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Abstract. Variability is a central issue in deep submicron technologies,
in which it becomes increasingly difficult to produce two chips with the
same behavior. While the impact of variability is well understood from
the microelectronic point of view, very few works investigated its signif-
icance for cryptographic implementations. This is an important concern
as 65-nanometer and smaller technologies are soon going to equip an
increasing number of security-enabled devices. Based on measurements
performed on 20 prototype chips of an AES S-box, this paper provides
the first comprehensive treatment of variability issues for side-channel
attacks. We show that technology scaling implies important changes in
terms of physical security. First, common leakage models (e.g. based on
the Hamming weight of the manipulated data) are no longer valid as the
size of transistors shrinks, even for standard CMOS circuits. This impacts
both the evaluation of hardware countermeasures and formal works as-
suming that independent computations lead to independent leakage. Sec-
ond, we discuss the consequences of variability for profiled side-channel
attacks. We study the extend to which a leakage model that is carefully
profiled for one device can lead to successful attacks against another
device. We also define the perceived information to quantify this con-
text, which generalizes the notion of mutual information with possibly
degraded leakage models. Our results exhibit that existing side-channel
attacks are not perfectly suited to this new context. They constitute an
important step in better understanding the challenges raised by future
technologies for the theory and practice of leakage resilient cryptography.

Introduction

Side-channel attacks are one of the most important threats against modern cryp-
tographic implementations. Since the apparition of power [11] and electromag-
netic analysis [6, 21], the design and evaluation of countermeasures allowing to
withstand such physical attacks has become an increasingly important research
topic. The security assessment of commercial products (such as smart cards)
has also implied major developments in the industry of secure hardware de-
vices. Various solutions purposed to increase the security against side-channel
attacks have been proposed, at different abstraction levels. They range from the
modification of the hardware [31] to generic techniques using the formalism of



modern cryptography [20]. Significant progresses have also been made in better
understanding the statistical aspects of power analysis and its connection with
countermeasures such as masking and hiding, as detailed in the DPA book [14].

By contrast to classical cryptanalyis, that targets abstract mathematical ob-
jects, side-channel cryptanalysis is implementation-specific. The gain of such a
specialization is a significantly increased power. Cryptographic algorithms that
are assumed (or proven) secure against classical adversaries, even with intensive
time and memory complexities, often turn out to be completely insecure against
physical attacks, if implemented in an unprotected device. As a consequence,
technological dependencies are at the core of both the theory and practice of
side-channel analysis. On the one hand, solutions to attack cryptographic im-
plementations are most efficient if they can exploit a good understanding of the
underlying physics. On the other hand, solutions to (provably) ensure the secu-
rity of leaking devices need to rely on assumptions that correctly capture the
peculiarities of actual hardware. In this paper, we tackle this issue of technolog-
ical dependency and show that some of the common assumptions used in power
analysis attacks are not going to hold anymore in future cryptographic hardware.

In particular, the scaling of the CMOS technology, that is the basis of most
present microelectronic devices, is a permanent trend since the apparition of
integrated circuits in the late 1950s. Shrinking transistors is generally motivated
by the need of increased performances and reduced energy per operation. But
when reaching the nanometer scale, two major detrimental side effects also arise.
First, the relative importance of so-called static currents increases (i.e. energy is
consumed, even if no computation is performed) [25]. Second, device variability
becomes important (i.e. it becomes increasingly difficult to engineer identical
chips) [1, 17]. As a consequence, the goal of this paper is to investigate the
impact of these effects, with a focus on power variability, from the point of view
of side-channel attacks. More precisely, our contributions are as follows.

1. A classical tool in DPA is to use Pearson’s correlation coefficient in order to
compare key-dependent leakage predictions with actual measurements per-
formed on a chip [2]. These (so-called) correlation attacks are most efficient
if a good leakage model is available for the predictions. And a very common
solution is to use the Hamming weight (or distance) of the manipulated data
for this purpose. We show that such models are not accurate anymore for
65-nanometer and smaller technologies. Hence, their use may lead to over-
estimate the security of a (protected or unprotected) implementation.

2. Recent works in the area of leakage resilient cryptography frequently assume
that independent computations lead to independent leakage. We put forward
that this assumption is not fulfilled anymore for 65-nanometer technologies.
In particular, we show that linear leakage models that only depend on the
input/output bits of an S-box are not able to capture parasitical effects
occurring during the computations. We then discuss the consequences of
this observation and highlight that they are different for works such as [5],
which assume independence at the gate level, and works such as [4], which
assume independence at a larger scale, e.g. between functional blocks.



3. Profiled attacks, e.g. using templates [3] or stochastic models [27], are an
important class of side-channel attacks in which an adversary first charac-
terizes a target device (in order to obtain a precise knowledge of the leakage
probability distributions), and then uses this knowledge in a very powerful
online phase. In this context, it is important to know whether a profile ob-
tained from one device can be used against other similar devices. We discuss
this question in light of the increased variability of recent technologies. For
this purpose, we define the perceived information, which is a generalization
of the mutual information that allows quantifying degraded leakage models.

4. Finally, we provide a careful empirical evaluation of both the information
leakage and the success rates of various implementations and attacks. Our
results are based on a set of 20 implementations of the same AES S-box in
a 65-nanometer low-power CMOS technology. We use these experiments to
discuss the impact of the power supply on the information leakage, and the
selection of meaningful time samples in the traces. We also take advantage
of this case study to compare real measurement traces with simulated ones.

Summarizing, while an important literature covers the impact of nanoscale tech-
nologies from a microelectronic point of view, e.g. [7], only a few works consider
its consequences in terms of security. To the best of the authors’ knowledge, the
simulated experiments in [13] are the only available reference. In this paper, we
extend these preliminary investigations, and show that technology scaling implies
new challenges for the theory and practice of side-channel attacks, that are not
completely solved by present statistical tools, proof techniques and assumptions.

1 Preliminaries

1.1 Target implementation

Our analysis is based on simulated and actual power traces obtained from the
execution of an AES Rijndael S-box, full-custom designed in a low power 65-
nanometer CMOS technology, and measured under two different supply voltages:
1.2V and 0.5V. We used an area-optimized S-box architecture based on compos-
ite field arithmetic, described in [16], of which the design is detailed in [9].

Measurements were performed on 20 prototype chips implementing this S-
box, each of them made of 1,530 transistors in static CMOS logic style, with
a maximum logic depth of 22. The S-box delay is 3 ns at 1.2V supply voltage,
meaning a maximum operating frequency of 200 MHz (taking a security margin
of 2 ns). This maximum clock frequency drops down below 10 MHz when de-
creasing the supply to 0.5V. In our experiments, we monitored the voltage drop
on a resistor introduced in the supply circuit of the chips, using a high sampling
rate oscilloscope (1 Gsample/second), while running the chip at 2 MHz (moti-
vated by interface constraints of our prototype board ). Post-layout simulations
were performed using Spice models provided by the same industrial foundry as
for actual measurements, for the chosen technology node.



1.2 Notations

Let a power trace l be the output of a leakage function L. In our experiments, the
leakage function will essentially depend on three input arguments: X,C and N .
The (discrete) random variable X denotes the input value of the S-box under
investigation, the (discrete) random variable C denotes the index of the chip
under investigation, the (continuous) random variable N denotes the noise in
the measurements. As a result, we denote the random variable representing the
leakage traces as L(., ., .), where the arguments are written as capital letters if
they are variable, and as small caps if they are fixed. For example, l(x, c, n) is
a single measurement trace, corresponding to input x and chip c; L(x, c,N) is a
random variable representing the noisy traces corresponding to input x and chip
c. We also denote the tth time sample in a leakage trace as Lt(x, c, n). Finally, it
is sometimes convenient to consider noise-free mean traces, that are defined as:

L(X,C) = E
n
L(X,C, n),

where E denotes the mean operator, which is to be replaced by a sample mean
operator (denoted as Ê) when applied to actual measurement traces. Simulation
environments such as Spice do not directly allow parametrizing the noise level
in the power traces. Therefore, they provide noise-free traces by default. In this
case, and in order to analyze the impact of noise on the security of our AES S-
box, our evaluations considered an additive Gaussian noise (which is a reasonable
starting point for the simulated analysis of side-channel attacks). We denote with
N (l|µ, σ2) the probability density function (pdf) of a normal random variable L
with mean µ, variance σ2

n and evaluated on input x. It yields:

Lt(X,C,N) = Lsim
t (X,C) +N,

where N has mean 0 and variance σ2
n. When considering multiple time samples

in the traces (i.e. Lt1:td(X,C,N)), the mean and variance are replaced by a mean
vector and a covariance matrix. Our simulated evaluations assume the same noise
distribution for all inputs, chips and time samples. By contrast, when considering
actual power traces, the noise is directly present in the measurements obtained
from the oscilloscope. In this case, our evaluations characterized its distribution,
in order to take possible correlation between different time samples into account.

As an illustration, Figure 9 in Appendix A shows noise-free power traces
corresponding to 4 different inputs, measured for 10 different chips, under 1.2V
and 0.5V supply voltages, obtained from simulations and actual measurements.

1.3 Noise distribution

The preliminary analysis of a set of leakage traces usually starts with the char-
acterization of the noise. For this purpose, we first applied the filtering described
in Appendix B, in order to remove some parasitic frequencies from the traces.
Then, we tested the distribution of the residual noise. In recent works on side-
channel attacks, this distribution is usually assumed to be normal, with mean



zero and variance σ2
n [14]. Using a normality test like the Pearson’s chi-square

test telled us that, formally, the residual noise does not exactly follow a normal
distribution. However, the ratio between the entropy of the estimated normal
distribution and its Kullback-Leibler divergence with the actual distribution is
smaller than 0.5%, meaning that the residual noise distribution is very close to
Gaussian. As will be seen in the following section, this assumption is also vali-
dated from a side-channel point of view, when comparing the information leakage
computed with the actual noise distribution and with a Gaussian estimate.

1.4 Physical variability

The power consumption traces of an electronic device can be divided into a static
part and a dynamic part. These parts can be informally identified by visual
inspection: the static power corresponds to the constant parts of the traces, the
dynamic power corresponds to their variable parts. Dynamic power is usually the
most useful in side-channel attacks, because its strong input-dependency can be
used to accumulate information about a secret value manipulated by a device.
As discussed in [10], physical variability of the dynamic energy in nanoscale
devices can be explained by capacitance fluctuations that are magnified when the
computation delays increase, because of the random glitches that are generated
by variability-induced unbalanced logic paths. In the following, we will mainly
be interested in two parameters that influence the physical variability.

First, the supply voltage can be scaled down, resulting in a reduced dynamic
power at the cost of an increased delay, hence implying a higher variability.
Second, different time samples can be selected in the traces. Because of the
impact of the computation delays on the random glitches in these traces, the
samples corresponding to the beginning of the computations have less variability
than the ones corresponding to the end of the computations. These parameters
can be illustrated by looking at the variance of the power traces, over the input
plaintexts and chips, in Figure 1. One can see that the variance over the chips
(caused by physical variability) increases when moving from 1.2V to 0.5V supply
voltage. In addition, for the 0.5 supply, i.e. when variability becomes significant,
this variance is quite localized in the late time samples. Note that this effect is
particularly visible when considering the actual measurements.

1.5 Dimensionality reduction

One difficult task when performing a side-channel attack is to select the samples
of interest in the traces. Many heuristics have been proposed for this purpose. A
straightforward solution is to apply the attacks to all the samples in the traces
and to select the samples where they perform best. This is possible, e.g. when ap-
plying Kocher’s DPA [11], correlation attacks [2] or template attacks [3] (as long
as the templates are only built for a reduced number of samples). Alternatively,
it is also possible to use dimensionality reduction techniques such as Principal
Component Analysis (PCA) or Linear Discriminant Analysis (LDA) [29]. These



Fig. 1. Variances of the power traces over the input plaintexts and chips. Left: 1.2V
power supply, Right: 0.5V power supply / Up: simulations, Down: actual measurements.

are linear transforms that can be used to project the traces in a subspace of small
dimensionality, with the goal of “summarizing” the useful information in a few
samples. PCA uses the inter-class variance as optimization criteria, while LDA
uses the ratio between inter- and intra-class variance. Figure 11 in Appendix
C plots the eigenvectors corresponding to the principal component produced by
PCA and LDA, for simulated traces. It shows that physical variability makes the
application of PCA irrelevant, as it cannot distinguish between inter-plaintext
and inter-chip variances. By contrast, LDA does a good job in this case, and
only selects early time samples in the traces, where inter-plaintext variance is
large and inter-chip variance is small. In order to simplify the interpretation of
the results, our analyzes in the following sections will reduce the dimensionality
by selecting one to three meaningful time samples, with small, medium and large
variability (examples are give in the upper left part of Figure 9 in Appendix A).

2 Information theoretic analysis

The goal of this paper is to investigate how inter-chip variability affects the ap-
plication of side-channel attacks. For this purpose, we start with an information
theoretic analysis. As detailed in [28], it allows to quantify the security of an
implementation against an adversary who can perfectly profile the leakage pdf.
In our context, we will consider the information between a secret S-box input X
and the corresponding leakage L. We analyzed three types of leakage. First, we
used simulations L1

t = Lsim
t (X,C) + N . Second, we used actual measurements

L2
t = Lt(X,C,N). Third, we considered a hybrid situation combining the average

traces obtained from the oscilloscope with simulated noise: L3
t = Lt(X,C) +N .



Interestingly, the presence of inter-chip variability implies new concerns re-
garding the profiling of a leakage pdf. In our 65-nanometer technology, two pieces
of silicon implementing the same functionality can give rise to different power
consumptions. And this variability can even occur intra-chip, e.g. two S-boxes
within the same implementation of the AES can have different leakage models.
As a consequence, this section will focus on two main scenarios. In the first one,
the profiling and attack are performed on the same chip. This scenario reflects
the classical assumption that two chips produced from the same design leak in a
similar way. It corresponds to a worst case situation in which all the information
leaked by an implementation can be exploited by the adversary. In the second
(more realistic) one, different chips are used for profiling and attacking. We study
the possibility of building templates from a set of n chips and to attack a n+1th

chip, in order to infer the effect of process variability. Doing this, we introduce a
new notion of “perceived information”, which allows capturing the information
loss that is due to the degradation of an adversary’s templates.

This section will also consider two additional questions. First, we evaluate the
assumption of “independent leakage” that is frequently required by formal secu-
rity analyzes in physically observable cryptography, e.g. [4, 5]. Then, we discuss
the notion of model soundness and its relation with the scenarios of standard
DPA attacks [2, 3, 11, 15] and algebraic side-channel attacks [23, 24, 26].

2.1 Worst case scenario: profiling and attacking the same chip

Analyzing the information leakage of a cryptographic implementation first re-
quires to choose a profiling technique, in order to estimate the leakage pdf. In this
section, we use the template attacks introduced in [3], which are the most generic
solution for this purpose1. Template attacks essentially work in two steps. In a
first profiling phase, the adversary builds 256 Gaussian templates, denoted as
P̂rmodel[L|x] = N (l|µ̂x,c,N , σ̂

2
x,c,N ), corresponding to the 256 maximum likelihood

estimates of the conditional density functions Prchip[L|x]. Then, in a second on-
line phase, he uses these templates to recover information from a leaking chip,
for which he will select the maximum likelihood input candidate:

x̃ = argmax
x∗

P̂rmodel[x
∗|l]. (1)

The information theoretic analysis introduced in [28] consists in evaluating the
posterior probability of different inputs and computing the mutual information:

MI(X;L) = H[X]−
∑
x∈X

Pr[x]
∑
l∈L

Prchip[l|x]. log2 Prchip[x|l], (2)

where Prchip[x|l] is derived from Prchip[l|x] using Bayes’ formula and X ,L are
the sets of all possible input values and leakage. In practice, the real leakage
distribution is a priori unknown, both for adversaries and evaluators. Hence, the

1 An alternative is to use stochastic models [27] and is discussed later in the paper.



probability of the leakage l conditioned on input x is replaced by a sample esti-
mate P̂rchip[l|x] (i.e. typically, one divided by the number of measured traces).
And the probability of the input x conditioned on leakage l is replaced by the
adversary’s model estimate P̂rmodel[l|x]. In general, one assumes that the adver-
sary’s model is reasonably close to the actual chip leakages, which allows to for-
mally compute the mutual information. As demonstrated in [30] in the context of
the masking countermeasure, the mutual information provides an excellent indi-
cator of the template adversary’s success rate. However, if the adversary’s model
degrades for some reason, and differs from the actual chip leakage distribution,
the mutual information cannot be computed anymore. In order to capture such
situations, we introduce the following definition of perceived information:

P̂I(X;L) = H[X]−
∑
x∈X

Pr[x]
∑
l∈L

P̂rchip[l|x]. log2 P̂rmodel[x|l]. (3)

When profiling and attacking the same chip with sufficiently accurate templates,
P̂rchip[l|x] and P̂rmodel[l|x] are the same, and the perceived information reverts to
the mutual information. From a side-channel point of view, the intuitive meaning
of the perceived information is close to the one of mutual information: it captures
the information about a latent variable X obtained when observing leakages L,
generated according to a density Prchip[L|x], and interpreted with the model

P̂rmodel[L|x]. This implies that the perceived information is lower or equal to the
mutual information, and may have a negative value, meaning that the leakage is
misinterpreted by the adversary’s model. In this case, the side-channel attacks do
not converge towards their correct result (i.e. they don’t output the correct key).
The perceived information can also decrease with measurement noise. Such a
counterintuitive behavior will be observed in the next sections: less measurement
noise may increase the misinterpretations of the model, as the probability of the
correct event P̂rmodel[x|l] will be closer to zero in this case. Note finally that, in
the case of simulations, the sum over the leakages l, in Equations (2) and (3),
becomes an integral, as an analytical description of the pdf is available.

The results of our analysis for the worst case scenario where we profile and
attack the same chip are displayed in Figure 2 (averaged over 20 chips), with
models using 1, 2 or 3 samples (denoted as 1D, 2D and 3D in the plots). They
do not exhibit deviations from previous information theoretic analyzes (e.g. the
perceived information is always positive). They also confirm the intuition that
reducing the power supply reduces the information leakage, and that higher
dimension leakage provides more information to the adversary [22]. In fact, the
most interesting observations in these experiments relate to simulations:

1. Simulated noise. As witnessed by the right part of the figure, average mea-
surements plus simulated noise (i.e. L3

t ) provide an excellent approximation
of actual measurements with real noise (i.e. L2

t ), from an information leakage
point of view. This is in line with our observation of Section 1.3.

2. Simulated traces. As witnessed by the differences between the left and right
parts of the figure, the information leakage of simulated traces reasonably



Fig. 2. Mutual information between an input X and corresponding leakage L in func-
tion of the noise std. deviation, for 1D, 2D and 3D leakages. Left: simulations. Right
curves: measurements + simulated noise. Right stars: measurements.

corresponds to the one of actual traces at 1.2V, and exhibit more deviations
at 0.5V (i.e. when variability increases). This can be explained by the diffi-
culty to capture all physical effects in simulation models (including the ones
related to our measurement setup). While the intuitions given by simula-
tions are sound (e.g. decreasing the supply voltage reduces the information
leakage) the numerical values they provide need to be considered with care.

In the rest of the paper, we will systematically consider averaged measure-
ments plus simulated noise in our evaluations, since this behaves very similarly
to the actual measurements while allowing modifications in noise levels2.

2.2 A note about the “independent leakage” assumption.

An important assumption found in several formal works in the area of leakage
resilient cryptography is that independent computations give rise to independent
leakage. Our experiments suggest that such an assumption may not hold in prac-
tice. One first reason for this, discussed in [18], is cross-talk: the current flowing
in one wire of a bus may significantly influence the one of adjacent wires, both in
terms of delays and power consumption. More generally, the coupling between
any locally connected parts of an integrated circuit, like our S-box implementa-
tion, has an important impact in this respect. For example, the leakage traces
of different chips in Figure 9 are significantly different. The main cause of these
different shapes are glitches, i.e. random transitions at the gates inputs/outputs
that are caused by signals arriving at different times. As these arrival times de-
pend on all the paths of the signals before they reach a gate, glitches are a clear
expression of leakage dependencies between different parts of a circuit.

In general, it is difficult to quantify the exact impact of each type of coupling
that can occur within an integrated circuit. This is because only the combination
of all these effects can be observed in a measurement trace. However, it is possible

2 For each experiment, we additionally checked that simulated noise did not introduce
any significant deviation from the real measurement noise, as in Figure 2.



to show that simple models that are linear combinations of the S-box input or
output bits are not able to capture the full complexity of the leakage samples in
our traces. The stochastic models introduced by Schindler et al. [27] are a very
useful tool to quantify this claim. The principle of stochastic models is to perform
a regression in order to find the function L̂t =

∑
αi ·gi(x) that will best approach

the actual leakage function, with [g1(x), g2(x), . . . , gN (x)] representing the basis
used in the regression. If one uses the S-box output bits as base vectors, the
approximated function will be linear. And by adding quadratic, cubic, . . . terms
in the basis, it is possible to refine the approximation. Eventually, a stochastic
model using all possible terms of degree equal to or smaller than 8 has enough
degrees of freedom to assign an independent value to the leakage of each S-box
input, i.e. it is strictly equivalent to the exhaustive construction of 256 templates.

Note that, when evaluating the information leakage with a stochastic model
using small bases, the model used by the adversary P̂rmodel[L|x] may not any-
more correspond to the actual leakage pdf P̂rchip[L|x]. This happens, e.g. if the
stochastic model is not able to capture all the leakage dependencies in the traces.

The left part of Figure 3 plots the information leakage corresponding to differ-
ent stochastic models. For low noise standard deviations and low degree bases, it
shows that the stochastic models are not accurate, as the perceived information
decreases below zero. The figure also exhibits that the impact of adding terms
in the basis varies with the time samples. Again, the intuitive meaning of the
non linear terms in the basis is not easy to give, as they relate to various phys-
ical effects. As illustrated in the right part of Figure 3, a combinatorial circuit
connects several gates and any intermediate value may be used as an additional
base vector. But our experiments at least show that, for any time sample in
the traces, even late ones that are mainly influenced by the S-box output bits,
various features cannot be predicted by a linear combination of those bits.

Fig. 3. Left: mutual information between an input X and corresponding leakage L, in
function of the noise, obtained using stochastic models with bases containing functions
of various degrees of the S-box output bits (1.2V supply). Right: gates combination.



These observations have important consequences for formal works in the area
of physically observable cryptography. First, they contradict the assumption in
[5], where the security proof requires that different gates generate independent
leakage. In general, it is unlikely that this condition can hold for locally connected
parts of a circuit. The integration of coupling effects (e.g. leakage functions with
quadratic, cubic, . . . terms) in such analyzes is an interesting scope for further
research. More theoretically, our experiments suggest that the assumption in [4,
19] may not always hold either. These works assume independence at a higher
abstraction level, e.g. by requiring that two PRGs lead to independent leakage.
In view of the importance of coupling in deep submicron technologies, fulfilling
this requirement would at least require to ensure a sufficient (time or space)
distance between their executions, so that local dependencies become negligible.

2.3 Realistic scenario: profiling and attacking different chips

As inter-chip variability increases in recent CMOS technologies, the worst-case
analysis in the previous section no longer corresponds to an actual attack sce-
nario. This is because the templates profiled for one implementation may not
be optimal anymore for attacking other implementations. As a consequence, we
now concentrate on a more realistic situation, where one profiles and attacks
different chips. The success rate of the side-channel key recovery will then es-
sentially depend on the extent to which the templates built during profiling are
sufficiently close to the actual power consumption of the target implementation.
Again, this can be measured with the perceived information. But in order to
build sound leakage models P̂rmodel[L|x], we first need to improve the profiling,
in order to take the process variability into account. For this purpose, a natural
approach is to extend the template profiling as illustrated in Figure 4. That
is, classical template attacks estimate the conditional leakage distributions with
P̂rmodel[L|x] = N (l|µ̂x,c,N , σ̂

2
x,c,N ), where µ̂x,c,N (resp. σ̂2

x,c,N ) denotes the sample
mean (resp. variance) of the leakage variable, for a fixed plaintext x, chip c and
a random noise N . In order to take the inter-chip variability into account, one

Fig. 4. Example of a template built from 1 chip (top) and 4 chips (bottom).



can simply accumulate these sample means and variances, considering multiple
chips rather than a single one. This means using the following estimates:

P̂rmodel[L|x] = N (l|µ̂x,C,N , σ̂
2
x,C,N ),

where σ̂2
x,C,N = σ̂2

x,c,N + σ̂2
x,C,0 when (additive) simulated noise is used for N .

The left part of figure 5 shows the information leakage of different templates,
obtained using different sets of profiling chips. It shows that variability has im-
portant consequences for the application of side-channel attacks. First, we see
that profiling a large set of chips allows avoiding situations in which the per-
ceived entropy is negative (see, e.g. the “10 vs. 1” curve). But this is at the cost
of a reduced information leakage: by inferring the inter-chip variability directly
into the templates, one also obtains models that are less accurate for any single
chip. This can be observed by the significantly higher information curve of the
worst case scenario (denoted as “1 vs. 1 (same chip)”). Second, the right part
of the figure illustrates the effect of the selected time sample on the attack: the
information decreases both when the input variability decreases (time sample 75
to 110) and when the chip variability increases (time sample 75 to 300).

Fig. 5. Left: information theoretic analysis for various sets of learning chips (1.2V
supply). Right: information theoretic analysis for various time samples (0.5V supply).

It is essential to properly understand the meaning of these different curves.
What they essentially show is that modeling inter-chip variability with a straight-
forward extension of template attacks (as we did in this section) leads to signifi-
cant information losses. Hence, it underlines the need to develop new side-channel
distinguishers, that can better cope with such situations. One possible solution,
discussed in the next section, is to use non-profiled distinguishers and to perform
model estimation “on-the-fly”, while performing the attacks.

Another important remark is that these experiments do not reduce the rele-
vance of the worst case curve in security evaluations: perfectly profiling one chip
and evaluating the perceived information in this context (i.e. the mutual infor-
mation), remains useful to determine the security limits of an implementation.
From a cryptographic designer point of view, the good news is that technology
scaling will generally make this limit harder to reach for actual adversaries.



2.4 Model soundness versus DPA soundness

The previous section suggests that inter-chip variability makes the building of
accurate templates a challenging task. There exist cases in which the adversary’s
leakage model is not even sound, in the sense that it leads to negative perceived
information values. Following [28], a leakage model is sound if the asymptotic
success rate of a Bayesian adversary exploiting it in order to recover a secret
target value equals one. In our present case study, the model is sound if all
inputs x can be recovered thanks to their corresponding leakage.

This definition of soundness is very strict: a single inversion in the templates
(e.g. µ̂xi,C,N < µ̂xj ,C,N when µxi,C,N > µxj ,C,N ) is enough for a model not to be
sound. However, it is of particular interest for the application of algebraic side-
channel attacks [23, 24, 26], in which errors in the leakage information usually
makes the solving of the system of equations containing the secret key impossible.
As a consequence, we now discuss solutions to obtain sound leakage models.

For this purpose, we use the notion of key class. That is, in the previous
section, we always considered leakage models built for all the 256 possible S-
box inputs x. However, it is also possible to build less informative models, by
considering a lower number of templates. Formally, we define a function δ : X →
S that maps each input value x to a key class s = δ(x). The number of key
classes can be equal (in the case of an identity mapping δ(x) = x) or lower than
the number of possible inputs: |S| ≤ |X |. The mutual information between a
mapping variable S = δ(X) and an input variable X, is defined as:

I(X;S) = H[S]−H[S|X] = H[S].

Given a key class variable S, it is then possible to check the soundness of the
corresponding leakage model with the conditional entropy matrix defined in [28]:

Ĥs,s∗ = −
∑
l∈L

P̂rchip[l|s] log2 P̂rmodel[s
∗|l],

=


ĥ1,1 ĥ1,2 ... ĥ1,|S|
ĥ2,2 ĥ2,2 ... ĥ2,|S|
... ... ... ...

ĥ|S|,1 ĥ|S|,2 ... ĥ|S|,|S|

 ,

where s and s∗ respectively denote the correct key class and a key class candi-
date. The model is sound if and only if the minimum value for each line of the
matrix is the diagonal value ĥi,i. Having defined these tools, we can study the
tradeoff between the informativeness of a key class I(X;S) and the soundness
of the corresponding leakage model P̂rmodel[L|s]. For this purpose, we considered
consecutive key classes with |S| = 256, 255, . . . 1, with the mapping function δ
grouping close leakages, and the templates built from a set of 5 chips, as illus-
trated in the left part of Figure 6. The right part of the figure then shows how



Fig. 6. Left: building more robust / less informative models. Right: maximum infor-
mation provided by a model in function of the classification error rate (1.2V supply).

the informativeness and soundness of these successive key classes evolves with
the error probability of the template attack that we define as:

Prerror = Pr[argmax
s∗

P̂rmodel[s
∗|l] 6= s]. (4)

It illustrates that it is possible to build a key class with 6 possible values for
which the model P̂rmodel[L|s] is sound. Such a key class could be directly used in
an algebraic side-channel attack. We note, however, that the same comment as
in the previous section applies. Namely, classical template attacks are probably
not the best solution to build sound and informative leakage models.

To conclude this section, we finally mention that model soundness is a nec-
essary condition for successful algebraic side-channel attacks. But for standard
DPA types of attacks [15], it is only a sufficient condition. That is, standard
DPA attacks will generally exploit the leakage corresponding to the execution of
the S-box for several plaintexts, i.e. S(x⊕ k), in order to recover the secret key
k. Hence, from an information theoretic point of view, the relevant metric is no
more P̂I(X;L) but P̂I(K;X,L), with conditional entropy matrix:

Ĥk,k∗ = −
∑
x∈X

Pr[x]
∑
l∈L

P̂rchip[l|x, k] log2 P̂rmodel[k
∗|l, x],

where k and k∗ denote the correct key and a key candidate. As each line of
the matrix is computed by averaging over 256 possible inputs x, even some
misclassified traces do not always prevent a successful DPA. In other words,
DPA-soundness, corresponding to a matrix Ĥk,k∗ with minimum diagonal, is
a much weaker requirement than model soundness. In our setting, even the
identity mapping δ(x) = x gave rise to successful DPA attacks using templates.
The analysis of this scenario will be investigated in the next section.



3 Security analysis

The previous section provided an extensive evaluation of the information leakage
of an AES S-box implemented in a 65-nanometer CMOS technology. It shows
that inter-chip variability makes the straightforward application of profiled at-
tacks (such as using templates, or stochastic models) less efficient than when
variability can be neglected. In this section, we perform the second part of the
evaluation framework in [28], i.e. security analysis. For this purpose, we analyze
the success rates of various distinguishers in a standard DPA setting, in order
to determine the impact of variability in this context. Namely, we performed:

– Template attacks, using exactly the profiling described in Section 2.3.
– Correlation attacks [2] with a Hamming weight leakage model3.
– Mutual Information Analysis (MIA) attacks, using a Hamming weight leak-

age model and an identity leakage model (corresponding to 7 out of 8 S-box
output bits). Our implementation of MIA followed the guidelines given in
[8]: we used histogram-based pdf estimation, with 32 (linearly-spaced) bins,
which allowed us to deal with the weak accuracy of our leakage models.

– Non-profiled attacks using stochastic models generated “on-the-fly” , with
the linear bases described in Section 2.2. That is, we used exactly the profiling
techniques proposed in [27], but this profiling was done for each key candidate
separately. The attack then proceeds as carefully described in [12]: each time
the adversary gains a new trace, he repeats the profiling and tests his key
dependent models directly on the set of available traces.

Fig. 7. Left: Probability of soundness for a template attack. Right: Expected number
of messages to reach a 0.9 success rate for a sound template attack (1.2V supply).

Figure 7 illustrates the effect of variability on template attacks, for a 1.2V
supply voltage. Its left part shows that attacks may not work at all, when the
profiling done for a chip is used to attack a significantly different chip. But as

3 This is equivalent to a Hamming distance model, corresponding to the transitions
between a pre-charge of the S-box input to zero and its evaluation on input x.



discussed in the previous section, one reaches DPA-soundness easily, by profiling
on more than 4 chips. The right part of the figure shows that the number of traces
to attack is low once a sound model is available, and lower bounded by the worst
case curve corresponding to a perfect model. Moving to 0.5V supply would lead
to similar conclusions, with both curves slightly translated on the right.

Fig. 8. Left: success rates of a various non profiled attacks averaged over 20 chips.
Right: success rates of the correlation attacks for each of the 20 chips (1.2V supply).

Figure 8 shows the results of various non-profiled attacks. Its right part con-
tains results of a correlation attack against each of our 20 chips. It underlines
that the Hamming weight leakage model only allows to reach a 100% success rate
for a few of these chips. Hence, it cannot be used to evaluate the security of a
cryptographic implementation in this case. The left part of the figure illustrates
the average success rates (over the 20 chips) of our different non-profiled attacks.
It suggests that attacks performing “on-the-fly” model estimation, such as using
stochastic models or MIA, are a promising approach for dealing with variability.

4 Conclusions and open problems

Process variability in nanoscale devices raises new challenges for the theory and
practice of side-channel attacks. Experiments performed on 20 prototype chips
show that former DPA attacks are not perfectly adequate to evaluate the security
of an implementation in this context. In the absence of variability, adversaries
could first profile (or assume) a leakage model, and then exploit this model in
an online attack. With the increase of process variability, it becomes necessary
to infer the correct leakage model for each target implementation. The deep in-
tegration of recent microelectronic circuits also increases the coupling between
their interconnected parts, with consequences on the “independent leakage” as-
sumption that is frequently required in formal works on leakage resilience. Hence,
developing new techniques to deal with this new attacks scenario is essential, in
order to avoid overestimating the security levels of actual products.
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A Exemplary leakage traces

Fig. 9. Illustrative noise-free leakage traces corresponding to 4 inputs and 10 chips.
Left: 1.2V supply, Right: 0.5V supply / Up: simulations, Down: actual measurements.

B Preprocessing of the traces

Side-channel attacks exploit information about the internal state of a computing
device that is leaked, e.g. through power consumption traces. These power traces
also contain some noise, either due to unpredictable physical effects, or to other
forms of perturbations such as measurement artifacts (outliers) or parasitic sig-
nals (interference). The influence of this second source of noise can sometimes
be reduced by processing the power traces prior to the actual attack.

The top curve in the left part of Figure 10 illustrates the autocorrelation of
a power trace. It measures the linear correlation between the trace and its shift
by τ time samples. The autocorrelation function shows two mixed components:
regularly spaced peaks (around τ = 1000, 2000, etc.) and some periodic sinu-
soidal component with period close to 2000. Roughly speaking, the correlation



peaks which correspond to successive clock cycles of the chip, correspond to the
useful signal. By contrast, the periodic sinusoidal component is a parasitic that
can be filtered. An example of filtered trace is given in the bottom curve of the
left part of Figure 10. And the impact of this preprocessing on the distribution of
the residual noise (estimated with histograms) is in the right part of the figure.
It clearly illustrates the gain in terms of noise standard deviation.

Fig. 10. Left: autocorrelation of the signal before (top) and after (bottom) preprocess-
ing of the traces. Right: residual noise distribution with/without preprocessing.

C PCA and LDA eigenvectors

Fig. 11. PCA (middle) and LDA (below) applied to simulated traces at 1.2V (above).


