
A First Step Towards Automatic Application of
Power Analysis Countermeasures

Ali Galip Bayrak1, Francesco Regazzoni2,3, Philip Brisk4,
François-Xavier Standaert3, Paolo Ienne1

1École Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences, CH-1015 Lausanne, Switzerland.

{aligalip.bayrak,paolo.ienne}@epfl.ch
2ALaRI - University of Lugano, CH-6900 Lugano, Switzerland.

regazzoni@alari.ch
3UCL Crypto Group, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.

fstandae@uclouvain.be
4University of California, Riverside, 339 Engineering II, CA 92521 Riverside, USA.

philip@cs.ucr.edu

ABSTRACT

In cryptography, side channel attacks, such as power anal-
ysis, attempt to uncover secret information from the physi-
cal implementation of cryptosystems rather than exploiting
weaknesses in the cryptographic algorithms themselves. The
design and implementation of physically secure cryptosys-
tems is a challenge for both hardware and software design-
ers. Measuring and evaluating the security of a system is
manual and empirical, which is costly and time consuming;
this work demonstrates that it is possible to automate these
processes. We introduce a systematic methodology for auto-
matic application of software countermeasures and demon-
strate its effectiveness on an AES software implementation
running on an 8-bit AVR microcontroller. The framework
identifies the most vulnerable instructions of the implemen-
tation to power analysis attacks, and then transforms the
software using a chosen countermeasure to protect the vul-
nerable instructions. Lastly, it evaluates the security of the
system.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and embedded
systems, smartcards

General Terms

Design, Security

Keywords

Power Analysis Attacks, Software Countermeasure, AVR,
Automation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2011, June 5-10, 2011, San Diego, California, USA.
Copyright 2011 ACM ACM 978-1-4503-0636-2/11/06 ...$10.00.

1. INTRODUCTION
Historically, attacks on cryptosystems have focused on

exploiting mathematical weaknesses in cryptographic algo-
rithms; side channel attacks, in contrast, attack the physical
implementation of the system. Information such as power
consumption [9], timing [8], or electromagnetic radiation [5]
can reveal information that is otherwise secret. Both hard-
ware and software countermeasures to these attacks have
been introduced in prior literature; however, these counter-
measures are generally inserted manually by Ph.D.-level ex-
perts who have a strong personal understanding of the cryp-
tographic algorithm that they are protecting, along with its
implementation. Even so, it is difficult to determine pre-
cisely which operations within a cryptographic implementa-
tion will actually leak side channel information.

This work makes a first attempt to automate the process
of applying a given countermeasure to some implementa-
tion of a cryptographic algorithm. It does so by a sequence
of steps indicated in Fig. 1: Firstly, our method takes the
unprotected software implementation of a cryptographic al-
gorithm and determines the instructions that leak the most
information through a specific side channel (e.g., power con-
sumption), irrespective of any specific attack which could be
conceived (Information Leakage Analysis). Then, it identi-
fies the exact targets of the code transformation which will
make the code more robust to attacks (Transformation Tar-
get Identification). Such analysis is somehow related to the
complexity of the countermeasures; in simple cases, as the
one we have selected for our first experiment in this direc-
tion, each sensitive instruction or cluster of instructions is
selected to apply code transformations to it; in more ar-
ticulated case, a more rich data- and control-flow analysis
may be necessary. Lastly, the code transformations imple-
menting the countermeasure are applied to the identified
targets (Code Transformation) and the result is protected
code. How these steps are performed is explained in detail
in the rest of the paper.

Our method successfully identifies sensitive instructions in
a software implementation of AES running on an 8-bit AVR
microcontroller. We automatically protect this software im-
plementation using an application of random precharging [19].

Transformation
Target

Identification

Code
Transformation

sbci r21,0xfd

ld r25,Y

movw r18,r26

subi r18,0x4f

Input Software

Implementation
Sensitive Parts

sbci r21,0xfd

lds r23,705

mov r25,r23

ld r25,Y

lds r23,705

mov r18,r23

mov r19,r23

movw r18,r26

subi r18,0x4f

Targets for Protection
Example (A)

Protected Implementation
Example (A)

Targets for Protection
Example (B) Protected Implementation

Example (B)

sbci r21,0xfd

ld r25,Y

movw r18,r26

subi r18,0x4f

sbci r21,0xfd

ld r25,Y

movw r18,r26

subi r18,0x4f

Information
Leakage
Analysis

Figure 1: Given a software, the target hardware platform, and a countermeasure, the sensitive parts of the

program are identified and protected automatically using the given countermeasure.

In order to verify the effectiveness of this technique, we
show its impact on information leakage analysis. Addition-
ally, we performed a preliminary security analysis using a
correlation-based differential power analysis (DPA). We col-
lected 20,000 power traces from the unprotected and from
the automatically protected implementations of the AES
software for this purpose.

2. INFORMATION LEAKAGE ANALYSIS
The purpose of the analysis of the information leakage

is to identify the instructions which correspond to sensitive
operations. The inputs of this process are the unprotected
code and the hardware platform on which the protected code
will run, and the output is a set of annotations of the orig-
inal code which indicate how much critical information is
leaked by the hardware system during the execution of each
instruction. Fig. 2 illustrates this: each execution cycle of
each instruction is annotated with an average value repre-
senting the relative information leakage. Instructions with
high information leakage during their execution (above 0.4
in the example) are marked as sensitive operations and will
be processed in the next step to identify the targets sections
of the code to transform and protect.

This analysis consists of three main steps: (i) We start
by compiling the given software implementation of a cryp-
tographic algorithm for the target processor. Then, the ex-
ecutable is run on the processor with different (plaintext,
key) pairs; power traces during the encryption process of
each pair are recorded. During the measurement, we sample
the power traces at high frequency (4GSa/s in our setup),
and then compress the samples to get single power value
for each clock cycle. For the compression, there are three
popular methods which are shown to be very effective: max-
imum extraction [10], integration [10] and principal compo-
nent analysis [1]. We used the first method. (ii) The second
step is to analyze the traces using the metric that we intro-

duce in Section 2.1; this determines the sensitivity of each
clock cycle; sensitivity correlates strongly with information
leakage, so a high sensitivity reading for a given clock cy-
cle suggests that the instruction that executes during that
cycle requires some protection. (iii) The last step is to as-
sociate each clock cycle with an assembly instruction from
the dynamic execution trace. For multi-cycle instructions,
we chose the most sensitive cycle as the instruction’s sensi-
tivity.

2.1 Metric for Sensitivity Evaluation
Our metric for sensitivity evaluation is based on an infor-

mation theoretic metric originally proposed by Standaert et
al. [18], which evaluates the resistance of a cryptographic im-
plementation against the strongest possible power analysis
attack. The metric establishes a relationship—i.e., mutual
information—between the secret key that is used for encryp-
tion and the power traces. We limit the number of dimen-
sions considered by the metric to 1, which makes it possible
to simplify the formula. Since we are interested in observing
the effects of single instructions, a 1-dimensional application
of the metric is appropriate; higher dimensionality would be
required in order to analyze second order effects.

Let K, X, and L respectively be random variables rep-
resenting the secret key, plaintext, and information leak-
age from the physical device which is obtained via power
trace analysis; and k, x and l be realizations of K, X, and
L from an execution of the algorithm. Leakage L is nor-
mally distributed with mean µ and standard deviation σ—
i.e., N (µk,x, σ2). The probability density function of L is

Nl(µk,x, σ
2) =

1√
2πσ2

· e−
(l−µk,x)2

2σ2 , (1)

where µk,x represents the noiseless leakage value when (k, x)
pair is executed and σ represents the constant noise stan-
dard deviation caused by the measurement. The conditional

846 847 848 849 850 851 852 853 854
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
b

c
i
r2

1
,0

x
fd

ld
 r

2
5
,Y

m
o

v
w

 r
1
8
,r

2
6

s
u

b
i
r1

8
,0

x
4
f

s
b

c
i
r1

9
,0

x
fd

m
o

v
w

 r
2
8
,r

1
8

ld
 r

3
0
,Y

S
e
n

s
it

iv
it

y
(M

u
tu

a
l
in

fo
rm

a
ti

o
n

)

Clock cycle

Instruction − time mapping of unprotected implementation

Figure 2: The Information leakage analysis asso-

ciates an indicator of information leakage to each

execution cycle, which in turn corresponds to a spe-

cific instruction being executed. The result is a set

of sensitive instructions which will be object of the

countermeasure in the subsequent stages of the au-

tomated protection process.

entropy of K given L is

H [K|L] = −
X

k

p(k) ·
X

x

p(x) ·
Z

p(l|k, x) · log2p(k|l, x)dl,

(2)
which can be rewritten as

H [K|L] = −
X

k

p(k) ·
X

x

˘

p(x)·
Z

∞

−∞

Nl(µk,x, σ
2) · log2

Nl(µk,x, σ2)
P

k∗ Nl(µk∗,x, σ2)
dl

¯

ff

. (3)

The mutual information, which quantifies the sensitivity, is
I [K; L] = H [K] − H [K|L].

If the length of the plaintext and key are short, then it
is possible to exhaustively enumerate all possible (X, K)
pairs to compute the metric exactly; however, this is not
generally the case: for example, AES-128 has 128-bit keys
and plaintexts, which would require 2256 executions. To re-
duce the number of traces, we can exploit some properties of
large deviation theory [22]: the result obtained from a ran-
domly chosen subset of keys and plaintexts will be close to
the result obtained from exhaustive enumeration with high
probability, as long as the cardinality of the subset is suffi-
ciently large. Our experiments demonstrate that the result
converges for AES-128 when we consider 16 plaintexts in
conjunction with 16 keys. We tried with different numbers
of pairs and we observed that the instructions that can be
classified as sensitive do not change after 8x8 pairs; so we
used 16x16 pairs to ensure the fidelity of the results.

Note that the traditional approach for information theo-
retic evaluation is to apply a divide-and-conquer strategy, so
that the key bytes can be exhaustively enumerated in order
to obtain a precise estimation of the metric. In our present
setting, we apply a slightly different approach as we do not
aim to compare different countermeasures, nor to evaluate
them precisely, but only to detect all the sensitive opera-

tions in an efficient manner. This approach could easily be
combined with a divide-and-conquer one, where one would
carefully estimate the amount of information leaked for var-
ious intermediate computations in the implementation.

3. TRANSFORMATION TARGET

IDENTIFICATION
Depending on the chosen countermeasure, one needs to

identify precisely where to insert a countermeasure in the
vicinity of an instruction that has been identified as sensi-
tive. For instance, if one were to use masking, it is neces-
sary to define at what point in the code a variable should
be masked (reasonably, before the first sensitive instruction)
and at what point unmasked (after the last sensitive one).
Additionally, semantic equivalence has to be preserved along
every possible execution path between these two points, and
this requires, for example, the identification of nonlinearities
in the computations (such as S-box). The purpose of the
transformation target identification process is to inform the
compiler of where to insert the countermeasure.

For use in this study, we have selected a simple protection
which, although effective, requires the simplest form of code
transformation (the replacement of one or few instructions
with one or few others—a peephole optimization). This im-
plies that the target identification is practically trivial in
our case: we will simply pass to the code protection engine
the instructions whose sensitivity is above a chosen thresh-
old (as in the example A of Fig. 1). We believe that target
identification for more complex countermeasures is going to
be definitely possible, as it is based on well known concepts
of data- and control-flow analysis. This is graphically sug-
gested for example B in Fig. 1 and we leave an investigation
of this possibility open for future work.

4. CODE PROTECTION
The last step is to modify the code in the places identified

previously. In this work, we have used random precharging
method for protection, which requires only local code modifi-
cations. This mechanism randomly precharges the datapath
before and after a critical instruction using random operand
values. The software realization of the idea has been dis-
cussed by Tillich et al. [19]. Unlike Tillich et al., we do not
need to use random charging after the critical instructions,
since the critical instructions have already been identified.

In most of today’s embedded systems, power consumption
is dynamic and proportional to the Hamming distance be-
tween two consecutive cycles’ data flowing through a wire,
gate, or functional unit. If we randomize the values on the
critical components, such as memory, register or data bus,
the power consumption will also be randomized, since the
Hamming distance between a uniformly distributed random
variable and a fixed value has uniformly random behavior.
Although the overall idea is the same, the operations per-
formed for randomly charging the components might differ
for each device, depending on the power consumption char-
acteristics. Random precharging will not work for devices
where the power consumption is proportional to the Ham-
ming weight of the processed data, such as devices that use
a precharged bus. Obviously, the countermeasure selected
must be appropriate for the target device.

To apply random precharging properly, we ran some ini-
tial experiments to discern an appropriate way to implement

100 200 300 400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
e
n

s
it

iv
it

y
(M

u
tu

a
l

in
fo

rm
a
ti

o
n

)

Clock cycle

ARK SB SR MC

Sensitivity values for unprotected implementation

Figure 3: Sensitivity values of each clock cycle dur-

ing the execution of one round of unprotected AES

implementation. Higher sensitivity means less re-

sistivity against power analysis attacks and needs

protection. Fig. 2 is a detail of this same graph an-

notated with the instructions being executed.

the countermeasure on the given device—an 8-bit AVR mi-
crocontroller in our case. This needs to be done only once to
understand the kind of transformations required, and is in-
dependent from the cryptographic algorithm. For instance,
if the instruction lds r24, 0xfae is critical and needs to be
protected, we replace it with the following three instructions:

lds r23, rnd ;rnd holds a random value

mov r24, r23 ;r23 is assumed to be unused

lds r24, 0xfae

The exact implementation of this peephole transformation
is beyond the scope of this paper and is characteristic of the
chosen countermeasure. As discussed by Tillich et al., ran-
dom precharging does not guarantee perfect protection, and
this limit is common for software countermeasures; however,
it does increase the effort required to mount a successful at-
tack. In the experimental section, we have provided the
security analysis of the method.

5. EXPERIMENTAL RESULTS
We applied our automatic protection mechanism to an

AES software implementation running on an 8-bit AVR mi-
crocontroller. The AES algorithm was implemented in C
using AVR libraries and compiled with a gcc cross compiler
using the optimization parameter -Os to get the unprotected
assembly code. We used a straightforward implementation
of AES without optimizations or security improvements, in
order to see the effectiveness of our methodology on a naive
implementation; however, the same method could be used
to protect any other implementation as well. The code was
assembled and loaded into the microcontroller and run with
different randomly generated (plaintext,key) pairs to obtain
power traces, which were then used to identify the sensi-
tive instructions, as described in Section 2. Then, the nec-
essary modifications on the unprotected assembly code are
performed as described in Section 4, in order to increase the
security. Finally, the security of both versions of the code is
evaluated using different metrics.

In order to determine the noise standard deviation, σ,
which is needed by the metric described in Section 2.1, we
ran a small portion of the code that is independent of the key
and plaintext to obtain power traces; the standard deviation
was computed for each cycle, and we set σ to the maximum
among all cycles.

500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
e
n

s
it

iv
it

y
(M

u
tu

a
l

in
fo

rm
a
ti

o
n

)

Clock cycle

ARK SB SR MC

Sensitivity values for protected implementation

Figure 4: Sensitivity values of each clock cycle dur-

ing the execution of one round of protected AES

implementation. Sensitivity values decreased com-

pared to the unprotected implementation, which

means an increased security.

5.1 Measurement Setup
Our setup is comprised of a PC, microcontroller board,

oscilloscope, and differential probe. We designed the micro-
controller board, which includes an 8-bit AVR ATMEGA-8
microcontroller along with necessary supplementary compo-
nents to facilitate power measurements. The internal RC
oscillator of the microcontroller provides a 1 MHz clock.
The microcontroller sets the trigger signal at the begin-
ning of each run to align the traces. Voltage is measured
across a 10Ω resistor that is connected in series to the mi-
crocontroller Vcc pin by the differential probe connected to
the oscilloscope. The PC communicates with the microcon-
troller to execute code and to analyze the data collected by
the oscilloscope. The components are calibrated to decrease
electronic noise as much as possible; to eliminate random
effects of noise, all measurements are repeated 25 times and
averaged.

5.2 Identification of Sensitive Instructions
Fig. 3 shows the sensitivity values obtained for each clock

cycle for the given implementation. The horizontal axis
(time) is decomposed into the four main operations of the
AES algorithm: AddRoundKey (ARK), SubBytes (SB),
ShiftRows (SR), and MixColumns (MC). All four opera-
tions contain repeated patterns corresponding to informa-
tion leaked from processing of different bytes of the state,
which is a 4×4 array of bytes internal to the AES algorithm.

A non linear transformation, such as an SB, is a suitable
attack point because an adversary can easily make a hypoth-
esis on its output bits. Furthermore, the non-linear structure
of the S-boxes highlights the differences between the correct
and the wrong guesses and increases the possibility of a suc-
cessful attack [14]. For microcontrollers, data transfers such
as loads and stores are known to leak the most information,
compared to, say, arithmetic and logical instructions. [10].
In Fig. 3, we can see that SR has the highest sensitivity
peaks because it permutes the bytes of the state derived
from the SB operation via load and store instructions, but
does not modify the values of the bytes with any arithmetic
or logical operations. Similarly, we can see high peaks during
MC operation, at the clock cycles where the results derived
from SB operation are loaded. In general, we observe that
load operations tend to be more sensitive when compared to
store operations, in our particular hardware. This does not
explain the underlying mechanisms of the leakage, simply
that it occurs. This would be a concern if our focus was
hardware protection, but not for software.

1620 1622 1624 1626 1628 1630 1632 1634 1636 1638
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
b

c
i
r2

1
,0

x
fd

ld
s
 r

2
3
,7

0
5

m
o

v
 r

2
5
,r

2
3

ld
 r

2
5
,Y

ld
s
 r

2
3
,7

0
5

m
o

v
 r

1
8
,r

2
3

m
o

v
 r

1
9
,r

2
3

m
o

v
w

 r
1
8
,r

2
6

s
u

b
i
r1

8
,0

x
4
f

s
b

c
i
r1

9
,0

x
fd

m
o

v
w

 r
2
8
,r

1
8

ld
s
 r

2
3
,7

0
5

m
o

v
 r

3
0
,r

2
3

ld
 r

3
0
,Y

S
e
n

s
it

iv
it

y
(M

u
tu

a
l
in

fo
rm

a
ti

o
n

)

Clock cycle

Instruction − time mapping of protected implementation

Figure 5: The same part of the program of Fig. 2 af-

ter automatic modification. The sensitivity has been

reduced significantly and the effect of such reduction

is assessed quantitatively in Section 5.4

We used simulavr tool together with avr-gdb, in order
to simulate an execution of our code. After establishing a
correspondence between sensitive clock cycles and the as-
sembly instructions, we are ready to protect the sensitive
instructions. We observed that after protection, the sensi-
tivity of a critical instruction falls to just beneath 0.4, so
we chose this value as our sensitivity threshold; in fact, 0.4
is the lower limit of protection that can be achieved using
this particular software countermeasure. Instructions having
greater sensitivity values are thus considered to be sensitive
and are protected in the next step. Fig. 2 shows a detail
of the data of Fig. 3 annotated with the instruction being
executed; those in red bold typeface are sensitive.

5.3 Protecting the Sensitive Instructions
Assembly instructions that have been identified as sensi-

tive are protected with random precharging, as described in
Section 2. As we can see from Fig. 4, the sensitivity val-
ues decrease below the sensitivity threshold, most notably
in SR and MC operations. Fig. 5 shows a detail of the data
as in Fig. 2. As discussed before, random precharging does
not completely prevent power analysis attacks; instead, it
increases considerably the effort required to mount a suc-
cessful attack. Again, this decrease in the sensitivity values
is not equivalent to the information theoretic analysis pro-
posed by Standaert et al. [18], hence does not provide any
indication about the exact security of the countermeasures
implemented. It is only used to confirm that the automated
tools that we exploited are indeed able to reduce the leakage
for all the sensitive operations.

5.4 Security Analysis
In order to evaluate the impact of our automatic appli-

cation of countermeasures, the next step is to consider spe-
cific operations in our target implementation and to try tak-
ing advantage of their leakage with a standard divide-and-
conquer approach. As an illustration, we used the output of
the SB operations for this purpose. A complete evaluation
would now require to analyze both the mutual information
between the secret key byte involved in this S-box compu-

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

C
o

r
r
e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

Clock cycle

Correlation coefficient for unprotected implementation

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

C
o

r
r
e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

Clock cycle

Correlation coefficient for protected implementation

Figure 6: Correlation coefficient for unprotected

and protected implementations. Higher correlation

means decreased security. The number of needed

power traces for a successful attack increases over

76 times for the protected implementation.

Table 1: Number of clock cycles during the execu-

tion of three different implementations.

Implementation # of clock cycles

Unprotected 1190
Protect sensitive 2700
Protect everything 4212

tation and the actual leakage, and the security against (i.e.
success rates of) different actual distinguishers. Because of
space constraints, we defer the complete application of this
framework for an extended version of this work. Note that
this part of the security evaluation tightly depends on the
choice of a countermeasure that is not central in this work
anyway (any countermeasure could be selected, with dif-
ferent tradeoffs between security and performance). Still,
and as a first step, we applied a simple correlation power
analysis using the Hamming weight leakage model, as done
by Mangard et al. [10]. That is, was used 20,000 differ-
ent power traces and computed Pearson’s correlation coef-
ficient, for each of the implementations. Figure 6 provides
another heuristic confirmation that the proposed methodol-
ogy is sound. A manual application of random pre-charging
would lead to essentially the same results.

5.5 Performance Analysis
Table 1 shows the number of clock cycles during the exe-

cution of three different implementations: the baseline (un-
protected) implementation, the implementation generated
by our framework, and a third implementation in which all
instructions are protected regardless of their sensitivities.
Protecting an instruction entails the insertion of additional
instructions, so the third implementation is an upper bound
on the runtime overhead that could result from an overzeal-
ous application of the countermeasure used in this study.
Protecting only sensitive instructions yields a 36% runtime
improvement compared to protecting all instructions.

6. RELATED WORK
Side channel attacks, particularly Differential Power Anal-

ysis (DPA), represent a serious threat, since they do not re-
quire specific knowledge of the inner workings of the target
device in order to be successful. The research community has
aggressively developed countermeasures that protect against
DPA. The countermeasures that have been proposed thus
far, which are helpful, yet imperfect, include algorithmic

techniques [4, 17], architectural enhancements [7, 11, 12],
and hardware-related methods [13, 20, 16]; they all help to
increase the efforts required to mount a successful attack.

At present, it is generally considered the designer’s re-
sponsibility to ensure resistance of a system against DPA.
The vast majority of prior work has addressed the problem
from the perspective of hardware design and VLSI/CAD.
For example, Tiri et al. [21] proposed a complete design flow
for synthesis and place-and-route of the WDDL logic style,
which is believed to be more resistant to DPA than tradi-
tional CMOS. Guilley et al. [6] introduced a back-end du-
plication to automate the place-and-route of DPA-resistant
logic style. Regazzoni et al. [15], presented a fully auto-
mated design flow for realizing and simulating an embedded
processor with instruction set extensions realized in MCML.
A handful of projects have looked at DPA from perspectives
other than hardware design, including the ongoing Euro-
pean project CACE [3]. Barbosa et al. [2] have analyzed
the effects of a compiler on elliptic curve cryptography. Our
work is similar to these papers, as we study a commercially
available off-the-shelf processor without the possibility of in-
serting our own hardware-based countermeasures.

Most of the papers above try to identify the parts of a
cryptographic algorithm that are most sensitive to power
analysis attacks and protect these parts. Although this
information is crucial to ensure correct implementation of
countermeasures, the designer must perform these analyses
manually and then decline a specific countermeasure for the
program at hand. We believe to be the first ones in imple-
menting the whole process automatically, albeit for a simple,
well-behaved countermeasure.

7. CONCLUSIONS
This work has described an approach to automatically

protect software implementations of cryptographic algorithm
from power analysis attacks. The first step identifies the
critical instructions of a cryptographic algorithm, in terms
of how much side channel information they leak via power
traces. The second step is to apply a software counter-
measure to the critical instructions; our experiments used
random precharging, but in principle, any fine-granularity
software countermeasure could have been used. Lastly, we
applied different tools for security analysis and provided pre-
cise performance estimates, for an implementation on an 8-
bit AVR microcontroller. As a scope for further research,
we aim to better investigate this tradeoff between security
and performance. That is, we could analyze the impact of
various types of countermeasures in function of these two
criteria. For this purpose, it would be necessary to extend
our correlation coefficient-based security analysis towards a
more comprehensive one, considering both worst-case tem-
plate attacks (i.e. an information theoretic analysis) and
different heuristic distinguishers.

8. REFERENCES
[1] C. Archambeau, E. Peeters, F.-X. Standaert and

J.-J. Quisquater. Template attacks in principal subspaces.
In Cryptographic Hardware and Embedded Systems –CHES
2006, pages 1–14, 2006.

[2] M. Barbosa, A. Moss, and D. Page. Constructive and
destructive use of compilers in elliptic curve cryptography.
Journal of Cryptology, 22(2):259–281, April 2009.

[3] Computer Aided Cryptography Engineering (CACE
European Project). http://www.cace-project.eu.

[4] J.-S. Coron and L. Goubin. On Boolean and arithmetic
masking against differential power analysis. In
Cryptographic Hardware and Embedded Systems –CHES
2000, pages 231–237, 2000.

[5] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic
analysis: Concrete results. In Cryptographic Hardware and
Embedded Systems –CHES 2001, pages 251–261, May 2001.

[6] S. Guilley, P. Hoogvorst, Y. Mathieu, and R. Pacalet. The
“backend duplication” method. In Cryptographic Hardware
and Embedded Systems –CHES 2005, pages 383–397,
August 2005.

[7] J. Irwin, D. Page, and N. P. Smart. Instruction stream
mutation for non-deterministic processors. In 13th
International Conference on Application-Specific Systems,
Architectures and Processors, pages 286–295, July 2002.

[8] P. Kocher. Timing attacks on implementations of
Diffie-Hellman, RSA, DSS and other systems. In Advances
in Cryptology –CRYPTO ’96, pages 104–113, September
1996.

[9] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis.
In Advances in Cryptology –CRYPTO ’99, pages 398–412,
August 1999.

[10] S. Mangard, E. Oswald, and T. Popp. Power Analysis
Attacks - Revealing the Secrets of Smart Cards. Springer,
2007.

[11] D. May, H. L. Muller, and N. P. Smart. Non-deterministic
processors. In Information Security and Privacy - ACISP
’01, pages 115–129, July 2001.

[12] D. May, H. L. Muller, and N. P. Smart. Random register
renaming to foil DPA. In Cryptographic Hardware and
Embedded Systems –CHES 2001, pages 28–38, May 2001.

[13] S. W. Moore, R. D. Mullins, P. A. Cunningham, R. J.
Anderson, and G. S. Taylor. Improving smart card security
using self-timed circuits. In 8th International Symposium
on Advanced Research in Asynchronous Circuits and
Systems - ASYNC 2002, pages 211–218, April 2002.

[14] E. Prouff. DPA Attacks and S-Boxes. In Fast Software
Encryption –FSE 2005, pages 424–441, 2005.

[15] F. Regazzoni, A. Cevrero, F.-X. Standaert, S. Badel,
T. Kluter, P. Brisk, Y. Leblebici, and P. Ienne. A design
flow and evaluation framework for DPA-resistant
instruction set extensions. In Cryptographic Hardware and
Embedded Systems –CHES 2009, pages 205–219,
September 2009.

[16] F. Regazzoni, T. Eisenbarth, A. Poschmann, J. Großschädl,
F. K. Gürkaynak, M. Macchetti, Z. T. Deniz, L. Pozzi,
C. Paar, Y. Leblebici, and P. Ienne. Evaluating resistance
of MCML technology to power analysis attacks using a
simulation-based methodology. Transactions on
Computational Science, 5430:230–243, 2009.

[17] A. G. Rostovtsev and O. V. Shemyakina. AES side channel
attack protection using random isomorphisms. Cryptology
e-Print Archive, March 2005.

[18] F.-X. Standaert, T. G. Malkin, and M. Yung. A unified
framework for the analysis of side-channel key recovery
attacks. In Advances in Cryptology –EUROCRYPT ’09,
pages 443–461, April 2009.

[19] S. Tillich and J. Großschädl. Power analysis resistant AES
implementation with instruction set extensions. In
Cryptographic Hardware and Embedded Systems –CHES
2007, pages 303–319, 2007.

[20] K. Tiri, M. Akmal, and I. Verbauwhede. A dynamic and
differential CMOS logic with signal independent power
consumption to withstand differential power analysis on
smart cards. In 28th European Solid-State Circuits
Conference, pages 403–406, September 2002.

[21] K. Tiri and I. Verbauwhede. A digital design flow for
secure integrated circuits. IEEE Transactions on CAD of
Integrated Circuits and Systems, 25(7):1197–1208, 2006.

[22] S. S. R. Varadhan. Large deviations. Annals of Probability,
36(2):397–419, 2008.

