Vk = S(P ⊕ k) , (12)

where P corresponds to an 8-bit value known by the adversary.

Attack Types. We hereafter list the attacks we have performed:

1. Single-bit DPA (SB-DPA)
2. All-Or-Nothing DPA (AON-DPA)
3. Generalized DPA (G-DPA)
4. Correlation Power Analysis (CPA)
5. Partition Power Analysis (PPA)
6. Regression Attack with (vk̂[i])06i67

as basis functions, this corresponds to Assumption 3 with
d = 1).

Model Choice. We recall that AON-DPA, G-DPA, CPA and PPA require the choice of a model
function m, whereas SB-DPA and regression attack do not. In our attacks simulation, we have
assumed that the adversary did not know the definition of the function δ (·) in (1) and we thus
systematically used the Hamming weight function when a model was required to perform the attack.
Namely, in AON-DPA, G-DPA, CPA and PPA the model m satisfies:

m(Vk̂) = HW(Vk̂) =
∑
i

Vk̂ [i] . (13)

This model choice is very classical and has been experimentally validated in several papers e.g. [15].
Once the model function has been specified, parameters (ω0, ω1) and (Ω0, Ω1) in AON-DPA and
G-DPA still need to be chosen in order to determine the distinguishers defined in (3) and (4)
respectively. We chose

(ω0, ω1) = (min
Vk̂

m(Vk̂),max
Vk̂

m(Vk̂)) = (0, 8)

and if we denote by medX f(X) the median of the sample f(X) with respect to X, we chose

(Ω0, Ω1) = ([min
Vk̂

m(Vk̂);med
Vk̂

m(Vk̂)[, ] med
Vk̂

m(Vk̂);max
Vk̂

m(Vk̂)]) = ([0; 4[, ]4; 8]) .

Note that this choice is optimal and exactly corresponds to the attacks performed by Messerges in
his original papers [2, 8]. Additionally, we chose the coefficients αi of the PPA distinguisher such
that (9) is satisfied for the model function m defined in (13) (i.e. PPA(αi)i

(k̂) = Ê
(
L ·HW(Vk̂)

)
).

Leakage Simulations. Leakage measurements have been simulated according to (1), with the noise
variable B being a Gaussian random variable with mean 0 and standard deviation σ. As explained
in the following sections, we launched our attack simulations for different definitions of the function
δ () in (1), leading to two different scenarios:

– Scenario 1: we chose δ () in (1) to be the Hamming weight function. Namely, the leakage variable
L satisfies:

L = HW(Vk) +B , (14)

In our attack settings, this first scenario is ideally suited for AON-DPA, G-DPA, CPA and
PPA since the model function m used by the adversary exactly corresponds to the deterministic
function δ (). It will be referred as the perfect model scenario.



– Scenario 2: we chose δ () to be a linear combination of the Vk̂ [i]’s with randomly generated
coefficients. Namely, the leakage variable L satisfies:

L = α−1 +

7∑
i=0

αi · Vk [i] +B , (15)

with coefficients (αi)−16i67 uniformly picked in [−1, 1]. This scenario is used to observe the
distinguishers behavior when the deterministic part of the leakage differs from the model used
by the adversary. We restricted ourselves to functions δ () that are linear combinations in R
of the bit-coordinates of the targeted value Vk̂ i.e. as in Assumption 3 with d = 1. It will be
referred as the random linear leakage scenario.

Attack Efficiency. In the following, an attack is said to be successful if the good key is output by
the attack, that is if the key corresponding to the first element in the score vector is the key used in
the simulated cryptographic device. An attack is said to be more efficient than another if it needs
less messages to achieve the same success rate. Success rate is measured over 1, 000 tries.

We report and analyze in next two sections our attack simulations results for Scenario 1 (Section
4.1) and Scenario 2 (Section 4.2).

4.1 Attack Results in the Perfect Model Scenario

In this section we assume that L satisfies (14). In Fig. 1, the number of messages needed to achieve
a success rate of 90% is recorded for each attack mentionned before∗. Note that a success rate
threshold has been fixed at 90% but in this configuration each attack can reach 100%.
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Fig. 1: Evolution of the number of messages (y-axis) to achieve a success rate of 90% according to
the noise standard deviation (x-axis) – Fitted curves

Curves in Fig. 1 can be split in two parts depending on the noise standard deviation: the
oversampling part, where a huge number of observations are needed to deal with the important
noise effects and the undersampling part, where a small number of observations is sufficient. The
two situations are analyzed separately in the following. In both cases, the most relevant observations
are listed and discussed.

∗We inform the reader that the curves are plotted fitted with a fourth degree polynomial to ease the
reading of the figure. Fitted curves permit to observe the general behavior.



Oversampling. When the noise standard deviation is strictly greater than 23, each distinguisher
needs a large number of messages (greater than 500) to reach 90%. In this case the curves have
the same shape for each distinguisher which is compliant with the asymptotical results in [6]. Our
observations are detailled below:

– The efficiency curves of each attack have the same gradient. This suggests us that the noise
similarly impacts the efficiency of the attacks.

– The curves corresponding to G-DPA, CPA, PPA and regression attack are stacked. This implies
that those attacks share approximatively the same efficiency and that none of them is emerging
as better candidate than the others. In fact, in the perfect model scenario, the distinguishers
corresponding to these attacks are equivalent to a maximum likelihood test and the attacks
therefore perform in a similar (optimal) way [6]. This pinpoints the equivalence between the
distinguishers when the model function used in the model-based attacks (i.e. AON-DPA, G-
DPA, CPA and PPA) is optimal (i.e. perfectly corresponds to the function δ () in 1).

– As expected, SB-DPA and AON-DPA are less powerful than the others (around 100 and 30
times less efficient than G-DPA, CPA, PPA and regression attack for the SB-DPA and the
AON-DPA respectively). Indeed, by nature they do not exploit all the information contained
in the leakage signal: in SB-DPA only one output bit is targeted over the 8 output bits of the
AES, whereas the AON-DPA only exploits a limited part of the leakage measurements.

Undersampling. When the noise standard deviation is lower than 23, the number of messages needed
to perform an attack is quite small (lower than 500). In this case, the statistical stability of the
involved distinguisher plays a role. We detail our observations below:

– An important efficiency difference occurs between the CPA, the DPAs and the PPA. For example
with a noise standard deviation of 1, CPA needs only 30 messages to reach a success rate of
90% whereas PPA needs 280 messages to achieve the same threshold.

– CPA is the most efficient attack. This confirms that Pearson’s coefficient is the good tool to
measure a linear correlation.

– In comparison, the PPA is much less efficient than the CPA (and even also than the DPAs).
This result was actually expected. Indeed, centering the leakage and the model random variables
(i.e. computing Ê

(
L ·m(Vk̂)

)
− Ê (L)Ê

(
m(Vk̂)

)
instead of Ê

(
L ·m(Vk̂)

)
in the PPA attack)

and then normalizing the centered mean by the standard deviations of the random variables
(i.e. dividing Ê

(
L ·m(Vk̂)

)
− Ê (L)Ê

(
m(Vk̂)

)
by σ̂ (L) and σ̂

(
m(Vk̂)

)
thus getting the CPA

distinguisher CPA(k̂)) is useful to reduce the linear dependency estimation errors when the
number of observations is small (i.e. undersampling), which is the case when the attacks are
performed for a small amount of noise.

– G-DPA, CPA and PPA are more efficient than regression attack. It may be noted that this
situation is the opposite of the one occuring in the oversampling case.

Eventually, our results corroborate our theoretical analysis: the SB-DPA and the AON-DPA
are less efficient than the other simulated attacks whatever the noise amount in the leakage. This
highlights the fact that targeting a subspace of the model (i.e. a single bit over eight or targeting
2 values over 256) is suboptimal when the adversary uses a model that well corresponds to the
function δ () (G-DPA, CPA and PPA) or when a regression attack with vk̂[0], · · · , vk̂[7] as basis
functions is performed. Whatever the signal-to-noise ratio, CPA is always the best attack. However
its efficiency is very close to that of G-DPA and PPA when the noise standard deviation reaches
the threshold 4. Actually CPA is mainly better than the other tested attacks when the leakage is
not very noisy (i.e. when the noise standard deviation is between 0 and 4). Eventually, it can be
noted that the efficiency of the linear regression attack tends to be close to that of the CPA while
the perfect model scenario is optimally suited for CPA.

4.2 Attack Results in the Random Linear Leakage Scenario

In this section we assume that L satisfies (15). In Fig. 2, we recorded the success rate for different
numbers of messages and for different values of noise standard deviation.
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(b) Mid noise (4.00)
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(c) High noise (8.00)

Fig. 2: Evolution of the success rate (1, 000 tries) for different numbers of messages and according
to some critic noise standard deviations

Observations are reported below. As in the perfect model scenario we can split our observations
in two parts.

Oversampling When the number of messages available is greater than approximately 105 × σ2, the
curves have the same shape for each distinguisher but contrary to what happened in the perfect
model scenario, all the attacks do not reach a success rate of 100%.

– The maximum success rate achieved by the model-based attacks is lower than 75% (e.g. CPA
achieves 62% while G-DPA and PPA are still less efficient with a success rate limit of 58%)
whatever the noise standard deviation. In other terms, for some linear functions δ (), those
attacks do not succeed in discriminating the good key candidate when the Hamming weight
function is involved as model.

– At the opposite, the regression attack always succeeds in recovering the key and, actually, in a
more efficient way than other attacks. Moreover, as it can be observed in Figures 2b–2c, this
assessment is confirmed whatever the noise standard deviation.

– AON-DPA only reaches a maximal success rate of 6% which is very low compared to the others.
A possible explanation for the AON-DPA poor effectiveness resides in the fact that the design
of the sets Ω0 and Ω1 under the hypothesis m = HW is not relevant when δ () is far away from
the Hamming weight function

– At the opposite SB-DPA reaches a maximal success rate of 72% which is better than CPA. This
observation is not surprising since SB-DPA targets only one bit (independently of the model
choice) over eight, which lowers the impact of the model choice on the remaining seven bits.

Undersampling. Let us focus on critic values when a small number of messages is involved in the
attack (lower than 500). In this case, the statistical stability of the involved distinguisher plays a
role. Our observations are detailled below:

– In this situation, all distinguishers have the same ranking as in oversampling.



– G-DPA, CPA and PPA are relatively less efficient than in the perfect model scenario. That is
in the perfect model scenario they are more efficient than regression attack while not here.

– SB-DPA and AON-DPA still have a different behavior than others model based attacks due to
the use of a suboptimal model (with respect to the attacker choice in (13)).

The impact of the noise on the attacks efficiency in our linear random model scenario is very close
to what we observed in the perfect model context. Namely the maximal success rate is the same
whatever the noise deviation but more messages are needed to achieve it. In fact, we confirm the
theoretical analysis in [19], where the author shows that doubling the noise deviation just increases
the number of needed messages by

√
N to reach the same success rate.

Among the attacks we simulated in the random model scenario, the linear regression attack is
clearly the most efficient one and it is the only one that reaches a success rate of 100%.

4.3 Conclusion on the Attack Simulations

When the chosen model exactly corresponds to the leakage function (perfect model case), each
distinguisher reveals the key and the CPA and regression attacks are among the most efficient ones
(actually except SB-DPA and AON-DPA all the tested attacks have equivalent efficiency when the
noise increases). Nevertheless in case of undersampling CPA is ranked first. This can be explained
by the fact that the linear regression attack has to rebuild the model from data while CPA is directly
provided with the optimal model function and uses the observations only to corroborate a linear
dependency.

When the model is unknown, only the linear regression attack always succeeds in revealing
the key. It is moreover more efficient than the model-based attacks. That is, at a cost of a little
computational overhead, linear regression attack shall be preferred to the other distinguishers.

Finally, if one has a good linear approximation of δ() then CPA is an optimal way to perform
an attack. In other cases, linear regression attack will always perform better.

5 Conclusion and Future Works

In this paper, we have compared standard univariate side channel attacks and we have demonstrated
that they all can be rewritten as a CPA. Our analyses show how important is the model used for the
attacks. As a good model is not always known to the adversary, we have focused on another sound
attack that is not parameterized by a model. This attack (introduced by Schindler et al. in [7]) is
based on linear regression techniques. It is experimentally compared to CPA both in a favourable
context for CPA (i.e. the real leakage model is known) and in a more realistic context (i.e. the real
leakage model is linear but unknown and randomly generated). Eventually we have shown that in
all cases the linear regression attack performs well without care about the leakage nature, provided
that the key-dependent bits leak independently. We have moreover proposed an extension of the
original attack in such a way that the latter assumption can be relaxed.

Based on our study, we think that the linear regression attacks are a relevant alternative to
attacks based on an a priori model choice (as e.g. the CPA). Our work moreover hilights the fact
that any new attack should be compared at first mathematically and experimentally if needed to
the existing ones to reveal the core differences with the state-of-the-art. An interesting extension of
our work will be to investigate the behavior of the linear regression attacks in multivariate contexts.
Moreover, rewritting the side channel attack problematic in terms of a model estimation problematic
opens the door to a large variety of stochastic tools that could be investigated for further research.
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