
FPGA Implementation of a Statistical
Saturation Attack against PRESENT

Stéphanie Kerckhof, Baudoin Collard, François-Xavier Standaert

UCL Crypto Group, Université catholique de Louvain.
Place du Levant 3, B-1348, Louvain-la-Neuve, Belgium.

e-mails:stephanie.kerckhof; baudoin.collard; fstandae@uclouvain.be

Abstract. Statistical attacks against block ciphers usually exploit “char-
acteristics”. A characteristic essentially defines a relation between (parts
of) the block cipher’s inputs, outputs and intermediate values. Intu-
itively, a good characteristic is one for which the relation between the
cipher’s inputs and outputs exhibit a significant deviation from the uni-
form distribution. Due to its intensive computational complexity, the
search for good characteristics generally relies on heuristics, e.g. based
on a branch-and-bound algorithm. But the use of such heuristics directly
raises the question whether these good characteristics remain good, as
the number of cipher rounds increases. This question relates to the so-
called hull effect, expressing the idea that in a practically secure cipher,
only the combination of many characteristics can explain the statistical
deviations exploited in cryptanalysis. As characteristics are also a central
tool when estimating the data complexities of statistical attacks, deter-
mining whether a hull effect can be observed is essential in the security
evaluation of a block cipher. Unfortunately, this is again a computation-
ally intensive task, as it ideally requires to sample over the full input
space. In this paper, we consequently discuss the interest of hardware
assistance, in order to improve the understanding of statistical attacks
against block ciphers. More precisely, we propose an FPGA design that
allowed us to evaluate a statistical saturation attack against the block
cipher PRESENT, for overall complexities up to 250. Compared to pre-
vious software solutions, it corresponds to an increase of the maximum
data complexity experimentally reached up to now by a factor 214. Our
experiments confirm that up to 19 rounds of PRESENT can be broken
with 248 plaintext/ciphertext pairs. They also serve as a basis for dis-
cussing the statistical hull effect and suggest that 31-round PRESENT
should be safe against such statistical attacks.

1 Introduction

Since its publication in 2007, PRESENT has been one of the most carefully
investigated low cost ciphers. Several papers have analyzed its security against
different types of cryptanalysis. Starting in 2008, Wang presented a differential
cryptanalysis of reduced round PRESENT, allowing one to attack 16 rounds
(out of 31), with 264 chosen plaintexts [23] (these results have been recently re-
discussed in an IACR ePrint report [15]). The same year, Z’aba et al. presented a



bit-pattern integral attack that was able to break up to 7 rounds of PRESENT-
128 (the 128-bit key version of the cipher), with 224 chosen plaintexts, and a
significant time complexity of 2100 partial decryptions [25]. This paper extended
previous works on square (aka integral, aka saturation) attacks to ciphers with
bit-oriented transforms. Different additional results appeared in 2009. In [19],
Nakahara et al. analyzed the security of PRESENT-128 against attacks based
on the linear hull effect, claiming to break 25-rounds of PRESENT-128 with the
full codebook (again with a time complexity of approximately 2100). They also
experimented a purely algebraic attack able to break 5 rounds of PRESENT
with 5 known plaintexts (and a few minutes of offline computations). In parallel,
Ohkuma presented another linear attack against 24 rounds of PRESENT (80-bit
version), with the full codebook, taking advantage of the linear hull effect for a
certain class of weak keys [21]. Related-key cryptanalysis of PRESENT was ad-
ditionally investigated in [22], for 17 rounds. And in a paper from FSE 2009 [1],
dedicated to the combination of algebraic and differential cryptanalysis, Albrecht
and Cid proposed various attacks against reduced versions of PRESENT. For
example, they described a 16-round attack with complexities similar to the ones
in [23]. More recently, Cho proposed a multidimensional linear attack, claiming
to recover the 80-bit secret key of PRESENT for 25 rounds, with the full code-
book [5]. Different empirical evaluations of reduced-round variants (with 6,7,8,9
rounds) were proposed in the paper, allowing to put forward the interest of the
multidimensional approach. One can also mention the experiments of Blondeau
and Gérard [3], used to confirm their theoretical analysis of differential crypt-
analysis. Finally, the statistical saturation attack we experiment in this work has
been introduced in [6] and then extended to multiple trails at ACNS 2010 [7].

As usual in cryptanalysis, one limitation shared by most of these previous
works is that their estimated data complexity strongly relies on assumptions
that may not be fulfilled, as the number of rounds in a block cipher increases.
For example, security evaluations against linear cryptanalyses usually exploit
Matsui’s piling up lemma [18], that simply multiplies the linear biases of single-
round linear approximations. A straightforward application of the lemma leads
to the counter-intuition that increasing the number of rounds in a cipher may
arbitrarily increase its security against linear attacks (as the bias can then be
arbitrarily close to zero). In fact, as first explained by Nyberg in 1994 [20], correct
estimations of the data complexity in a block cipher require to consider linear
hulls (i.e. sets of linear characteristics sharing the same input/output masks).
Yet, in practice, the number of characteristics in a hull increases exponentially
with the number of rounds, and is rapidly impossible to exploit. Hence, present
cipher designs, such as the AES Rijndael, are frequently based on the paradigm
of practical security. That is, one assumes that a cipher is secure against linear
cryptanalysis if the data complexity determined from the best characteristic in
a cipher is prohibitive [14]. And excepted for the investigations of Keliher et al.
in [12, 13], and the investigations of small scale variants of block ciphers, in [8],
few experimental works tackled the problem of determining how many block
cipher rounds are actually needed for the linear hull effect to be significant.

2



In other words, most experiments against real world ciphers consider number
of rounds for which the statistical deviations can still be explained by one (or
few) characteristics. Such a limitation is typically exemplified by the statistical
saturation attack against PRESENT, that can be viewed as a particular case
of the multidimensional cryptanalysis described in [11] (see the recent work of
Leander [17]). Hence, it is natural to question the validity of the data complexity
estimations for large number of rounds, as given in [6].

In this paper, we consequently provide two contributions to the cryptanal-
ysis of the block cipher PRESENT. First, starting from the observation that
experimental validation is still a useful step for increasing our understanding of
statistical attacks, we investigate the computational power that can be gained
by outsourcing parts of the computations to a dedicated hardware platform. For
this purpose, we developed a hardware-software co-design, based on an FPGA
board, allowing us to accelerate the most consuming tasks of a statistical satura-
tion attack against PRESENT, while keeping the communication rate between
the different parts of the system reasonable. We note that the design is generic,
and could easily be modified to investigate similar attacks, e.g. linear or differ-
ential. Our results include an investigation of different implementation tradeoffs
and technologies, together with one fully functional prototype, based on a Xilinx
Virtex-5 device. Second, we used our co-design to launch large-scale experimental
attacks against 15,16,17 and 18-round PRESENT, with data complexities of up
to 248 per attack. These experiments confirmed the previous analyzes from [6],
i.e. a data complexity increase by a factor of 23 per round, for up to 18 rounds
of PRESENT (up to 19 rounds, if a two-round partial decryption is used). By
providing a careful investigation of the statistical distributions exploited in the
attack, and their key-dependent behavior, our results also allow discussing the
apparition of a statistical hull effect in PRESENT on a concrete basis. They
suggest that 31 rounds of PRESENT should be safe against statistical attacks.
We finally conclude the paper by proposing directions for better selecting the
number of rounds in a block cipher.

2 Background

2.1 The block cipher PRESENT

PRESENT is an ultra-lightweight block cipher designed for hardware constrained
environments, such as RFID tags and sensor networks. It is a 31-round SPN
(Substitution Permutation Network), and it was introduced by Bogdanov et al.
at CHES 2007 [4]. The block length is 64 bits and the possible key lengths are 80
and 128 bits. Each of the 31 rounds is composed of a XOR operation, a nonlinear
substitution layer and a permutation layer, operating as follows. First, the 64-bit
input of the round is XORed with the round subkey. The result of that operation
is then passed through the substitution layer, which consists of 16 identical 4x4
S-boxes applied in parallel. Finally, the permutation layer performs a bit-by-bit
permutation.

3



2.2 Statistical Saturation Attacks

The statistical saturation attack, originally described in [6], is based on a weak-
ness in the diffusion layer of PRESENT. This weakness can be observed in
Figure 1, where it is shown that only 8 out of the 16 output bits of S-boxes 5, 6,
9 and 10 are directed to other S-boxes. Hence, by fixing certain plaintext bits,
we are able to observe a non-uniform distribution at the output of the round.
Since the input and output bits of the bold trail highlighted in the figure are
the same, it is then possible to iterate this weakness for several rounds. In order
to turn this weakness into a key recovery attack, one finally assumes that the
distribution at the output of the trail remains significantly different from uni-
form as the number of rounds increases. Hence, by doing a partial decryption
through the last encryption round, one can select the key candidate that max-
imizes the Euclidean distance between the experimental distributions obtained
for all the key candidates and the uniform one. If the attack is successful, the
key maximizing this distance is the correct one. In the following of the paper, we

Fig. 1. Weakness of the diffusion property of the PRESENT

focus ourselves on two variations of the basic attack, denoted as Extension 1 and
Extension 2 in [6]. First, we enlarged the fixed part of the plaintext to 32 bits,
in order to increase the non-uniformness of the target distributions. Second, we
performed the analysis multiple times, using different values for the 32-bit fixed
part of the plaintexts. In other words, we carried out many sub-attacks obtained
from sets of 232 varying plaintexts, for different fixed input patterns. Then, for
each key candidate, we re-combined the results, by simply taking the sum of the
uniform vs. measured distances given by these different 32-bit sub-attacks.

3 Hardware Architecture

As described in the previous section, a statistical saturation attack is composed
of three phases. First, a large number of plaintexts are encrypted and the cor-
responding ciphertexts are collected. Then, a distribution is computed from the

4



resulting ciphertexts. Finally, given this experimental distribution, a partial de-
cryption is processed and the resulting R−1-round distributions are tested w.r.t.
uniform. From these three phases, the encryption part is the most time consum-
ing one. On the contrary, the time needed by the partial decryption is not really
critical. Therefore, we first decided to implement the PRESENT encryption in
hardware, letting the partial decryption task to a software. Next, regarding the
distribution generation, we also chose to implement it in hardware, for data rate
reasons. As will be clear in section 3.2, our implementation of PRESENT has
a huge output bitrate. Implementing the distribution generation in hardware
allows us to reduce the output bitrate of our FPGA by a factor of 224 (see sec-
tion 3.3). Note finally that we did not implement the key schedule in hardware.
The keys are generated by a software and provided to the FPGA by an Ethernet
port. In the remaining of the section, we will first describe the FPGA technology
we used for our implementations. We will then detail the architecture choices we
made for the PRESENT encryption and distribution generation. We conclude
the section with an overview of the complete system and a description of its
performances.

3.1 Hardware Technology

The technologies we used to implement our architecture are Virtex-5 [24] and
Virtex-6 FPGAs from Xilinx. The main logic resources of those FPGAs are the
CLBs (Configurable Logic Bloc). Those CLBs are divided into two slices which
are themselves composed of four logic-function generators (or look-up tables),
four storage elements, wide-function multiplexers, and carry logic. These ele-
ments are used by all slices to provide logic, arithmetic, and ROM functions.
In addition to this, some slices support two additional functions: storing data
using distributed RAM and shifting data with 32-bit registers. Slices that sup-
port these additional functions are called SLICEM; others are called SLICEL.
Figure 2 illustrates a SLICEL. The function generators in Virtex-5 FPGAs are
implemented as 6-input look-up tables (LUTs). Each LUT possess 6 indepen-
dent inputs (A1 to A6) and 2 independent outputs (O5 and O6). It can either
implement any arbitrarily defined six-input Boolean function (only O6 is used
in this case) or two arbitrarily defined five-input Boolean functions, as long as
these two functions share common inputs (both O5 and O6 are used in this
case). Signals from the function generators can exit the slice (through A, B, C,
D output for O6 or AMUX, BMUX, CMUX, DMUX output for O5), enter the
XOR dedicated gate from an O6 output, enter the carry-logic chain from an O5
output, enter the

select line of the carry-logic multiplexer from O6 output, feed the D input
of the storage element, or go to F7 multiplexers from O6 output. Slices also
contain three multiplexers (F7 and F8) that can be used to combine up to four
function generators and provide any function of seven or eight inputs in a slice.
The storage elements in a slice can be configured as either edge-triggered D-
type flip-flops or level-sensitive latches. The D input can be driven directly by a
LUT output or by the AX, BX, CX, or DX slice inputs bypassing the function

5



Fig. 2. Diagram of a SLICEL

generators. The slices composing a Virtex-6 FPGA are quite similar to those of a
Virtex-5. The major difference comes from the possibility to register both LUTs
outputs (O5 and O6) in separate flip-flops. Finally, in addition to distributed
RAM, Virtex-5 and -6 FPGAs include a large number of 36 Kb block RAMs.
Each 36 Kb block RAM contains two independently controlled 18 Kb RAMs.

3.2 PRESENT Architecture

PRESENT was originally designed to be extremely low cost and easy to imple-
ment in hardware. Therefore, the resources needed by a round of PRESENT
are quite limited. In this section we will focus on the XOR and S-boxes layers,
the permutation layer resulting only in routing which is not resource consuming
from an FPGA implementation point of view. In order to determine the re-
sources needed by a round of PRESENT, we first detail the resources consumed
by the smallest relevant part of a round. This corresponds to one S-box and its
corresponding XORed inputs, as depicted in left part of Figure 3.

As previously described, Virtex-5 FPGAs are based on slices composed of
four 6-bit LUTs and four 1-bit registers. Therefore, an optimal way to reduce the
LUTs used is to regroup all the logical operations in order to obtain a minimum
number of blocks that take 6-bit inputs and give 1-bit outputs. Furthermore, in
order to be speed efficient, it is also recommended to limit the number of logic

6



Fig. 3. Diagram of an S-box with its XORed inputs (left), equivalent LUT represen-
tation (right)

levels between two registers (a logic level corresponding to one LUT). The first
possible way of implementing the combination of one S-box and four XOR oper-
ations in hardware is to limit our architecture to only one level of logic between
two registers. Here, one LUT is needed per XOR operation and four LUTs are
needed for the S-box (see right part of Figure 3). Even if, this architecture is the
most speed efficient, it is also the most resource consuming.

Fig. 4. VIRTEX-5 (left) and VIRTEX-6 (right) LUT representations of a round part

A second possibility is to combine some of the XOR operations with the S-
box, as illustrated in left part of Figure 4. The number of LUTs needed by this
architecture is decreased by two in comparison with the previous one. However,
it is now composed of two levels of logic between two consecutive registers.

Finally, Virtex-6 FPGAs have two times more registers than Virtex-5 ones.
This gives the possibility to store the two outputs of each LUT. Therefore, to
reduce the number of used LUTs, we now need to regroup all logic to either
form blocks that takes 6-bit input and 1-bit output, or blocks sharing 5 identical
input bits, with 2-bit output. As illustrated in the right part of Figure 4, the
number of needed LUTs to implement an S-box and four bitwise XOR is now
only four. We indeed combined two XOR operations in a single LUT and the
S-box in two of them.

7



To implement a round of PRESENT, the previous blocks must be repeated
16 times. 64-bit key registers are also needed for each round. In order to be
speed efficient, we decided to fully unroll PRESENT, which allows us to encrypt
a new plaintext every clock cycle. The implementation results for a 32-round
PRESENT are given in Table 1, where V5 - 64 stages is the Virtex-5 design
having two levels of registers per round, and V5 - 32 stages is the design having
only one such level. These results confirm that the Virtex-5 architecture with 32
stages needs almost 2000 registers less than than the one with 64 stages. The
maximum frequency also decreases from one architecture to the other. However,
the frequency that can be reached by the 32-stages architecture is more than
sufficient as we will later choose to run our complete design at a frequency of 125
MHz (see section 3.4), corresponding to a bitrate of 7,5 Gbps. Results obtained
with Virtex-6 FPGAs are even better than those obtained with Virtex-5. The
number of slices needed with Virtex-6 is almost half the one needed by the V5 -
64 stages architecture, while the maximum frequency is the same. However, the
board on which the experimental tests were performed is a Virtex-5 one and we
have therefore decided to use the V5 - 32 stages architecture for our design.

V5 - 64 stages V5 - 32 stages V6 - 64 stages

LUTs 4077 3086 3130
Registers 6177 4162 6177

Slices 1561 1420 819

Max. Frequency 588 MHz 470 MHz 588 MHz
Bitrate 35 Gbps 28 Gbps 35 Gbps

Table 1. Implementation characteristics of 32-rounds PRESENT

Note finally that the bitrate reachable with these different architectures is
anyway far too high to be output by our FPGA interfaces. As previously said,
a solution to avoid this interface issue is to compute the distributions on board
in order to reduce the data rates, as it will be explained in next section.

3.3 Distribution Generator Architecture

The statistical saturation attack exploits the experimental distributions of a few
chosen ciphertext bits. In particular, the trail in Figure 1 involves 16 output bits
of which the distribution has to be partially decrypted. In order to decrease the
size of the distributions to store in our FPGA implementation, our experiments
are based on the analysis of two 8-bit distributions, corresponding to the output
of S-boxes 5 and 9 for the first one, and S-boxes 6 and 10 for the second one. This
is possible because the partial decryption needed in the key recovery phase can
be applied independently for the two sets of S-boxes. A distribution generator
was then used to compute those two distributions. Half of this generator is
illustrated in Figure 5. It is composed of Virtex RAM blocks of 18 kilobits,
an adder, different multiplexers, some additional logic, and essentially works as
follows.

8



Fig. 5. Hardware architecture of half of the distribution generator

We first need 256 counters to compute each distribution and, because we
chose to implement Extension 1 of the statistical saturation attack, the distribu-
tion has to be computed on 232 ciphertexts, which corresponds to at most 32 bits
per counter. Those counters are saved in a Virtex RAM block and are loaded by
using the 8-bit ciphertext value as a RAM address. The loaded counter is then
incremented and written back in memory. This whole process takes three clock
cycles to be performed from the moment a ciphertext is available as RAM ad-
dress to the moment the counter has been updated in RAM. However, to have a
continuous flow between PRESENT and the distribution computation, we must
be able to update the counters every clock cycle, which means that if at least
two out of three consecutive ciphertexts values are identical, the counter in RAM
must still be updated properly. For this reason, we added some logic before the
adder, which gives us the opportunity to choose between the RAM output and
the last incremented counter.

The 256 32-bit counters are exported once every 232 clock cycles which corre-
sponds to a decrease of PRESENT’s output bitrate by a factor of 224. To avoid a
loss of time during the exportation, we allocated two RAM blocks per distribu-
tion so that the second RAM is used for the computation of a new distribution
while the first is being emptied and reset.

The implementation results for the complete distribution generators (com-
posed of two of the illustrated parts) are given in Table 2. The maximum reach-
able frequency with the distribution generator is lower than the one we had with
PRESENT. This is due to a higher number of logic levels between two registers.
Indeed, we wanted to limit as much as possible the number of cycles needed to
update a counter resulting in longer critical paths.

3.4 Complete Design

The complete design has been implemented on a Xilinx XUPV5 board from
which we used the Ethernet port to communicate with a computer. It is illus-
trated in Figure 6 and works as follows. First, controls such as round key values,

9



Virtex-5 Virtex-6

LUTs 519 651
Registers 332 269

Slices 205 193
RAM (18 kb) 4 4

Max. Frequency 232 MHz 205 MHz

Table 2. Implementation characteristics of two 8-bit distribution computation

destination MAC address and plaintext initial values are sent to the FPGA board
through the Ethernet port. The received Ethernet packets are processed by the
Ethernet Media Access Controller (MAC) and sent to an 8-bit width FIFO. A
packet parser parallelizes the FIFO’s output and sends the relevant information
to the statistical saturation attack (SSA) block. The SSA block encrypts a large
number of plaintexts and computes the corresponding distributions. The distri-
butions are then sent to the packet builder in order to form Ethernet packets
which are finally sent on an Ethernet link.

Fig. 6. Block diagram of the complete design

The FPGA available on our board is a Virtex-5 LX110T FPGA. The number
of PRESENT blocks those FPGAs can contain depends on the number of rounds
implemented per PRESENT block. For our experimentations, we used 18-round
PRESENT and, in order to obtain more experimental results, we computed the
distributions for four different rounds simultaneously. With this configuration,

10



we would be able to fit up to 16 PRESENT blocks, and the 64 corresponding dis-
tribution generators in a single FPGA. However, due to timing problems during
the synthesis of such a huge design, we decided to limit the final implementation
to 8 PRESENT blocks and 32 distribution generators. We also decided to have
an identical clock frequency for the complete design, which is the same as the one
needed by the Ethernet MAC: 125 MHz. At that frequency, the complete design
encrypts more than 229 plaintexts per second and outputs 64 distributions (8
per PRESENT block) every 34 seconds.

4 Experimental Results

In this section, we take advantage of the previously described design in order
to launch large scale experimental attacks against PRESENT. The goal of these
experiments is twofold. First, we aim to challenge the theoretical data complex-
ity estimations of the statistical saturation attack given in [6]. In particular,
under some independence assumptions detailed in this previous work, it is ex-
pected that the data complexity of an attack exploiting the bold trail in Figure 1
increases by a factor of 23 per round. But as for linear cryptanalysis, this es-
timation should become incorrect as soon as a statistical hull effect starts to
have a significant impact on the distributions of the ciphertexts. Next, we note
that although the use of an FPGA board allows us to gain a significant com-
puting power compared to previous software-based experiments, our results are
still limited. Namely, we performed 5 attacks against 5 independent keys, and
each of these attacks was bounded to a data complexity of 248 (which is still
far away from the codebook). These limitations are naturally justified by time
constraints: each of our 5 attacks corresponds to 3.5 days of computations. It
implies a limited sampling, both in terms of keys and plaintexts, that has to be
considered in the interpretation of the results. Hence, we aim to take advantage
of our experiments to discuss the hull effect in general, and whether it can be
detected by experimentally sampling only a part of the plaintext space.

In the following, for each of the two 8-bit distributions exploited in the attack,
we consider two main evaluation metrics. We first estimate the gain1. That is, if
an attack is used to recover an n-bit key and is expected to return the correct key
after having checked on the average M candidates, then the gain of the attack,
expressed in bits, is defined as:

λ = − log2

2 ·M − 1

2n
(1)

We provide gains averaged over the 5 experimented keys, for the two 8-bit dis-
tributions taken independently (in the left part of Figure 7), and their average
(in the right part of the figure). Next, we provide estimates for the Euclidean

1 Alternative metrics, such as the advantage used by Gérard and Tillich in [10], would
allow deriving additional insights on the performances of the attacks, but are harder
to estimate in view of our very limited sampling.

11



distance between the partially decrypted output distributions and the uniform
distributions. Distances are computed for the correct key candidate, and aver-
aged for all the wrong key candidates, hence allowing to observe if the correct
key candidate can be easily distinguished. These distances are again averaged
over our 5 experiments. We also plot these distances for each tested key inde-
pendently, in order to exhibit how their variance compares to the previous mean
values. This second metric, computed for data complexities from 232 to 248, and
number of rounds from 15 to 18, is given in Figures 8, 9, 10, 11. We now detail
some important observations that can be derived from these plots.

Fig. 7. Gains of the attacks.

First, regarding the gain pictures (Figure 7), one can see that the 23 multi-
plicative factor is quite accurately observed for up to 17 rounds. We also remark
that the two investigated distributions do not behave exactly in the same way
(this will be confirmed by the distance to uniform metric). As for the 18th round,
a non-negligible gain can still be observed, but more sampling data would be
required to analyze this setup with more confidence.

Regarding the distance to uniform metric, we again analyzed the combination
of the two distributions (in Figure 8) and these distributions taken separately
(see Figures 10 and 11, in appendix). The general observation, also confirming
theoretical predictions, is that the distance between the average behavior of the
correct key candidate and the average behavior of the wrong key candidates de-
creases with the number of rounds. In addition, we plotted this metric for the five
correct key candidates of our experiments on the figures, for data complexities
between 242 and 248 (with blues crosses for distribution D1 and red circles for
distribution D2). One can notice that the scattering of these good key candidates
becomes more important compared to the distance between the average curves
on the plot, as the number of rounds increases. In other words, the problem of

12



Fig. 8. Distance to uniform of the two distributions.

recovering the keys by distinguishing these distributions becomes more difficult.
For round 18, this scattering even encompasses the two average curves2.

Eventually, the central question behind these experiments is to know whether
these plots indicate the apparition of a non-negligible hull effect for round 18. In
other words, is the closeness between the correct and wrong key candidates due
to such an effect or is it caused by a too small data complexity (the theoretical
data complexity for attacking 18 rounds is 251)? For answering this question, it
is most interesting to observe the zoomed pictures of Figure 9. On the left part
of the figure (i.e. for round 16), one can clearly see that the distributions D1
and D2 can be distinguished for all key candidates - even before the theoretical
data complexity of 245 is reached (this can be further observed from Figures 10
and 11 in appendix). By contrast, in the right part of the figure (i.e. for round
17), there is a significant overlap between the two distributions - in particular

2 The average value of the distance to uniform metric is close to 232, independent of the
number of rounds. This directly relates to the use of Extension 2 in our experiments.
That is, we evaluate the combination of several sub-attacks of data complexity 232,
where the combination of sub-attacks is performed by a (heuristic) sum of the average
distances.

13



Fig. 9. Distance to uniform of the two distributions (zoom).

when the theoretical data complexity of 248 is not reached. Referring to the
small scale experiments in [8], this plot consequently suggests the apparition of
a statistical hull effect, with distributions that become harder to distinguish and
key dependent. We note again that these observations have to be taken with
care, as they are based on visual inspection and not backed up with sufficient
statistical confidence (again, due to the computationally intensive nature of our
experiments).

5 Conclusion & Open Problems

This paper first highlights the interest of recent reconfigurable devices (FPGAs)
in the context of statistical cryptanalysis. Such hardware assistance allowed us
increasing the experimental data complexities reached in previous experiments3,
by a factor of 214. These important gains are due to the very convenient setting of
most statistical cryptanalyses, in which one needs huge computing powers, with
limited connectivity between the hardware and software parts of the system. In
this respect, the design proposed in this paper could possibly be improved to
gain some (small) additional factors. Focusing our design on only one or two
target rounds (rather than four in the present case) and moving to the more re-
cent Virtex-6 technology are typical examples of such improvements. Exploiting
FPGA-based platforms such as COPACOBANA [16] would also be an interest-
ing direction of research. Note that although statistical attacks are well suited
for FPGA implementations, other computing platforms could lead to similar
speedups. As discussed, e.g. in [2] for the case of elliptic curves, cryptanalysis
applications generally benefit from hybrid infrastructures (e.g. based on FPGAs,
but also CPUs, GPUs, ASICs, . . . ). As far as PRESENT is concerned, optimized
implementations on these devices and cost comparisons with the FPGA design
we propose in this paper would be another interesting scope for further research.

3 The experiments presented in [6] reached a data complexity of 235.6.

14



Next, our experiments confirm the previous theoretical predictions for sta-
tistical saturation attacks in [6, 7], for up to 18 rounds (and 19 rounds if a
two-round partial decryption process was considered). They also provide hints
that a statistical hull effect is appearing after 18 rounds of PRESENT. Confirm-
ing this effect with more confidence would require analyzing a few more rounds
and was not possible within our current computational limits. In particular,
extending our experiments for 18 and 19 rounds, and complexities up to 251,
would be interesting. Nevertheless, the evaluations in this paper suggest that
assumptions required to theoretically estimate the data complexity of statistical
saturation attacks may not be respected beyond 24 rounds. Since the statistical
hull effect we consider in this paper is close to the linear hull effect considered
in linear cryptanalysis, one should probably question the validity of statistical
attacks targeting more than 24-round PRESENT in general. Note that this ques-
tion also holds for differential cryptanalysis, although the combination of several
characteristics always increases the differential probability, because of the key
dependencies implied by such a combination.

Finally, in most current block ciphers, the number of rounds needed to resist
statistical cryptanalyses is determined based on Knudsen’s practical security
paradigm. But a more accurate technique would be to determine exactly when
the statistical hull effects start to be effective in a cipher. In general, solving this
problem is highly computationally intensive. The results in this paper lead to the
interesting question whether the hull effect could be detected by sampling less
than the full plaintext/key space. In case of a positive answer, a very interesting
scope for further research would be to quantify this observation with robust
statistics, in order to derive a new criteria for selecting the number of rounds
in block ciphers. Analyzing small-scale block ciphers that can be exhaustively
evaluated against different attacks could be a first useful step in this direction.

Acknowledgements. Stéphanie Kerckhof is a PhD student funded by a
FRIA grant, Belgium. François-Xavier Standaert is a research associate of the
Belgian fund for scientific research (FNRS-F.R.S). Work funded in part by the
Belgian State’s IAP program P6/26 BCRYPT.

References

1. Martin Albrecht and Carlos Cid. Algebraic techniques in differential cryptanalysis.
In Dunkelman [9], pages 193–208.

2. Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner, Joppe W. Bos,
Hsieh-Chung Chen, Chen-Mou Cheng, Gauthier van Damme, Giacomo de Meule-
naer, Luis Julian Dominguez Perez, Junfeng Fan, Tim Güneysu, Frank Gurkaynak,
Thorsten Kleinjung, Tanja Lange, Nele Mentens, Ruben Niederhagen, Christof
Paar, Francesco Regazzoni, Peter Schwabe, Leif Uhsadel, Anthony Van Herrewege,
and Bo-Yin Yang. Breaking ecc2k-130. Cryptology ePrint Archive, Report
2009/541, 2009. http://eprint.iacr.org/.

3. Céline Blondeau and Benôıt Gérard. Links between theoretical and effective dif-
ferential probabilities: Experiments on present. Cryptology ePrint Archive, Report
2010/261, 2010. http://eprint.iacr.org/.

15



4. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. Present:
An ultra-lightweight block cipher. In Pascal Paillier and Ingrid Verbauwhede, ed-
itors, CHES, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007.

5. Joo Yeon Cho. Linear cryptanalysis of reduced-round present. In Josef Pieprzyk,
editor, CT-RSA, volume 5985 of Lecture Notes in Computer Science, pages 302–
317. Springer, 2010.

6. Baudoin Collard and François-Xavier Standaert. A statistical saturation attack
against the block cipher present. In Marc Fischlin, editor, CT-RSA, volume 5473
of Lecture Notes in Computer Science, pages 195–210. Springer, 2009.

7. Baudoin Collard and François-Xavier Standaert. Multi-trail statistical saturation
attacks. In Jianying Zhou and Moti Yung, editors, ACNS, volume 6123 of Lecture
Notes in Computer Science, pages 123–138, 2010.

8. Baudoin Collard and François-Xavier Standaert. Experimenting linear cryptanal-
ysis. to appear in Advanced Linear Cryptanalysis (book chapter), IOS Press, 2011.

9. Orr Dunkelman, editor. Fast Software Encryption, 16th International Workshop,
FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected Papers, vol-
ume 5665 of Lecture Notes in Computer Science. Springer, 2009.

10. Benôıt Gérard and Jean-Pierre Tillich. On linear cryptanalysis with many linear
approximations. In Matthew G. Parker, editor, IMA Int. Conf., volume 5921 of
Lecture Notes in Computer Science, pages 112–132. Springer, 2009.

11. Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. Multidimensional extension of
matsui’s algorithm 2. In Dunkelman [9], pages 209–227.

12. Liam Keliher, Henk Meijer, and Stafford E. Tavares. Improving the upper bound
on the maximum average linear hull probability for rijndael. In Serge Vaudenay and
Amr M. Youssef, editors, Selected Areas in Cryptography, volume 2259 of Lecture
Notes in Computer Science, pages 112–128. Springer, 2001.

13. Liam Keliher, Henk Meijer, and Stafford E. Tavares. New method for upper bound-
ing the maximum average linear hull probability for spns. In Birgit Pfitzmann,
editor, EUROCRYPT, volume 2045 of Lecture Notes in Computer Science, pages
420–436. Springer, 2001.

14. Lars R. Knudsen. Practically secure feistel cyphers. In Ross J. Anderson, editor,
FSE, volume 809 of Lecture Notes in Computer Science, pages 211–221. Springer,
1993.

15. Manoj Kumar, Pratibha Yadav, and Meena Kumari. Flaws in differential crypt-
analysis of reduced round present. Cryptology ePrint Archive, Report 2010/407,
2010. http://eprint.iacr.org/.

16. Sandeep Kumar, Christof Paar, Jan Pelzl, Gerd Pfeiffer, and Manfred Schimmler.
Breaking ciphers with copacobana - a cost-optimized parallel code breaker. In
Louis Goubin and Mitsuru Matsui, editors, CHES, volume 4249 of Lecture Notes
in Computer Science, pages 101–118. Springer, 2006.

17. Gregor Leander. On linear hulls, statistical saturation attacks, present and a crypt-
analysis of puffin. to appear in the proceedings of Eurocrypt 2011.

18. Mitsuru Matsui. Linear cryptoanalysis method for des cipher. In EUROCRYPT,
pages 386–397, 1993.

19. Jorge Nakahara, Pouyan Sepehrdad, Bingsheng Zhang, and Meiqin Wang. Linear
(hull) and algebraic cryptanalysis of the block cipher present. In Juan A. Garay,
Atsuko Miyaji, and Akira Otsuka, editors, CANS, volume 5888 of Lecture Notes
in Computer Science, pages 58–75. Springer, 2009.

16



20. Kaisa Nyberg. Linear approximation of block ciphers. In EUROCRYPT, pages
439–444, 1994.

21. Kenji Ohkuma. Weak keys of reduced-round present for linear cryptanalysis. In
Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Se-
lected Areas in Cryptography, volume 5867 of Lecture Notes in Computer Science,
pages 249–265. Springer, 2009.

22. Onur Özen, Kerem Varici, Cihangir Tezcan, and Çelebi Kocair. Lightweight block
ciphers revisited: Cryptanalysis of reduced round present and hight. In Colin Boyd
and Juan Manuel González Nieto, editors, ACISP, volume 5594 of Lecture Notes
in Computer Science, pages 90–107. Springer, 2009.

23. Meiqin Wang. Differential cryptanalysis of reduced-round present. In Serge Vaude-
nay, editor, AFRICACRYPT, volume 5023 of Lecture Notes in Computer Science,
pages 40–49. Springer, 2008.

24. Xilinx. Virtex-5 FPGA User Guide, 2010. http://www.xilinx.com/support/

documentation/user_guides/ug190.pdf.
25. Muhammad Reza Z’aba, H̊avard Raddum, Matthew Henricksen, and Ed Dawson.

Bit-pattern based integral attack. In Kaisa Nyberg, editor, FSE, volume 5086 of
Lecture Notes in Computer Science, pages 363–381. Springer, 2008.

Fig. 10. Distance to uniform of distribution D1.

17



Fig. 11. Distance to uniform of distribution D2.

18


