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Chapter 1

Block ciphers

1.1 Introduction

Small embedded devices (including smart cards, RFIDs, sensor nodes) are now deployed in
many applications. They are usually characterized by strong cost constraints. Yet, as they
may manipulate sensitive data, they also require cryptographic protection. As a result, many
lightweight ciphers have been proposed in order to allow strong security guarantees at a lower
cost than standard solutions. Quite naturally, the very idea of “low-cost” is highly dependent
on the target technology. Some operations that are extremely low cost in hardware (e.g.
wire crossings) may turn out to be annoyingly expensive in software. Even within a class of
similar devices (e.g. software), the presence or absence of some options (such as hardware
multipliers) may cause strong variations in the performance analysis of different algorithms.
As a result, it is sometimes difficult to have a good understanding of which algorithms are
actually lightweight on which device. Also, the lack of comparative studies prevents a good
understanding of the cost vs. performance tradeoff for these algorithms.

In this paper, we consider this issue of performance evaluation for low-cost block ciphers,
and investigate their implementation in ATMEL ATtiny devices [4], i.e. small microcon-
trollers, with limited memory and instruction set. Despite the relatively frequent use of such
devices in different applications, little work has been done in benchmarking cryptographic al-
gorithms in this context. Notable exceptions include B. Poettering’s open-source codes for the
AES Rijndael [2], and an interesting survey of lightweight cryptography implementations [26].
Unfortunately, these works are still limited by the number of ciphers under investigation and
the fact that their source code is not always available for evaluation.

As a result, the goal of this work is to extend the benchmarking of 11 lightweight and
standard ciphers, and to make their implementation available under an open-source license.
In order to make comparisons as meaningful as possible, we tried to adapt the guidelines
proposed in [29] for the evaluation of hardware implementations to our software context. Yet,
as the project was involving 11 different designers, we also acknowledge that some biases can
appear in our conclusions, due to slightly different implementation choices. Overall, we hope
that this initiative can be used as a first step in better understanding the performances of
block ciphers in a specific but meaningful class of devices. We also hope that it can be used
as a germ to further develop cryptographic libraries for embedded platforms and, in the long
term, add security against physical (fault, side-channel) attacks as another evaluation criteria.

The rest of the paper is structured as follows. Section 2 contains a brief description
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of the implemented ciphers. Section 3 describes our evaluation methodology and metrics.
Section 4 provides succinct descriptions of the implementation choices made by our 11 de-
signers. Finally, our performance evaluations are in Section 5. The webpage containing all
our open-source codes is given here [1].

1.2 List of Investigated Ciphers

AES Rijndael [20] is the new encryption standard selected in 2002 as a replacement of
the DES. It supports key sizes of 128, 192 or 256 bits, and block size of 128 bits. The
encryption iterates a round function a number of times, depending on the key size. The
round is composed of four transformations: SubBytes (that applies a non-linear S-box to the
bytes of the states), ShiftRows (a wire crossing), MixColumns (a linear diffusion layer), and
finally AddRoundKey (a bitwise XOR of the round key). The round keys are generated from
the secret key by means of an expansion routine that re-uses the S-box used in SubBytes. For
low-cost application, the typical choice is to support only the key size of 128 bits.

DESL, DESX, and DESXL [35] are lightweight variants of the DES cipher. For the L-
variant, all eight DES S-boxes are replaced by a single S-Box with well chosen characteristics
to resist known attacks against DES. Additionally the initial permutation (IP ) and its inverse
(IP−1) are omitted, because they do not provide additional cryptographic strength. The X-
variant includes an additional key whitening of the form: DESXk,k1,k2(x) = k2⊕DESk(k1⊕x).
DESXL is the combination of both variants. The main goal of the developer was a low gate
count in hardware implementations similar to the original DES proposal.

HIGHT [33] is a hardware-oriented block cipher designed for low-cost and low-power appli-
cations. It uses 64-bit blocks and 128-bit keys. HIGHT is a variant of the generalized Feistel
network and is only composed of simple operations: XOR, mod 28 additions and bitwise
rotations. Its key schedule consists of two algorithms: one generating whitening key bytes
for initial and final transformations; the other one for generating subkeys for the 32 rounds.
Each subkey byte is the result of a mod 28 addition between a master key byte and a constant
generated using a linear feedback shift register.

IDEA [34] is a patented cipher whose patent expired in May 2011 (in all countries with a
20 year term of patent filing). Its underlying Lai-Massey construction does not involve an
S-box or a permutation network such in other Feistel or common SPN ciphers. Instead, it
interleaves mathematical operations from three different groups to establish security, such as
addition modulo 216, multiplication modulo 216 + 1 and addition in GF(216) (XOR). IDEA
has a 128-bit key and 64-bit inputs and outputs. A major drawback of its construction is the
complex key schedule involved that also requires the extended Euclidean algorithm for the
decryption operation. For efficient implementation, this complex key schedule needs to be
precomputed and stored in memory.

KASUMI [3] is a block cipher derived from MISTY1 [39]. It is used as a keystream generator
in the UMTS, GSM, and GPRS mobile communications systems. It has a 128-bit key and 64-
bit inputs and outputs. The core of KASUMI is an eight-round Feistel network. The round
functions in the main Feistel network are irreversible Feistel-like network transformations.
The key scheduling is done by bitwise rotating the 16-bit subkeys or XORing them with a
constant. There are two S-boxes, one 7 bit and the other 9 bit.
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KATAN and KTANTAN [15] are two families of hardware-oriented block ciphers. They
have 80-bit keys and a block size of either 32, 48 or 64 bits. The cipher structure resembles
that of a stream cipher, consisting of shift registers and non-linear feedback functions. An
LFSR counter is used to protect against slide attacks. The difference between KATAN and
KTANTAN lies in the key schedule. KTANTAN is intended to be used with a single key per
device, which can then be burnt into the device. This allows KTANTAN to achieve a smaller
footprint in a hardware implementation. In the following, we considered the implementation
of KATAN with 64-bit block size.

mCrypton [37] is a block cipher specifically designed for resource-constrained devices such as
RFID tags and sensors. It uses a block length of 64 bits and a variable key length of 64, 96 and
128 bits. In this paper, we implemented the variant with a 96-bit key. mCrypton consists of
an AES-like round transformation (12 rounds) and a key schedule. The round transformation
operates on a 4 × 4 nibble array and consists of a nibble-wise non-linear substitution, a
column-wise bit permutation, a transposition and a key-addition step. The substitution step
uses four 4-bit S-boxes. Encryption and decryption has almost the same form. The key
scheduling algorithm generates round keys using non-linear S-box transformations, word-wise
rotations, bit-wise rotations and a round constant. The same S-boxes are used for the round
transformation and key scheduling.

NOEKEON [16] is a block cipher with a key length and a block size of 128 bits. The block
cipher consists of a simple round function that bases only on bit-wise Boolean operations and
cyclic shifts. The round function is iterated 16 times for both encryption and decryption.
Within each round, a working key is XORed with the data. The working key is fixed during
all rounds and is either the cipher key itself (direct mode) or the cipher key encrypted with
a null string. The self-inverse structure of NOEKEON allows to efficiently combine the
implementation of encryption and decryption operation with only little overhead.

PRESENT [13] is a hardware-oriented lightweight block cipher designed to meet tight
area and power restrictions. It features a 64-bit block size and 80-bit key size. PRESENT
implements a substitution-permutation network in 32 rounds. The permutation layer consists
only of bit permutations. Together with the tiny 4-bit S-box, the design enables minimalistic
hardware implementations. The key scheduling consists of a single S-box lookup, a counter
addition and a rotation.

SEA [49] is a scalable family of encryption algorithms, defined for low-cost embedded devices,
with variable bus sizes and block/key lengths. In this paper, we implemented SEA96,8, i.e.
a version of the cipher with 96-bit blocks and keys. SEA is a Feistel cipher that exploits
rounds with 3-bit S-boxes, a diffusion layer made of bit and word rotations and a mod 2n key
addition. Its key scheduling is based on rounds similar to the encryption ones and is designed
such that keys can be derived “on-the-fly” both in encryption and decryption.

TEA [52] is a 64-bit block cipher using 128-bit keys (although equivalent keys effectively
reduce the key space to 2126) . TEA stands for Tiny Encryption Algorithm and, as the
name says, this algorithm was built with simplicity and ease of implementation in mind. A C
implementation of the algorithm corresponds to about 20 lines of code, and involves no S-box.
TEA has a 64-round Feistel structure, each round being based on XOR, 32-bit addition and
rotation. The key schedule is also very simple, alternating the two halves of the key at each
round. TEA is sensitive to related-key attacks using 223 chosen plaintexts and one related-key
query, with a time complexity of 232
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1.3 Methodology and Metrics

In order to be able to compare the performances of the different ciphers in terms of speed,
memory space and energy, the developers were asked to respect a list of common constraints,
hereunder detailed.

1. The code has to be written in assembly, in a single file. It has to be commented and
easily readable, for example, giving the functions the name they have in their original
specifications.

2. The cipher has to be implemented in a low-cost way, minimizing the code size and the
data-memory use.

3. Both encryption and decryption routines have to be implemented.

4. Whenever possible, and in order to minimize the data-memory use, the key schedule has
to be computed “on-the-fly”. The computation of the key schedule is always included
in the algorithm evaluations.

5. The plaintext, ciphertext and the key have to remain at the same place in the data
memory at the beginning and the end of the encryption.

6. The target device is an 8-bit microcontroller from the ATMEL AVR device family, more
precisely the ATtiny45. It has a reduced set of instructions and, e.g. has no hardware
multiplier.

7. The encryption and decryption routines are called by a common interface.

The SEA reference code was sent as an example to all designers, together with the common
interface.

The basic metrics considered for evaluation are code size, number of RAM words, cycle
count in encryption and decryption and energy consumption. From these basic metrics, a
combined metric was extracted (see Section 1.5). For the energy-consumption evaluations,
each cipher has been flashed in a ATtiny45 mounted on a power-measurement board. A 22
Ohms shunt resistor was inserted between the Vdd pin and the 5V power supply, in order
to measure the current consumed by the controller while encrypting. The common interface
generates a trigger at the beginning of each encryption, and a second one at the end of each
of them. The power traces were measured between those two triggers by our oscilloscope
through a differential probe. The plaintexts and keys were generated randomly for each
encryption. One hundred encryption traces were averaged for each energy evaluation. The
average energy consumed by an encryption has been deduced afterwards, by integrating the
measured current.

1.4 Implementation Details

AES Rijndael. The code was written following the standard specification and operates
on a state matrix of 16 bytes. In order to improve performance, the state is stored into 16
registers, while the key is stored in RAM. Also 5 temporary registers are used to implement
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the MixColumn steps. The S-box and the round constants were implemented as simple look-
up tables. The multiplication operation needed in the MixColums is computed with shift and
XOR instructions.

DESXL. In order to keep code size small, we wrote a function which can compute all permu-
tations and expansions depending on the calling parameters. This function is also capable of
writing six bit outputs for direct usage as S-box input. Because of the bit-oriented structure
of the permutations which are slow in software, this function is the performance bottleneck
of the implementation. The rest of the code is written straight forward according to the
specification. Beside the storage for plain/ciphertext and the keys k, k1, k2, additional 16
bytes of RAM for the round key and the state are required. The S-box and all permutation
and expansion tables are stored in Flash memory and processed directly from there.

HIGHT. The implementation choices were oriented in order to limit the code size. First, the
intermediate states are stored in RAM at each round, and only two bytes of text and one byte
of key are loaded at a time. This way, it is possible to re-use the same code fragment four
times per round. Next, the byte rotation at the output of the round function is integrated
in the memory accesses of the surrounding functions, in order to save temporary storage and
gain cycles. Eight bytes of the subkeys are generated once every two rounds, and are stored
in RAM. Finally, excepted for the mod 28 additions that are replaced by mod 28 subtractions
and some other minor changes, decryption uses the same functions as encryption.

IDEA. This cipher was implemented including a precomputed key schedule performed by
separate functions for encryption and decryption, respectively, prior the actual cipher opera-
tion. During cipher execution the precomputed key (104 bytes) is then read byte by byte from
the RAM. The plaintext/ciphertext and the internal state are kept completely in registers
(using 16 registers) and 9 additional registers are used for temporary computations and coun-
ters. IDEA requires a 16-bit modular multiplication as basic operation. However, in the AVR
device used in this work, a dedicated hardware multiplier unit is not available. Multiplication
was therefore emulated in software resulting in a data-dependant execution time of the cipher
operation and an increased cycle count (about a factor of 4) compared to an implementation
for a device with a hardware multiplier.

KASUMI. The code was written following the functions described in the cipher specifica-
tions. During the execution, the 16-byte key remains stored in the RAM, as well as the 8-byte
running state. This allows using only 12 registers and 24 bytes of RAM. Some rearrangement
was done to skip unnecessary moves between registers. The 9-bit S-box was implemented in
an 8-bit table, with the MSBs concatenated in a secondary 8-bit table. The 7-bit S-box was
implemented in an 8-bit table, wasting the MSBs in the memory. The round keys are derived
“on-the-fly”. Decryption is very similar to encryption, as usual for a Feistel structure.

KATAN-641. The main optimization goal was to limit the code size. The entire state of the
cipher is kept in registers during operation. In order to avoid excessive register pressure, the
inputs and outputs are stored in RAM, and this RAM space is used to backup the register
contents during operation. Only three additional registers need to be stored on the stack. As
the KATAN key schedule is computed “on-the-fly”, the key in RAM is clobbered and needs
to be restored externally for subsequent invocations. In order to implement the non-linear

1All six variants of the KATAN/KTANTAN family are supported via conditional assembly. As previously
mentioned, our performance evaluations focus on the 64-bit version of KTAN.
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functions efficiently, addition instructions were used to compute several logical ANDs and
XORs in parallel through carefully positioning the input bits and using masking to avoid
undesired carry propagation.

mCrypton. The reference code directly follows the cipher specification. The implementation
aims for a limited code size. Therefore, we tried to reuse as much code as possible for
decryption and encryption. In addition, we used up to 20 registers during the computations
to reduce the cycle count. 12 registers are used to compute the intermediate state and the
key scheduling, 6 registers for temporary storage, one for the current key scheduling constant
and one for the round counter. After each round the modified state and key scheduling state
are stored in RAM. The round key is derived from the key scheduling state and is temporarily
stored in RAM. The four 4-bit S-boxes are stored in four 8-bit tables, wasting the 4 most
significant bits of each entry, but saving cycle counts. The round constants used in the key
scheduling algorithm are stored in an 8-bit table.

NOEKEON. The implementation aims to minimize the code size and the number of utilized
registers. During execution of the block cipher, input data and cipher key are stored in the
RAM (32 bytes are required). In that way, only 4 registers are used for the running state, one
register for the round counter, and three registers for temporary computations. The X-register
is used for indirect addressing of the data in the RAM. Similar to the implementation of SEA
(detailed below), using more registers for the running state will decrease the cycle count, but
will also increase the code size because of a less generic programming. For decrypting data,
the execution sequence of the computation functions is changed, which leads only to a very
small increase in code size.

PRESENT. The implementation is optimized in order to limit the code size with throughput
as secondary criteria. State and round key are stored in the registers to minimize accesses
to RAM. The S-boxes are stored as two 256-byte tables, one for encryption and one for
decryption. This allows for two S-box lookups in parallel. However, code size can easily be
reduced if only encryption or decryption is performed. A single 16-byte table for the S-boxes
could halve the overall code size, but would significantly impact encryption times. The code
for permutation, which is the true performance bottleneck, can be used for both encryption
and decryption.

SEA. The reference code was written following directly the cipher specifications. During
its execution, plaintexts and keys are stored in RAM (accounting for a total of 24 bytes),
limiting the register consumption to 6 registers for the running state, one register for the
round counter and three registers of temporary storage. Note that higher register consumption
would allow decreasing the cycle count at the cost of a less generic programming. The S-box
was implemented using its bitslice representation. Decryption uses exactly the same code as
encryption, with “on-the-fly” key derivation in both cases.

TEA. Implementing TEA is almost straightforward due to the simplicity of the algorithm.
The implementation was optimized to limit the RAM usage and code size. As far as RAM is
concerned, we only use the 24 bytes needed for plaintext and key storage, with the ciphertext
overwriting the plaintext in RAM at the end of the process. The only notable issue regarding
implementing TEA concerns rotations. TEA was optimized for a 32-bit architecture and the
fact that only 1-position shift and rotations are available on the ATtiny, plus the need to
propagate carries, made these operations slightly more complex. In particular, 5-position
shifts were optimized by replacing them by a 3-position shift in the opposite direction and
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recovering boundary carries. Nonetheless, TEA proved to be very easy to implement, resulting
in a compact code of 648 bytes.

1.5 Performance Evaluation

We considered 6 different metrics: code size (in bytes), RAM use (in bytes), cycle count in
encryption and decryption, energy consumption and a combined metric, namely the code size
x cycle count product, normalized by the block size. The results for our different implementa-
tions are given in Figures 1.2, 1.3, 1.4, 1.5, 1.6, 1.7. We detail a few meaningful observations
below.

First, as our primary goal was to consider compact implementations, we compared our
code sizes with the ones listed in [26]. As illustrated in Figure 1.1, we reduced the mem-
ory footprint for most investigated ciphers, with specially strong improvements for DESXL,
HIGHT and SEA.

Next, the code sizes of our new implementations are in Figure 1.2. The frontrunners
are HIGHT, NOEKEON, SEA and KATAN (all take less than 500 bytes of ROM). One can
notice the relatively poor performances of mCrypton and PRESENT, which can be explained
by the more hardware-oriented flavor of these ciphers. As expected, standard ciphers such
as the AES and KASUMI are more expensive, but only up to a limited extent (both are
implemented in less than 2000 bytes of ROM).

The RAM use in Figure 1.3 first exhibits the large needs of IDEA regarding this metric
(232 words) that are essentially due to the need to store a precomputed key schedule for this
cipher. Besides, and following our design guidelines, the RAM use essentially reflects the size
of the intermediate state that has to be stored during the execution of the algorithms. Note
that for the AES, this is in contrast with the “Furious” implementation in [2], that uses 192
bytes of RAM (it also explains our slightly reduced performances for this cipher).

The cycle count in Figure 1.4 clearly illustrates the performance loss that is implied by
the use of simple round functions in most lightweight ciphers. This loss is critical for DESXL
and KTAN where the large number of round iterations lead to cycle counts beyond 50,000
cycles. It is also large for SEA, NOEKEON and HIGHT. By contrast, these metrics show
the excellent efficiency of the AES Rijndael. Cycle count for decryption (Figure 1.5) shows
similar results, with noticeable changes. Most visibly, IDEA decryption is much less efficient
than its encryption. The AES also shows non-negligible overhead to decrypt. By contrast, a
number of ciphers behave identically in encryption and decryption, e.g. SEA where the two
routines are almost identical.

As expected, the energy consumption of all the implemented ciphers (Figure 1.6) is
strongly correlated with the cycle count, confirming the experimental results in [23]. However,
slight code dependencies can be noticed. It is an interesting scope for research to investigate
whether different coding styles can further impact the energy consumption and to what extent.

Eventually, the combined metric in Figure 1.7 first shows the excellent size vs. performance
tradeoff offered by the AES Rijndael. Among the low-cost ciphers, NOEKEON and TEA
exhibit excellent figures as well, probably due to their very simple key scheduling. This
comes at the cost of possible security concerns regarding related key attacks. HIGHT seems
to provide a good tradeoff between code size and cycle count. A similar comment applies
to SEA, where parts of the overhead comes from a complex key scheduling algorithm (key
rounds are as complex as the rounds for this cipher). Despite their hardware-oriented nature,
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PRESENT and mCrypton offer decent performance in 8-bit devices as well. KATAN falls a
bit behind, mainly because of its very large cycle count. Only DESXL appears not suitable
for such an implementation context.

1.6 Conclusion

This paper reported on an initiative to evaluate the performance of different standard and
lightweight block ciphers on a low cost micro-controller. 11 different ciphers have been im-
plemented with compactness as main optimization criteria. Their source code is available
on a webpage, under an open-source license. Our results improve most prior work obtained
for similar devices. They highlight the different tradeoffs between code size and cycle count
that is offered by different algorithms. They also put forward the weaker performances of
ciphers that were specifically designed with hardware performances in mind. Scopes for fur-
ther research include the extension of this work towards more algorithms and the addition of
countermeasures against physical attacks.
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Figure 1.1: Code size: comparison with previous work [26].

Figure 1.2: Performance evaluation: code size.
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Figure 1.3: Performance evaluation: RAM use.

Figure 1.4: Performance evaluation: cycle count (encryption).
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Figure 1.5: Performance evaluation: cycle count (decryption).

Figure 1.6: Performance evaluation: energy consumption.
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Figure 1.7: Performance evaluation: combined metric.



Chapter 2

Hash functions

2.1 Introduction

Whenever trying to compare different algorithms, such as in the currently running SHA3
competition for choosing a new standard hash function, compact implementations in small
embedded devices are an important piece of the puzzle. In particular, they usually reveal a
part of the algorithms complexity that does not directly appear in high-end devices, e.g. the
need to share resources or to minimize memory. Besides, implementations in small embedded
devices such as smart cards, RFIDs and sensor nodes are also motivated by an increasing
number of applications. As a result, studying the performances of cryptographic algorithms
systematically in this challenging scenario is generally useful.

In a recent work, the implementation of 12 lightweight and standard block ciphers in an
ATMEL AVR AtTiny45 has been investigated [24]. In order to increase the relevance of their
work, the authors additionally provided open source codes for all their implementations on
a public webpage. In this paper, we extend this initiative towards hash functions. For this
purpose, we considered three main types of algorithms. First, we targeted SHA256 and the
SHA3 finalists. For the latter ones, we only focused on the candidates satisfying the SHA3
security requirements for the 256-bit output length [42], i.e. providing at least 2256 (second)
preimage resistance and 2128 collision resistance. Second, we selected a number of recently
published lightweight hash functions, providing both 280 and 2128 “flat” security levels1 [43].
Eventually, we also implemented several block cipher based constructions, e.g. relying on the
AES Rijndael.

For all these algorithms, we aimed for the same optimization criteria (namely small source
code size and limited memory use) and used a uniform interface (see the details in Section 2.3).
Resistance against physical (e.g. side-channel, fault) attacks was explicitly excluded from the
requirements. As the project involves many different programmers, we naturally acknowledge
possible biases in our performance evaluation results, due to slightly different implementation
choices and interpretation of the guidelines. In order to mitigate these (usual) limitations,
we also provide all our source codes on a public webpage [1]. As a result, we hope that
this initiative can be used as a first step in better understanding the performances of hash
functions in a specific but meaningful class of devices.

The rest of the paper is structured as follow. A brief description of all the functions

1That is the same security level is required for collision, preimage and second preimage resistance.
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implemented is given in Section 2.2. Our methodology and metrics are defined in Section 2.3.
The description of the implementation choices for the selected algorithms is in Section 2.5.
Eventually, our performance evaluations and the resulting conclusions are in Section 2.6.

2.2 Investigated hash functions

2.2.1 SHA256 and SHA3 candidates

SHA256 is a hash function from the SHA2 family standardized by NIST in FIPS PUB
180-3 [41]. As its predecessor SHA1, it is based on the Merkle-Damg̊ard construction but
implements a significant number of changes with respect to SHA1, e.g considering its message
expansion, iteration count and an improved compression function. Within the 64 iterations
of its compression function, it processes an input block of 512 bits and digests it to an output
of 256 bits. Internally, SHA256 also uses a 256-bit state comprising of eight working registers
A to H, each of 32 bits in size.

BLAKE-256 operates on 32-bit words and uses the same parameter sizes as SHA256. The
input block length is 512 bit and the digest size is 256 bit. A total of 264 − 1 message bits
can be hashed, and BLAKE-256 allows for an optional 128-bit salt. During compression of a
message block, a 512-bit internal state is built using a chain value, the salt and the current
counter value. Initially, the chain value is set to the same constants as in SHA256. After
initialization, 14 message-dependent rounds are applied to the state. Each round consists of
eight applications of round function Gi (a, b, c, d) which in each iteration transforms 4 out of
16 words of the state using addition modulo 232, exclusive-or addition, left and right rotations,
and memory lookups. In the end, a new chain value is constructed from the internal state,
the previous chain value and the salt. Details on BLAKE’s inner workings can be found in [7].

Grøstl-256 is an iterated hash function consisting of a compression function built from two
distinct permutations, which however share some transformations, called p and q respec-
tively [30]. These are constructed using the wide-trail design strategy. The hash function
is based on a byte-oriented sp-network which borrows components from the aes [19], de-
scribed by the transforms AddRoundConstant, SubBytes, ShiftBytes and MixBytes. Grøstl
is a wide-pipe construction where the size of the internal state (represented by a two 8 ×
16-byte matrices) is significantly larger than the size of the output.

JH-256 is a hash function based on a generalized AES design methodology [54]. It has a
1024-bit state and works on 512-bit input blocks which are processed in three steps. First,
the input block is XORed with the left half of the state. A bijective function E8 is then
applied to the state. Finally, the right half of the state is XORed with the input block. The
bijective function E8 divides the state into an eight-dimensional array on which a substitution-
permutation network (SPN) and a maximum-distance seperable (MDS) code are applied.

Keccak is a sponge function family [8, 9]. It uses the sponge construction on top of a
permutation Keccak−f [b], with the width b chosen between 25 and 1600 by multiplica-
tive steps of 2. Depending on b, the resulting function ranges from a toy cipher to a
wide function. The SHA3 candidate Keccak proposes to use exclusively Keccak−f [1600]
for all output lengths/security levels [10], whereas lightweight alternatives can use for in-
stance Keccak−f [200] or Keccak−f [400], leaving Keccak−f [800] as an intermediate choice
[11]. Inside Keccak−f [b], the state to process is organized in 5 × 5 lanes of b/25 bits each,
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or alternatively as b/25 slices of 25 bits each. The round function processes the state using a
non-linear layer (χ), a linear diffusion operation (θ), inter- and intra-slice dispersion steps (ρ,
π) and the addition of round constants (ι). Details of the design strategy can be found in [9].

Skein-x-y is a cryptographic hash function based on the Threefish block cipher [28]. Its
internal state (x) can be 256-, 512- or 1024-bit large, and the output (y) can be of any size.
In addition to the simple hashing, it supports a variety of optional features, e.g. MAC and
tree-hashing. It is optimized for 64-bit processors. The hash chaining mode of Skein, called
UBI, is a variant of the Matyas-Meyer-Oseas hash mode. Threefish is a tweakable block cipher
designed for Skein. Its core design principle is based on three operations - XORs, additions
and rotations - combined in a large number of rounds (namely 72 or 80). It uses no S-boxes,
its nonlinearity comes from alternating additions with XORs. The key schedule generates the
subkeys from the key and the 128-bit tweak. We primarily focused on Skein-512-256 which
is one of the versions submitted to the NIST SHA3 competition.

2.2.2 Lightweight hash functions

S-Quark and D-Quark are hardware-oriented hash functions with respective digests of
length 256 and 176 bits [5]. This family is based on the sponge construction with respective
widths 256 and 176 bits and rates 32 and 16 bits. The absorbing phase consists in XORing
the message with a part of the state and applying a permutation P. The digest is obtained
by squeezing 32/16 bits of the state, then applying the permutation P, and so on until the
correct digest size is obtained. The permutation P is composed of 1024/704 iterations of an
update function that essentially consists in performing linear retro-action on the state (the
polynomials used slightly differ from a version to another). Note that the capacity of S-Quark
is only c = 224, leading to 112-bit security level (instead of 128 for other lightweight hash
functions in our evaluations).

PHOTON is a sponge-based, lightweight, and hardware-oriented hash function family in-
troduced in 2011 [31]. The internal state is represented as a matrix with 4- or 8-bit entries
depending on which of the five PHOTON flavors has been selected. Each PHOTON round
consists in XORing the message into the state (absorbing) and applying a permutation P
twelve times. The first step when applying P is AddConstants where round constants are
XORed to the first column of the state. Then, in the SubCells layer, the PRESENT S-box
(PHOTON-160/36/36) or AES S-box (PHOTON-256/32/32) is applied to every entry of the
state. During ShiftRows the rows of the state matrix are rotated. In the MixColumnsSerial
layer a flavor-specific MixColumns matrix is applied to every column of the state several times.
This strategy results in a much more compact hardware implementation compared to, e.g. the
AES MixColumns layer. When all blocks of the message have been absorbed, a flavor-specific
number of squeezing iterations are performed. In each iteration, a small amount of the state
is extracted as part of the new hash value and the permutation P is applied twelve times.

SPONGENT is a family of lightweight hash functions based on a wide PRESENT-type
permutation [12]. It relies on a sponge construction: a simple iterated design that takes
a variable-length input and can produce an output of an arbitrary length n based on a
permutation πb operating on a state of a fixed number b of bits. The different variants are
referred to as SPONGENT-n/c/r for different hash sizes n, capacities c, and rates r. Out
of the 13 proposed variants, we implemented SPONGENT-160/160/80 and SPONGENT-
256/256/128.
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Keccak also proposes lightweight alternatives, different from the SHA3 submission, as ex-
plained in Section 2.2.1.

2.2.3 Block cipher based constructions

Rogaway-Steinberger LP/lp362 is a hash function construction based on a fixed-key block
cipher. The construction principle was developed by Rogaway and Steinberger in 2008 [46]
and defines a so-called linearly-determined, permutation based (LP) compression function.
An LPA

mkr compression function operates on a matrix A (satisfying a special independence
criterion) and k permutations, turning an input block of mn bits into an output block of rn
bits. The parameter n gives the bit width of the block cipher. We used the block cipher
NOEKEON [17] for realizing the fixed-key permutations, for which n equals 128 bits. An
LP362 compression function converts a 384-bit input block into a 256-bit output block by
using six fixed-key permutations. In case of the LP362 scheme, every permutation uses a
different key, whereas in the lp362 scheme, all permutations use the same key (according to [46]
both have similar security bounds). XOR operations and finite-field multiplications are used
for combining the output of the individual permutations into a single value. The compression
function is turned into a hash function using the Merkle-Damg̊ard [22, 40] construction.

Hirose double block length (DBL) construction is a hash function based on a block
cipher whose key size exceeds its block size. It has been proposed by Hirose in 2006 [32]. Unlike
most previous DBL hash function constructions, Hirose achieves almost optimal collision
resistance (if instantiated with an ideal cipher) [32]. For each iteration of the compression
function it executes two instances of the block cipher with the same key. The shared key
for the parallel encryptions can be used to achieve a performance gain, since only one key
schedule is necessary per iteration. The construction requires the key size k to be bigger than
the block size n. In fact, the difference between key and block size n − k determines the
input size of the compression function, and thus determines the efficiency of the compression
function. The output size is 2n. With AES-256 as the instantiated block cipher (which will
be our choice), Hirose DBL has an output size of 256 bit and the compression function takes
128 bit of input per iteration.

The Davies-Meyer construction is the most famous cipher-based construction for com-
pression functions. Let a block cipher E(K,P ) encrypt the plaintext P using the key K.
Then, Davies-Meyer construction updates a chaining value Hi according to a message block
M as follows: Hi+1 = E(M,Hi) ⊕ Hi. Two instantiations of this construction, using the
ciphers Rijndael-256/256 and SEA which are later described, have been studied.

Shrimpton-Stam construction. Based on the proof that compression function construc-
tions relying on PRPs cannot reach optimal security using less than 3 permutations, Shrimp-
ton and Stam proposed a construction relying on 3 different PRPs [48] where the chain-
ing value Hi is updated according to a message block M in the following way Hi+1 =
f3 (f1(M)⊕ f2(Hi)) ⊕ f1(M). They mention that these permutations can be instantiated
by a cipher (using three different keys) but only in plaintext feedback mode (that is, the same
as in the Davies-Meyer construction). A single instantiation based on Rijndael-256/256 has
been considered here.

Rijndael-256/256 is a member of the well-known block cipher family among which the
AES standards were chosen [18]. Unlike AES-256, which has a 256-bit key, but a 128-bit



D.SYM.12 — Final Lightweight Cryptography Status Report 17

state, this 256/256 version processes 256-bit key and state. It is thus a good candidate to
instantiate pseudorandom permutations in hash function constructions such as Davies-Meyer
or Shrimpton-Stam. Rijndael-256/256 encryption iterates a round function 14 times. This
round is composed of four transformations: SubBytes (that applies a non-linear S-box to the
bytes of the states), ShiftRows (a wire crossing), MixColumns (a linear diffusion layer), and
finally AddRoundKey (a bitwise XOR with the round key). The round keys are generated
from the secret key by means of an expansion routine that re-uses the S-box.

SEA is a scalable family of encryption algorithms, designed for low-cost embedded devices,
with variable bus sizes and block/key lengths [49]. In this paper, we focus on SEA192,8, i.e.
a version of the cipher with 192-bit block and key size. SEA is a Feistel cipher that exploits
rounds with 3-bit S-boxes, a diffusion layer made of bit and word rotations and a mod 2n key
addition. Its key scheduling is based on rounds similar to the encryption ones and is designed
such that keys can be derived “on-the-fly” both in encryption and decryption.

2.3 Methodology and metrics

In order to be able to compare the performances of the different hash functions in terms of
speed and memory space, the developers were asked to respect a list of common constraints,
detailed hereunder.

1. The code has to be written in assembly, if possible in a single file. It has to be commented
and easily readable, for example, giving the functions the name they have in their
original specifications.

2. The function has to be implemented in a low-cost way, minimizing the code size and
the RAM use.

3. Data does not have to be preserved by the hashing process. This allows direct modifi-
cation of the data zones in RAM, hence reducing the amount of memory needed.

4. The interface should be made up of 3 functions. (1) init takes no input and initializes
the internal state, which is a dedicated memory zone seen as a black box, and returns
no output; (2) update takes as input a full block of data, updates its internal state
by processing that block and returns no output; (3) final takes as input the (possibly
empty) last chunk of data together with its size and processes it before finalizing the
hash computation. By convention, the data passed to final is necessarily an incomplete
block.

5. Data exchanges are performed with pre-defined memory zones where data has to be put
before calling functions, or can be found on their return. For example, the data block to
hash has to be put at the pre-defined address SRAM DATA before a call to update, and
the final hash can be found at SRAM STATE on return of final. Most input/output
values are thus implicitly passed. The only explicitly passed value is the size of the data
passed to final.

6. Only the internal state is preserved between calls to these functions. No assumption can
be made that other RAM zones (e.g. SRAM DATA) or registers will stay unchanged.
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7. The target device is an 8-bit microcontroller from the ATMEL AVR device family, more
precisely the ATtiny45. It has a reduced set of instructions and, e.g. has no hardware
multiplier.

A common interface file was provided to all designers (available on [1]). Note that for some
functions (e.g. for block cipher based), the padding was not explicitly defined. In these cases,
we appended n null bytes, followed by the length of the message coded as a 64-bit value,
where n is chosen to make the global message length a multiple of the block size.

The basic metrics considered for evaluation are code size, number of RAM words, and
cycle count. From these basic metrics, combined metrics were extracted (see Section 2.6).
Performances were measured on 4 different message lengths: 8, 50, 100 and 500 bytes, ranging
from a very small (smaller than one block) to a large message.

Note finally that, as mentioned in introduction, all hash functions were implemented by
different designers, with slightly different interpretations of the low-cost optimizations. As a
result, some of the guidelines were not always followed, because of the cipher specifications
making them less relevant (which will be specified when necessary).

2.4 Description of the AtTiny45 microcontroller

The ATtiny45 is an 8-bit RISC microcontroller from ATMEL’s AVR series. The microcon-
troller uses a Harvard architecture with separate instruction and data memory. Instructions
are stored in a 4 kB Flash memory (2048× 16 bits). Data memory involves the 256-byte
static RAM, a register file with 32 8-bit general-purpose registers, and special I/O memory
for peripherals like timer, analog-to-digital converter or serial interface. Different direct and
indirect addressing methods are available to access data in RAM. Especially indirect address-
ing allows accessing data in RAM with very compact code size. Moreover, the ATtiny45 has
integrated a 256-bytes EEPROM for non-volatile data storage.

The instruction-set of the microcontroller contains 120 instructions which are typically
16-bits wide. Instructions can be divided into arithmetic logic unit (ALU) operations (arith-
metic, logical, and bit operations) and conditional and unconditional jump and call opera-
tions. The instructions are processed within a two-stage pipeline with a pre-fetch and an
execute phase. Most instructions are executed within a single clock cycle, leading to a good
instructions-per-cycle ratio. Compared to other microcontrollers from ATMEL’s AVR series
such as the ATmega devices, the ATtiny45 has a reduced instruction set (e.g. no multiply
instruction), smaller memories (Flash, RAM, EEPROM), no in-system debug capability, and
less peripherals. However, the ATtiny45 has lower power consumption and is cheaper in price.

2.5 Implementation details

2.5.1 SHA256 and SHA3 candidates

SHA256. Like its predecessor SHA1, SHA256 is optimized for 32-bit software implementa-
tion. Hence, it can be expected to be similarly efficient on 8-bit AVR processors. Implement-
ing the iteration step of its compression function, a main observation is that six out of eight
working registers are just circularly copied. To reduce code and clock cycles for such memory
transfer operations, register name reassignment by circular pointer arithmetic is performed
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instead on the working registers residing in 256 bits of RAM. Circular pointer arithmetic as
part of the iteration step is likewise used to update the input word according to the mes-
sage expansion. Besides 32-bit modular additions, SHA2 requires 32-bit right rotations by
r = {2, 6, 7, 11, 13, 17, 18, 19, 22, 25} bits and right shifts by s = {3, 10}. Rotations and shifts
by parameters larger than 8 bits first swap 8-bit register accordingly; then single bit opera-
tions on the swapped 32-bit word are performed to correspond to f = {r, s} mod 8. SHA256
uses up to three 32-bit bit rotations processing the same input in a row so that reordering of
rotation and shift operations by ascending f -values improves efficiency.

BLAKE-256. The RAM consumption is mainly due to storing 64 byte input data, 64 byte
state, 32 byte chain value, 8 byte salt, and an 8 byte counter. The initialization vectors
(32 byte) and constants (64 byte) are stored in the flash memory of the microcontroller.
We refrained from transferring the constant table into the RAM in order to keep RAM
consumption low. BLAKE’s permutation table σ consists of 10 × 16 entries. However, each
entry is only a four bit number so we merged two entries in one byte and later select the
upper/lower 4-bits by masking. Thus, the permutation table requires just 80 byte of ROM
instead of 160 byte. In order to maintain a decent performance while keeping the code size
down we incorporated the observation made by Osvik [44] which efficiently loads and stores in-
/outputs of the round function Gi (a, b, c, d). Furthermore, we use loops where applicable and
move recurring duties such as loading and storing the counter into functions. An exception
to this rule is the implementation of the round function. Since it is called 80 times when
hashing one message block its runtime heavily impacts the overall performance. Therefore,
we decided to unroll critical parts of the round function.

Grøstl-256. Grøstl has a state of 64 bytes. During the update function, we need to keep
the state, the input message and the previously computed hash in memory. Thus, we need
192 byte of RAM. The ShiftBytes is computed by offloading each row, one at a time, from
the state into the register of the microcontroller and then writing it back in the new position.
In order to increase the performances and reduce the number of accesses to the memory, the
SubBytes is computed together with the ShiftBytes. The MixBytes is computed as proposed
by Johannes Feichtner [27, 47], and is carried out one column at a time. Finally, to easily
compute the padding, 8 bytes of memory are used to keep track of the numbers of messages.
This 8 bytes, are copied directly in the appropriate position of the padding block.

JH-256. Specifications for a bitsliced implementation of JH are available, but they suppose
that 42 256-bit round constants can be stored in memory, which is not compliant with our
low-cost constraints. Hence,JH was implemented according to the reference specifications.
The utilisation percentage of the RAM is high as JH needs 128 bytes to store the state, 64
for the input block and 32 for the round constant. In order to improve the performances, the
S-box and linear transformation were combined into two look up tables, of 32 bytes each, as
was done in the optimized 8-bit implementation provided by JH author [53]. For the same
reason, the initial state was precomputed and stored in program memory. It allows us to save
the initialisation phase which is equivalent to the processing of one input block. Regarding the
permutation, it is performed by reading the states bytes in a different order at the beginning
of each round. Finally, state bits are reorganised at the begining and end of each function
E8. This bitwise permutation is time consuming and requires additional memory. Those
problems can be partially prevented by reorganizing the input bytes before XORing them
with the state.
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Keccak. In a first level, we implemented the sponge construction, which comes down to
XORing r-bit message blocks into the state, with r > 0 the rate, and to calling the under-
lying permutation. In a second level, we implemented the permutations Keccak−f [b] for
b ∈ {200, 400, 800, 1600}. The sponge construction imposes that the capacity c is twice the
security strength level and that b = r+ c, and our implementation allows any combination of
rate and capacity under these constraints. For clarity, the benchmark focuses on three spe-
cific instances: the SHA3 candidate Keccak[r = 1088, c = 512], and the lightweight variants
Keccak[r = 144, c = 256] and Keccak[r = 40, c = 160] for the 128-bit and 80-bit security
strengths levels, respectively. Any pair of instances with c = 256 and c = 160 would have
satisfied the requirements, but our choice aims at minimizing b for a given c and thereby the
RAM usage, consistently with a lightweight context. Variants with other RAM usage/code
size/cycle count trade-offs can be found in Table 4. Inside the implementation, some opera-
tions (i.e., the rotations in θ and ρ) are performed on a lane basis, mapping a lane to b/200
byte(s). Some other operations, such as χ or the parity computation in θ, are instead slice-
oriented, taking advantage of the representation of 8 consecutive slices in 25 bytes [11]. Note
that in the specific case of Keccak−f [200], the two approaches collide as the state contains
exactly 8 slices or 25 lanes, mapped to 25 bytes. RAM usage is composed of b/8 bytes for the
state and some working memory (b/40 bytes, or 0 for Keccak−f [200] as the AVR registers
suffice). If the desired output length is greater than the rate (e.g. for lightweight instances),
an additional output buffer is needed to perform the squeezing phase.

Skein-x-y. We implemented the SHA3 finalist Skein-512-256, with an output of 256 bits,
limited to the hashing functionality. The internal state is therefore made of eight 64-bit
words. To keep the program memory space small and the code readable, some basic 64-bits
functions like loading, saving, adding, . . . , have been coded. The registers are only used
temporarily, except the round counter. The message, the state, the key, the key-schedule
and the tweak are always in the data space, and modified directly. The three main Threefish
functions (addkey, mix and permute) were implemented following the reference specifications.
Besides, the modulo 3 and modulo 9 values used in the key schedule were saved in the program
memory space. We have also developed Skein-256-256, slightly optimized for the speed and
data memory space performances, by leaving most of the time three out of the four state
words in the registers.

2.5.2 Lightweight hash functions

S-Quark and D-Quark. The critical point in the implementation of QUARK hash functions
is the update of the state2. This update phase considers the state as two LFSRs that will
be updated using three retro-action polynomials3. This design is thought for hardware, a
context where it is very efficient, but is much more expensive in software. Nevertheless, our
choice to implement this step using a bit-slice approach provides rather good performances.
The platform is an 8-bit microprocessor and the retro-action polynomials are such that the
last 8 bits of each LFSR are not considered. Hence, our implementation performs 8 updates

2During implementation, a minor inconsistency was discovered between the paper description [5] and the
reference code [6], which use different bit ordering conventions. We chose to comply with the description
provided in the original article. Compliance with the C code can be obtained by inverting the order of bits in
the input message.

3An additional third will provide constants for the 1024/704 executions required to apply the permutation
P.
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at the same time reducing from 1024/704 to 128/88 polynomial computations. The state is
stored in RAM, as it is too large to be kept in registers. Computations are ordered in such a
way that the shift of the state is performed on the fly.

PHOTON-160/36/36 and PHOTON-256/32/32. First note that these implementa-
tion significantly differ, since PHOTON-160 has a state matrix with 4-bit cells and uses the
PRESENT S-box while PHOTON-256 has 8-bit entries and uses the AES S-Box. This results
in different implementation strategies.

The state of the implemented PHOTON-160/36/36 variant consists of 7-by-7 4-bit el-
ements which are packed into 25 bytes in order to save memory. This allows an optimal
usage of the RAM but naturally also results in additional code in order to extract the correct
nibble out of the state. It is a trade-off between code size/speed and RAM usage. As the
interface only allows messages that are a multiple of 8 bits while each iteration of a PHOTON-
160/36/36 round function absorbs 36 bits, we just process an input block of length 72 bits and
call the PHOTON round function internally twice for a full 72-bit block. The largest amount
of computational time is spend in the permutation layer for ShiftRows and especially during
the MixColumnsSerial step as finite field arithmetic has to be carried out on 4-bit values.

The internal state of PHOTON-256/32/32 consists of 36 bytes, arranged as a 6-by-6 ma-
trix, that goes over four different transformations to produce a 32 byte hash digest. Due to
their sizes both state and digest have to be stored in SRAM. This generates an inherent imple-
mentation overhead, as state bytes need to be fetched from and stored to SRAM once for each
transformation. We partially reduce this overhead by merging all row-based transformations,
and also by incrementing code size. Due to its use of AES-like permutations, the imple-
mentation of the PHOTON-256/32/32 transformations can be carried out quite efficiently on
8-bit controllers. The SubCells transformation is implemented as a memory aligned lookup
table resulting in important cycle savings. The MixColumnsSerial transformation, consisting
of six consecutive calls to the AES MixColumns transformation, is similarly optimized by
implementing the multiplication by ‘02’ as a memory aligned lookup table [19].

SPONGENT-160/160/80 and SPONGENT-256/256/128. The SPONGENT-160 state
is 160 + 80 = 240 bits or 30 bytes large. Therefore, the state can be stored in the registers
already available on the target device. However, SPONGENT uses a PRESENT-like bit per-
mutation in πb and therefore every output bit of an S-Box is mapped to a distinct nibble
after permutation. If we were to store the state in the available registers, we would only
have two registers for additional computations and this would lead to a large code size when
implementing the bit permutation. Therefore, the state is stored in SRAM and a three-step
iterative approach is used for the bit permutation to achieve a smaller code size. For the
permutation, each four consecutive nibbles are permuted and stored in SRAM at the same
places. Then, the permuted nibbles are re-ordered to obtain permuted bytes and finally bytes
are re-ordered to their appropriate places in the state. Although this approach is code-size
efficient, note that it leads to an increase in running time of the overall hashing process.
The remaining operations like round constant computation, padding and control logic are
implemented in a straightforward manner.

The state of SPONGENT-256 is 256 + 128 = 384 bits or 48 bytes large. Since the state
does not fit into the available registers, we optimized this variant with respect to code size and
the state is kept in SRAM. For the permutation, iteratively four successive bytes are loaded
into registers and the permuted byte is constructed from two bits at fixed offsets of each of
these four bytes. Afterwards the processed bytes are stored back to SRAM. This method
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keeps the code very small but requires a copy of the 48 bytes state and therefore doubles the
required memory. Besides the two states no additional memory is required. The S-Boxes are
stored in Flash memory and must be aligned to a address dividable by 16 for easier pointer
arithmetic. Again, the remaining operations are straightforwardly implemented.

2.5.3 Block cipher based constructions

Rogaway-Steinberger LP/lp362. For realizing the Rogaway and Steinberger construction
principle, the matrix A suggested by Lee and Park [36] with α = 2 has been used. For opera-
tions in F2128 (addition and multiplication) we have selected the same irreducible polynomial
x128 +x7 +x2 +x+1 as stated in [46]. The implementation of the block cipher NOEKEON is
based on the open source version published in [24], but the decryption functionality has been
removed since it is not required for the generation of a permutations. Two variants of the
Rogaway-Steinberger scheme have been implemented: LP362 and lp362. The two variants
mainly differ in code size. The lp362 scheme uses a single fixed key for all permutations,
leading to about 100 bytes less code than for the LP362 scheme which uses a different fixed
key for each of the six permutations. Both variants have similar execution time, consume 92
bytes of RAM, and make use of 8 registers for computing the hash value of a message.

Hirose double block length (DBL) construction For simplicity we chose an all-zero IV
and the additive constant to be 1. One of the advantages of Hirose is that the two parallel
AES executions use the same key. However, due to memory restrictions, the key should
be computed on-the-fly. Hence, the two encryptions need to be processed in parallel. The
AES design follows the same design paradigm as the AES presented in [24], with a further
optimized Shift Rows operation. Decryption code is not needed and has been removed. The
key scheduling is performed on-the-fly and and processes 32 bit at a time. The full 128-bit
state of one encryption block is kept in the registers. Since both encryptions are performed in
parallel, the two states have to be swapped in and out of SRAM regularly. Due to the large
key size, the swap is performed as little as every 4 rounds, keeping the resulting overhead at a
minimum. The implementation needs 82 bytes of RAM. We chose not to overwrite the input
to the update function, which results in a need for 16 additional RAM bytes for the input.
By overwriting the input these additional 16 bytes can be saved if RAM size is critical.

Davies-Meyer construction. The implementation of the Davies-Meyer construction simply
requires making a copy of the message to be XORed with the resulting encryption, resulting
in an additional consumption of 32 bytes of RAM.

Shrimpton-Stam construction. The implementation of Shrimpton-Stam construction
only requires to take care of remembering inputs of the ciphers to be able to XOR them
to the result of the encryptions. We chose simple keys to instantiate the functions fi so that
no extra memory is required to store them. More precisely, we respectively set all key bytes
to 0x00, 0x11 and 0x22 for f1, f2 and f3.

Rijndael-256/256. The operations to be performed during a Rijndael-256/256 encryption
are simple and can be made efficient using the well-known techniques for implementing AES
on lightweight processors, like the use of a lookup table for the S-box and the efficient mul-
tiplication by ’02’ for MixColumns [21]. The main issue when working on an ATtiny45 is
the state size: whereas AES state can be kept in registers, this is not possible any more
for 256-bit blocks. As RAM accesses are time-consuming on the ATtiny, the design of this
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implementation focuses on minimizing the number of these accesses. This has been done
by reorganizing the round loop (without, of course, affecting the behaviour of the cipher)
in such a way that the round ends with a ShiftRows operation. Additionally, we used an
auxiliary state to perform ShiftRows efficiently. As a result, we can fetch a full column from
RAM, immediately perform MixColumns, AddRoundKey and SubBytes, and write the result
in the auxiliary RAM state, taking the effect of ShiftRow into account to determine the exact
locations in RAM. The next round is then performed similarly, but writing data from the
auxiliary state to the initial one, and so on.

SEA. The reference code was written following directly the cipher specifications, and is a
natural extension of the 96-bit version designed in [24]. During its execution, plaintexts and
keys are stored in RAM (accounting for a total of 48 bytes), limiting the register consumption
to 12 registers for the running state, one register for the round counter and some additional
temporary storage. The S-box was implemented using its bitslice representation. The block
cipher was then inserted in a Davies-Meyer mode of operation, using a similar code as the
version using Rijndael-256/256. Overall, the implementation maintains low code size and
RAM use at the cost of a large cycle count, mainly due to the large number of rounds (177)
in the 196-bit version of the cipher based on 8-bit words.

2.6 Performance evaluation & conclusions

We first refer to a number of other implementations of hash functions in ATMEL AVR
devices [11, 25, 44, 45, 47, 50, 51]. In general, these previous works present benchmarking
results in devices from the AtMega family rather than the AtTiny one, hence tolerating
larger code sizes and RAM use. As they are hardly comparable with ours and because of
place constraints, we do not detail them in this section. Overall, we believe they provide
a complementary view to ours. In particular, the pretty complete comparisons of the XBX
website certainly sheds another light on the different algorithms [51]. Note also that some of
these previous works consider older versions of the SHA3 candidates. Our following results
consider the exact SHA3 finalists, according to their last updated specifications. We recall
that for the functions appearing several times in the tables (e.g. Keccak, Skein, Quark,
PHOTON, SPONGENT), the different lines correspond to different specifications and not
different implementations of the same algorithm.
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Following Section 2.3, we evaluated the performances of our different algorithms based on
three main metrics, namely the code size (in bytes), RAM use (in bytes) and cycle counts
for different message sizes4. They are represented in Figures 2.1, 2.2 and 2.3. Besides,
we also produced so-called combined metrics that aim to summarize the efficiency of the
hash functions in the AtTiny45. We used the product of the code size and cycle count and
the product of the RAM use and cycle count for this purpose. Eventually, we additionally
provide all our results in four complete tables in Appendix. As already mentioned, these
results have to be interpreted with care, as they both represent the skills of the programmer
and the algorithms efficiency. Yet, given this cautionary note, we believe a number of general
observations can be extracted.

First, the code size and RAM use illustrate that the implementation constraints were
reached for all algorithms. Nevertheless, the cost of the SHA3 candidates is generally higher
than the one of both lightweight hash functions and block cipher based constructions. For
some of them, the RAM use is close to the limit of the AtTiny device (i.e. 256). This can be
explained by the generally larger states of all SHA3 candidates.

Second, we observe that lightweight algorithms have large cycle counts compared to other
hash functions. This implies that their overall efficiency (measured with the combined met-
rics) is generally low in our implementation context. By contrast, the flexible nature of
sponge-based functions (including all lightweight proposals) allows reducing the RAM use
quite significantly, which is an interesting feature for hardware and embedded software im-
plementations.

Third, it is noticeable that the SHA3 candidates hardly compete with AES-256 in Hirose
construction or Rijndael-256-256 in Davies-Meyer mode. This observation is quite consistently
observed for all our metrics.

Eventually, and as far as SHA3 finalists (in the 256-bit versions) are concerned, our
investigations suggest that BLAKE offers the best performance figures, followed by Grøstl,
Keccak, Skein and JH.

All these results were naturally obtained within a limited time frame. Hence, we encourage
the reader to download codes and possibly improve them with further optimization. Looking
at how the AES implementations have evolved following its selection as standard, it is likely
that similar improvements can be expected for the hash functions in this work.

Acknowledgements. This work has been funded in part by the European Commission’s
ECRYPT-II NoE (ICT-2007-216676), by the Belgian State’s IAP program P6/26 BCRYPT,
by the ERC project 280141 (acronym CRASH), by the 7th framework European project
TAMPRES, by the Walloon region’s S@T Skywin and MIPSs projects. Stéphanie Kerckhof
is a PhD student funded by a FRIA grant, Belgium. François-Xavier Standaert is a Research
Associate of the Belgian Fund for Scientific Research (FNRS-F.R.S). Zheng Gong is supported
by NSFC (No. 61100201).

4Note that for certain (e.g. sponge-based) functions, the data part of the RAM could be arbitrarily reduced
by changing the interface. In this case, the RAM use evaluation in the figures excluded the data RAM (reported
in gray in the tables).
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Figure 2.1: Performance evaluation: code size (bytes).

Figure 2.2: Performance evaluation: RAM (bytes).
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Figure 2.3: Performance evaluation: cycle count (500-byte message).

Figure 2.4: Performance evaluation: code size (bytes) x cycle count (500-byte message).
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Figure 2.5: Performance evaluation: RAM (bytes) x cycle count (500-byte message).
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